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Proper Coloring

A k-proper coloring of the vertices of a graph G is a mapping
c : V (G ) → {1, · · · , k} such that ∀uv ∈ E (G ), c(u) 6= c(v).

Star coloring (1)

A star coloring of a graph G is a proper coloring of G such that
no path of length 3 in G is bicolored.



Proper Coloring

A k-proper coloring of the vertices of a graph G is a mapping
c : V (G ) → {1, · · · , k} such that ∀uv ∈ E (G ), c(u) 6= c(v).

Star coloring (1)

A star coloring of a graph G is a proper coloring of G such that
no path of length 3 in G is bicolored.

Star coloring (2)

A star coloring of a graph G is a proper coloring of G such that
the union of every two color classes induces a star forest

This notion was introduced by Grünbaum ’73.



Star chromatic number

The star chromatic number of a graph G is the minimum
number of colors which are necessary to star color G .
Denoted by χs(G ).
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Acyclic Coloring

Acyclic Coloring (1)

A proper vertex coloring of a graph is acyclic if there is no
bicolored cycle in G .
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by the union of every two color classes is a forest.



Acyclic Coloring

Acyclic Coloring (1)

A proper vertex coloring of a graph is acyclic if there is no
bicolored cycle in G .

Acyclic Coloring (2)

A proper vertex coloring of a graph is acyclic if the graph induced
by the union of every two color classes is a forest.

Acyclic Chromatic number

The acyclic chromatic number, denoted by χa(G ), of a graph G is
the smallest integer k such that G has an acyclic k-coloring.

The acyclic coloring of graphs was introduced by Grünbaum in ’73.



Theorem - [Borodin’79]

For any planar graph G , χa(G ) ≤ 5



Theorem - [Borodin’79]

For any planar graph G , χa(G ) ≤ 5

A planar graph G with χa(G ) = 5



Observation

χa(G ) ≤ χs(G )



Observation

χa(G ) ≤ χs(G )

Theorem - [Grünbaum ’73]

If χa(G ) ≤ k then χs(G ) ≤ k2k−1.



Observation

χa(G ) ≤ χs(G )

Theorem - [Grünbaum ’73]

If χa(G ) ≤ k then χs(G ) ≤ k2k−1.

Corollary

For any planar graph G , χs(G ) ≤ 80



Theorem - [Albertson * et al. ’04]

For any graph G , χs(G ) ≤ χa(G )(2χa(G ) − 1)



Theorem - [Albertson * et al. ’04]

For any graph G , χs(G ) ≤ χa(G )(2χa(G ) − 1)

Corollary

For any planar graph G , χs(G ) ≤ 45

The girth of a graph G is the length of a shortest cycle in G .

Corollary

Let G be a planar graph with girth g .

1. If g ≥ 7 then χs(G ) ≤ 9

2. If g ≥ 5 then, χs(G ) ≤ 16

*Albertson, Chapell, Kierstead, Kündgen, Ramamurthi



Theorem - [Nešeťril and Ossona de Mendez ’03]

For any planar graph G , χs(G ) ≤ 30



Theorem - [Nešeťril and Ossona de Mendez ’03]

For any planar graph G , χs(G ) ≤ 30

Theorem - [Albertson et al. ’04]

For any planar graph G , χs(G ) ≤ 20



Theorem - [Nešeťril and Ossona de Mendez ’03]

For any planar graph G , χs(G ) ≤ 30

Theorem - [Albertson et al. ’04]

For any planar graph G , χs(G ) ≤ 20

Proposition

There is a planar graph G such that χs(G ) = 10



Theorem -[Fertin, R., Reed ’04]

If a graph G has a treewidth at most k, then
χs(G ) ≤ k(k + 3)/2 + 1



Theorem -[Fertin, R., Reed ’04]

If a graph G has a treewidth at most k, then
χs(G ) ≤ k(k + 3)/2 + 1

Corollary

If G is outerplanar, then χs(G ) ≤ 6 and this is best possible.



By using Lovász’s Local Lemma:

Theorem -[Fertin, R., Reed ’04]

Let G = (V ,E ) be a graph with maximum degree ∆ then

χs(G ) ≤ ⌈20∆
3
2 ⌉.



By using Lovász’s Local Lemma:

Theorem -[Fertin, R., Reed ’04]

Let G = (V ,E ) be a graph with maximum degree ∆ then

χs(G ) ≤ ⌈20∆
3
2 ⌉.

Theorem -[Fertin, R., Reed ’04]

There exists a graph G of maximum degree ∆ such that

χs(G ) ≥ ǫ.
∆3/2

(log ∆)1/2

where ǫ is an absolute constant.

...



Degenerate and star coloring- Mojar and Špacapan

A graph G is k-degenerate if every subgraph of G has a vertex of
degree less than k.

Definition

A coloring of a graph such that for every k ≥ 1, the union of any k

color classes induces a k-degenerate subgraph is a degenerate
coloring.



Degenerate and star coloring- Mojar and Špacapan

A graph G is k-degenerate if every subgraph of G has a vertex of
degree less than k.

Definition

A coloring of a graph such that for every k ≥ 1, the union of any k

color classes induces a k-degenerate subgraph is a degenerate
coloring.

Definition

The degenerate chromatic number of G , denoted as χd(G ), is the
least n such that G admits a degenerate n-coloring.

Definition

If a coloring is both, degenerate and star, it is a degenerate star
coloring. The corresponding chromatic number is denoted as
χsd(G ).



Degenerate and star coloring

Theorem -[Mohar, Špacapan ’08]

Let G be a simple graph embedded on a surface of Euler genus g .

Then χsd(G ) ≤ ⌈1000g
3
5 + 100000⌉.

If G is a graph of genus g then χsd(G ) = O(g
3
5 )

Theorem -[Mohar, Špacapan ’08]

For every large enough g , there is a graph G embeddable in a
surface of genus g , such that
χsd(G ) ≥ χs(G ) ≥ 1

32g3/5/(log g)1/5.



Maximum average degree

Definition-Maximum average degree

Mad(G ) = max

{

2 · |E (H)|

|V (H)|
,H ⊆ G

}

.

if G is a planar graph with girth g , then Mad(G ) < 2·g
g−2 .



Star coloring of sparse graphs

Theorem -[Bu, Cranston, Montassier, R., Wang ’08]

1. If G is a graph with Mad(G ) < 26
11 , then χs(G ) ≤ 4.

2. If G is a graph with Mad(G ) < 18
7 and girth at least 6, then

χs(G ) ≤ 5.

3. If G is a graph with Mad(G ) < 8
3 and girth at least 6, then

χs(G ) ≤ 6.



Mad(G ) <
18
7 and girth at least 6, then χs(G ) ≤ 5.

Lemma

A graph G with Mad(G ) < 18
7 and g(G ) ≥ 6 contains one of the

following 14 configurations:
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Configurations
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Lemma’s proof

Let G be a counterexample, i.e. a graph with Mad(G ) < 18
7 , with

g(G ) ≥ 6, and containing none of the configurations.

k-thread

A k-thread is a (k + 1)-path whose k internal vertices are of
degree 2.

ki1,··· ,ik -vertex

A ki1,··· ,ik -vertex with i1 ≤ · · · ≤ ik is a k-vertex that is the initial
vertex of k threads of lengths i1, · · · , ik .



Discharging rules

Initial charge of a vertex v is:

ω(v) = d(v)

Each ≥3-vertex gives to its neighbors by using the following rules:

(R1) 2
7 to each 2-vertex that is not adjacent to a 2-vertex.

(R2) 4
7 to each 2-vertex u that is adjacent to a 2-vertex (u is a
20,1-vertex).

(R3) 1
7 to each 30,1,1-vertex.

(R4) 2
7 to each 40,2,2,2-vertex.



Discharging rules

The new charge of a vertex v is denoted by :

ω∗(v)

We verify that ω∗(v) ≥ 18
7 for all v ∈ V (G ).

Note that the discharging rules do not change the sum of the
charges.
This leads to the following obvious contradiction:

18

7
≤

18
7
|V (G)|

|V (G)|
≤

P

v∈V (G) ω
∗(v)

|V (G)|
=

P

v∈V (G) ω(v)

|V (G)|
=

2|E (G)|

|V (G)|
≤ Mad(G) <

18

7
.

Hence no counterexample can exist.



Lemma

Lemma

If G is a graph with Mad(G ) < 18
7 and g(G ) ≥ 6, then there exists

a vertex partition V (G ) = F ∪̇I1∪̇I2 such that:

P1. F induces a forest,

P2. I1 is an independent set such that for all x , y ∈ I1,
dG [F∪I1](x , y) > 2, and

P3. I2 is an independent set such that for all x , y ∈ I2,
dG (x , y) > 2.



Lemma’s proof

Let G be a counterexample with the fewest vertices. By the
previous Lemma, G contains one of the 14 configurations.
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Lemma’s proof

We consider each of the 14 configurations.
In each case we delete some part of the configuration, by
minimality the obtained graph has the decomposition. We can
then extend it to the whole graph. A contradiction.



Theorem’s proof

Let G be a graph with Mad(G ) < 18
7 and g(G ) ≥ 6. By the

previous Lemma, there exists a vertex partition V (G ) = F ∪̇I1∪̇I2.
Now we color:

◮ G [F ] with the colors 1, 2, and 3,

◮ G [I1] with the color 4, and

◮ G [I2] with the color 5.

This produces a star 5-coloring of G . �



V (G ) = F ∪̇I1∪̇I2

F

1     2 3

4 5

I I
1 2

χs(G ) ≤ 5



Observation

If G is a planar graph with girth g , then Mad(G ) < 2·g
g−2 .

Corollary

Let G be a planar graph with girth g(G ).

1. If g(G ) ≥ 13, then χs(G ) ≤ 4.

2. If g(G ) ≥ 9, then χs(G ) ≤ 5.

3. If g(G ) ≥ 8, then χs(G ) ≤ 6.

2) and 3) proved independently by Timmons.



Star list chromatic number

Star list coloring

1. G is L-star colorable if for a given list assignment L there is a
star coloring φ of the vertices such that φ(v) ∈ L(v).

2. If G is L-star colorable for any list assignment with |L(v)| ≥ m

for all v ∈ V (G ), then G is m-star choosable.

Star list chromatic number

The star list chromatic number of G , denoted by χl
s(G ), is the

smallest integer k such that G is k-star choosable.



Star list chromatic number

Definition

A proper coloring of an orientation of a graph G is called an
in-coloring if for every 2-colored P3 in G , the edges are directed
towards the midle vertex. A coloring of G is an in-coloring if it
is an in-coloring of some orientation of G . An L-in-coloring of G

is an in-coloring of G where the colors are chosen from the lists
assigned to each vertex.

Lemma

An L-coloring of graph G is an L-star coloring if and only if it is an

L-in-coloring of some orientation of G .



Star list chromatic number

Lemma

An L-coloring of a graph G is an L-star-coloring if and only if it is

an L-in-coloring of some orientation of G .

Proof. Given an L-star-coloring, we can construct an orientation
by directing the edges towards the center of the star in each
star-forest corresponding to the union of two color classes.

Conversely, consider an L-in-coloring of
−→
G , an orientation of G .

Let P4 = uvwz be any path on four vertices in G . We may assume

the edge vw is directed towards w in
−→
G . For the given coloring to

be an L-in-coloring at v , we must have three different colors on u,
v and w . �



Star list chromatic number

4

vu w z

L−star coloring L−incoloring

L−incoloring L−star coloring

(no P bicolored path)

1

2



Theorem-[Kierstead, Küngen, Timmons’08]

If G is bipartite planar graph then χl
s(G ) ≤ 14.

We can also prove that χl
s(G ) ≤ 14 if G is a planar triangle free

graph.

Theorem-[ Küngen, Timmons’09]

Let G be a graph.

1. If Mad(G ) < 8/3 then χl
s(G ) ≤ 6

2. If Mad(G ) < 14/5 then χl
s(G ) ≤ 7



Corollary

Let G be a planar graph.

1. If g(G ) ≥ 7, then χl
s(G ) ≤ 7;

2. If g(G ) ≥ 8, then χl
s(G ) ≤ 6;

Theorem-[ Küngen, Timmons,’09]

Let G be a planar graph. If g(G ) ≥ 6, then χl
s(G ) ≤ 8;

Theorem-[Chen, R., ’09]

Let G be a graph. If Mad(G ) < 3 then χl
s(G ) ≤ 8



Star chromatic number of cubic graphs

For a family of graph F , we denote:
χs(F) = max {χs(G ),G ∈ F} .

Proposition-[Fertin, Reed, R., ’04]

Let C denote the family of cubic graphs. We have 6 ≤ χs(C) ≤ 9

χs(G ) = 6



Star list chromatic number of planar subcubic graphs

Theorem-[Chen, R., Wang, ’09]

Let G be a planar subcubic graph.

1. If g(G ) ≥ 3, then χl
s(G ) ≤ 6;

2. If g(G ) ≥ 8, then χl
s(G ) ≤ 5;

3. If g(G ) ≥ 12, then χl
s(G ) = 4.



If g(G ) ≥ 8, then χl
s(G ) ≤ 5

A 3-vertex v is said to be:

◮ Type 1 if it is a (1, 1, 0)-vertex.

◮ Type 2 if it is a (0, 0, 0)-vertex and is adjacent to two Type 1
vertices.

◮ Type 3 if it is a (1, 0, 0)-vertex and is adjacent to one Type 1
vertex.



If g(G ) ≥ 8, then χl
s(G ) ≤ 5

Lemma

A planar subcubic graph with g(G) ≥ 8 contains one of the following 11

configurations:

(C1) A 1−-vertex.

(C2) A (1, 0)-vertex.
(C3) A (1, 1, 1)-vertex.
(C4) A (1, 1, 0)-vertex is adjacent to one (1, 1, 0)-vertex.
(C5) A (1, 0, 0)-vertex is adjacent to one 2-vertex, one (1, 1, 0)-vertex
and one (1, 0, 0)-vertex.
(C6) A (0, 0, 0)-vertex is adjacent to two (1, 1, 0)-vertices and one

(1, 0, 0)-vertex.
(C7) A (0, 0, 0)-vertex is adjacent to two type 2 vertices.

(C8) A (0, 0, 0)-vertex is adjacent to two type 3 vertices.

(C9) A (0, 0, 0)-vertex is adjacent to one type 1 vertex and one type 2

vertex.

(C10) A (0, 0, 0)-vertex is adjacent to one type 1 vertex and one type 3

vertex.

(C11) A (0, 0, 0)-vertex is adjacent to one type 2 vertex and one type 3

vertex.



If g(G ) ≥ 8, then χl
s(G ) ≤ 5

v v

(C1) (C2) (C3) (C4)

v

Figure 6: The 11 unavoidable configurations in Lemma 2.
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Discharging procedure

Let G be a counterexample, i.e. a planar subcubic graph with
g(G ) ≥ 8 and containing none of the configurations of the
previous Lemma as depicted in the previous Figure.
Euler’s formula |V (G )| − |E (G )| + |F (G )| = 2 gives

∑

v∈V (G)

(3d(v) − 8) +
∑

f ∈F (G)

(d(f ) − 8) = −16. (1)

For all v ∈ V (G ), ω(v) the initial charge is ω(v) = 3d(v) − 8 and
to each face f an initial charge such that for all
f ∈ F (G ), ω(f ) = d(f ) − 8



Discharging procedure

(R1) Each (0, 0)-vertex gets a charge equal to 1 from each of its
neighbor.

(R2) Each type 1 vertex gets a charge equal to 1 from its neighbor
of degree 3.

(R3) Each type 2 vertex gets a charge equal to 1 from its neighbor
of degree 3 which is not a type 1 vertex.

(R4) Each type 3 vertex gets a charge equal to 1 from its neighbor
of degree 3 which is not a type 1 vertex.



Discharging procedure

Once the discharging is finished, a new charge function ω∗ is
produced. However, the total sum of charges is kept fixed when
the discharging is in process.
We show that ω∗(x) ≥ 0 for all x ∈ V (G ) ∪ F (G )

−16 =
∑

x∈V (G)∪F (G)

ω(x) =
∑

x∈V (G)∪F (G)

ω∗(x) ≥ 0



If g(G ) ≥ 8, then χl
s(G ) ≤ 5

let G be a counterexample with the fewest number of vertices. G

contains one of the following 11 configurations.
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If g(G ) ≥ 8, then χl
s(G ) ≤ 5

F is the set of all black vertices depicted in the previous Figure.
We extend an L-in-coloring c of G −F to F , and finally we obtain
an L-in-coloring of this orientation of G , a contradiction.



Conclusion

◮ We have:

1. If G is a graph with Mad(G) < 26
11 , then χs(G) ≤ 4.

2. If G is a graph with Mad(G) < 18
7 and girth at least 6, then

χs(G) ≤ 5.
3. If G is a graph with Mad(G) < 8

3 and girth at least 6, then
χs(G) ≤ 6.

4. If G is a graph with Mad(G) < 14/5 then χs(G) ≤ 7



Conclusion

Definition

Let f : N → R be defined by

f (n) = inf{Mad(H) | χs(H) > n}

f (1) = 1.

If G contains an edge, then χs(G ) > 1; otherwise, G is a
independent set, so χs(G ) = 1 and Mad(G ) = 0



Conclusion

f (2) =
3

2
.

If G contains a path of length 3, then χs(G ) > 2 and
Mad(G ) ≥ 3

2 . Otherwise, G is a star forest, so χs(G ) ≤ 2 and
Mad(G ) < 2.



Conclusion

f (2) =
3

2
.

If G contains a path of length 3, then χs(G ) > 2 and
Mad(G ) ≥ 3

2 . Otherwise, G is a star forest, so χs(G ) ≤ 2 and
Mad(G ) < 2.

f (3) = 2.



Conclusion

f (n) = inf{Mad(H) | χs(H) > n}

Problem

What is the value of f (n) for n ≥ 4?



Conclusion

Theorem - [Albertson et al. ’04]

For any planar graph G , χs(G ) ≤ 20

Problem

Can we improve this upper bound?


