Homomorphisms of sparse graphs to small graphs

André Raspaud

LaBRI Université Bordeaux I France

Graph Theory 2009 Fredericia, Denmark Thursday November 26 - Sunday November 29

Flow

Let G be a directed graph, A be an abelian group.

A-flow

A-flow f of G is a mapping which assigns to each edge e of G an element of A f(e) such that :

• for every vertex x,
$$\Sigma_{e \in E^+(x)} f(e) = \Sigma_{e \in E^-(x)} f(e)$$
.

Here $E^+(x)$ is the set of edges incident to and oriented away from x, and $E^-(x)$ is the set of edges incident to and oriented towards x.

Modular orientation

- A graph is mod (2p + 1)-orientable (p ≥ 1) if it has an orienation s.t. the out degree of each vertex is congruent mod (2p + 1) to the in-degree.
- $U(\mathbb{Z}_{2p+1}) = \{1, -1\}$

mod (3)-orientation of $K_{3,3}$

Let G be a directed graph. For positive integers $p \ge 2q$, a (p,q)-flow f of G is a mapping which assigns to each edge e of D an integer f(e) such that

• for every vertex x, $\sum_{e\in E^+(x)} f(e) - \sum_{e\in E^-(x)} f(e) = 0$,

• for every edge $e, q \leq |f(e)| \leq p - q$.

Here $E^+(x)$ is the set of edges incident to and oriented away from x, and $E^-(x)$ is the set of edges incident to and oriented towards x.

Theorem (Jaeger '82)

For any graph G and for any $p \ge 1$ the following properties are equivalent:

- G is (2p+1)-orientable
- **2** G has a $U(\mathbb{Z}_{2p+1})$ -flow
- S G has a (2p + 1, p)-flow

Conjecture (The circular flow conjecture, Jaeger '82)

For all $p \ge 1$, every 4*p*-edge connected graph has a (2p + 1, p)-flow.

Conjecture (The circular flow conjecture, Jaeger '82)

For all $p \ge 1$, every 4*p*-edge connected graph has a (2p + 1, p)-flow.

- $p = 1 \implies$ 3-flow conjecture of Tutte ('54)
- $p = 2 \implies$ 5-flow conjecture of Tutte ('54)

Circular coloring

Let G be a graph. For positive integers $p \ge 2q$, a (p,q)-coloring of G is a mapping $f: V(G) \longrightarrow \{0, 1, \dots, p-1\}$ such that

• for every edge xy, $q \leq |f(x) - f(y)| \leq p - q$

Circular chromatic number

$$\chi_c(G) = min\{\frac{p}{q}: G \text{ has a } (p,q)\text{-coloring}\}$$

Jeager's conjecture restricted to planar graphs

Conjecture

Every planar graph G of girth at least 4p has circular chromatique number at most $2 + \frac{1}{p}$

Let $K_{\frac{p}{q}}$ be the graph with vertex set $\{0, \ldots, p-1\}$ $(p \ge 2q)$ in which ij is an edge if and only if $q \le |j-i| \le p-q$. Such a graph is called a circular clique.

Homomorphism

A homomorphism from G to H is a mapping $h: V(G) \to V(H)$ such that if $xy \in E(G)$ then $h(x)h(y) \in E(H)$.

Circular coloring-Homomorpism

G has a $(p,q)\text{-coloring} \Longleftrightarrow$ it exist a homomorphism from G to $K_{\frac{p}{q}}$.

Denoted by

.

$$G \to K_{\frac{p}{q}}$$

Let g(G) be the girth of G

Conjecture (Jaeger)

Let G be a planar graph:

$$g(G) \ge 4p \Longrightarrow G \to K_{\frac{2p+1}{p}}$$

Remark: $K_{\frac{2p+1}{p}} = C_{2p+1}$

4p is best possible.

DeVos, Pirnazar and Ullman

André Raspaud Homomorphisms of sparse graphs to small graphs

Let G be a planar graph.

We denote by odg(G) the odd girth of a graph G

Theorem

 $\chi_{c}(G) \leq 2 + \frac{1}{p}$ if:

- g(G) ≥ 10p − 4: Nešetřil and Zhu ('96), Gallucio, Goddyn, Hell ('01)
- $odg(G) \ge 10p 3$: Klostermeyer and Zhang ('00)

• $g(G) \geq \frac{20p-2}{3}$: Borodin, Kim, Kostochka, West ('04)

Let G be a planar graph, if $odg(G) \ge 13$ (p = 2), by the two last results we have:

Conjecture (Jaeger '82)

Let G be a planar graph, if $g(G) \ge 4p$ then $\chi_c(G) \le 2 + \frac{1}{p}$

Conjecture (Klostermeyer and Zhang ('00))

Let G be a planar graph, if $odg(G) \ge 4p + 1$ then $\chi_c(G) \le 2 + \frac{1}{p}$

Definition-Maximum average degree

$$\operatorname{Mad}(G) = \max\left\{\frac{2 \cdot |E(H)|}{|V(H)|}, H \subseteq G\right\}.$$

if G is a planar graph with girth g, then $Mad(G) < \frac{2g}{g-2}$.

The maximum average degree of a graph can be computed in polynomial time by using the matroid partitoning algorithm EDMONDS '65.

Theorem (Borodin, Kim, Kostochka, West ('04))

If $g(G) \geq 6p-2$ and $Mad(G) < rac{10p-1}{5p-2}$ then $\chi_c(G) \leq 2+rac{1}{p}$

Theorem (Borodin, Hartke, Ivanova, Kostochka, West ('04))

Let G be a triangle-free graph. If $Mad(G) < \frac{12}{5}$ then $\chi_c(G) \leq \frac{5}{2}$

Corollary

Let G be planar graph. If $g(G) \ge 12$ then $\chi_c(G) \le \frac{5}{2}$

Theorem (R., Roussel ('05))

Let G be a triangle free graph:

- if $Mad(G) < \frac{22}{9}$ then $\chi_c(G) \leq \frac{11}{4}$
- if $Mad(G) < \frac{5}{2}$ then $\chi_c(G) \le \frac{14}{5}$

Corollary

Let G be a triangle free planar graph:

• if $g(G) \ge 11$ then $\chi_c(G) \le \frac{11}{4}$

• if
$$g(G) \geq 10$$
 then $\chi_c(G) \leq rac{14}{5}$

Conjecture (R., Roussel ('09))

Let G be with $g(G) \ge 4p$ and $Mad(G) < 2 + \frac{2}{2p-1}$ then $\chi_c(G) \le 2 + \frac{1}{p}$

Results

if $Mad(G) < \frac{22}{9}$ then $G \longrightarrow$

Results

if $\operatorname{Mad}(G) < \frac{5}{2}$ then $G \longrightarrow$

Let a > b be two integers. We denote by $\mathcal{P}_b[a]$ the b-elements subsets of a the set $\{1, \dots, a\}$. Let G be a graph and c: $V(G) \rightarrow \mathcal{P}_b[a]$ such that for two adjacent vertices u and v of G c(u) and c(v) are disjoint. c is then an (a, b)-coloring.

Fractional chromatic number

$$\chi_f(G) = min\{\frac{a}{b}: G \text{ has a } (a, b)\text{-coloring}\}$$

$$\chi_f(G) \leq \chi_c(G)$$

Kneser graphs

Kneser graph

The Kneser graph, denoted by $K_{n:k}$, is defined to be the graph in which vertices represent subsets of cardinality k taken from $\{1, 2, \dots, n\}$ and two vertices are adjacent if and only if the corresponding subsets are disjoint.

Fractional coloring-Homorphism

G has a $(a,b)\text{-coloring} \iff$ it exists a homomorphism from G to $\mathcal{K}_{a:b}$.

Denoted by

.

 $G \rightarrow K_{a:b}$

Let g(G) be the girth of G

Conjecture

Let G be a planar graph:

$$g(G) \ge 4p \Longrightarrow G \to K_{2p+1:p}$$

Jaeger conjecture \implies the above conjecture. Remark: $K_{\frac{2p+1}{p}} = 0_{2p+1}$ the Odd graph.

Theorem (Klostermeyer and Zhang ('00))

Let G be a planar graph. (1) If the odd-girth of G is at least 10p - 7 with $p \ge 2$, then $\chi_f(G) \le 2 + \frac{1}{p}$. (2) If $g(G) \ge 10p - 9$ with $p \ge 2$ and $\Delta(G) \le 3$, then $\chi_f(G) \le 2 + \frac{1}{p}$. (3) There exists a planar graph H with odd-girth at least 2p + 1such that $\chi_f(G) > 2 + \frac{1}{p}$.

Theorem (Pirnazar and Ullman ('02))

Let G be a planar graph. If $g(G) \ge 8p - 4$ $(p \ge 1)$ then $\chi_f(G) \le 2 + \frac{1}{p}$.

Theorem (Dvořák, Škrekovski and Valla ('08))

Let G be a planar graph. If $odg(G) \ge 9$ then $\chi_f(G) \le \frac{5}{2}$.

Conjecture (Naserasr ('09))

Let G be a planar graph. If $odg(G) \ge 2p + 3 \ (p \ge 1)$ then $\chi_f(G) \le 2 + \frac{1}{p}$.

Theorem (Chen, R. ('08))

Let G is a triangle-free graph.

- If $Mad(G) < \frac{5}{2}$, then $\chi_f(G) \le \frac{5}{2}$
- If $Mad(G) < \frac{9}{4}$, then $\chi_f(G) \le \frac{7}{3}$
- If $Mad(G) < \frac{24}{11}$, then $\chi_f(G) \leq \frac{9}{4}$

Corollary

Let G is a planar graph.

- If $g(G) \ge 10$, then $\chi_f(G) \le \frac{5}{2}$
- If $g(G) \ge 18$, then $\chi_f(G) \le \frac{7}{3}$
- If $g(G) \ge 24$, then $\chi_f(G) \le \frac{9}{4}$

The Theorem of Dvořák, Škrekovski and Valla gives a better result than the first item of Corollary. They proved that if $odg(G) \ge 9$ then $\chi_f(G) \le \frac{5}{2}$.

Maximum average degree

• If $Mad(G) < \frac{5}{2}$, then $\chi_f(G) \le \frac{5}{2}$

It is best possible.

Let G_2 be the following graph:

 G_2 does not have a (5,2)- coloring.

If $Mad(G) < \frac{5}{2}$, then $\chi_f(G) \le \frac{5}{2}$

We want to prove that: If G is triangle-free and $Mad(G) < \frac{5}{2}$, then

sketch

We take a minimum counterexample. We prove that this minimum counterexample cannot contain some configurations. If a graph does not contain these configurations then $Mad(G) \ge \frac{5}{2}$, a contradiction.

Observations

For $x \in V(K_{5:2})$, we define $L_i(x) = \{y | \text{ there is a walk of length } i$ in $K_{5:2}$ joining x and y} and $F_i(x) = V(K_{5:2}) \setminus L_i(x)$.

Observation

For
$$x \in V(K_{5:2})$$
, we have that $|F_1(x)| = 7$, $|F_2(x)| = 3$, $|F_3(x)| = 1$, and $|F_{4^+}(x)| = 0$.

 $y_2 y$

Fig.6: A united thread structure $P_{k_1}(k_1, \dots, k_{d(v)}) P_{k_{d(v)}}$ with a knot $v = (k_1, \dots, k_{d(v)})$.

Fig.13: Reducible united thread-cycle structures in Claim 16.

Observation

Definition (Borodin, Hartke, Ivanova, Kostochka, West ('08))

A compensatory path for a (2,0,1)-vertex v is chosen as any shortest path F formed by concatenating threads in the following way. First, F starts along the unique 1-thread at v. Then F traversed some number of 1-threads by (1,0,1)-vertices. Let v^* be the first vertex reached which is not a (1,0,1)-vertex. Moreover, we say that v^* is a *slave* of v and v is a *master* of v^* .

Observation

Lemma

Suppose v is a (2,0,1)-vertex. Let v^* be the slave of v. Then the following hold: (1) v^* is neither a 2-vertex nor a (1,0,1)-vertex; (2) If $d(v^*) = 3$ then v^* is a (1,0,0)-vertex. Initial charge $\omega(v) = d(v)$ at each vertex v.

- (R1) Each 2-vertex in a 2-thread gets a charge equal to $\frac{1}{2}$ from its 3^+ -vertex neighbor.
- (R2) Each 2-vertex in a 1-thread gets a charge equal to $\frac{1}{4}$ from each of its neighbor.

(R3) Each (2,0,1)-vertex gets a charge equal to $\frac{1}{4}$ from its slave.

 ω^* to denote the charge at each vertex v after we apply the discharging rules. Note that the discharging rules do not change the sum of the charges. To complete the proof, we show that $\omega^*(v) \geq \frac{5}{2}$ for all $v \in V(G)$.

This leads to a contradiction.

Conjecture

Let G be a graph with $g(G) \ge 2p + 1$. If $Mad(G) < 2 + \frac{1}{p}$, then $\chi_f(G) \le 2 + \frac{1}{p}$

If this conjecture is true, then it is best possible. Let be G_p the complete graph K_4 with vertex set $\{t, u, v, w\}$. We replace the edge uv by a path of length 2p - 1 and the edge tw by a path of length 2p - 1.

Conclusion

Klostermeyer and Zhang ('00)

The graph G_p cannot be (2p + 1, p)-colored.

 $odg(G_p) = 2p + 1$ and $Mad(G_p) = 2 + \frac{1}{p}$.

