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Proper k-coloring

Proper k-coloring

Let G be a graph and k (k > 1) an integer.
A proper k-coloring of G is a mapping ¢ : V(G) — {1,--- ,k} such that:

» for every edge zy, ¢(x) # (y)

In other words, a k-coloring of G is a partition Vi, Va,---, Vi of V(G) such
that V; is an independent set for every 4, i.e., the subgraph induced by V;
has maximum degree zero.



d-improper k-coloring

Burr and Jacobson (1985), Cowen, Cowen, and Woodall (1986), Harary and
Jones (1985).

d-improper k-coloring

Let G be a graph and k, d (k,d > 1) integers.
A d-improper k-coloring of G is a mapping ¢ : V(G) — {1,--- ,k} such
that :

» Vi, 1 <i <k, G[i] has a maximum degree at most d

» G[i] is the subgraph induced by color 4.

Every vertex v has at most d neighbors receiving the same color as v. We

denote: (d,d,--- ,d)-coloring = d-improper k-coloring
» a (0,0,0,0)-coloring is a proper 4-coloring.

> a (2,2,2)-coloring is a 2-improper 3-coloring.



1-improper 2-coloring

(1, 1)-coloring



Known results

Appel and Haken, 1977

» Every planar graph is (0,0, 0, 0)-colorable.

Cowen, Cowen, and Woodall, 1986

» Every planar graph is 2-improperly 3-colorable, i.e. (2,2, 2)-colorable.

Xu, 2009

Every plane graph with neither adjacent triangles nor 5-cycles is
(1,1, 1)-colorable.



Known results-Choosability

A graph G is d-improper m-choosable, or simply (m, d)*-choosable, if for
every list assignment L, where |L(v)| > m for every v € V(G), there exists
an L-colouring of G such that each vertex of G has at most d neighbours
coloured with the same colour as itself.

Eaton and Hull (1999), Skrekovski (1999)

» Every planar graph is 2-improper 3-choosable: (3,2)*-choosable.

If a graph G is 2-improper 3-choosable then it is (2,2, 2)-colorable.

Skrekovski proved that for every k, there are planar graphs which are not
k-improper 2-colorable.



Known results

Cushing and Kierstead (2009)

Every planar graph is 1-improper 4-choosable ((4,1)*-choosable).

Dong and Xu (2009)

Let G be a plane graph without any cycles of length in {4,8}, then G is
(3,1)"-choosable.

Question (Xu and Zhang, 2007)

Is-it true that every planar graph without adjacent triangle is
(3,1)*-choosable.

Every planar graph without adjacent triangle is (1,1, 1)-colorable?



Known results

Definition-Maximum average degree

Mad(G) :max{2'|E(H)|,H C G}.

V() "~



Known results

Definition-Maximum average degree

Mad(G) :max{2'|E(H)|,H C G}.

V() "~

In 1995, Jensen and Toft showed that there is a polynomial algorithm to
comput Mad(G) for a given graph G.

T. R. Jensen and B. Toft, Choosability versus chromaticity,

Geombinatorics 5(1995), 45-64.

if G is a planar graph with girth g, then Mad(G) < %.



Known results

Havet and Sereni, 2006

» For every k > 0, every graph G with Mad(G) < 4:%24 is k-improperly

2-colorable (in fact k-improperly 2-choosable), i.e. (k, k)-colorable

» k=1 Mad(G) < % : (1,1)-colorable (planar, g = 8).
» k=2 Mad(G) < 3: (2,2)-colorable (planar, g = 6).

A more general result:

Theorem (Havet and Sereni)

For every | > 2 and every k > 0, all graphs of maximum average degree less

than l(éi—i’“) are k-improper l-choosable.

it implies (k,--- , k)-colorable.



(d1,da,- -+ ,dy)-coloring

(d1,da,- -+ ,dy)-coloring

A graph G is (di,do, - - - , dy)-colorable if and only if:
> it exists a partition of V: V. =Vi UV, U--- UV} such that Vi € [1, k],

A(GVi]) < ds

(2, 1)-coloring

In this talk: (1,0), (k,0), (k,1), (k,j), (k,0,---,0)



(1,0)-colorable

Theorem (Glebov and Zambalaeva, 2007)

Every planar graph is (1,0)-colorable if g(G) > 16.

Theorem (Borodin and Ivanova, 2009)

Every graph is (1,0)-colorable if Mad(G) < %

New technique first introduced by Borodin, Ivanova and Kostochka in

2006.

This implies: A planar graph is (1, 0)-colorable if g(G) > 14



Improvement

Theorem (Borodin and Kostochka, 2010)

Every graph G with Mad(G) < £ is (1,0)-colorable and the restriction on
Mad(G) is sharp.




Improvement

Theorem (Borodin and Kostochka, 2010)

Every graph G with Mad(G) < £ is (1,0)-colorable and the restriction on
Mad(G) is sharp.

_2E(G,)|  12p+6 12 6

Mad(Gyp)

SV pr2 5 T 5Gp+2)



(k,0)-coloring

(k,0)-coloring

» Bipartition V1,5 of V(G)
» A(G[V1]) < k and G[V%] is a stable set.

Color k: vertices of V3
Color 0: vertices of V5.

k=1

Theorem (Borodin and Kostochka, 2010)

Every graph is (1,0)-colorable if Mad(G) < 2

Corollary
A planar graph is (1,0)-colorable if g(G) > 12




Outerplanar graphs

Smallest value of k such that G admits a (k, 0)-coloring?



Outerplanar graphs
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Outerplanar graphs

Smallest value of k such that G admits a (k, 0)-coloring?
k=17



Outerplanar graphs

(2,0)-coloring



Outerplanar graphs

» Outerplanar graphs with girth 4 are (2,0)-colorable.
» Outerplanar graphs with girth 5 are (1,0)-colorable.

(the girth of a graph G is the length of a shortest cycle of G.)



Outerplanar graphs

For outerplanar graphs with girth 3, k£ is unbounded.

Non (k,0)-colorable outerplanar graph with girth 3
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Outerplanar graphs

For outerplanar graphs with girth 3, k£ is unbounded.

Non (k,0)-colorable outerplanar graph with girth 3

_2|E(Gpr)] _ 2(Bk+2)(p+1)—1) _ 3k+2
= |V(Gp,k)| - (2k:+2)(p_|_1)_1 P

Mad(prk)



Sparse graphs

Key concepts:

soft components, feading area

Theorem (Borodin, Ivanova, Montassier, Ochem, R., 2009)

Let k> 0 be a integer. Fvery graph with mazimum average degree smaller

than 315:_’24 is (k, 0)-colorable.

» Mad(G) < 2 — (2,0)
» Mad(G) <2 — (3,0)



Sparse graphs

Key concepts:

soft components, feading area

Theorem (Borodin, Ivanova, Montassier, Ochem, R., 2009)

Let k> 0 be a integer. Fvery graph with mazimum average degree smaller
than 315:_’24 is (k, 0)-colorable.

» Mad(G) < 2 — (2,0)

» Mad(G) <2 — (3,0)
Optimality:

. C3k+2 3k+4 1
pim Mad(Gpr) = 3= < 3755 T 353




Planar graphs

Corollary

Every planar graph G is:

> (1,0)-colorable if g(G) > 14,
> (2,0)-colorable if g(G) > 10,
> (3,0)-colorable if g(G) > 9,
> (4,0)-colorable if g(G) > 8,
> (8,0)-colorable if g(G) > 7.



Planar graphs

Corollary

Every planar graph G is:

> (1,0)-colorable if g(G) > 14,
> (2,0)-colorable if g(G) > 10,
> (3,0)-colorable if g(G) > 9,
> (4,0)-colorable if g(G) > 8,
> (8,0)-colorable if g(G) > 7.

For planar graphs with girth 6, k£ is unbounded.



2k+1 2k +1

Non (k,0)-colorable planar graph with girth 6



(K, 1)-coloring

Theorem (Borodin, Ivanova, Montassier, R., 2010)

Let k > 2 be a integer. Every graph with mazximum average degree smaller

than 13422 s (k,1)-colorable.




(K, 1)-coloring

An example of G, , with n =3 and k = 3.

Non (k, 1)-colorable graph.

_ 2[B(Gni)|  2(2n—1+5(k — 1)n+n(2k +3))  2(7nk — 1)
Mad(Gn.r) = |V(Gn,:)| T o 2n—1+43k-1n+nk+2) " n@k+1)-1

lim Mad(Gnx) = 4]1‘:]_{1




(K, j)-coloring

Let k,j be two integers with j > 2, k > j + 1 and r1,r2,73, 74,751, I'52, Mk, j
be seven non-negative reals. Given k, j, let Py ; be the linear program
described below.

Theorem (Borodin, Ivanova, Montassier, R., 2010)

Let (r1,72,73,74, 751,752, My ;) be a solution of P ;, then every graph with
Mad(G) < my,; is (k,j)-colorable.
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(K, j)-coloring

In particular:

Corollary

» Every graph G with Mad(G) < ¥ is (13, 2)-colorable.
» Every graph G with Mad(G) < 3 is (7,3)-colorable.



(K, j)-coloring

In particular:

Corollary

» Every graph G with Mad(G) < ¥ is (13, 2)-colorable.
» Every graph G with Mad(G) <

For planar graphs:

391_57 is (7, 3)-colorable.

JG) [0 [ (k1) k2) [ (:3) ] (k4
3,4 X X X X X

5 X ? (13,2) (7,3) | (4,4) [HSO6]
6 X (5,1) (2,2) [HSO06]

7 (8,0) (2,1)

8 (4,0) | (1,1) [HSO06]

9 (3,0)

10 (2,0)

14 (1,0)




(K, j)-coloring: very last result

Let F(j, k) denote the supremum of  such that every graph G
with Mad(G) < =z is (k, j)-colorable. It is easy to see that F'(0,0) = 2.

Theorem (Borodin and Kostochka, 2011)

Let >0 and k> 2j+2 Then F(j,k)zz(z—(jg)%).

» If Mad(G) < 3,%12 (k > 2) then G is (k, 0)-colorable.

> If Mad(G) < P2 (k > 4) then G is (k, 1)-colorable.




(0,---,0, k);-coloring

A (0,---,0,k);-coloring of G is a partition (Vi,Va,..., V) (I > 3) of the
vertices of G such that for 1 <+ <[ — 1, G[V4] is a stable set, and G[V/] has
maximum degree at most k.

Theorem (Kaiser, Montassier, R., Rucky, 2011)

Let 1 > 3 and k > 0 be integers. Every graph G with Mad(G) < 1 + ﬁ is
(0,:--,0,k);-colorable.

If Mad(G) < £ then G is (0,0, 1)-colorable.



Steinberg Conjecture
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Every planar graph without 4 and 5-cycles is 3-colorable ((0,0,0)-colorable)

Can we prove :
» (0,0, 1)-colorable?
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Steinberg Conjecture

Conjecture (Steinberg, 1976)

Every planar graph without 4 and 5-cycles is 3-colorable ((0,0,0)-colorable)

Can we prove :

» (0,0, 1)-colorable?

» (0,1, 1)-colorable?

> (1,1,1)-colorable (Xu, 2009)
(0,0, 2)-colorable?

>

(0,0,7) seems ok.........



Thank you for your attention!



