Acyclic k-choosability of planar graphs

André Raspaud

LaBRI Université Bordeaux I France

February 26, 2010

André Raspaud (LaBRI)

Acyclic k-choosability of planar graphs

Acyclic Coloring

Proper Coloring

A *k*-proper coloring of the vertices of a graph *G* is a mapping $c : V(G) \rightarrow \{1, \dots, k\}$ such that $\forall uv \in E(G), c(u) \neq c(v)$.

Acyclic Coloring (1)

A proper vertex coloring of a graph is *acyclic* if there is no bicolored cycle in *G*.

Definitions

Acyclic Coloring

Proper Coloring

A *k*-proper coloring of the vertices of a graph *G* is a mapping $c : V(G) \rightarrow \{1, \dots, k\}$ such that $\forall uv \in E(G), c(u) \neq c(v)$.

Acyclic Coloring (1)

A proper vertex coloring of a graph is *acyclic* if there is no bicolored cycle in *G*.

Acyclic Coloring (2)

A proper vertex coloring of a graph is *acyclic* if the graph induced by the union of every two color classes is a forest.

Acyclic Chromatic number

The *acyclic chromatic number*, denoted by $\chi_a(G)$, of a graph *G* is the smallest integer *k* such that *G* has an acyclic *k*-coloring.

The acyclic coloring of graphs was introduced by Grünbaum in '73.

An example of Petersen graph

Conjecture (Grünbaum, IJM, 1973)

Every planar graph is acyclically 5-colorable.

Conjecture (Grünbaum, IJM, 1973)

Every planar graph is acyclically 5-colorable.

Conjecture (Grünbaum, IJM, 1973)

Every planar graph is acyclically 5-colorable.

Let \mathcal{P} denote the family of planar graphs.

• Mitchem, 1974, $\chi_a(\mathcal{P}) \leq 8$.

Conjecture (Grünbaum, IJM, 1973)

Every planar graph is acyclically 5-colorable.

- Mitchem, 1974, $\chi_a(\mathcal{P}) \leq 8$.
- Albertson and Berman, 1977, $\chi_a(\mathcal{P}) \leq 7$.

Conjecture (Grünbaum, IJM, 1973)

Every planar graph is acyclically 5-colorable.

- Mitchem, 1974, $\chi_a(\mathcal{P}) \leq 8$.
- Albertson and Berman, 1977, $\chi_a(\mathcal{P}) \leq 7$.
- Kostochka, 1976, $\chi_a(\mathcal{P}) \leq 6$.

Conjecture (Grünbaum, IJM, 1973)

Every planar graph is acyclically 5-colorable.

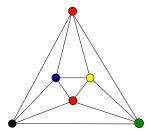
- Mitchem, 1974, $\chi_a(\mathcal{P}) \leq 8$.
- Albertson and Berman, 1977, $\chi_a(\mathcal{P}) \leq 7$.
- Kostochka, 1976, $\chi_a(\mathcal{P}) \leq 6$.
- Borodin, 1979, $\chi_a(\mathcal{P}) \leq 5$.

Theorem - [Borodin'79]

For any planar graph *G*, $\chi_a(G) \leq 5$

Theorem - [Borodin'79]

For any planar graph G, $\chi_a(G) \leq 5$



A planar graph G with $\chi_a(G) = 5$

L is a *list assignment* of a graph G if it assigns a *list L(v)* of possible colors to each vertex v ∈ V.
 Denoted by L = {L(v) : v ∈ V}.

- L is a *list assignment* of a graph G if it assigns a *list L(v)* of possible colors to each vertex v ∈ V.
 Denoted by L = {L(v) : v ∈ V}.
- A graph G is acyclically L-list colorable if for a given list assignment L, there is an acyclic coloring π of the vertices such that π(v) ∈ L(v).

- L is a *list assignment* of a graph G if it assigns a *list L(v)* of possible colors to each vertex v ∈ V.
 Denoted by L = {L(v) : v ∈ V}.
- A graph G is acyclically L-list colorable if for a given list assignment L, there is an acyclic coloring π of the vertices such that π(v) ∈ L(v).
- If G is acyclically L-list colorable for any list assignment L with $|L(v)| \ge k$ for all $v \in V$, then G is acyclically k-choosable.

- L is a *list assignment* of a graph G if it assigns a *list L(v)* of possible colors to each vertex v ∈ V.
 Denoted by L = {L(v) : v ∈ V}.
- A graph G is acyclically L-list colorable if for a given list assignment L, there is an acyclic coloring π of the vertices such that π(ν) ∈ L(ν).
- If G is acyclically L-list colorable for any list assignment L with $|L(v)| \ge k$ for all $v \in V$, then G is acyclically k-choosable.
- The acyclic list chromatic number of G, denoted by χ^l_a(G), is the smallest integer k such that G is acyclically k-choosable.

♠ Conjecture*: Every planar graph is acyclically 5-choosable.

 \Rightarrow Borodin's acyclic 5-color theorem (1979) and Thomassen's 5-choosability theorem (1994)

*Borodin, Flaass, Kostochka, Raspaud, Sopena, JGT, 2002.

♠ Conjecture*: Every planar graph is acyclically 5-choosable.

 \Rightarrow Borodin's acyclic 5-color theorem (1979) and Thomassen's 5-choosability theorem (1994)

*Borodin, Flaass, Kostochka, Raspaud, Sopena, JGT, 2002.

Theorem

Every planar graph is acyclically 7-choosable.

♠ Conjecture*: Every planar graph is acyclically 5-choosable.

 \Rightarrow Borodin's acyclic 5-color theorem (1979) and Thomassen's 5-choosability theorem (1994)

*Borodin, Flaass, Kostochka, Raspaud, Sopena, JGT, 2002.

Theorem

Every planar graph is acyclically 7-choosable.

Theorem (Wang and C., JGT, 2009)

Every planar graph without 4-cycles is acyclically 6-choosable.

Known results - Acyclic 5-choosability

Theorem (Montassier, Raspaud, Wang, JGT, 2007)

Every planar graph either without $\{4,5\}$ -cycles or without $\{4,6\}$ -cycles is acyclically 5-choosable.

Known results - Acyclic 5-choosability

Theorem (Montassier, Raspaud, Wang, JGT, 2007) Every planar graph either without $\{4,5\}$ -cycles or without $\{4,6\}$ -cycles is acyclically 5-choosable.

Theorem (C., Wang, DM, 2008)

Every planar graph without **4-cycles** and without **two 3-cycles at distance less than 3** is acyclically 5-choosable.

Known results - Acyclic 5-choosability

Theorem (Montassier, Raspaud, Wang, JGT, 2007) Every planar graph either without $\{4, 5\}$ -cycles or without $\{4, 6\}$ -cycles is acyclically 5-choosable.

Theorem (C., Wang, DM, 2008)

Every planar graph without **4-cycles** and without **two 3-cycles at distance less than 3** is acyclically 5-choosable.

Theorem (Zhang, Xu, DM, 2009)

Every planar graph having neither **4-cycles** nor **chordal 6-cycles** is acyclically 5-choosable.

Known results - Acyclic 4-choosability

Theorem

Planar graphs without $\{4, i, j\}$ -cycles with $5 \le i < j \le 8$ are acyclically 4-choosable.

4	5	6	7	8	
Х	Х	Х			Montassier, R., Wang, 2006
х	Х		Х		Montassier, R., Wang, 2006
Х	Х			Х	Chen, R., 2009
Х		Х	Х		Chen, R., Wang, 2009
Х		Х		Х	Chen, R., Wang, 2009
Х			Х	Х	Chen, R., Roussel, Zhu, 2009

Definition: The *girth* g(G) of a graph *G* is the length of *a shortest cycle in G*.

Theorem (Borodin, Kostochka, Woodall, JLM, 1999)

Let G be a planar graph. (1) If $g(G) \ge 7$ then $\chi_a(G) \le 3$. (2) If $g(G) \ge 5$ then $\chi_a(G) \le 4$.

Definition: The *girth* g(G) of a graph *G* is the length of *a shortest cycle in G*.

Theorem (Borodin, Kostochka, Woodall, JLM, 1999)

Let G be a planar graph. (1) If $g(G) \ge 7$ then $\chi_a(G) \le 3$. (2) If $g(G) \ge 5$ then $\chi_a(G) \le 4$.

These two results are, respectively, improved by the following:

Theorem (Borodin, C., Ivanova, Raspaud, 2009)

If G is a planar graph with $g(G) \ge 7$, then $\chi_a^l(G) \le 3$.

Theorem (Montassier, 2006)

If G is a planar graph with $g(G) \ge 5$, then $\chi_a^l(G) \le 4$.

Theorem (Hocquard, Montassier, IPL, 2009)

Every planar graph without cycles of **lengths 4 to 12** is acyclically 3-choosable.

Maximum average degree

Definition (Maximum average degree)

 $Mad(G) = max\{\frac{2|E(H)|}{|V(H)|} : H \subseteq G\}.$

Observation

If G is a planar graph with girth g, then $Mad(G) < \frac{2 \cdot g}{g-2}$.

Theorem (Montassier, Ochem, Raspaud, JGT, 2005)

(1) Every graph G with $Mad(G) < \frac{8}{3}$ is acyclically 3-choosable; (2) Every graph G with $Mad(G) < \frac{19}{6}$ is acyclically 4-choosable; (3) Every graph G with $Mad(G) < \frac{24}{7}$ is acyclically 5-choosable.

Theorem (Montassier, Ochem, Raspaud, JGT, 2005)

(1) Every graph G with $Mad(G) < \frac{8}{3}$ is acyclically 3-choosable; (2) Every graph G with $Mad(G) < \frac{19}{6}$ is acyclically 4-choosable; (3) Every graph G with $Mad(G) < \frac{24}{7}$ is acyclically 5-choosable.

By using relationship $Mad(G) < \frac{2 \cdot g}{g-2}$, then

Corollary

(1) Every planar graph G with $g(G) \ge 8$ is acyclically 3-choosable; (2) Every planar graph G with $g(G) \ge 6$ is acyclically 4-choosable; (3) Every planar graph G with $g(G) \ge 5$ is acyclically 5-choosable.

