
Little and not so big bits of Haskell

D. Renault

Haskell (small) School
LaBRI

October 2015, v. 1.2.1

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 1 / 45

1990 - A committee formed by Simon Peyton-Jones, Paul Hudak, Philip
Wadler, Ashton Kutcher, and People for the Ethical Treatment of Animals
creates Haskell, a pure, non-strict, functional language.
Haskell gets some resistance due to the complexity of using monads to
control side effects.
Wadler tries to appease critics by explaining that “a monad is a monoid in
the category of endofunctors, what’s the problem ?”

J.Iry, “A Brief, Incomplete, and Mostly Wrong
History of Programming Languages”

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 2 / 45

A brief history of Haskell

First work on proof systems

Hindley-Milner type system

ML

LCF

Miranda

Alfl

Lazy ML

SML

First pure and lazy languages

Orwell

First discussions on Haskell

Caml

Haskell 1.0

HOL

Coq

Haskell 1.0 Report

SML90

Haskell 1.1

Caml Light

Refinment of the language

Objective Caml

Haskell 98 report

Haskell 98

Coq

SML

Hindley-Milner type system

First work on proof systems

Refinment of the language

Miranda

Haskell 1.0 Haskell 1.1

First discussions on Haskell

Caml Light

HOL

Lazy ML

Caml

Orwell

Haskell 98

ML Objective Caml

SML90

LCF

Haskell 1.0 Report

First pure and lazy languages

Alfl

Haskell 98 report

19
70

19
75

19
80

19
85

19
90

19
95

20
00

Proof
systems

Programming
languages

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 3 / 45

A brief history of Haskell

Essentially a pure functional language, meaning :
declarative style, no side effects, no assignment, no sequence.
With a call-by-need evaluation strategy (also named lazy evaluation).
No formal definition, the current standard is the Haskell 98 report
which gives an informal (albeit precise) definition of the language.
Used for research in programming new language features
(monads, type classes, zippers, lenses . . .)
Now features an active community and several libraries in ongoing
development (parallelism, web frameworks)

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 4 / 45

1 Quick introduction

2 The Haskell type system

3 Type classes

4 Lazy evaluation

5 The IO Monad

6 Haskell for programmers

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 5 / 45

Training wheels

Let us begin with the usual very simple examples :

1 + 2 −−→ 3
6/3 −−→ 2.0
sqrt 49 −−→ 7.0

. . . or perhaps more traditionally :

putStrLn "Hello World" −− Prints "Hello World"

And it is quite possible to go some time † without realizing that even simple
operations correspond to very complex representations under the hood.

†. Let’s admit it, it would be quite a small amount of time, say 4 slides.
D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 6 / 45

Examples of functions

Consider the definition of the factorial function :

fact x = if (x <= 1) then 1 else x ∗ fact(x−1)

The same, but defined in an equational way :

fact 1 = 1
fact n = n ∗ fact (n−1)

Another example with the greatest common divisor function :

gcd x y | y == 0 = x
| y < 0 = gcd (−y) x
| otherwise = gcd y (x ‘rem ‘ y)

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 7 / 45

Playing with lists

In Haskell, lists are defined in the following way :

x = [9, 4, 3] −− a list of Ints , in short [Int]

On these you can do the usual stuff :

head x −−→ 9
tail x −−→ [4,3]
x ++ x −−→ [9,4,3,9,4,3]

And also apply some classical functional programming :

map (+ 1) x −−→ [10,5,4]
filter odd x −−→ [9,3]
fold (+) 0 x −−→ 16 = 9+4+3, same as reduce in Lisp

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 8 / 45

Sorting lists

The quicksort algorithm in an elegant way :

qsort [] = []
qsort (x:xs) = qsort small ++ mid ++ qsort large
where

small = filter (< x) xs
mid = filter (==x) (x:xs)
large = filter (> x) xs

. . . with a pattern-matching on a list parameter.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 9 / 45

The Haskell Type system

Haskell has a strong type system, meaning that the system :

determines the type of every expression statically (type inference) ;
checks the coherence of the types of every expression.

Moreover, this type is accessible at the toplevel for inspection :

:t True
→ True :: Bool
:t "abcde"
→ "abcde" :: [Char] −− represents a list of Char

Even though some “routine” values have a rather strange type :

:t 3
→ 3 :: Num a ⇒ a
:t 2.0
→ 2.0 :: Fractional a ⇒ a

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 10 / 45

What is a type variable ?

Some types contain type variables, i.e placeholders that could be replaced
by any concrete type.

For example, the function head returns the first element of a list :

:t head
→ head :: [a] → a −− a is a type variable

This function may be applied to a list containing any kind of values.
It is generic :

head [1,2,3]
→ 1
head "Hello"
→ ’H’ −− recall that String = [Char]

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 11 / 45

Examples of genericity

Genericity appears quite naturally when dealing with abstract values.
The operator (.) corresponds to the composition of functions :

compose g h x = h(g(x)) −− (a → b) → (b → c) → a → c

(.) g h x = g(h(x)) −− (b → c) → (a → b) → a → c

Usually, this operator is used to write concisely simple functions :

−− Compute the sum of the squares
−− of the odd integers < 10000
(sum . map square . filter odd) [1..10000]

Also, map and fold are examples of generic functions on lists.

:t map −−→ map :: (a → b) → [a] → [b]
:t fold −−→ fold :: (a → b → a) → a → [b] → a

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 12 / 45

Constrained genericity

The following function tests the existence of an element inside a list :

belongs y [] = False
belongs y (x:xs) = if (y == x) then True

else find y xs

What is the type of the belongs function ?

belongs :: Eq a ⇒ a → [a] → Bool

This notation expresses the fact that the genericity is constrained :
the type variable a can be instantiated/replaced by a concrete type t if and
only if t possesses the property Eq t.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 13 / 45

Type classes

Type class
A type class TC is a set of types implementing a specification.
The fact that the concrete type t ∈ TC is noted TC t.

For example, a possible definition for the Eq type class :

class Eq a where
(==) :: a → a → Bool
(/=) :: a → a → Bool
x /= y = not (x == y) −− default definition

It is equivalent to the set of types possessing an equality function.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 14 / 45

Type classes

Type class
A type class TC is a set of types implementing a specification.
The fact that the concrete type t ∈ TC is noted TC t.

For a type to be in Eq t, it suffices to provide an implementation for (==) :

instance Eq Integer where
x == y = specificIntegerEq x y

. . . where specificIntegerEq is an integer-customized equality function.
In practice, the (==) function is overloaded for all values typed in Eq.

This shares many similarities with Java interfaces, without the OO flavor.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 15 / 45

Type classes - Examples

What kind of types belong to the Eq type class ?

1 == 2 −−→ False , a = Int
"Hello" == "Toto" −−→ False , a = [Char]
[1,2,3] == [1,2,3] −−→ True , a = [Int]

On the other hand, there exists types that do not belong to this type class,
for example functions :

sin == cos −−→ No instance for (Eq (a0 → a0))
−− arising from a use of ‘==’

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 16 / 45

Comparison with OCaml

In OCaml, the belongs function looks like :

let rec belongs x l = match l with
| [] → false
| y::ys → (x=y) || (belongs x ys);;

The compiler claims that this function is completely generic.

val belongs : ’a → ’a list → bool

Nevertheless, in OCaml :

let _ = belongs sin [cos]

⇒ Compiles, but yields an exception at runtime.

(∗ Exception: Invalid_argument
"equal: functional value". ∗)

Whereas in Haskell :

let _ = belongs sin [cos]

⇒ Yields a compilation error.

No instance for (Eq (a0→ a0))
arising from a use of ‘belongs ’

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 17 / 45

Type classes - Inheritance

It is possible to refine type classes, through inheritance.

In this example, the Ord type class inherits from the Eq type class :

class (Eq a) ⇒ Ord a where
(<), (<=), (>=), (>) :: a → a → Bool
max , min :: a → a → a

Considered as set of types, Ord ⊂ Eq.

The Haskell language allows multiple inheritance.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 18 / 45

Numerical types

Now it becomes possible to understand the types seen in the previous slides.

:t 3
→ 3 :: Num a ⇒ a

This means that the constant 3 has a type that is generic, but constrained
by the Num type class (compare that to the behavior of C).

Precisely, the Num type class contains the following concrete types :

Int and Integer, for the usual 32-bit and arbitrarily long integers,
Float and Double, the single/double precision floating point numbers.

The Num type class requires the operations : +, ∗,−,abs,signum.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 19 / 45

Haskell numerical types hierarchy

Num Ord

Real Enum

Integral

Fractional

Floating RealFrac

RealFloat

Int Integer

Float Double

Ratio aComplex a

+
–
*

<
>

toRational
succ
pred

div
mod

/

exp
sin
cos

round
floor

exponent
significand

Type class

Concrete instance
Required method

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 20 / 45

Type inference

And now comes the most interesting part :

3 + (7 ::Int) −−→ 10 :: Int
3 + (7 ::Float) −−→ 10.0 :: Float

And both expressions are well-typed.

What the compiler does is analyze the expression and resolve all the
constraints for all the types. This is called type inference.

3 :: Num a ⇒a

7 :: Float

(+) ::Num a ⇒a →a →a

In this case, the only valid solution 3 + (7::Float) is a = Float.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 21 / 45

In OCaml, operations for integers and floats are clearly separated :

3 + 7.0;;(∗ Error: This expression has type float ∗)
(∗ but was expected of type int ∗)

(+) : int → int → int
(+.) : float → float → float

. . . whereas in Haskell, the (+) function is overloaded and may be applied
to different types.

(+) :: Num a ⇒ a → a → a

Nevertheless, this system still can prevent type errors such as :

(3 ::Int) + (7 ::Float)
−− Error : Couldn ’t match expected
−− type ‘Int ’ with actual type ‘Float ’

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 22 / 45

Limits of type inference

The programmer should remain wary of types :

:t length −−→ length :: [a] → Int
sqrt(length [1,2,3]) −−→ Type error

Type inference is not completely effective : it cannot always find a
solution to the type constraints.

:t read −−→ read :: Read a ⇒ String → a
:t show −−→ show :: Show a ⇒ a → String
id x = show (read x) −− Ambiguous type variable

−−‘a0’ in the constraints

The compiler is not able to determine the type of read x.
In this example, read "4" could be typed with either Int or Float,
but the type cannot be determined statically.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 23 / 45

Lazy evaluation

Basic idea : some evaluations of expressions can terminate, even if their
sub-expressions do not terminate.

fst (1, 1/0) −−→ returns 1 despite the 1/0
[1..] !! 4 −−→ returns 5 despite the infinite list

Call-by-need evaluation rule
An expression is evaluated only when necessary.
Typically, pattern matches and I/O force the evaluation of their arguments.

The idea already exists in other languages such as C whose
specification contains special rules for && and ||.
The if-then-else construct (which may or may not be an expression of
the language) does not evaluate all its sub-expressions.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 24 / 45

How does it work in practice ?

The process of evaluation of an expression usually reduces the expression to
a normal form called a value.
Haskell authorizes the partial reduction of the sub-expressions (of a given
expression) into pieces that are yet to be evaluated.

For example, reusing the quicksort algorithm :

head (qsort [2,1,4,3])

. . . returns 1 without evaluating the rest of the expression.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 25 / 45

How does it work in practice ?

The process of evaluation of an expression usually reduces the expression to
a normal form called a value.
Haskell authorizes the partial reduction of the sub-expressions (of a given
expression) into pieces that are yet to be evaluated.

For example, reusing the quicksort algorithm :

head (qsort [2,1,4,3])

qsort (filter (< 2) [1,4,3]) ++ ? ++ ?)head (

qsort [1]head(++ ? ++ ?)

[1]head(++ ? ++ ?)

. . . returns 1 without evaluating the rest of the expression.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 25 / 45

What kind of lazy computations ?

Computations with infinite lists (ex. : Erathostenes sieve)

primes = 2 : 3 : ([5 ,7..] ‘minus ‘
unionAll [[p∗p, p∗p+2∗p..] | p ← tail primes])

Streams and in-place computations (ex. : database access)

query = do { x ← people −− possibly very long
; restrict (length x < 5)
; order [asc x!name] ; return x }

Delayed computations
(ex. : copy-on-write strategy for page allocation in virtual memory)

Elegant writing of unbounded computations

msum $ repeat getValidPassword
−− equivalent to while loop

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 26 / 45

Limits of call-by-need semantics

Slight memory overhead for storing expressions instead of values ;
Important memory leaks may occur when rewriting expressions
without fully evaluating them. For instance :
foldl (+) 0 [1..1000000::Integer] → ((((1+2)+3)+4)+· · ·
Expressions are reduced only when they are actually needed.
Solution : replace foldl by a strict version foldl’

The garbage collection overhead due to leaks incurs a performance hit.

Most of the time, the optimization of a Haskell program consists in
balancing strict and lazy evaluation.
The GHC compiler makes an optimization pass called strictness analysis.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 27 / 45

C++ Pop quizz

Can you guess the output of the following code with g++ ?

#include <iostream >
using namespace std;
int main(void){

int i = 0;
cout << i++ << i++ << i++ << i++ << endl;
i = 0;
cout << ++i << ++i << ++i << ++i << endl;
return 0;

}

With −O0 :
3210
4321

With −O2 :
3210
4444

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 28 / 45

C++ Pop quizz

Can you guess the output of the following code with g++ ?

#include <iostream >
using namespace std;
int main(void){

int i = 0;
cout << i++ << i++ << i++ << i++ << endl;
i = 0;
cout << ++i << ++i << ++i << ++i << endl;
return 0;

}

With −O0 :
3210
4321

With −O2 :
3210
4444

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 28 / 45

How is it possible to do I/O in a pure functional language ?
→ since I/O actions all contain side effects, this is really a problem.

What is the important property here ?

Referential transparency
The value of an expression must be independent of the moment of its
evaluation.

Example : in the last example, i++ was not referentially transparent.

This property is fundamental with a call-by-need evaluation strategy.

How do you make an action such as getChar behave in a referentially
transparent manner ?

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 29 / 45

The IO Monad

Consider the following C program :

int main(void) {
int i,j,s;
scanf("%d", &i); // read i
scanf("%d", &j); // read j
s = i+j;
printf("%d\n", s); // print the sum
return 0;

}

Composed of 3 side-effects : 2 inputs, 1 output.
Highly reliant on imperative features.

Let us transform this example in the Haskell world, called the IO monad.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 30 / 45

The IO Monad

We obtain the following Haskell program :

int main(void) {
int i,j,s;
scanf("%d", &i);
scanf("%d", &j);
s = i+j;
printf("%d\n", s);
return 0;

}

main = do
x ← getLine
y ← getLine
let s = x+y
putStr (show s)

. . . in a very straightforward manner †.

†. That will take the 7 next slides to explain.
D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 31 / 45

Decompose (sequentially) the operations performed in this example :

read x read y s = x+y print s

x y s

Consider the following type : type IO a = World →(World, a)

Namely : a function taking some world, returning
{

a new world and
a value of type a.

Example : the World contains handles attached to the stdin and stdout.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 32 / 45

Decompose (sequentially) the operations performed in this example :

read x read y s = x+y print s

x y s

Consider the following type : type IO a = World →(World, a)

Namely : a function taking some world, returning
{

a new world and
a value of type a.

Example : the World contains handles attached to the stdin and stdout.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 32 / 45

Decompose (sequentially) the operations performed in this example :

read x read y s = x+y print s

W W WW W WW W

x

y

Consider the following type : type IO a = World →(World, a)

Namely : a function taking some world, returning
{

a new world and
a value of type a.

Example : the World contains handles attached to the stdin and stdout.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 32 / 45

Decompose (sequentially) the operations performed in this example :

read x read y s = x+y print s

W W WW W WW W

x

y

Consider the following type : type IO a = World →(World, a)

Namely : a function taking some world, returning
{

a new world and
a value of type a.

Example : the World contains handles attached to the stdin and stdout.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 32 / 45

In this framework :

getLine ::IO String ≡ World → (World, String)

putStr ::String →IO () ≡ String →World →(World, ())

In a functional language, it becomes natural to compose these actions :

read x read y s = x+y print s

main w0 =
let (x, w1) = getLine w0 in
let (y, w2) = getLine w1 in
let (s, w3) = (x+y, w2) in
let ((), w4) = putStr (show s) w3

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 33 / 45

main w0 =

let (x, w1) = getLine w0 in

let (y, w2) = getLine w1 in

let (s, w3) = (x+y, w2) in

let ((), w4) = putStr (show s) w3

Let us rewrite this code using a composition of functions :

main w0 =
(\(x,w1) →

(\(y,w2) →
(\(s,w3) → putStr (show s) w3)

(x+y,w2)

(getLine w1))

(getLine w0)

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 34 / 45

main w0 =
(\(x,w1) →

(\(y,w2) →
(\(s,w3) → putStr (show s) w3)

(x+y,w2)

(getLine w1))

(getLine w0)

Rewrite and reorder the function application using an infix operator »- :

main w0 =

getLine w0 »- (\(x,w1) →
getLine w1 »- (\(y,w2) →

(x+y,w2) »- (\(s,w3) →
putStr (show s) w3)))

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 35 / 45

main w0 =
getLine w0 »- (\(x,w1) →

getLine w1 »- (\(y,w2) →
(x+y,w2)) »- (\(s,w3) →

putStr (show s) w3)))

Now consider that the “wi ” variables are implicitely transmitted :

main =
getLine »- (\x →

getLine »- (\y →
return (x+y) »- (\s →

putStr (show s))))

Notice the apparition of the return function.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 36 / 45

main =
getLine »- (\x →

getLine »- (\y →
return (x+y) »- (\s →

putStr (show s))))

Finally, rewrite this using a bit of syntactic sugar :

main = do
x ← getLine
y ← getLine
let s = x+y
putStr (show s)

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 37 / 45

Final comparison

C code (imperative) :

int main(void) {
int i,j,s;
scanf("%d", &i);
scanf("%d", &j);
s = i+j;
printf("%d\n", s);
return 0; }

Haskell code (functional) :

main = do
x ← getLine
y ← getLine
let s = (read x)+(read y) −− convert to ints
putStr (show s)

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 38 / 45

So what ?

Pipelined computation encapsulating a global state : the monad
imposes a sequence of actions with a transmission of the state of the
world, with no direct access, no possibility of reference or duplication.
Clear type separation : all IO-dependent computations must be done
inside the IO monad (and are tagged with the IO type), all pure (i.e
IO-independent) computations can be done outside.
Referential transparency : the computation done within the IO
monad is dependent of an exterior World variable. In this regard, it is
referentially transparent.

But :

Difficulty to write in a monadic style : the construction possesses a
complex semantics, and the type errors rapidly become pretty scary.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 39 / 45

Monads in the category of endofunctors

Monads represent a generic data type for arranging the composition of
operations. For example :

on option types : → error handling

newUser login pass = do
validateUsrString login −−→ Just String || ∅
validatePwdString pass −−→ Just String || ∅
hash ← computeHash pass −−→ Just Hash || ∅
insertDB login hash −−→ Just () || ∅

on lists : → list comprehensions

dubiousList = do
x ← [1,2,3]; y ← [4,5]
let s = x+y −− s = [5,6,6,7,7,8]
guard (even s) −− s = [6,6,8]
return s −− return s

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 40 / 45

Haskell in the Real WorldTM

Some links for beginners in the language :

Hackage, a package library
Hackage : http://hackage.haskell.org
Features around 5000 packages and 450000 functions.
Several documentation search engines
Hayoo : http://holumbus.fh-wedel.de/hayoo/hayoo.html
Hoogle : http://www.haskell.org/hoogle
Cabal, a build system for Haskell
http://www.haskell.org/cabal

The Haskell (semestrial) community report
http://www.haskell.org/communities

Live open source projects (darcs, pandoc, xmonad, . . .)

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 41 / 45

http://hackage.haskell.org
http://holumbus.fh-wedel.de/hayoo/hayoo.html
http://www.haskell.org/hoogle
http://www.haskell.org/cabal
http://www.haskell.org/communities

Haskell and parallel algorithms

Eden library (http://www.mathematik.uni-marburg.de/~eden)

Example : approximation of π by a midpoint-integration scheme :

ncpi n = mapRedr (+) 0 (f . index) [1..n]

/ fromInteger n
where f x = 4 / (1 + x∗x)

index i = (fromInteger i − 0.5)
/ fromInteger n

Replace mapRedr by offlineParMapRedr to get a parallel algorithm.

Provides strategies for Map-Reduce and Divide-and-Conquer algorithms.
Contains helpers simplifying the communications between parallel processes.

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 42 / 45

http://www.mathematik.uni-marburg.de/~eden

Haskell and the web

Yesod framework (http://www.yesodweb.com)

Type-checked DSLs for templating and routing :

<div .message >

$maybe (info,msg) <- submission

File type : #fileContentType info .

Message : #msg

<form method=post action= @{HomeR}#form

enctype= #{formEnctype} >

^formWidget

<input type="submit" value="Send it!">

Snap framework (http://snapframework.com)

Modular system called snaplets separating concerns
(authentication, authorization, database . . .) ;

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 43 / 45

http://www.yesodweb.com
http://snapframework.com

Good reading

Miran Lipovača : Learn you a Haskell for great good !
http://learnyouahaskell.com

B. O’Sullivan, D. Stewart, and J. Goerzen : Real World Haskell
http://book.realworldhaskell.org

The Haskell wiki
http://www.haskell.org/haskellwiki/Category:Haskell

D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 44 / 45

http://learnyouahaskell.com
http://book.realworldhaskell.org
http://www.haskell.org/haskellwiki/Category:Haskell

Declarative vs. Imperative

Problem
Double the integer elements inside an array.

var nums = [1,2,3,4,5]

for(var i = 0;
i < nums.length;
i++) {

nums[i] = nums[i] ∗ 2
}

Imperative style

Sequence of instructions
State and side-effects
Memory consuming

var nums = [1,2,3,4,5]

var doubled = nums.map(
function(n) {

return n ∗ 2
})

Declarative style

Equational definitions
No state → pure functions
Memory intensive

Go back
D. Renault (LaBRI) Little and not so big bits of Haskell October 2015, v. 1.2.1 45 / 45

	Quick introduction
	The Haskell type system
	Type classes
	Lazy evaluation
	The IO Monad
	Haskell for programmers

