D. Renault

The Thursday’s Geekeries
ENSEIRB-MATMECA

June 2015, v. 1.1

A somewhat basic problem
Consider a task T such that :
T is constituted of a rather large number of subtasks {t1,...,tn};

°
@ The subtasks are completely independent ;
@ Each subtask t; outputs a result u;;

°

The result of the global task T is a combination of the u;'s.

Examples :

o News aggregator : aggregate a series of requests to different servers;

@ Test harness : execute all the tests for a program in a distributed manner.

How to execute T while harnessing the parallelism of a personal computer ? J

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 2 /24

Recurring example

Problem

Compute an approximation of 7 using the Bailey—Borwein—Plouffe formula :

W‘ii 4 2 11
4216k \8k+1 8k+4 8k+5 8k+6

@ Each thread computes a (finite) number of parts of the sum.
@ The computation time of each thread is non trivial.
@ The final code must sum the results computed by each thread.

Highlights the following aspects of the problem :

@ Parallelism : all the quantities are independent.
@ Sharing : each computation plays a role in the final result.
= leads to concurrency problems.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) _

Concurrency and Atomicity

Atomic operation

An atomic operation is a sequence of one or more machine instructions that are
executed sequentially, without interruption from the operating system.

When a thread performs an atomic operation, the other threads see it as
happening instantaneously.

Example : x += 1; is not an atomic operation. J

It is composed of three atomic operations :

@ read the value of x and store it into a register;
@ compute the sum of this register and the value 1;
@ store the result of the addition into x.

The value of x could be modified between the first and the last operation.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) _

Naive implementation with fork

static mpf_t xglob_var;
glob_var =

mpf_init(xglob_var);
pid_t xchildPids = NULL;
childPids =

for (int k = ©; k < NUM_THREADS;

if ((p = fork()) == 0) {
mpf_t work; mpf_init(work);
bbp_computation(k, size, work);
pthread_mutex_lock (&mtx);
mpf_add(xglob_var ,xglob_var ,work);
pthread_mutex_unlock (&mtx);
exit (0);

} else { childPids[k] = p; } }

int stillWaiting;
do {
stillWaiting = 0;

//

++k) { //

//

//
/7
//
//

//

Allocate shared memory

mmap (NULL , sizeof xglob_var ,PROT_READ|PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS , —1,

0);

malloc (NUM_THREADS * sizeof(pid_t));

Fork children

Child starts to work here
Start atomic operation
End atomic operation
Child’s work is finished

Parent process

Wait for children to exit

for (int k = @; k < NUM_THREADS; ++k) {
if (childPids[k]l > @) {
if (waitpid(childPids[k], NULL, WNOHANG) != @) {
childPids[k] = 0; // Child is done
} else { stillWaiting = 1; } // Chils is not finished

} } } while (stillWaiting);

D. Renault (ENSEIRB-MATMECA)

Parallelization as easy as pie (?)

June 2015, v. 1.1 5 /24

Problem : this approach is cumbersome and prone to mistakes.

@ Necessity to handle the shared memory,
@ Necessity to handle the mutexes for concurrency,

@ Necessity to spawn and wait for the processes.

= Some expertise is required to write correct code.

Optimally, one can encapsulate the system bits into a library or a framework.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1

6 /24

Less naive implementation with threads

C and C++ offer a thread library for multithreading :
mpf_t glob_var;

void bbp_worker(unsigned int k, unsigned int size, mpf_t glob_var) {

mpf_t work; mpf_init(work);
bbp_computation(k, size, work);

mtx.lock (); // Start atomic operation
mpf_add(glob_var, glob_var, work);
mtx.unlock(); // End atomic operation

}

int main(void) {
mpf_init(glob_var);
std::thread threadArray[num_threads];
for(int i=0;i<num_threads;i++) // Start children
threadArray[i] = std::thread(bbp_worker, i,
num_loops*size/num_threads,
glob_var);
for(int i=0;i<num_threads;i++) // Wait for children to exit
threadArray[i]. join();

o Considerably simpler code;

@ Still necessary to handle explicitly the threads and mutexes.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1

7 /24

Easier parallelization

Some frameworks for simplifying parallelization of tasks :
@ C++ : Threading Building Blocks,
https://www.threadingbuildingblocks.org/

o C, C++ : OpenMP,
http://openmp.org/wp/,
http://bisqwit.iki.fi/story/howto/openmp/

o C, C4++: CilkPlus,
https://www.cilkplus.org/
Main ideas :

@ Frameworks consisting of very few functions, keywords, or macros.
@ Sprinkle the code with some parallelization annotations.

@ The runtime handles the allocations and memory accesses.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1

8 /24

https://www.threadingbuildingblocks.org/
http://openmp.org/wp/
http://bisqwit.iki.fi/story/howto/openmp/
https://www.cilkplus.org/

Example in Openmp

mpf_t glob_var;

mpf_init(glob_var);

#pragma omp parallel for shared(glob_var) num_threads(num_threads)

for(int k=0; k<num_loops; ++k) { // OpenMP parallel loop

mpf_t work;
mpf_init (work);
bbp_computation(k, size, work);
mpf_add(glob_var,glob_var ,work);

@ Programmer inserts #pragma directives to indicate parallelism.

@ Safety of shared access, even if it is still necessary to define what is shared.

@ Few modifications of the existing code, though the #pragmas look untidy.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 9 /24

Example in Threading Building Blocks (1/2)

mpf_t glob_var;
mpf_init(glob_var);
task_scheduler_init init(num_threads); // Initialize TBB

parallel_for (@, num_loops,
[&glob_var,size] (const int k) {
mpf_t work;
mpf_init (work);
bbp_child(k, size, work);
mpf_add (glob_var,glob_var ,work);
1) 8

@ The example uses a C++ lambda operation for brevity ;
The more classical example uses a struct for storing the function.

@ Requires more modifications of the code compared to OpenMP,

@ But using functions gives more flexibility than a separate compilation phase.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1

10 / 24

Example in Threading Building Blocks (2/2)

task_scheduler_init init(num_threads); // Initialize TBB

return parallel_reduce(

blocked_range<int>(@, num_loopsxsize), glob_var,

// Range accumulation function

[size] (const blocked_range<int>& r, mpf_t *xinit) — mpf_tx {
mpf_tx work; mpf_p_init(work);
mpf_set (xwork, *xinit);
for(int k=r.begin(); k<r.end(); ++k) // work = X r,

mpf_add (xwork, xwork, xbbp_element(k));

return work;

P

// Pair reduction function

[1 (mpf_tx workl, mpf_tx work2) — mpf_tx {
mpf_tx glob; mpf_p_init(glob);
mpf_add (xglob, xwork1 ,xwork2); // glob = workl+work?2
return glob;

)3

@ The same example using a parallel_reduce function.

@ No global variable, the runtime passes the results from thread to thread.
(this example does not handle freeing the memory)

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 11 / 24

Results

TBB

0.4 +

0.2

Normalized real time

t t t t t t t t
1 2 3 4 5 6 7 8

Number of threads

CPU : Intel Core 2 Duo (2 virtual processors)

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) _

In fact, these libraries are much more generic than simple loop parallelization :

class FibTask: public task {
public:
const long n; long* const sum;
FibTask(long n_, longx sum_) : n(n_), sum(sum_) {}
taskx execute() { // Override virtual function task::execute
if(n<CutOff) {
«sum = SerialFib(n);
} else {
long x, y; // Allocate children tasks
FibTask& a = xnew(allocate_child()) FibTask(n—1,&x);
FibTask& b = xnew(allocate_child()) FibTask(n—2,&y);
set_ref_count (3);

spawn(b); // Start b.
spawn_and_wait_for_all(a); // Start a and wait
ksum = X+y; // Do the sum

}
return NULL; 3}3};

long ParallelFib(long n) {
long sum;
FibTask& a = xnew(task::allocate_root()) FibTask(n,&sum);
task::spawn_root_and_wait(a);
return sum; }

... here, the computation of the Fibonacci numbers by spawning recursive tasks.

fn = fnfl + fn72

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1

Abstraction of a generic parallel algorithm that allows for :

e Efficient implementations :

» Subscription : adapt the number of threads to the hardware capabilities.
» Scheduling : the scheduler may adopt dedicated policy by balancing the loads
of the threads, or delaying preemption times.

@ Low code overhead.
@ Portability of the code.

Is it possible to generalize these tactics?)

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 14 / 24

Skeletal programming

Skeletal programming

Compose high-level algorithms that are prone to parallelization.
Ultimately, the parallelism is handled by a framework or a compiler.

Cf. Parallel Programming Using Skeleton Functions, Darlington et al. in 1993,

e For, While OpenMP, TBB
o Pipeline Parallel LINQ, Java 8 Streams, MongoDB Aggregation
o Map-Reduce Eden, Skandium, Hadoop, Scalding, Disco, Spark,

Storm, HDInsight, Pig, Hive ...
o Divide & Conquer Eden, Skandium

Some algorithmic skeletons frameworks implementations :

@ Java : Skandium (discontinued), http://didawiki.di.unipi.it/../skandium
@ Haskell : Eden, http://www.mathematik.uni-marburg.de/~eden/
@ C++ : Fastflow, http://calvados.di.unipi.it/fastflow

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) _

http://didawiki.di.unipi.it/doku.php/magistraleinformaticanetworking/spm/skandium_local
http://www.mathematik.uni-marburg.de/~eden/
http://calvados.di.unipi.it/fastflow

Pipeline

Thread 1
["'tn"'tl] — T
\“T2
\‘T3
ST, — [tpun]

Thread 2

Condition : each task must be independent from the others.

Examples
@ composition of tasks on streams of data,

@ chains of database queries,
from elem in array orderby elem descending where elem > 2 select elem;

@ generalized in the producer/consumer pattern.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 16 / 24

Map Reduce

Lo | ~—
tp, — U

to — U>
t3 — U3
ty — Ug

ts — Us

te Ug
Y
Split Map Reduce

Condition : each task of the map must be independent of the others.

Examples
o distributed grep,
@ count of URL access frequency in a set of logs,
@ reverse web-link graph on a set of URLs ...

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 17 / 24

Example using Java streams

Using the Java 8 Streams framework :

public static class BigDecimalSumCollector implements

Collector<BigDecimal ,BigMutableDecimal ,BigDecimal> { ... }
List<Integer> array = iota(@,n); // [0,1,...,n=1]
BigDecimal res = array.parallelStream()

.map(s — bbp_simple(PREC, s)) // map

.collect(new BigDecimalSumCollector()); // sum
System.out.println(res);

@ May use lambda-expressions or classes inside higher-order functions.

@ « When a stream executes in parallel, the Java runtime partitions the stream
into multiple substreams. » Java documentation

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 18 / 24

Example with the Eden library in Haskell

Using the Eden library in Haskell :

workChild :: Int — Int

workChild x = xx*x

main :: I0 ()

main = do
let res = foldr (+) (parMap workChild [1..10]) — Map + reduce
putStrLn ("Result_:_." ++ show res)

@ Single function to modify to switch between sequential and parallel.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) _

Example with the Scalding library in Scala

Using the Scalding library in Scala :

val mx : Int = args(”input”).tolnt
val mc = new java.math.MathContext (1000)

TypedPipe.from(new IterableSource(iota(@,n))) // [@0,1,...,n—1]
.map { k : Int => bbp_simple(mc, k) }
.groupBy { _ => @ } // single group

.foldLeft (BigDecimal (0))((u : BigDecimal,v : BigDecimal) => (utv))
.write(TypedTsv(args("output”)))

@ Scalding is a frontend for the Hadoop framework
and only handles Map-Reduce algorithms.

@ More complex to deploy, but handles parallelism on clusters.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 20 / 24

Example with the Eden library in Haskell

Using the Eden library in Haskell :

mergeSortBBP :: [Int] — BigFloat Prec
mergeSortBBP = parDC 1 trivial solve split combine where
trivial :: [Int]l] — Bool

trivial xs = length xs <= 1
solve :: [Int] — BigFloat Prec
solve [x] = bbpPiTransform x
split :: [Int]l] — [[Int]l]
split = splitIntoN 2
combine :: [Int] — [BigFloat Prec] — BigFloat Prec
combine _ = foldl (+) @
main :: I0 ()

main = do
let res = mergeSortBBP [0..(s—1)]
putStrLn $ "Final_result_:_._." ++ show res

@ Divide and Conquer algorithm here adapted to solve our problem.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1

21/ 24

Skeleton Patterns

MapReduce patterns (cf. MapReduce Design Patterns, Miner & Shook) :
@ Sum & Group (counting, reverse index),
o Filtering, removing duplicates,

@ Partitioning, clustering, sorting, shuffling.

Divide & Conquer algorithms :
e Merge/quick sort,
e FFT, matrix multiplication and diagonalization,
@ Barnes-Hut algorithm for solving the N-body problem,

@ Image processing algorithms (convexity, connexity).

In some cases, skeletons can be automatically converted into other skeletons.
Example : MapReduce may be encoded into Divide & Conquer.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 22 /24

Other types of parallelization

What kinds of problems are not fit for these techniques?

@ Problems involving a large number of blocking tasks (I/O, mutexes).

e Computations with a large number of communications (messages and data).

In some cases, message passing frameworks with a more precise grain for
parallelism, such as PVM or MPI, may be more adapted.

Example : clustering algorithms (such as K-means)

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 23 / 24

Some good reading

@ Parallel Programming Using Skeleton Functions,
Darlington et al., PARLE Conference Proceedings, 1993,
https://dl.acm.org/citation.cfm?id=691650

@ A Survey of Algorithmic Skeleton Frameworks : High-Level Structured

Parallel Programming Enablers,
Horacio Gonzalez-Vélez and Mario Leyton, Practice and Experience 2010,

https://dl.acm.org/citation.cfm?id=1890757

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 24 / 24

https://dl.acm.org/citation.cfm?id=691650
https://dl.acm.org/citation.cfm?id=1890757

