
Enhance your code
Parallelization as easy as pie (?)

D. Renault

The Thursday’s Geekeries
ENSEIRB-MATMECA

June 2015, v. 1.1

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 1 / 24

A somewhat basic problem

Consider a task T such that :

T is constituted of a rather large number of subtasks {t1, . . . , tN} ;
The subtasks are completely independent ;
Each subtask ti outputs a result ui ;
The result of the global task T is a combination of the ui ’s.

Examples :

News aggregator : aggregate a series of requests to different servers ;
Test harness : execute all the tests for a program in a distributed manner.

How to execute T while harnessing the parallelism of a personal computer ?

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 2 / 24

Recurring example

Problem
Compute an approximation of π using the Bailey–Borwein–Plouffe formula :

π =
∞∑
k=0

1
16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)

Each thread computes a (finite) number of parts of the sum.
The computation time of each thread is non trivial.
The final code must sum the results computed by each thread.

Highlights the following aspects of the problem :

Parallelism : all the quantities are independent.
Sharing : each computation plays a role in the final result.
⇒ leads to concurrency problems.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 3 / 24

Concurrency and Atomicity

Atomic operation
An atomic operation is a sequence of one or more machine instructions that are
executed sequentially, without interruption from the operating system.

When a thread performs an atomic operation, the other threads see it as
happening instantaneously.

Example : x += 1; is not an atomic operation.

It is composed of three atomic operations :

read the value of x and store it into a register ;
compute the sum of this register and the value 1 ;
store the result of the addition into x .

The value of x could be modified between the first and the last operation.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 4 / 24

Naive implementation with fork

static mpf_t ∗glob_var; // Allocate shared memory
glob_var = mmap(NULL ,sizeof ∗glob_var ,PROT_READ|PROT_WRITE ,

MAP_SHARED|MAP_ANONYMOUS ,−1, 0);
mpf_init(∗glob_var);
pid_t ∗childPids = NULL;
childPids = malloc(NUM_THREADS ∗ sizeof(pid_t));

for (int k = 0; k < NUM_THREADS; ++k) { // Fork children
if ((p = fork ()) == 0) { // Child starts to work here

mpf_t work; mpf_init(work);
bbp_computation(k, size , work);
pthread_mutex_lock (&mtx); // Start atomic operation
mpf_add(∗glob_var ,∗glob_var ,work);
pthread_mutex_unlock (&mtx); // End atomic operation
exit (0); // Child’s work is finished

} else { childPids[k] = p; } } // Parent process

int stillWaiting; // Wait for children to exit
do {

stillWaiting = 0;
for (int k = 0; k < NUM_THREADS; ++k) {

if (childPids[k] > 0) {
if (waitpid(childPids[k], NULL , WNOHANG) != 0) {

childPids[k] = 0; // Child is done
} else { stillWaiting = 1; } // Chils is not finished

} } } while (stillWaiting);

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 5 / 24

Problem : this approach is cumbersome and prone to mistakes.

Necessity to handle the shared memory,
Necessity to handle the mutexes for concurrency,
Necessity to spawn and wait for the processes.

⇒ Some expertise is required to write correct code.

Optimally, one can encapsulate the system bits into a library or a framework.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 6 / 24

Less naive implementation with threads

C and C++ offer a thread library for multithreading :
mpf_t glob_var;

void bbp_worker(unsigned int k, unsigned int size , mpf_t glob_var) {
mpf_t work; mpf_init(work);
bbp_computation(k, size , work);
mtx.lock (); // Start atomic operation
mpf_add(glob_var , glob_var , work);
mtx.unlock (); // End atomic operation

}

int main(void) {
mpf_init(glob_var);
std:: thread threadArray[num_threads];
for(int i=0;i<num_threads;i++) // Start children

threadArray[i] = std:: thread(bbp_worker , i,
num_loops∗size/num_threads ,
glob_var);

for(int i=0;i<num_threads;i++) // Wait for children to exit
threadArray[i].join ();

}

Considerably simpler code ;
Still necessary to handle explicitly the threads and mutexes.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 7 / 24

Easier parallelization

Some frameworks for simplifying parallelization of tasks :

C++ : Threading Building Blocks,
https://www.threadingbuildingblocks.org/

C, C++ : OpenMP,
http://openmp.org/wp/,
http://bisqwit.iki.fi/story/howto/openmp/

C, C++ : CilkPlus,
https://www.cilkplus.org/

Main ideas :

Frameworks consisting of very few functions, keywords, or macros.
Sprinkle the code with some parallelization annotations.
The runtime handles the allocations and memory accesses.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 8 / 24

https://www.threadingbuildingblocks.org/
http://openmp.org/wp/
http://bisqwit.iki.fi/story/howto/openmp/
https://www.cilkplus.org/

Example in Openmp

mpf_t glob_var;
mpf_init(glob_var);

#pragma omp parallel for shared(glob_var) num_threads(num_threads)
for(int k=0; k<num_loops; ++k) { // OpenMP parallel loop

mpf_t work;
mpf_init(work);
bbp_computation(k, size , work);
mpf_add(glob_var ,glob_var ,work);

}

Programmer inserts #pragma directives to indicate parallelism.
Safety of shared access, even if it is still necessary to define what is shared.
Few modifications of the existing code, though the #pragmas look untidy.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 9 / 24

Example in Threading Building Blocks (1/2)

mpf_t glob_var;
mpf_init(glob_var);
task_scheduler_init init(num_threads); // Initialize TBB

parallel_for (0, num_loops ,
[&glob_var ,size] (const int k) {

mpf_t work;
mpf_init(work);
bbp_child(k, size , work);
mpf_add(glob_var ,glob_var ,work);

});

The example uses a C++ lambda operation for brevity ;
The more classical example uses a struct for storing the function.
Requires more modifications of the code compared to OpenMP,
But using functions gives more flexibility than a separate compilation phase.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 10 / 24

Example in Threading Building Blocks (2/2)

task_scheduler_init init(num_threads); // Initialize TBB

return parallel_reduce(
blocked_range <int >(0, num_loops∗size), glob_var ,
// Range accumulation function
[size] (const blocked_range <int >& r, mpf_t ∗init) → mpf_t∗ {

mpf_t∗ work; mpf_p_init(work);
mpf_set(∗work , ∗init);
for(int k=r.begin (); k<r.end(); ++k) // work = Σ rk

mpf_add(∗work , ∗work , ∗bbp_element(k));
return work;

},
// Pair reduction function
[] (mpf_t∗ work1 , mpf_t∗ work2) → mpf_t∗ {

mpf_t∗ glob; mpf_p_init(glob);
mpf_add(∗glob ,∗work1 ,∗work2); // glob = work1+work2
return glob;

});

The same example using a parallel_reduce function.
No global variable, the runtime passes the results from thread to thread.
(this example does not handle freeing the memory)

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 11 / 24

Results

1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1.0

Number of threads

N
or

m
al

iz
ed

re
al

ti
m

e

Fork
Thread

OpenMp
TBB

CPU : Intel Core 2 Duo (2 virtual processors)

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 12 / 24

In fact, these libraries are much more generic than simple loop parallelization :
class FibTask: public task {
public:

const long n; long∗ const sum;
FibTask(long n_ , long∗ sum_) : n(n_), sum(sum_) {}
task∗ execute () { // Override virtual function task:: execute

if(n<CutOff) {
∗sum = SerialFib(n);

} else {
long x, y; // Allocate children tasks
FibTask& a = ∗new(allocate_child ()) FibTask(n−1,&x);
FibTask& b = ∗new(allocate_child ()) FibTask(n−2,&y);
set_ref_count (3);
spawn(b); // Start b.
spawn_and_wait_for_all(a); // Start a and wait
∗sum = x+y; // Do the sum

}
return NULL; }};

long ParallelFib(long n) {
long sum;
FibTask& a = ∗new(task:: allocate_root ()) FibTask(n,&sum);
task:: spawn_root_and_wait(a);
return sum; }

. . . here, the computation of the Fibonacci numbers by spawning recursive tasks.

fn = fn−1 + fn−2

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 13 / 24

Abstraction of a generic parallel algorithm that allows for :

Efficient implementations :
I Subscription : adapt the number of threads to the hardware capabilities.
I Scheduling : the scheduler may adopt dedicated policy by balancing the loads

of the threads, or delaying preemption times.

Low code overhead.
Portability of the code.

Is it possible to generalize these tactics ?

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 14 / 24

Skeletal programming

Skeletal programming
Compose high-level algorithms that are prone to parallelization.
Ultimately, the parallelism is handled by a framework or a compiler.

Cf. Parallel Programming Using Skeleton Functions, Darlington et al. in 1993,

For, While OpenMP, TBB
Pipeline Parallel LINQ, Java 8 Streams, MongoDB Aggregation
Map-Reduce Eden, Skandium, Hadoop, Scalding, Disco, Spark,

Storm, HDInsight, Pig, Hive . . .
Divide & Conquer Eden, Skandium

Some algorithmic skeletons frameworks implementations :

Java : Skandium (discontinued), http://didawiki.di.unipi.it/../skandium
Haskell : Eden, http://www.mathematik.uni-marburg.de/~eden/
C++ : Fastflow, http://calvados.di.unipi.it/fastflow

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 15 / 24

http://didawiki.di.unipi.it/doku.php/magistraleinformaticanetworking/spm/skandium_local
http://www.mathematik.uni-marburg.de/~eden/
http://calvados.di.unipi.it/fastflow

Pipeline

T1

T2

T3

T4

[· · · tn · · · t1]

[· · · un · · · u1]

Thread 1

Thread 2

Condition : each task must be independent from the others.

Examples
composition of tasks on streams of data,
chains of database queries,
from elem in array orderby elem descending where elem > 2 select elem;

generalized in the producer/consumer pattern.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 16 / 24

Map Reduce

[

[
[

[

s v

t1 u1

t2 u2

t3 u3

t4 u4

t5 u5

t6 u6

Split Map Reduce

Condition : each task of the map must be independent of the others.

Examples
distributed grep,
count of URL access frequency in a set of logs,
reverse web-link graph on a set of URLs . . .

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 17 / 24

Example using Java streams

Using the Java 8 Streams framework :
public static class BigDecimalSumCollector implements

Collector <BigDecimal ,BigMutableDecimal ,BigDecimal > { ... }

List <Integer > array = iota(0,n); // [0,1,...,n−1]
BigDecimal res = array.parallelStream ()

.map(s → bbp_simple(PREC , s)) // map

.collect(new BigDecimalSumCollector ()); // sum
System.out.println(res);

May use lambda-expressions or classes inside higher-order functions.
« When a stream executes in parallel, the Java runtime partitions the stream
into multiple substreams. » Java documentation

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 18 / 24

Example with the Eden library in Haskell

Using the Eden library in Haskell :

workChild :: Int → Int
workChild x = x∗x

main :: IO ()
main = do

let res = foldr (+) (parMap workChild [1..10]) −− Map + reduce
putStrLn ("Result : " ++ show res)

Single function to modify to switch between sequential and parallel.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 19 / 24

Example with the Scalding library in Scala

Using the Scalding library in Scala :

val mx : Int = args("input").toInt
val mc = new java.math.MathContext (1000)
TypedPipe.from(new IterableSource(iota(0,n))) // [0,1,...,n−1]

.map { k : Int => bbp_simple(mc, k) }

.groupBy { _ => 0 } // single group

.foldLeft(BigDecimal (0))((u : BigDecimal ,v : BigDecimal) => (u+v))

.write(TypedTsv(args("output")))

Scalding is a frontend for the Hadoop framework
and only handles Map-Reduce algorithms.
More complex to deploy, but handles parallelism on clusters.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 20 / 24

Example with the Eden library in Haskell

Using the Eden library in Haskell :

mergeSortBBP :: [Int] → BigFloat Prec
mergeSortBBP = parDC 1 trivial solve split combine where

trivial :: [Int] → Bool
trivial xs = length xs <= 1
solve :: [Int] → BigFloat Prec
solve [x] = bbpPiTransform x
split :: [Int] → [[Int]]
split = splitIntoN 2
combine :: [Int] → [BigFloat Prec] → BigFloat Prec
combine _ = foldl (+) 0

main :: IO ()
main = do

let res = mergeSortBBP [0..(s−1)]
putStrLn $ "Final result : " ++ show res

Divide and Conquer algorithm here adapted to solve our problem.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 21 / 24

Skeleton Patterns

MapReduce patterns (cf. MapReduce Design Patterns, Miner & Shook) :

Sum & Group (counting, reverse index),
Filtering, removing duplicates,
Partitioning, clustering, sorting, shuffling.

Divide & Conquer algorithms :

Merge/quick sort,
FFT, matrix multiplication and diagonalization,
Barnes-Hut algorithm for solving the N-body problem,
Image processing algorithms (convexity, connexity).

In some cases, skeletons can be automatically converted into other skeletons.
Example : MapReduce may be encoded into Divide & Conquer.

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 22 / 24

Other types of parallelization

What kinds of problems are not fit for these techniques ?

Problems involving a large number of blocking tasks (I/O, mutexes).
Computations with a large number of communications (messages and data).

In some cases, message passing frameworks with a more precise grain for
parallelism, such as PVM or MPI, may be more adapted.
Example : clustering algorithms (such as K-means)

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 23 / 24

Some good reading

Parallel Programming Using Skeleton Functions,
Darlington et al., PARLE Conference Proceedings, 1993,
https://dl.acm.org/citation.cfm?id=691650

A Survey of Algorithmic Skeleton Frameworks : High-Level Structured
Parallel Programming Enablers,
Horacio González-Vélez and Mario Leyton, Practice and Experience 2010,
https://dl.acm.org/citation.cfm?id=1890757

D. Renault (ENSEIRB-MATMECA) Parallelization as easy as pie (?) June 2015, v. 1.1 24 / 24

https://dl.acm.org/citation.cfm?id=691650
https://dl.acm.org/citation.cfm?id=1890757

