Enumerating Locally Finite Vertex-Transitive Planar Graphs

Renault D.

Laboratoire Bordelais de Recherche en Informatique Université Bordeaux 1, Talence, France

Sunday, June 13

Contents

Properties of the embedding Geometrical invariants Labeling schemes Applications

Some definitions

- Goal : study families of graphs possessing
 - (i) a planar embedding
 - (ii) many symmetries

in particular vertex-transitive planar graphs.

- Vertex-transitive graphs "look the same" from any vertex.
- Guideline : represent the graphs by their local invariants
- Objectives : vertex-transitive graphs provide appropriate structures for cellular automata [Mazoyer, Delorme 98] and routing networks [Heydemann 97].

Some definitions

About the enumeration of the vertex-transitive graphs

- The finite planar case is well known [Fleischner, Imrich 79].
- The finite case is well known up to 26 vertices [McKay,Royle 90].

 \implies In contrast, we realize a general approach of the planar case, dealing both with finite and infinite graphs.

Contents

Properties of the embedding Geometrical invariants Labeling schemes Applications

Some definitions

1 Properties of the embedding

- 2 Geometrical invariants
- 3 Labeling schemes

Applications

Contents Properties of the embedding

Applications

Geometrical invariants

Labeling schemes

Some definitions

Let Γ be a planar graph.

Vertex-transitive graph

Every vertex can be mapped by an automorphism of Γ on any other vertex.

Locally finite graph

There exists a planar embedding of Γ such that there is no accumulation of the vertices in the plane.

Example of a vertex-transitive locally finite graph drawn in the hyperbolic plane.

There exists a planar locally finite embedding of Γ such that :

• the set of edges is locally finite;

- finite 1- and 2-separations are trivial;
- the automorphisms map finite faces onto finite faces.

There exists a planar locally finite embedding of Γ such that :

- the set of edges is locally finite;
- finite 1- and 2-separations are trivial;

• the automorphisms map finite faces onto finite faces.

Enumerating Locally Finite Vertex-Transitive Graphs

There exists a planar locally finite embedding of Γ such that :

- the set of edges is locally finite;
- finite 1- and 2-separations are trivial;

• the automorphisms map finite faces onto finite faces.

Enumerating Locally Finite Vertex-Transitive Graphs

There exists a planar locally finite embedding of Γ such that :

- the set of edges is locally finite;
- finite 1- and 2-separations are trivial;
- the automorphisms map finite faces onto finite faces.

Coloring of the graph

Let Γ be a locally finite vertex-transitive graph.

Coloring

There exists a coloring of the edges and the finite faces of Γ induced by the group of automorphisms of the graph.

The number of colors for the edges and the finite faces is finite.

 $\Rightarrow \left\{ \begin{array}{l} \mathsf{E} \text{ is the set of colors of the edges;} \\ \mathsf{F} \text{ is the set of colors of the finite faces.} \end{array} \right.$

Edge and Face vectors Edge neighborhoods

Let \boldsymbol{s} be a vertex of Γ .

An edge vector around s describes the colors of the edges incident to s in a cyclic ordering :

$[\mathfrak{r};\mathfrak{r};\mathfrak{b};\mathfrak{g};\mathfrak{r}]$

A face vector around s describes the colors of the faces incident to s in a cyclic ordering.

[*o*; *v*;*g*; *o*; *v*]

Edge and Face vectors Edge neighborhoods

Let \boldsymbol{s} be a vertex of Γ .

An edge vector around s describes the colors of the edges incident to s in a cyclic ordering :

$[\mathfrak{r};\mathfrak{r};\mathfrak{b};\mathfrak{g};\mathfrak{r}]$

A face vector around s describes the colors of the faces incident to s in a cyclic ordering.

[o; v; g; o; v]

Edge and Face vectors Edge neighborhoods

Link with connectivity

Connectivity

Let n be the number of infinite faces appearing around a given vertex of Γ . Then, depending on the value of n:

- $n = 0 \Leftrightarrow \Gamma$ is 3-connected;
- $n = 1 \Leftrightarrow \Gamma$ is 2-separable;
- $n \ge 2 \Leftrightarrow \Gamma$ is 1-separable.

Edge and Face vectors Edge neighborhoods

A non-trivial example

Non-isomorphic graphs having same edge vectors

Edge and Face vectors Edge neighborhoods

Let e be an edge of Γ .

An edge neighborhood η around e describes :

- the edge and face vectors around the extremities of *e*;
- the colors of the faces separated by e.

The color of η is the color of the edge e.

Edge and Face vectors Edge neighborhoods

Another non-trivial example

Non-isomorphic graphs having same edge neighborhoods

Edge and Face vectors Edge neighborhoods

Let Γ be a locally finite vertex-transitive graph.

Lemma

The edge and face vectors of Γ are independent of the vertex.

Lemma

The edge neighborhoods of Γ depend only on the color of the edges that they represent.

Definition Reconstruction of the faces Border automaton

Let (E, F) be finite sets of colors of edges and faces.

Labeling scheme

- A labeling scheme on (E, F) is a 3-uple (ξ, ϕ, η) such that :
 - an edge vector $\xi \in \mathsf{E}^d$,
 - a face vector $\phi \in \mathsf{F}^d$,
 - for each color \mathfrak{e} in ξ , an edge neighborhood $\eta_{\mathfrak{e}} \in \eta$ of the same color.

Definition Reconstruction of the faces Border automaton

Example of labeling scheme

Edge and Face vectors :

Edge neighborhoods :

Definition Reconstruction of the faces Border automaton

Example of a reconstruction

Definition Reconstruction of the faces Border automaton

Let (ξ, ϕ, η) be a labeling scheme.

Lemma

Given a color of a face in F, the sequence of edges appearing in the border is recognized by a finite state automaton.

 \implies Construction of the border automaton associated with (ξ, ϕ, η)

Definition Reconstruction of the faces Border automaton

Example of a border automaton

Follow alternatively black and gray edges to compute a border.

Example of graph built with the preceding automaton

Enumeration Cayley graphs

Enumeration

Given a number $d \ge 2$, it is possible to enumerate all planar locally finite transitive graphs having internal degree d.

- \implies Classification of the graphs depending on :
 - their connectivity
 - their geometry

Enumeration Cayley graphs

Results of enumeration

Degree	V.T.	Cayley
1	n.s.	n.s.
2	1	1
3	16	8
4	52	24
5	174	52
6	775	185

Enumeration Cayley graphs

Enumeration Cayley graphs

Recognition

Given a locally finite vertex-transitive planar graph, it is possible to decide whether it is a Cayley graph of a group or not.

- \implies Enumeration of the possible presentations;
- \implies Generation of vertex-transitive non Cayley graphs.

Enumeration Cayley graphs

Perspectives

- Extend the enumeration to families of graphs with less symmetries, known as cofinite graphs.
- Study the quotients of the graphs onto compact surfaces (the torus for example).
- Evaluate the case of planar graphs in general (i.e. not locally finite).

Appendix

Another non-trivial example

Another non-trivial example

