Enumerating Locally Finite Vertex-Transitive Planar Graphs

Renault D.

Laboratoire Bordelais de Recherche en Informatique
Université Bordeaux 1, Talence, France

Sunday, June 13
Goal: study families of graphs possessing

(i) a planar embedding
(ii) many symmetries

in particular vertex-transitive planar graphs.

Vertex-transitive graphs “look the same” from any vertex.

Guideline: represent the graphs by their local invariants

Objectives: vertex-transitive graphs provide appropriate structures for cellular automata [Mazoyer, Delorme 98] and routing networks [Heydemann 97].
About the enumeration of the vertex-transitive graphs

- The finite planar case is well known [Fleischner, Imrich 79].
- The finite case is well known up to 26 vertices [McKay, Royle 90].

In contrast, we realize a general approach of the planar case, dealing both with finite and infinite graphs.
1 Properties of the embedding
2 Geometrical invariants
3 Labeling schemes
4 Applications
Let Γ be a planar graph.

Vertex-transitive graph

Every vertex can be mapped by an automorphism of Γ on any other vertex.

Locally finite graph

There exists a planar embedding of Γ such that there is no accumulation of the vertices in the plane.
Example of a vertex-transitive locally finite graph drawn in the hyperbolic plane.
In the following, Γ is a locally finite vertex-transitive graph.

There exists a planar locally finite embedding of Γ such that:

- the set of edges is locally finite;

- finite 1- and 2-separations are trivial;

- the automorphisms map finite faces onto finite faces.
In the following, Γ is a locally finite vertex-transitive graph.

There exists a planar locally finite embedding of Γ such that:

- the set of edges is locally finite;
- finite 1- and 2-separations are trivial;
- the automorphisms map finite faces onto finite faces.
In the following, Γ is a locally finite vertex-transitive graph.

There exists a planar locally finite embedding of Γ such that:

- the set of edges is locally finite;
- finite 1- and 2-separations are trivial;
- the automorphisms map finite faces onto finite faces.
In the following, Γ is a locally finite vertex-transitive graph.

There exists a planar locally finite embedding of Γ such that:
- the set of edges is locally finite;
- finite 1- and 2-separations are trivial;
- the automorphisms map finite faces onto finite faces.
Coloring of the graph

Let Γ be a locally finite vertex-transitive graph.

There exists a coloring of the edges and the finite faces of Γ induced by the group of automorphisms of the graph.

The number of colors for the edges and the finite faces is finite.

\[\Rightarrow \begin{cases} E \text{ is the set of colors of the edges; } \\ F \text{ is the set of colors of the finite faces.} \end{cases} \]
Let s be a vertex of Γ.

An edge vector around s describes the colors of the edges incident to s in a cyclic ordering:

$$[r; r; b; g; r]$$

A face vector around s describes the colors of the faces incident to s in a cyclic ordering:

$$[o; v; g; o; v]$$
Let s be a vertex of Γ.

An edge vector around s describes the colors of the edges incident to s in a cyclic ordering:

$$[r; r; b; g; r]$$

A face vector around s describes the colors of the faces incident to s in a cyclic ordering:

$$[o; v; g; o; v]$$
Let n be the number of infinite faces appearing around a given vertex of Γ. Then, depending on the value of n:

- $n = 0 \iff \Gamma$ is 3-connected;
- $n = 1 \iff \Gamma$ is 2-separable;
- $n \geq 2 \iff \Gamma$ is 1-separable.
A non-trivial example

Non-isomorphic graphs having same edge vectors
Let e be an edge of Γ.

An **edge neighborhood** η around e describes:
- the edge and face vectors around the extremities of e;
- the colors of the faces separated by e.

The **color** of η is the color of the edge e.
Another non-trivial example

Non-isomorphic graphs having same edge neighborhoods
Let Γ be a locally finite vertex-transitive graph.

Lemma

The edge and face vectors of Γ are independent of the vertex.

Lemma

The edge neighborhoods of Γ depend only on the color of the edges that they represent.
Let \((E, F)\) be finite sets of colors of edges and faces.

Labeling scheme

A labeling scheme on \((E, F)\) is a 3-uple \((\xi, \phi, \eta)\) such that:

- an edge vector \(\xi \in E^d\),
- a face vector \(\phi \in F^d\),
- for each color \(\epsilon\) in \(\xi\), an edge neighborhood \(\eta_\epsilon \in \eta\) of the same color.
Example of labeling scheme

Edge and Face vectors:

Edge neighborhoods:

LaBRI Renault D.
Enumerating Locally Finite Vertex-Transitive Graphs
Example of a reconstruction

Consider the previous labeling scheme.
Let us compute the border of an orange face:
Let (ξ, ϕ, η) be a labeling scheme.

Lemma

Given a color of a face in F, the sequence of edges appearing in the border is recognized by a finite state automaton.

\implies Construction of the border automaton associated with (ξ, ϕ, η)
Example of a border automaton

Follow alternatively black and gray edges to compute a border.
Example of graph built with the preceding automaton
Given a number $d \geq 2$, it is possible to enumerate all planar locally finite transitive graphs having internal degree d.

→ Classification of the graphs depending on:
- their connectivity
- their geometry
Results of enumeration

<table>
<thead>
<tr>
<th>Degree</th>
<th>V.T.</th>
<th>Cayley</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>52</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>174</td>
<td>52</td>
</tr>
<tr>
<td>6</td>
<td>775</td>
<td>185</td>
</tr>
</tbody>
</table>
Recognition

Given a locally finite vertex-transitive planar graph, it is possible to decide whether it is a Cayley graph of a group or not.

→ Enumeration of the possible presentations;
→ Generation of vertex-transitive non Cayley graphs.
Perspectives

- Extend the enumeration to families of graphs with less symmetries, known as cofinite graphs.
- Study the quotients of the graphs onto compact surfaces (the torus for example).
- Evaluate the case of planar graphs in general (i.e. not locally finite).
Appendix
Scheme n°2

Return
Another non-trivial example
Another non-trivial example
Example of a reconstruction

Consider the previous labeling scheme.
Let us compute the border of an orange face:
Example of a reconstruction

Consider the previous labeling scheme.
Let us compute the border of an orange face:

\[\text{Return} \]
Example of a reconstruction

Consider the previous labeling scheme.
Let us compute the border of an orange face:
Example of a reconstruction

Consider the previous labeling scheme.
Let us compute the border of an orange face:

\[
\begin{array}{c}
\begin{array}{c}
\text{v} \\
\text{o} \\
\text{g}
\end{array}
\end{array}
\]