
Put some trust in your memory

D. Renault

Haskell small school
LaBRI

24 juin 2016, v. 1.1.1

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 1 / 29

A brief history of Rust

MLKit 4

Cyclone

Monadic regions Fluet Morrisett

Cyclone 1.0

Safe

Rust

Clean2.4

1.0

MLKit 4.3.8

Rust 1.8

Type and effects Lucassen et al.

Clean

MLKit

Unify and Conquer Baker

MLKit with Regions

Stack of regions Tofte Talpin

Calculus of capabilities Crary et al.

Monadic regions Fluet Morrisett

MLKit

Cyclone 1.0

MLKit 4MLKit with Regions

Calculus of capabilities Crary et al.

Cyclone

Clean2.4

Stack of regions Tofte Talpin

Unify and Conquer Baker

Clean

MLKit 4.3.8

1.0 Rust 1.8

Safe

Rust

Type and effects Lucassen et al.

19
85

19
90

19
95

20
00

20
05

20
10

20
15

20
20

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 2 / 29

Rust in a nutshell

Rust is a programming language developed by Mozilla Research,
directed by Graydon Hoare.
Rust is statically-typed, with functional programming features,
generics and a traits system resembling the interfaces of Go.
Manual memory management along with an advanced type system
claiming memory safety, without the need of a garbage collector.
Lacks a formal specification and still evolving, but claims to have
reached stability.
Current highlighted projects :

I Servo, a « browser engine » developed by Mozilla,
I Dropbox recently oriented part of its development to Rust

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 3 / 29

Memory management

Classical strategies for memory management in programming languages :

Manual : alloc./dealloc. of memory in the heap via malloc and free

User spaceKernel space

T
ex

t
se

ct
io

n

R
od

at
a

D
at

a
se

ct
io

n

B
SS

se
ct

io
n

H
ea

p

St
ac

k
Pros : Complete freedom of management
Cons : No safety

Automatic : alloc. on demand and dealloc. at end of scope (stack,
limited) or depending on a runtime (garbage collection)

Pros : Memory safety
Cons : Overhead on performance and memory

Non-deterministic peaks when collecting
D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 4 / 29

Dangers of manual memory management

Unallocated or dangling pointer / Use after free
int ∗pi = (int∗) malloc(sizeof(int)); // allocation
∗pi = 3; // use
free(pi); // deallocation
printf("∗pi: %d\n", ∗pi); // use after free

Data races : two threads accessing the same binding read / write
void transfer(int amount ,

Account src , Account dst) {
// if (src.balance < amount)
// return;
dst.balance += amount;
src.balance −= amount; }

Thread t1 = new Thread (() →
{ transfer (10, a1, a2); });

Thread t2 = new Thread (() →
{ transfer (10, a1, a2); });

t1.start (); t2.start ();

Adds a race condition when removing the comments.

Is it possible to prevent such kinds of problems ?

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 5 / 29

On the upside, some motivations

Move semantics in C++ : refers to the ability for a binding to take
ownership of a value instead of copying it.
string(const string& s) {

size_t size = strlen(s.data)+1;
data = new char[size];
memcpy(data , s.data , size);

}
string a(existing_string);

string(string && s) {
data = s.data;
s.data = nullptr;

}

string b(to_string(pi));

Here, string&& is an rvalue reference, indicating a temporary object.

Reuse of memory in functional programming : combine functions
with no side-effects with in-place transformations.
(<|) :: a → Seq a → Seq a −− add at head
(|>) :: Seq a → a → Seq a −− add at tail
update :: Int → a → Seq a → Seq a −− modify an element

Memory can be reused directly, without creating a new element.
Application example : the Haskell State monad.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 6 / 29

Scope
Given a binding, its scope is the part of the program where the binding is
valid, i.e refers to the value it binds.

In the simple case, this notion is syntactic :
int sum(int a, int b) {

int res = 0;
for (i=a; i<b; i++)

res += i;
return res;

}

Scope of res

Allocation

Deallocation

Usually, such a value is automatically allocated on the stack and
deallocated at the end of its scope.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 7 / 29

For an address, it is possible to extend the notion of scope to the part of
the program where the value it points to is correctly allocated.

However, the notion becomes more cunning :

it is hard to compute, since it can escape the block where it is defined :
void sum(int a, int b, int∗ res) {
∗res = 0;
for (i=a; i<b; i++)
∗res += i;

}
void main() {

int s;
sum(1,10,&s);

}

Scope of &s

Allocation

Deallocation

it can be copied, stored into data structures, accessed in different
ways, and also possibly lost.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 8 / 29

Aliasing
When two or more bindings corresponding to the same memory address.

Problems :

what happens if two threads update the same object without noticing
each other ?
⇒ data races, race conditions, deadlocks
what happens if a reference is never deallocated or worse, if not every
aliased binding is noticed of the deallocation ?
⇒ memory leaks, dangling pointers, NullPointerException

Dynamic solutions incur an overhead ⇒ is static analysis possible ?
Difficult problem, because undecidable in general (pointer arithmetic).

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 9 / 29

Smart pointers and the C++ world

C++11 introduced a series of types for smart pointers as tools for memory
management, but the notion is much older and existed in Boost since at
least 1994. In the norm C++11 were introduced :

shared pointers (containing a reference count)
weak pointers (possibly dangling)
unique pointers (exclusive ownership)

Goal : improve on manual memory management

restrain the use of manual allocation and destruction operators
6= malloc, new, free, delete

let the scope of pointers determine the lifetime of an object.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 10 / 29

Shared pointers

std::shared_ptr<T>

Ptr to T
Ptr to control block

T object

control block

Reference count
Weak count

Other data . . .

Can be copied, each new copy increasing the reference counter ;
Each deletion decreases the reference counter, and if reaching zero,
deletes the pointed object.

Problems : incurs overhead wrt basic pointer (twice the size), overhead for
control blocks, and requires atomic reference count manipulations.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 11 / 29

Beware of aliasing

A particular example in this very case :

auto pw = new Widget; // pw is raw ptr
std::shared_ptr <Widget > spw1(pw); // 1st smart ptr
std::shared_ptr <Widget > spw2(pw); // 2nd smart ptr

taken from Effective modern C++

Same object, different smart pointers with different reference counters.
Solution : never used a naked pointer → make_shared.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 12 / 29

Unique pointers and uniqueness types

Another solution to handle the aliasing problems is to restrict the number
of aliases on a given instance.
When no aliasing is allowed, these are called unique pointers.

such a pointer cannot be copied, only read through ;
its ownership can be transferred (e.g. parameter in a function call) ;
it is deallocated automatically if it loses its single owner.

Pros : memory efficient (no control block),
move semantics for no copy.

Cons : requires some discipline when writing code, and is
sometimes inappropriate when sharing is necessary.

Nevertheless, it is a completely static solution (zero-cost abstraction)
Cf. also uniqueness types in Clean, Cyclone and Rust.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 13 / 29

Aside : with-open-file

In Lisp, the macro (with−open−file file block) :

allocates a reference to file at the beginning of the block ;
when control leaves the block, either normally or abnormally (such as
by use of throw), file is automatically closed.

(with−open−file (stream "/some/file.txt")
(do−things)
(format stream "Some text.")
(do−other−things)

)

Scope of stream

Deallocation

Also called call−with−output−file in Scheme, withFile in Haskell, or
try−"with−resources" in Java.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 14 / 29

Idea : localize bindings inside zones of code with automatic lifetime control.

Region
Zone of code and of memory determined statically, allowing allocation of
bindings within this zone and handling deallocation at exit.

pointers are allocated inside a particular region ;
access to an object is possible only inside the region and always valid ;
when the region ends, all objects still inside are destroyed.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 15 / 29

Regions in Cyclone

In Cyclone the regions are handled in an explicit manner :

{ region <‘r1 > r1;
list_t <int ,‘r1 > x = NULL;
{ region <‘r2 > r2;

list_t <int ,‘r2 > y = rcopy(r2, x);
x = rnew(r1) List(4,x);
y = rnew(r2) List(5,y);
// x = rnew(r2) List(4,x); // Error : incompatible regions
// x = rnew(r1) List(4,y); // Error : List in unique region

}
}

‘r2

‘r1

Regions are determined at compile time.
The set of all active regions behaves at runtime like a LIFO stack.

A special region ‘H is given corresponding to the heap (that can be
garbage-collected) and another corresponding to the stack.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 16 / 29

Region polymorphism

In order to handle arbitrary deep stacks of regions, the function calls must
be region-polymorphic.

Example of a recursive computation creating separate regions.
list_t <int ,‘r> fibo_rec(region_t <‘r> r, int a, int b, int n) {

if (n == 0)
return rnew(r) List(b, NULL);

else {
region <‘s> s; // Recursive computation in different region
list_t <int , ‘s> z = fibo_rec(s, b, a+b, n−1);
z = rnew(s) List(b, z);
return rcopy(r, z); // Copy in the final region

}}

list_t <int ,‘r> fibo(region_t <‘r> r, int n) {
return fibo_rec(r,1,1,n−1); }

Regions are reified into first-class values that can be transmitted.
Functions accept polymorphic region parameters for genericity.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 17 / 29

Effects

Effect
An effect is a set of regions annotated with access rights (read or write)
used throughout a function call.

struct Counter <‘r> { int∗ @effect(‘r) cpt; };

void inc_counter(struct Counter <‘r>∗ c) { // Explicit region
int ∗x = c→cpt;
∗x = ∗x + 1;

}

The inc_counter function has type :

∀ρ, struct Counter[ρ] void

{get(ρ), put(ρ)}

. . . meaning that the function accesses ρ by reading and writing into it.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 18 / 29

Case of closures : hidden effects

Sometimes, a data structure can retain a pointer inside a region, but the
region is not immediately apparent in the type of the structure.
struct Counter { <‘r> // Counter with hidden enclosed region

struct Region <‘r>∗ reg;
int∗ @region(‘r) cpt;

};
void inc_counter(struct Counter∗ c) { // No apparent region

let &Counter {.reg=r,.cpt=x} = c;
{ region r = open(r→key); // Open the region to access the value
∗x = ∗x + 1;

}}

The inc_counter function now has type :

∃ρ, struct Counter[ρ] void

{get(ρ), put(ρ)}

Note : this is typically the case of closures.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 19 / 29

Type and effect system
A type and effect system is an enhancement of a type system that infers
a conservative approximation of :

(a) the set of regions into which a structure or function can point,
(b) the set of regions that are still live at each program point.

In Safe or MLKit, the regions are handled automatically by the runtime :

Regions must be inferred with a unification algorithm in the
Hindley-Milner style ;
Effects being sets of regions, the unification is not first-order, and
therefore harder to implement than for types.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 20 / 29

Example for a recursive summing function :
letrec sum = fun x → if x == 0 then 1 else x + sum (x−1)
in sum (100)

Its annotated version :
letregion ρ1 in
letrec sum[ρ2,ρ3] at ρ1 = (∗ Region polymorphism ∗)

(fun x:(int ,ρ2) →
if letregion ρ4,ρ5 in (x==(0 at ρ5)) at ρ4
then 1 at ρ3
else letregion ρ6 in

(x + letregion ρ7,ρ8 in
sum[ρ8,ρ6] at ρ7

letregion ρ9 in
(x−(1 at ρ9)) at ρ8

) at ρ3
) at ρ1 in

letregion ρ10,ρ11 in
sum[ρ11,ρ0] at ρ10 (100 at ρ11)

sum[σ1,σ2](100)

sum[σ3,σ4](99)

sum[σ5,σ6](98)

. . .

sum has type ∀ρ2ρ3, (int, ρ2)→ (int, ρ3) and is placed in region ρ1 ;
ρ2 is the region for storing the parameter x , ρ3 for storing the result.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 21 / 29

The same example in a tail-recursive manner :
letrec sum = fun res x → if x == 0 then res else sum (x + res) (x−1)
in sum 0 100

Its annotated version :
letregion ρ1 in
letrec sum [ρ2,ρ3] at ρ1 =

(fun res:(int ,ρ2) x:(int ,ρ3) →
if letregion ρ4, ρ5 in (x == (0 at ρ5)) at ρ4
then res
else letregion ρ6 in

sum[ρ2,ρ6] (∗ Reuse of the region ρ2 ∗)
((res + x) at ρ2) ((x − 1) at ρ6)

) at ρ1 in
letregion ρ7,ρ8

in sum[ρ8,ρ7] (0 at ρ7) (100 at ρ8)

sum[σ1,σ2](0,100)

sum[σ1,σ3](100,99)

sum[σ1,σ4](199,98)

. . .

Still a memory leak for the parameter x, which uses a stack of regions.
In this case, one can use resetRegions to force the compiler not to
create new regions ⇒ memory tail-recursivity.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 22 / 29

Benchmarks

Memory consumption : profiling a merge sort algorithm in MLKit for
a list of 250000 elements

msort - Region profiling Mon Jun 6 16:02:10 2016

r4inf

r6inf

r132577inf

r8inf

r7inf

r132531inf

r1inf

rDesc

stack

r132539inf

r5inf

r132529inf

r132538inf

r132530inf

r132550inf

seconds0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4

by
te

s

0K

500K

1000K

1500K

2000K

2500K

3000K

3500K

4000K

4500K

5000K

5500K

Maximum allocated bytes in regions (6000592) and on stack (89040)

Without management

msort - Region profiling Mon Jun 6 16:02:40 2016

r4inf

r6inf

r132577inf

r8inf

r7inf

r132531inf

r1inf

stack

rDesc

r132539inf

r132529inf

r5inf

r132550inf

r132538inf

r132530inf

seconds0.0 0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4

by
te

s

0K

500K

1000K

1500K

2000K

2500K

3000K

3500K

4000K

4500K

5000K

5500K

Maximum allocated bytes in regions (4000324) and on stack (9608)

With management

Lower triangle : unsorted elements / Upper triangle : sorted elements
Performance : results equivalent with or without management

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 23 / 29

What about Rust, a more recent language ? It introduces 3 notions :

ownership : for a given resource (cf. unique types), there’s exactly
one binding responsible for it.
borrowing : each resource can have any number of immutable
references (aka reference counting with ownership) ;
lifetimes : Rust equivalent to scopes or regions.

"It’s just affine lambda calculus, plus borrowing to make living
with linearity easier, plus ML-style effects, polymorphism and
typeclasses. Nothing too fancy is going on here."

Comment on Lambda The Ultimate

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 24 / 29

Borrowing

Example of borrowing in Rust :
fn foo(v1:Vec <i32 >, v2:Vec <i32 >)
→ (Vec <i32 >, Vec <i32 >, i32) {
// do stuff with v1 and v2
// hand them back in the end
(v1, v2, 42)

}

let v1 = vec![1, 2, 3];
let v2 = vec![1, 2, 3];

let (v1, v2, ans) = foo(v1, v2);

Without borrowing

fn foo(v1:&Vec <i32 >, v2:&Vec <i32 >)
−> i32 {
// do stuff with v1 and v2
// return the result
42

}

let v1 = vec![1, 2, 3];
let v2 = vec![1, 2, 3];

let ans = foo(&v1 , &v2);

With borrowing

Rust features unique pointers Box<T> and reference-counted pointers Rc<T>.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 25 / 29

Lifetimes in Rust

A counter with a reference in Rust :
struct Counter <’a> {

cpt : &’a mut i32 }

fn disp_cpt <’a >(c : &’a Counter) {
println !("cpt = {}", c.cpt); }

fn incr_cpt <’a >(c : &’a mut Counter){
∗c.cpt = ∗c.cpt + 1; }

let mut c = Counter {
cpt: &mut 5i32 };

disp_cpt (&c);
incr_cpt (&mut c);

The concatenation function on Vec<T> :
fn concat <’a ,’b,T:Clone >(x : &’a Vec <T>, y : &’b Vec <T>)→Vec <T> {

let mut z = Vec::new();
for xx in x { z.push(xx.clone ()); }
for yy in y { z.push(yy.clone ()); }
return z;

}

Most of the time, the region variables are inferred by the compiler.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 26 / 29

Rust closures

The management of ownership with closures may be subtle :

A closure with a modifiable internal state (≈ existential type) :
fn mk_closure () → Box <FnMut () → i32 > {

let mut num = 0; // must be Sized
return Box::new(move || {

num += 1;
return num;

});}

let mut f = mk_closure ();

println !("{}", f()); // 1
println !("{}", f()); // 2
println !("{}", f()); // 3

The move keyword forces the closure to take ownership of num.
This can also be implemented with trait objects.

struct Counter <’a> { cpt : &’a mut i32 }

trait Cpt { fn inc(&mut self) → i32; }
impl <’a> Cpt for Counter <’a> {

fn inc(&mut self) → i32 {
∗(self.cpt) += 1;
return ∗(self.cpt);}}

fn inc_all(c : &mut Cpt) { c.inc(); }

let mut c = Counter {
cpt: &mut 5i32 };

{ // Trait object
let d = &mut c

as &mut Cpt;
inc_all(d);

}
disp_cpt (&c);

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 27 / 29

Some pointers

The Cyclone language : https://cyclone.thelanguage.org/
The MLKit language : https://www.elsman.com/mlkit
The Rust language : https://www.rust-lang.org/
and documentation : https://doc.rust-lang.org/stable/book/
“Effective Modern C++”, S. Meyers, O’Reilly Media.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 28 / 29

https://cyclone.thelanguage.org/
https://www.elsman.com/mlkit
https://www.rust-lang.org/
https://doc.rust-lang.org/stable/book/

Some (educated) reading

“Implementation of the typed Call-by-value λ-calculus using a stack or
regions”, M. Tofte and J.-P. Talpin, POPL ’94.
“Region-based memory management in Cyclone” , Grossman et. al.,
PLDI ’02.
“Typed memory management in a calculus of capabilities” , Crary et.
al., POPL ’99.
“Monadic regions” , M. Fluet and G. Morrisett, ICFP ’04.

D. Renault (LaBRI) Put some trust in your memory 24 juin 2016, v. 1.1.1 29 / 29

