
ENSEIRB-Matmeca
Year 2024-2025

IT234
STP

Tutorial #1 - Type systems and derivations

▷ OCaml (https://ocaml.org) is a functional programming language developed at
INRIA, distributed with a compiler ocamlc and an interaction loop ocaml.

In order to write OCaml code, the most direct way consists in launching emacs

on a .ml file, and then running M-x tuareg-mode. Then, start an interaction loop
using the C-c C-s shortcut, and using the default interpreter name (ocaml).

Execute every expression in the interaction loop using the C-x C-e shortcut.

Exercice 1: Playing with OCaml
The evaluation of an expression in OCaml consists in :

Expression evaluated :
3 + 4 ;;

Expression Terminator

Result in the interpreter :
- : int = 7

Type Result value

Each of the following expression is meant to be executed with the OCaml interpreter
and related to the expressions of the λ-calculus studied during the class. Afterwards,
this list can be considered as a cheat sheet for finding the syntax of expressions.

true;; (∗ Booleans ∗)
false;;
0;; (∗ Integers ∗)
65535;;
if true then 7 else 14;; (∗ Conditional ∗)
fun x → x + 1;; (∗ Abstraction ∗)
(fun x → x + 1) 8;; (∗ Application ∗)
"abcde";; (∗ Strings ∗)
"meta"^"for";; (∗ String concatenation ∗)

▷ To bind a name to a value at the toplevel : let x = 1;;

To bind a name to a value as a local expression : let y = "a" in y ^ y;;

The following code is provided as an example of the infamous factorial function :

let rec fact x = (∗ rec indicates that the function is recursive ∗)
if (x <= 0) then 1
else let y = x-1 in (∗ declaration of a local binding ∗)

x ∗ fact y

1

https://ocaml.org

Exercice 2: Algebraic data types
In this exercise, we introduce a particular sort of types named algebraic data types,
also called sum types in OCaml. Such datatypes are defined using the following
construction :

type ⟨type_name⟩ =
| ⟨Constr_1⟩ of ⟨Type_1⟩
| ⟨Constr_2⟩ of ⟨Type_2⟩

...
| ⟨Constr_n⟩ of ⟨Type_n⟩

Example :

type value =
| Red
| Gray of int (∗ ints between 0 and 255 ∗)
| RGB of (int ∗ int ∗ int);;

In order to manipulate sum types, OCaml contains a construct named pattern-
matching, working as follows :

match ⟨expr⟩ with
| ⟨p_1⟩ → ⟨expr_1⟩
| ⟨p_2⟩ → ⟨expr_2⟩

...
| ⟨p_n⟩ → ⟨expr_n⟩

Example :

let red_component c = match c with
| Red → 255
| Gray g → g
| RGB (r,g,b) → r;;

The following lines explain how to construct and use such values :

let c1 = Gray 100;;
red_component c1 ;; (∗ → 100 ∗)
let c2 = RGB (50,150,250);;
red_component c2 ;; (∗ → 50 ∗)

For further reading on the subject, one can find at the address https://caml.inria.fr/

pub/docs/oreilly-book/html/book-ora016.html some documentation and examples about the
definition of types and the pattern-matching in OCaml.

1. Write a sum type weight for the manipulation of weights in kilos, in pounds
and in carats.

2. Write the translation function that can convert any element of type weight in
kilos. (Cultural hint : 1kg = 2.205 lbs = 5000 carats)

2

https://caml.inria.fr/pub/docs/oreilly-book/html/book-ora016.html
https://caml.inria.fr/pub/docs/oreilly-book/html/book-ora016.html

Exercice 3: Simple untyped λ-calculus
Consider the following definition of a language based on the untyped λ-calculus
discussed during the class :

Syntax

t ::= expressions

x variable

λx.t abstraction

(t t) application

v ::= values

λx.t abstraction value

Evaluation rules

t1 →β t’1

(t1 t2) →β (t’1 t2)

t →β t’

(v t) →β (v t’)

(λx.t1 t2) →β [x 7→ t2]t1

Let us translate this definition into OCaml.

▷ First, retrieve the code given in the sources, compile it with make and load
the main.ml file in your editor. Start the interaction loop (C-c C-s) with the
command : ocaml syntax.cma (you’ll need to give the absolute path to syntax.cma

if the file is not in the same directory you started emacs with).

Execute (C-x C-e) the three first lines (open Syntax;; and its siblings). After that,
it becomes possible to copy-paste the examples (not the type declarations)
into the buffer and test them.

Consider the following definition in the file syntax.ml, that corresponds to a sum type
describing the grammar of the language :

type id = string (∗ Identifiers ∗) (∗ do NOT copy-paste in the interpreter ∗)

type term =
| TmVar of id (∗ Variable ∗)
| TmAbs of id ∗ term (∗ Abstraction ∗)
| TmApp of term ∗ term (∗ Application ∗)

This code defines a type and a set of constructors for building λ-expressions : TmVar,
TmAbs and TmApp. The following are examples of λ-expressions in OCaml :

TmAbs ("x", TmVar "x");; (∗ fun x → x ∗)
TmAbs ("y", TmAbs ("z", TmVar "z"));; (∗ fun y → fun z → z ∗)
TmApp (TmAbs ("x", TmVar "x"), TmVar "z");; (∗ ((fun x → x) z) ∗)

The sources also provide a parser to simplify the writing of complex expressions,
given with the parse function :

3

parse "fun␣x␣→␣x";; (∗ → TmAbs ("x", TmVar "x") ∗)

The syntax of the language is (as much as possible) the same as in OCaml.
To understand this code, it is possible to read the function term_to_string that trans-
forms a λ-expression into a string acceptable by LATEX :

let rec term_to_string t =
match t with
| TmVar v → "$"^(blue_string v)^"$"
| TmAbs (v,e) → "$\\lambda␣"^(blue_string v)^"$␣.␣"^(term_to_string e)
| TmApp (a,b) → (term_to_string a)^"␣"^(term_to_string b)

Finally, the syntax.ml file contains functions for the substitution (substitute), the α-
renaming (rename) and the β-reduction (reduce_one and reduce) of expressions, but most
of these functions are not written.

1. Write the code for substitute and rename. The definition for these functions ap-
pears on the slides of the course.

2. Write the code for reduce_one. This function should return a λ-expression where
only one β-reduction step has been applied.

3. Test your code with different examples. In particular, write a term whose
reduction is not finite.

substitute "x" (TmVar "y") (parse "(fun␣x␣→␣x)␣x");; (∗ → ((fun x → x) y) ∗)
rename (parse "(fun␣x␣→␣x)␣(fun␣y␣→␣y)");; (∗ → ((fun x1 → x1) (fun x2 → x2)) ∗)
reduce_one (parse "(fun␣x␣→␣x␣x)␣(fun␣y␣→␣y)") (Ctx []);; (∗ → ((fun y → y) (fun y → y))∗)
reduce (parse "(fun␣x␣→␣x␣x)␣(fun␣y␣→␣y)") (Ctx []);; (∗ → (fun y → y) ∗)

Exercice 4: Simple extensions
In this exercise, we propose to extend the language so as to contain rules for booleans
and integers. For the record, these rules are the following :

4

Syntax

t ::= . . . expressions

true, false booleans

zero, succ t naturals

if t then t else t if-then-else

iszero t zero-equality

v ::= . . . values

true, false boolean value

nv numeric value

nv ::= numeric values

zero zero value

succ nv successor value

Evaluation rules

t1 →β t’1

if t1 then t2 else t3 →β

if t’1 then t2 else t3

if true then t2 else t3 →β t2

if false then t2 else t3 →β t3

t →β t’

iszero t →β iszero t’

iszero zero →β true

iszero (succ t) →β false

The first objective consists in extending the language with the boolean expressions
(true, false and if .. then .. else). For the sake of safety, copy your entire code in a
new directory.

1. Extend the OCaml grammar for term with boolean expressions (4 constructors).
2. Modify the parser file parser.mly so as to use these constructors (this mostly

consists in adapting the file comments to your code).
3. Extend the printer term_to_string and the matcher is_value.
4. Extend in order : substitute, rename and reduce_one (the reduce function should

continue to work as before).

5

The goal now is to keep this version of your code safe (possibly by making a copy
into a new directory), and apply the same operations to handle the natural numbers.

Syntax

t ::= . . . expression

zero, succ t naturals

iszero t zero-equality

v ::= . . . values

nv numeric value

nv ::= numeric values

zero zero value

succ nv successor value

Evaluation rules

t →β t’

iszero t →β iszero t’

iszero zero →β true

iszero (succ t) →β false

5. Extend the OCaml grammar for term with integer expressions (2 constructors).
6. Modify the parser file parser.mly so as to use these constructors (this mostly

consists in adapting the file comments to your code), term_to_string and is_value.
7. Extend in order : substitute, rename and reduce_one (the reduce function should

continue to work as before).

6

	Playing with OCaml
	Algebraic data types
	Simple untyped -calculus
	Simple extensions

