Oldies: (which does not necessarily mean goldies :-)
Pomset logic, proof-nets and coherence semantics

Christian Retoré
LaBRI (CNRS et Université de Bordeaux)
INRIA Bordeaux Sud-Ouest
Warning and apologies

- Old work, nineties (with little time to re-work it)
- Special thanks to Sylvain Pogodalla, who spent part of his thesis to try to prove with me yet unsolved questions
- Motivated by a possibility to solve open questions:
 - More fashionable sequent/term/rewrite calculus
 - Correspondence with BV
Coherence Semantics

- Formulae: (possibly infinite) graphs
- Proofs up to normalisation: cliques
- Morphisms, linear maps:
 - F sends cliques to cliques
 - When a union is a clique:
 - Commute with union
 - Commute with intersection
Multiplicative coherence spaces
Girard’s remark

- Vertices: pairs of vertices
- Par: both
- Times: both
- One non commutative «< »:
 - A:
 - B:
- No other multiplicative.

\[
\begin{array}{c|c|c|c}
A \setminus B & 0 & = & 1 \\
\hline
0 & 1 & 1 & 1 \\
= & 1 & 1 & ? \\
\hline
? & ? & ? & ?
\end{array}
\]
Before

- Written <
 - Non commutative
 - Associative
 - Self-dual \((A < B) \downarrow \equiv (A^\perp < B^\perp)\)

Girard’s question:
what syntax for this calculus?
Bicoloured proof nets

<table>
<thead>
<tr>
<th>Name</th>
<th>axiom-link</th>
<th>par-link</th>
<th>before-link</th>
<th>times-link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premises</td>
<td>none</td>
<td>A and B</td>
<td>A and B</td>
<td>A and B</td>
</tr>
<tr>
<td>R&B-graph</td>
<td>$a \perp a$</td>
<td>$A \varnothing B$</td>
<td>$A < B$</td>
<td>$A \otimes B$</td>
</tr>
<tr>
<td>Conclusions</td>
<td>a and a^\perp</td>
<td>$A \varnothing B$</td>
<td>$A < B$</td>
<td>$A \otimes B$</td>
</tr>
</tbody>
</table>
Proof nets

- Extra-arc for denoting an order (preferably SP, definable) between conclusions
- Criterion no alternate elementary cycle
- Viewing cuts as \((\exists K)K \otimes K\) they take part in the order
Cut elimination preserves correctness

Cut on axiom
Cut elimination preserves correctness and order

Cut before/before

<table>
<thead>
<tr>
<th></th>
<th>Proof Net</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cut elimination preserves correctness and order

Cut times/par
Interpreting proofs

- Choose a token for each axiom
- Collect the tuples: they are a clique of the coherence space associated with the partially ordered set of conclusions:

\[
\bar{x} \sim \bar{y}[\langle A_i \rangle_{i \in (I, \prec)}] \\
\iff \\
\exists i \ x_i \sim y_i \land (\forall j > i \ x_j = y_j)
\]
Interpreting proofs:

soundness and « completeness »

- Proof: would lead to an infinite alternate elementary path incoherent moving up, coherent moving down.

- Moreover the converse is true: if the proofnet is not correct, some interpretations are not cliques even in a single finite coherence space: \(\mathbb{N} \) (isomorphic to its orthogonal \(\mathbb{Z} \)).
Directed cographs

- Directed cographs for denoting formulae:
 - Containing the single vertex graphs
 - Closed under
 - Disjoint union
 - Undirected series composition
 - Directed series composition
 - (Hence under complementation if an undirected edge is viewed a pair of opposite directed edges)
Directed cographs

- Universal characterisation:
 - The directed part is an SP order
 - The undirected part is a cograph
 - Weak transitivity

\[(x, y) \in R \land (y, x) \notin R \land (y, z) \in R \Rightarrow (x, z) \in R\]

\[(x, y) \in R \land (y, z) \in R \land (z, y) \notin R \Rightarrow (x, z) \in R\]
Handsome proofnets

- Vertices: propositional variables and their negations
- A directed cograph (the formula)
- Plus a perfect matching (the axioms)
- Criterion:
 - Every alternate elementary cycle contains a chord
Uncorrect
Correct
Fold

\[\text{II.} \]

\[\begin{align*}
X & \quad Y \\
X & \quad Y \\
A_1 & \\
A_2 & \\
A_3 &
\end{align*} \]
Correct
Correct with a link
Correct with three links
Property

- Fold and unfold preserve the criterion that every alternate elementary cycle contains a chord.
- Observe that when there are only links, this means that there is no alternate elementary cycle at all.
Cut-elimination

- Works directly on axioms
- Also derives from the one on proof nets with links.
- Looks like Girard’s turbo cut-elimination
Rewriting
(black lollipop preserves correctness)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premise</th>
<th>Inference</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\otimes\varphi_1$</td>
<td>$(X \otimes Y) \otimes (U \otimes V)$</td>
<td>\rightarrow</td>
<td>$(X \otimes U) \otimes (Y \otimes V)$</td>
</tr>
<tr>
<td>$\otimes\varphi_2$</td>
<td>$Y \otimes U$</td>
<td>\rightarrow</td>
<td>$U \otimes Y$</td>
</tr>
<tr>
<td>$\otimes<4$</td>
<td>$(X \ltimes Y) \otimes (U \ltimes V)$</td>
<td>\rightarrow</td>
<td>$(X \otimes U) \ltimes (Y \otimes V)$</td>
</tr>
<tr>
<td>$\otimes<\varphi_3$</td>
<td>$Y \otimes (U \ltimes V)$</td>
<td>\rightarrow</td>
<td>$U \ltimes (Y \otimes V)$</td>
</tr>
<tr>
<td>$\otimes<\varphi_2$</td>
<td>$Y \otimes U$</td>
<td>\rightarrow</td>
<td>$U \otimes Y$</td>
</tr>
<tr>
<td>φ_1</td>
<td>$(X \otimes Y) \ltimes (U \otimes V)$</td>
<td>\rightarrow</td>
<td>$(X \ltimes U) \otimes (Y \ltimes V)$</td>
</tr>
<tr>
<td>φ_3</td>
<td>$(X \otimes Y) \otimes U$</td>
<td>\rightarrow</td>
<td>$(X \otimes U) \otimes Y$</td>
</tr>
<tr>
<td>$\varphi<\varphi_3$</td>
<td>$Y \otimes (U \otimes V)$</td>
<td>\rightarrow</td>
<td>$U \otimes (Y \ltimes V)$</td>
</tr>
<tr>
<td>$\varphi<\varphi_2$</td>
<td>$Y \otimes U$</td>
<td>\rightarrow</td>
<td>$U \otimes Y$</td>
</tr>
</tbody>
</table>
Conjecture

- All correct handsome proofnets are obtained by the correct rewriting from
 \[
 \bigotimes_i (a_i \otimes a_i^\perp)
 \]
 (True for MLL)
Sequent calculus?

- Times as usual
- Par as usual
- MIX introduces the order the restrictions of K to G and D should be I and J

\[\frac{\frac{}{\Gamma[I]} \quad \frac{}{\Delta[J]}}{\Gamma,\Delta[K]} \]

- Yields all correct proof nets?
Alternative conjecture (would directly yield sequentialisation)

- Given a correct handsome proofnet, there exists a partition $A_1 \ A_2$ of the axiom links (hence a partition $V_1 \ V_2$ of the vertices, since they are a complete matching) such that:
 - All the crossing edges are undirected and define a complete bipartite graph $K(U_1,U_2)$ with U_1 included in V_1 and U_2 included in V_2
 - All the crossing edges are directed and they all go from V_1 to V_2 or they all go from V_2 to V_1.
Old references

- 1993 Réseaux et séquents ordonnés PhD Thesis Paris 7
- 1997 Pomset logic a non commutative extension of classical linear logic. TLCA
- 1997 (with Bechet and de Groote) A complete axiomatisation of the inclusion a SP orders. RTA
- 1997 A semantic characterisation of the correctness of a proof nets. MSCS / INRIA Report
- 2003 Handsome proofnets: perfect matchings and cographs. TCS / INRIA Report