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ABSTRACT
Robustness testing aims at verifying the acceptable behav-
ior of a system under unexpected conditions. In this paper
we propose a framework and a tool for robustness test cases
generation. Our framework consists of two phases : (1) Con-
struction of an increased speci�cation by integrating hazards
in the nominal speci�cation model written in SDL. The rule
of the increased speci�cation is to specify the acceptable be-
havior in presence of hazards. (2) A speci�c method to gen-
erate robustness test cases (in TTCN-3) from the increased
speci�cation and a robustness test purpose. We also give
some experimental results on the TCP protocol.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Testing and Debugging

General Terms
Formal Testing

Keywords
Robustness testing, IOLTS, TCP protocol

1. INTRODUCTION
Nowadays, software systems tend to be complex, embed-

ded, and often used in critical conditions. A failure of such
systems may lead to catastrophic consequences (�nancial
or human). Then, a proper validation is highly needed in
order to increase the quality and the con�dence of the sys-
tem. Testing is a part of the validation process consisting in
a direct execution of the system implementation IUT (Im-
plementation Under Test) under speci�ed conditions. The
results are observed and compared to the expected behavior
of the system. Testing may focus on di�erent topics such as
conformance, reliability, interoperability and robustness.
In this paper, we deal with robustness testing of commu-

nicating systems (e.g. communicating protocols). Although

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07 March 11-15, 2007, Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

a precise de�nition of robustness is somewhat elusive, func-
tionally the meaning is clear : "the ability of a system to
function correctly in presence of faults or stressful environ-
mental conditions" (IEEE [9]). The term "hazards" will be
used to gather faults and stressful conditions.
Usually, system speci�cations do not take care about un-

expected conditions. Note that it is never possible to have a
complete speci�cation of the system directly, but it is possi-
ble to specify a behavior facing a speci�c hazard when this
latter is identi�ed.
One contribution of our work is to provide a framework

permitting to take into account these aspects. This aim is
achieved by integrating representable hazards in the nominal
speci�cation of the system. The obtained model is called
the increased speci�cation. Because of its important size,
we propose a speci�c method to generate robustness test
cases using a test purpose.
We present the RTCG (Robustness Test Cases Generator)

tool which implements this approach. It permits to extract
robustness test cases (in the TTCN-3 [15] format) based
on a given robustness test purpose and on the increased
speci�cation (written in the SDL [7] format).
The paper is organized as follows. Section 2 recalls the

models used in our study. Section 3 presents our framework
for robustness testing. Section 4 describes the RTCG tool
and provides a case study on the TCP protocol. Section 5
gives a state of the art and we �nally conclude in section 6.

2. BASIC CONCEPTS

2.1 Models of specification
Usually, communicating softwares are speci�ed in a ded-

icated language (SDL, LOTOS, UML, etc...). Such for-
malisms are based on labelled transition system (LTS) se-
mantics. LTS distinguishes internal and visible actions. But
in black-box testing, a distinction is often made between in-
puts and outputs. In this paper we use the IOLTS model
(Input Output Labelled Transition System).

De�nition 1 (IOLTS) An IOLTS [13] is a quadruplet S
= (Q, Σ,→, q0) such that: Q is a nonempty �nite set of
states, q0 is the initial state, Σ is the alphabet of actions
and, →⊆ Q× Σ×Q is the transition relation.

The alphabet Σ is partitioned into three sets Σ = ΣO∪ΣI∪I,
where ΣO is the output alphabet (an output is denoted by
!a), ΣI is the input alphabet (an input is denoted by ?a)
and I is the alphabet of internal actions (an internal action
is denoted by τ). Usual notations are :



Notation Meaning

q
a→ ∃ q′ | q

a→ q′

q
µ1...µn→ q′ ∃ q0...qn | q = q0

µ1→ q1
µ2→ ...

µn→ qn = q′

q
ε⇒ q′ q = q′ or q

τ1...τn→ q′

q
a⇒ q′ ∃ q1, q2 | q

ε⇒ q1
a→ q2

ε⇒ q′

q
a1...an⇒ q′ ∃ q0...qn | q = q0

a1⇒ q1
a2⇒ ...

an⇒ qn = q′

q after σ q′ ∈ Q | q
σ⇒ q′}; by extension, S after σ = q0 after σ

T race(q) {σ ∈ Σ∗ | q
σ⇒}; by extension, T race(S) = T race(q0)

Out(q) {a ∈ ΣO | q
a⇒}

Out(S, σ) Out(S after σ)

ref(q) {a ∈ ΣI |a 6
a−→)}

An IOLTS S is called deterministic if no state accepts
more than one successor with an observable action. It is
called observable if no transition is labelled by τ . S is called
input-complete if each state accepts all inputs of the alpha-
bet.

2.2 Hazards
In robustness testing, a hazard denotes any event not ex-

pected in the nominal speci�cation of the system. They may
be internal, external or beyond the system boundaries [3] or
classi�ed according to tester controllability or/and formal
representability [12].
In this paper, we deal with controllable and representable

hazards related to communicating software domain. Con-
trollability means the ability of the tester to control the
presence of hazards (e.g. erroneous or unexpected inputs),
and representability means that it is possible to represent
the hazard in the IOLTS model (e.g. inputs or outputs).
More precisely, we identify three kinds of controllable and
representable hazards :

• Invalid Inputs In a hostile environment, exchanged
messages may be infected by accidental or intentional
faults. Formally, we consider as an "invalid input" any
unspeci�ed input. i.e, ?a′ 6∈ ΣI .

• Inopportune Inputs In a hostile environment, the
communicating software entity may receive delayed or
untidy messages. Formally, "inopportune inputs" cor-
respond to actions existing in the alphabet of the spec-
i�cation, but not expected in the given state. ref(q)
denotes the inopportune inputs in a state q ∈ Q.

• Unexpected outputs Taking into account the haz-
ards can lead the system, in some cases, to send some
unexpected outputs. Sometimes, such outputs may
be considered as acceptable. For example, restart-
ing a session, resetting or closing a connection may
be acceptable behaviors. As a consequence, all ac-
ceptable outputs must be added to the speci�cation
(e.g. restarting or closing connection messages). For-
mally, !x′ is an acceptable output if !x′ 6∈ ΣO or
!x′ ∈ ΣO ∧ !x′ 6∈ Out(q).

3. PROPOSED APPROACH
In this section, we outline our formal approach to generate

robustness test cases. Two phases are given : �rstly we con-
struct an increased speci�cation, and secondly we generate
robustness test cases. Note that the nominal speci�cation
describes the expected behavior in nominal conditions. In
the following, it is modelled by an IOLTS denoted S.

3.1 Phase 1 : Increase of specification

This phase consists in integrating the representable haz-
ards (invalid inputs, inopportune inputs and acceptable out-
puts) in the model of the nominal speci�cation. The ob-
tained model is called increased speci�cation. The aim of
the increased speci�cation is to formally describe the accept-
able behaviors in presence of controllable and representable
hazards. Robustness of an implementation is evaluated with
respect to the increased speci�cation. In order to obtain the
increased speci�cation, we proceed to the following steps
(see Fig.1) :

Specification

Hazard Graph Suspension automaton

Inopportune inputs
Graph 

Suspension traces and determinization

Increased Specification

Inopportune inputs computing

Sδ ⊕HG⊕ IIG

S

HG

Sδ ⊕HG

Sδ

IIG

SA

Figure 1: Obtaining the increased speci�cation

3.1.1 Quiescence
In practice, the tester observes outputs of a system, but also
the absence of events (quiescence). Several kinds of quies-
cence may happen in a state q ∈ Q : outputlock quiescence
if the system is blocked on standby input of the environment
(Out(q) = ∅), deadlock quiescence if there is no more evo-

lution of the system (∀a ∈ Σ|q 6 a−→) or livelock quiescence if

q
ε⇒ q. To model valid quiescence in IOLTS model, we use

the suspension automaton de�ned below :

De�nition 2 (Suspension automaton) The suspension
graph [13] of S = (Q, Σ, →, q0) is an IOLTS Sδ = ( Q, Σδ,
→δ, q0) such that: Σδ = Σ∪{δ} with δ ∈ Σδ

O. →δ is obtained

from → by adding loops q
δ−→ q for all quiescence states.

Thus, quiescence is seen as an observable output action. In
practice, the tester identi�es such event with a timeout. The
�rst step of our approach consists in obtaining the suspen-
sion automaton Sδ associated to S.

3.1.2 Acceptable behavior
In order to check the robustness of the system, the ac-

ceptable behavior in the presence of hazards has to be given
by the system designers. The acceptable behavior is sup-
posed modelled by a speci�c graph called meta-graph. Let
S = (Q, q0, Σ,→S) an nominal speci�cation. A meta-graph
G, associated to S, is a graph such that each state of G cor-
responds to a set of states of S having the same behaviors
in the presence of the same hazards.

De�nition 3 A meta-graph associated to S is a triplet G =
(V, E, L) such as : (1) V = Vd ∪ Vm is a set of states.
Vm ⊆ 2Q is called the set of meta-states and Vd is called the
set of degraded states such that Vd ∩ Q = ∅. (2) L is an
alphabet of actions, (3) E ⊆ V × L× V is a set of edges.



In the following, we suppose that invalid inputs and accept-
able outputs are modelled by one or more meta-graph(s) HG
(Hazards Graph), and inopportune inputs are represented by
meta-graph(s) IIG (Inopportune Input Graph).

3.1.3 Integrating hazards
This step consists in the composition of the nominal spec-

i�cation S and a hazard graph HG. The composition be-
tween an IOLTS and a meta-graph is de�ned by :

De�nition 4 (Composition IOLTS ⊕G)
Let S = (Q, q0, Σ,→S) be an IOLTS and G = (V, E, L)
a meta-graph associated to S. The composition of S and
G, noted S⊕G, is the IOLTS (QS⊕G, qS⊕G

0 , ΣS⊕G,→S⊕G)
de�ned by: QS⊕G = Q∪ Vd, qS⊕G

0 = q0, ΣS⊕G = Σ∪L and
the following rules :

1. q
a−→ q′ ⇐⇒ q

a−→S⊕G q′

2. (v, a, v′) ∈ E and v, v′ ∈ Vd ⇐⇒ v
a−→S⊕G v′.

3. (v, a, v′) ∈ E , v ∈ Vm and v′ ∈ Vd ⇐⇒ q
a−→S⊕G

v′ for all q ∈ v.

4. (v, a, v′) ∈ E , v ∈ Vd and v′ ∈ Vm ⇐⇒ v
a−→S⊕G q

for all q ∈ v′.

5. (v, a, v′) ∈ E and v, v′ ∈ Vm ⇐⇒ q
a−→S⊕G q′ for all

q ∈ v and q′ ∈ v′

6. (v, a, v) ∈ E and v ∈ Vm ⇐⇒ q
a−→S⊕G q for all q ∈ v.

This composition consists in adding in S the set of transi-
tions and states of meta-graph HG. Actually, for a state q of
S member of a meta-state (i.e. a set of states) v of HG, we
add in S the set of transitions and/or states starting from
v.

Example 1 In Fig 2.(c), the composition Sδ ⊕ HG is ob-
tained as follows :
Rule 1 adds to Sδ ⊕ HG the whole of transitions of Sδ

(q0
?a−→ q1, q1

!x−→ q2, q1
?b−→ q3, q3

!y−→ q4, q0
!δ−→ q0,

q2
!δ−→ q2);

Rule 2 adds to Sδ ⊕HG the transition d2
?b′−−→ d1;

Rule 3 adds to Sδ⊕HG the following transitions (q0
?a′−−→ d2,

q1
?a′−−→ d2, q2

?a′−−→ d2, q3
?a′−−→ d2, q0

!x′−−→ d1, q1
!x′−−→ d1,

q2
!x′−−→ d1, q3

!x′−−→ d1);

Rule 4 adds to Sδ⊕HG the following transitions (d1
?a−→ q0,

d2
?a−→ q0);

Rule 6 adds to Sδ⊕HG the following transitions (q0
?b′−−→ q0,

q1
?b′−−→ q1, q2

?b′−−→ q2, q3
?b′−−→ q3).

Rule 5 is not used because there are no transitions between
the meta-states.

After the integration of invalid inputs and acceptable out-
puts in Sδ, we compute the inopportune inputs (using the
ref set of each set) of HG⊕Sδ. Then, system designers give
the required acceptable behavior in this case. The given de-
scription is modelled by IIG (Fig 2 (d)).
We reuse the de�nition 4 in order to integrate inopportune
inputs in HG⊕ Sδ. The obtained model is HG⊕ Sδ ⊕ IIG
(Fig 2 (e)).

q0, q1, q2, q3
?a′

?a ?a

?b′

?b′
!x′

(a).HG
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!x ?b
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q2
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q3

q0

?b′, ?a, ?b

!y

?a

?a

?a′

?a′

!x′
!x′

?b′

!x ?b

?a′

?b′, !δ

(c). Sδ ⊕ HG
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?a

?a
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!x ?b
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?b′, !δ, ?a, ?b ?b′, ?a

Figure 2: Construction of the increased speci�cation

3.1.4 Determinization
As robustness testing is based on the observation of visible

behaviors, test synthesis requires a determinization of the
speci�cation. The deterministic model obtained from the
suspension automaton associated to HG⊕Sδ⊕IIG is called
the increased speci�cation (Fig 2.(f)), and denoted SA.

3.1.5 Robustness relation
The IUT is a black box interacting with a tester. We

apply the test hypothesis generally used in testing research,
assuming that : (1) IUT is modelled by an IOLTS IUT =
(QIUT , ΣIUT ,→IUT , q0

IUT ) such that : ΣI
SA ⊆ ΣI

IUT and
ΣO

SA ⊆ ΣO
IUT ; (2) IUT is input-complete on the alphabet

ΣSA . We also assume that IUT conforms to S with respect
to the conformance relation ioco [13].
Let IUT be an implementation of a speci�cation S and SA

its increased speci�cation. The robustness relation Robust



is de�ned by :

IUT Robust SA ≡def ∀σ ∈ Trace(SA)\Trace(Sδ)

⇐⇒ Out(IUT δ, σ) ⊆ Out(SA, σ).

Only the increased behaviors (added) are useful for robust-
ness testing because the nominal behaviors (including valid
quiescence) already passed the conformance testing.

3.2 Phase 2 : Robustness test generation
In this section we present a robustness test case generation

technique. Using test purpose permits to reduce the test
selection domain and to concentrate the e�orts in order to
check some critical functionalities.
We give the di�erent steps : using the increased speci�ca-

tion SA and a Robustness Test Purpose RTP, we compute
the synchronous product SA⊗RTP . Then, we use this result
to compute a Robustness Test Graph RTG, and then a Re-
duced Robustness Test Graph RRTG. Finally, Robustness
Test Cases (RTC) are generated using RRTG. An example
is given in Fig 3, and details are given just below.

3.2.1 Robustness test purpose
A robustness test purpose (RTP ) permits to select a part

of the total speci�cation in order to focus on a precise func-
tionality (e.g, robustness property). Formally,

De�nition 5 (RTP) A robustness test purpose is a de-
terministic and observable IOLTS RTP = (QRTP , ΣRTP ,
→RTP , qRTP

0 ) with two sets of trap states "Accept" and
"Reject", with the same alphabet as the increased speci�ca-
tion (i.e. ΣRTP ⊆ ΣSA).

Example 2 The RTP given in Fig 3.(b) aims at seeking any
trace of the increased speci�cation containing a reception of
the invalid input ?a′ followed by the acceptable output !x′

without considering the transitions labelled by !x or ?b.

The label "other" is used to describe all actions of the alpha-
bet ΣSA⊗RTR which are not speci�ed in the current state.

3.2.2 The synchronous product SA ⊗RTP

In order to obtain a robustness test sequence, we have to
cover simultaneously the RTP and SA until we �nd an ad-
equate sequence satisfying RTP . The synchronous product
is de�ned as follows :

De�nition 6 (Synchronous product) Let SA = (QSA ,

qSA
0 , ΣSA , →SA) be an IOLTS of the increased speci�ca-
tion, and RTP = (QRTP , qRTP

0 , ΣRTP ,→RTP ) a robustness
test purpose with ΣRTP = ΣSA and with state sets "Ac-
cept" and "Reject". The synchronous product of SA and
RTP , denoted by SA ⊗ RTP , is a deterministic IOLTS
SA ⊗ RTP = (QSA⊗RTP , qSA⊗RTP

0 , ΣSA⊗RTP ,→SA⊗RTP )
de�ned by :

1. qSA⊗RTP
0 = (qSA

0 , qRTP
0 ),

2. QSA⊗RTP = {(q1, q2) | q1 ∈ QSA , q2 ∈ QRTP },

3. ΣSA⊗RTP ⊂ ΣSA ∪ ΣRTP = ΣSA ,

4. →SA⊗RTP is de�ned by :

(q, q′) ∈ QSA⊗RTP , q
a−→SA q1 ∧ q′

a−→RTP q′1 ⇐⇒
(q, q′)

a−→SA⊗RTP (q1, q
′
1).

3.2.3 Robustness test graphs
A robustness test graph (RTG) describes all tests corre-

sponding to a given RTP. Formally, a RTG is a determin-
istic IOLTS RTG = (QCRTG, ΣRTG,→RTG, qRTG

0 ), com-
posed by three subsets of states ACCEPT, REJECT and
INCONC such that :

• ΣRTG = ΣO
RTG ∪ ΣI

RTG with ΣI
RTG = ΣO

SA⊗RTP

and ΣO
RTG = ΣI

SA⊗RTP (mirror image);

• QRTG = ACCEPT ∪REJECT ∪ INCONC with

1. ACCEPT = {q ∈ QSA⊗RTP | ∃σ ∈ ΣSA⊗RTP∗,

q
σ−→ Accept} ACCEPT consists of states from

which the state Accept is reachable,

2. INCONC = {q′ ∈ QSA⊗RTP | ∃q ∈ ACCEPT,

q′ 6∈ ACCEPT, a ∈ ΣO
SA⊗RTP , q

a−→ q′}.
i.e. INCONC is composed of states not in AC-
CEPT, but which are direct successors of states
in ACCEPT by an output in SA ⊗RTP ,

3. REJECT = {q ∈ QSA⊗RTP | q 6∈ ACCEPT ∧
q 6∈ INCONC}.

• if q0
SA⊗RTP ∈ ACCEPT then q0

RTG = q0
SA⊗RTP ,

otherwise QRTG is empty.

Since RTG is often voluminous, it is necessary to reduce
it by concentrating only on the behaviors accepted by RTP.
Then we keep in RTG only the paths leading to an ACCEPT
or INCONC states. The obtained model is called reduced
robustness test graph, and denoted by RRTG.

Example 3 Robustness Test Graph RTG (Fig. 3 d) de-
scribes the mirror image of the synchronous product (Fig. 3
c). RTG consists of three states :
INCONC = {(q2, Reject)}, REJECT = {(d1, Reject),
(q1,Reject), (q0, Reject)} and ACCEPT = {(q0, q′0), (d1,
q′1), (q1, q′0), (q0, Accept)}. Reduced robustness test graph
RRTG (Fig. 3 e) consists of the states and transitions of
ACCEPT and INCONC.

3.2.4 Robustness test case
A robustness test case (RTC) is an elementary test cor-

responding to a particular robustness test purpose. It de-
scribes the interactions between a tester and an implemen-
tation. It only contains observable actions.

De�nition 7 A robustness test case RTC is an IOLTS
RTC = (QRTC , ΣRTC ,→RTC , qRTC

0 ) with three sets of trap
states Pass, Fail and Inconc characterizing verdicts. Its
alphabet is ΣRTC = ΣRTC

I ∪ΣRTC
O with ΣRTC

O ⊆ ΣSA
I (RTC

emits only inputs of SA) and ΣRTC
I ⊆ ΣIUT

O (RTC foresees
any output or quiescence of IUT).

We make several structural assumptions on test cases : (1)
states Fail and Inconc are directly reachable by inputs.
Formally, ∀(q, a, q′) ∈→RTC (q ∈ Inconc ∪ Fail =⇒
a ∈ ΣI

RTC); (2) from each state a verdict must be reach-
able. Formally, ∀q ∈ QRTC , ∃σ ∈ ΣRTC∗, ∃q′ ∈ Pass ∪
Fail ∪ Inconc, q σ−→ q′; (3) RTC is controllable : no choice
is allowed between two outputs or an input and output.
Formally, ∀q ∈ QRTC∀a ∈ ΣO

RTC , q
a−→RTC =⇒ ∀b 6=

a, q 6 b−→RTC ; (4) a test case is input complete in all states
where an input is possible. Formally, ∀q ∈ QRTC(∃a ∈
ΣI

RTC , q
a−→RTC =⇒ ∀b ∈ ΣI

RTC , q
b−→RTC).
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Figure 3: Robustness test cases generation

3.2.5 Selection of robustness test cases
In order to choose the traces which are considered in the

robustness relation Robust, we use an algorithm based on
coloration principle. Two colors distinguish the transitions
of the nominal speci�cation (�rst color) and those added
during the construction of the increased speci�cation (sec-
ond color). Then we choose test cases favoring the second
color (focusing on hazards), and we avoid any nominal trace
(colored with the �rst color).

Example 4 Robustness test case (RTC) given in Fig.3.(f)
is derived from RRTG (Fig.3.(e)). RTC consists of two out-
put states (states 2 and 4), and three reception states (states
1, 3 and 5).

4. IMPLEMENTATION AND CASE STUDY

4.1 RTCG tool
RTCG is a tool automating the previous approach. It

provides two functionalities :
The �rst one permits to build the increased speci�cation
of systems written in SDL or modelled as IOLTS. In or-
der to achieve this aim, RTCG implements the composition

method given in paragraph 3.1.3. It computes the composi-
tion of the nominal speci�cation S with a meta-graph HG.
Then, it computes inopportune inputs from the previous
product and, proposes a default or a customized increase.
It also computes the suspension traces and the determiniza-
tion.
The second one allows to generate robustness test cases

based on a robustness test purpose. The user de�nes both
SA and RTP �les. RTCG checks the RTP (observability,
determinism and accept states). Then, RTCG computes
the synchronous product, the robustness test graph (RTG)
and the reduced robustness test graph (RRTG). Finally it
selects a robustness test case (RTC).
In the current RTCG version, robustness test purposes

and speci�cation �les are written in the SDL or DOT format
and robustness test cases are written using the TTCN-3 [6],
XML or DOT formats.

4.2 Case study : TCP protocol
TCP [10] (Transmission Control Protocol) is a reliable

protocol using a connection mechanism. Nowadays, it is
largely used on the Internet. In case of TCP communica-
tion, a client requests a connection (active connection) by
sending a synchronization message. If the server accepts, it
replies another synchronization (passive connection); then
the connection is established and the entities can exchange
data. In our study, we focus on the robustness of connec-
tion phases. The nominal speci�cation of such phases is
provided in [10] written in the Finite State Machine format.
The equivalent SDL translation is given below :

PROCESS TCP-Specification (1,1);

START NEXTSTATE Closed;

STATE CLOSED;

INPUT Passive-OPEN;

OUTPUT create-TCB;

NEXTSTATE LISTEN;

INPUT Active-OPEN;

OUTPUT create-TCB;

NEXTSTATE SYN-SENT;

STATE LISTEN;

INPUT SYN;

OUTPUT SYN,ACK;

NEXTSTATE SYN-RCVD;

INPUT SEND;

OUTPUT SYN;

NEXTSTATE SYN-SENT;

INPUT Close;

OUTPUT delete-TCB;

NEXTSTATE CLOSED;

STATE SYN-SENT;

INPUT SYN,ACK;

OUTPUT ACK;

NEXTSTATE ESTABLISHED;

INPUT SYN;

OUTPUT ACK;

NEXTSTATE SYN-RCVD;

STATE SYN-RCVD;

INPUT ACK-of-SYN;

NEXTSTATE ESTABLISHED;

INPUT Close;

OUTPUT Fin;

NEXTSTATE FIN-WAIT-1;

STATE ESTABLISHED;

INPUT Fin;

OUTPUT ACK;

NEXTSTATE CLOSE-WAIT;

INPUT Close;

OUTPUT Fin;

NEXTSTATE FIN-WAIT-1;

STATE FIN-WAIT-1.

INPUT ACK-of-Fin;

NEXTSTATE FIN-WAIT-2;

INPUT Fin;

OUTPUT ACK;

NEXTSTATE CLOSING;

STATE CLOSE-WAIT;

INPUT Close;

OUTPUT Fin;

NEXTSTATE LAST-ACK;

STATE FIN-WAIT-2;

INPUT Fin;

OUTPUT ACK;

NEXTSTATE TIME-WAIT;

STATE CLOSING;

INPUT ACK-of-Fin;

NEXTSTATE TIME-WAIT;

STATE LAST-ACK;

INPUT ACK-of-Fin;

NEXTSTATE CLOSED;

STATE TIME-WAIT;

INPUT Timeout=2MSL;

OUTPUT delete TCB;

NEXTSTATE CLOSED;

END PROCESS TCP-Specification;

In order to apply our method, we consider the following
hazards, used to increase the nominal speci�cation : (1)
Invalid inputs : messages with detected faults (e.g. bad se-
quence number). (2) Inopportune inputs : speci�ed but not
expected message (e.g. an acknowledgement (ACK) in an
ESTABLISHED state) (3) Acceptable outputs : emitting a
reset (RST) message after reception of an inopportune mes-
sage. Such hazards are considered in most implementations
of TCP protocol.
As an example, we consider the following test purpose :

RTP1: Opening a passive connection in presence of hazards.
The obtained robustness test case in the TTCN-3 format is :



tescase TCP-Tester() runs on TCP-IUT { timer ReponseTimer := 100E-3;

Tester.send(close);

Tester.send(passive-open);

Tester.send(ACK-of-FIN-failed);

Tester.send(SEND);

Tester.send(SYN,ACK);

ReponseTimer.start

alt

{ [] ReponseTimer.timeout

{ setverdict(fail);

stop

}

[] Tester.receive(SYN);

{ setverdict(pass);

ReponseTimer.stop

Tester.send(SYN);

Tester.send(SYN,ACK);

Tester.send(SYN,ACK);

ReponseTimer.start

alt

{ [] ReponseTimer.timeout

{ setverdict(fail);

stop

}

[] Tester.receive(ACK-of-SYN);

{ setverdict(pass);

ReponseTimer.stop

}

[else] { setverdict(fail);

stop

}

}

}

[else] { setverdict(fail);

stop

}

}

control

{

execute (TCP-Tester());

}

}

5. RELATED TOOLS
We have mentioned that the majority of the existing tools

based on formal methods are focusing on conformance test-
ing (e.g. TorX [14], TGV [8]). In robustness testing, some
tools have been developed. The PROTOS project [11] sim-
ulates abnormal inputs with a high level of abstraction.
Crashme [2] is also a testing tool of robustness �lling an
array with random data and trying to execute it as if it
were code. STRESS [5] operates on GFSM model and syn-
thesizes a set of test scenarii, protocol events and relation
between topology delays and timer values that stress the
protocol according to the evaluation criteria. The FIAT tool
([1]) modi�es a processus binary image in memory, whereas
the BALLISTA [4] tool works on data unexpected modi�ca-
tions.

6. CONCLUDING REMARKS
This paper presented a framework and a tool permitting

to generate robustness test cases for communicating soft-
ware. The proposed approach consists of two phases : the
�rst one deals with the construction of an increased speci-
�cation. The second phase deals with robustness test cases
generation. The tool permits to implement the approach
described above using SDL speci�cation, and to generate
TTCN-3 test cases. We also proposed a case study on
the TCP protocol focusing on the robustness of connection
phases.
As a future work, we intend to focus on unrepresentable

hazards, and on timing constraints.
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