
Krivine machines and higher-order schemes

S. Salvati1 and I. Walukiewicz1

Université de Bordeaux, INRIA, CNRS, LaBRI UMR5800
LaBRI Bât A30, 351 crs Libération, 33405 Talence, France

Abstract. We propose a new approach to analysing higher-order re-
cursive schemes. Many results in the literature use automata models
generalising pushdown automata, most notably higher-order pushdown
automata with collapse (CPDA). Instead, we propose to use the Krivine
machine model. Compared to CPDA, this model is closer to lambda-
calculus, and incorporates nicely many invariants of computations, as
for example the typing information. The usefulness of the proposed ap-
proach is demonstrated with new proofs of two central results in the
field: the decidability of the local and global model checking problems
for higher-order schemes with respect to the mu-calculus.

1 Introduction

Higher-order recursive schemes were introduced by Damm in [Dam82] as a
respelling of λY -calculus. Since they were investigated mainly in formal lan-
guage community, the tools developed were by large inspired by treatment of
pushdown-automata and context-free grammars. Subsequent research has shown
that it is very useful to have an automata model characterising schemes. For the
class of all schemes, we know only one such model, that is higher order push-
down automata with collapse [HMOS08]. In this paper we propose another model
based on Krivine machines [Kri07], [Wan07]. The notion of Krivine machine is
actually a standard concept in lambda-calculus community, and it needs almost
no adaptation to treat higher-order schemes. We claim that the proposed model
offers a fresh tool to analyse schemes. To substantiate we give new proofs of
two central results in the field: decidability of local and global model-checking
problems for higher-order schemes with respect to the mu-calculus.

In the last decade the interest in higher-order schemes has been renewed by
the discovery by Knapik et al.[KNU02] of the equivalence of higher-order push-
down automata of order n with schemes of order n satisfying a syntactic con-
straint called safety. Subsequently, higher order pushdowns have been extended
with panic operation to handle all level 2 schemes [KNUW05], and with collapse
operation for schemes of all levels [HMOS08]. Higher order pushdown automata
with collapse are at present the main tool to analyse schemes [HMOS08], [BO09],
[BCOS10].

The model checking problem for schemes with respect to the mu-calculus is to
decide if a given formula holds in the root of the tree generated by a given scheme.
The problem has proved to be very stimulating, and generated many advances in

2 S. Salvati and I. Walukiewicz

our understanding of schemes. Its decidability has been shown by Ong [Ong06],
but even afterwards the problem continued to drive interesting work. Several
different proofs of Ong’s result have been proposed [HMOS08,KO09]. In a series
of recent papers [CHM+08,BO09,BCOS10] the global version of the problem is
considered. In the last citation it is shown that the set of nodes satisfying a given
mu-calculus formula is definable in a finitary way.

In this paper, we go several steps back with respect to the usual ways of
working with higher-order recursion schemes. First, instead of using Damm’s
definition of higher-order schemes, we turn to the λY -calculus as the mean of
generating infinite trees. The Y combinator, or the fixpoint combinator, has first
been considered in [CR58] and is at the core of Plotkin’s PCF [Plo77]. Second,
instead of using higher-order collapsible automata as an abstract machine, we
use Krivine abstract machine [Kri07]. This machine is much closer to λ-calculus,
it performs standard reductions and comes with typing. These features are hard
to overestimate as they allow to use standard techniques to express powerful
invariants on the computation. For example, in the main proof presented here,
we use standard models of the λY -calculus to express such invariants.

Using these tools, we reprove in a rather succinct way Ong’s result. Similarly
to a recent proof of Kobayashi and Ong [KO09], our proof gives a reduction to
a finite parity game. It seems though that our game is simpler, at least at the
level of presentation. For example, the paper [BCOS10] on global model checking
continues to use collapsible pushdown automata and gives an involved proof by
induction on the rank of the stack. On the other hand, we can reuse our game
to give a short proof of this result. In particular unlike op cit. we use finite trees
to represent positions, and standard automata on finite trees to represent sets
of winning positions.

Related work We have already mentioned a body of related work, we will com-
ment more no the proof of Kobayashi and Ong [KO09] in the concluding section.
Concerning the global model-checking result, Carayol et al. [CHM+08] showed
regularity of winning regions in parity games over higher-order pushdown au-
tomata without collapse. More recently, Broadbent and Ong [BO09] showed that
winning positions of a parity game generated by an order n recursive scheme are
recognizable by a non-deterministic collapsible pushdown automaton. The proof
uses game semantics instead of automata. Finally, Broadbent et al. [BCOS10]
show that the winning positions can be also recognized by a deterministic col-
lapsible pushdown automaton. Here we show that in a different representation
they are recognizable by a tree automaton. In this context we would like to men-
tion a result of Kartzow [Kar10] showing that order-2 collapsible stacks can be
encoded as trees in such a way that the set of stacks reachable from the initial
configuration is a regular set of trees.

Organization of the paper In the next section we introduce λY calculus and
Krivine machines. We also define formally the local model checking problem.
In the following section we reduce the problem to determining a winner in a
game over configurations of the Krivine machine, K(A,M). In the next section

Krivine machines and higher-order schemes 3

we define a finite game G(A,M). We then show that the same player is winning
in the two games. This gives decidability of the local model checking problem.
In the following section we reuse this result to obtain the proof for the global
model checking problem. All missing proofs can be found in the appendix.

2 Basic notions

The set of types T is constructed from a unique basic type 0 using a binary oper-
ation→. Thus 0 is a type and if α, β are types, so is (α→ β). The order of a type
is defined by: order(0) = 0, and order(α→ β) = max(1 + order(α), order(β)).

A signature, denoted Σ, is a set of typed constants, that is symbols with
associated types from T . We will assume that for every type α ∈ T we have ωα

and Y (α→α)→α standing for the fixpoint operator and the undefined value. For
simplicity of notation we assume that all other constants are of type 0→ 0→ 0.

The set of simply typed λ-terms is defined inductively as follows. A constant of
type α is a term of type α. For each type α there is a countable set of variables
xα, yα, . . . that are also terms of type α. If M is a term of type β and xα a
variable of type α then λxα.M is a term of type α→ β. Finally, if M is of type
α→ β and N is a term of type α then MN is a term of type β. Together with the
usual operational semantics of λ-calculus, that is β-reduction, we use δ-reduction
(→δ) giving the semantics to the fixpoint operator: YM →δ M(YM). Thus, the
operational semantics of the λY -calculus is the βδ-reduction, it is well-known
that this semantics is confluent and enjoys subject reduction (i.e. the type of
terms is invariant under computation).

A Böhm tree is an unranked ordered, and potentially infinite tree with nodes
labelled, by ωα or terms of the form λx1. . . . xn.N , where N is a variable or a
constant; and the sequence of lambda abstractions is optional. So for example x0,
λx.ω0 are labels, but λy0.x0→0y0 is not. A Böhm tree of a term M is obtained
as follows. If M →∗βδ λx.N0N1 . . . Nk with N0 a variable or a constant then the
root of BT (M) is labelled by λx.N0 and has BT (N1), . . . , BT (Nk) as a sequence
of its children. If M is not solvable then BT (M) = ωα, where α is the type of M .

From recursive schemes to λY -calculus A recursive scheme is a set of equations
defining a λY -term by mutual recursion. Formally, a recursion scheme is a func-
tion R assigning to every variable Fα from a finite set N , a term M of type α
and with free variables only from N . Fixing F 0 in N as the starting symbol, the
semantics of a scheme is the infinite tree computed by unfolding the definitions
of the variables starting from F 0. This tree, can also be seen as the Böhm tree
generated from F 0 by recursively applying the substitution defined by R.

Krivine machine A Krivine machine [Kri07], is an abstract machine that com-
putes the weak head normal form of a λ-term, using explicit substitutions (called
environments). Environments are functions assigning closures to variables, and
closures themselves are pairs consisting of a term and an environment. This
mutually recursive definition is schematically represented by the grammar:

C ::= (M,ρ) ρ ::= ∅ | ρ[x 7→ C]

4 S. Salvati and I. Walukiewicz

As in this grammar, we will use ∅ for the empty environment. We require that
in a closure (M,ρ), the environment is defined for every free variable of M .
Intuitively such a closure denotes closed λ-term: it is obtained by substituting
for every free variable x of M the lambda term denoted by the closure ρ(x).

A configuration of the Krivine machine is a triple (M,ρ, S), where M is a
term, ρ is an environment, and S is a stack (a sequence of closures with the
topmost element on the left). The rules of the Krivine machine are as follows:

(λx.M, ρ, (N, ρ′)S)→(M,ρ[x 7→ (N, ρ′)], S)

(YM, ρ, S)→(M(YM), ρ, S)

(MN, ρ, S)→(M,ρ, (N, ρ)S)

(x, ρ, S)→(M,ρ′, S) where (M,ρ′) = ρ(x)

Note that the machine is deterministic. We will be only interested in configura-
tions accessible from (M0, ∅, ε) for some term M0 of type 0. Every such configu-
ration (M,ρ, S) enjoys very strong typing invariants. Environment ρ associates
to a variable xα a closure (N, ρ′) so that N has type α; we will say that the
closure is of type α too. If M has type α1 → · · · → αn → 0, then S is a stack of
n closures, with i-th closure from the top being of type αi.

If we start with a closed term M of type 0 we get a sequence of reductions
from (M, ∅, ε) that is either infinite or terminates in a configuration with a
term starting with a constant. Since all our constants are of type 0 → 0 →
0, such a configuration has the form (a, ρ, (M0, ρ)(M1, ρ)) (that we shall write
(a(M0,M1), ρ, ε)). At that point we create a node labelled a and start reducing
both (M0, ρ, ε) and (M1, ρ, ε). This process gives at the end a tree labelled with
constants that is precisely BT (M); that is the object of our study. Notice that if
(N, ρ, S) is reachable from (M, ∅, ε) then N , and the terms that occur in ρ and
in S are all subterms of M . One should be careful with a definition of a subterm
though. Since we have a fixpoint operator we consider that N(Y N) is a subterm
of Y N . Of course even with this twist, the number of subterms remains finite.

We present an execution of a Krivine machine on an example taken from
[KO09]. We will use constants a : 0 → 0 → 0, b : 0 → 0 and c : 0. The scheme
is defined by S 7→ F c and F 7→ λx.a x (F (b x)) which can be represented by the
following term in the λY -calculus:

YM c where M = λfx.a x (f(b x)).

Starting form a configuration (YMc, ∅, ε), the Krivine machine produces the
following sequence of reductions

(YMc, ∅, ε)→(YM, ∅, (c, ∅))→ (M(YM), ∅, (c, ∅))→ (M, ∅, (YM, ∅)(c, ∅))→
(λx.a x (f(b x)), [f 7→ (YM, ∅)], (c, ∅))→
(a x (f(b x)), [f 7→ (YM, ∅)][x 7→ (c, ∅)], ε)

Krivine machines and higher-order schemes 5

At this point we have reached a final configuration and we get the constant a
that is the symbol of the root of BT (YMc). We can start reducing separately
the two arguments of a, that is reducing the configurations:

(x, [f 7→ (YM, ∅)][x 7→ (c, ∅)], ε) and (f(b x), [f 7→ (YM, ∅)][x 7→ (c, ∅)], ε)

Parity automata and the definition of the problem Recall that Σ is a fixed set
of constants of type 0 → 0 → 0. These constants label nodes in BT (M). Since
BT (M) is an infinite binary tree we can use standard non-deterministic parity
automata to describe its properties. Such an automaton has the form

A = 〈Q,Σ, q0 ∈ Q, δ : Q×Σ → P(Q2), Ω : Q→ [d]〉 (1)

where Q is a finite set of states, q0 is the initial state, δ is the transition function,
and Ω is a function assigning a rank (a number between 0 and d) to every state.

In general, an infinite binary tree is a function t : {0, 1}∗ → Σ. A run of A
on t is a function r : {0, 1}∗ → Q such that r(ε) = q0 and for every sequence
w ∈ {0, 1}∗: (r(w0), r(w1)) ∈ δ(q, t(w)). The run is accepting if for every infinite
path in the tree, the sequence of states assigned to this path satisfies the parity
condition determined by Ω; this means that the maximal rank of a state seen
infinitely often should be even.

Definition 1. The (local) model checking problem is to decide if A accepts
BT (M) for given A and M .

3 Game over configurations of Krivine machine

In this section we will reduce the model checking problem to the problem of
determining a winner in a specially constructed parity game.

Given an automaton A as in (1) we construct the tree of all its possible runs
on BT (M). We define the tree of runs formally as we will make one twist to the
rules of the Krivine machine. The twist is that in the environment the value of
the variable will not be a closure, that is a pair (term,environment), but a triple
containing additionally the node of the tree where the closure has been created.
For a given M and A we define the tree of runs RT (A,M) of A on BT (M):

– The root of the tree is labelled with q0 : (M, ∅, ε).
– A node labelled q : (a(N0, N1), ρ, ε) has a successor (q0, q1) : (a(N0, N1), ρ, ε)

for every (q0, q1) ∈ δ(q, a).
– A node labelled (q0, q1) : (a(N0, N1), ρ, ε) has two successors q0 : (N0, ρ, ε)

and q1 : (N1, ρ, ε).
– A node labelled q : (λx.N, ρ, (v′, N ′, ρ′)S) has a unique successor labelled
q : (N, ρ[x 7→ (v′, N ′, ρ′)], S).

– A node q : (Y N, ρ, S) has a unique successor q : (N(Y N), ρ, S).

6 S. Salvati and I. Walukiewicz

– A node v labelled q : (NK, ρ, S) has a unique successor q : (N, ρ, (v,K, ρ)S).
Here v closure is created.

– A node v labelled q : (x, ρ, S) with ρ(x) = (v′, N, ρ′) has a unique successor
labelled q : (N, ρ′, S). We say that the node v uses v′ closure.

The definition is as expected but for the fact that in the rule for application we
store the current node in the closure. When we use the closure in the variable
rule, the stored node does not influence the result, but allows us to detect what
is exactly the closure that we are using. This will be important in the proof.

Definition 2. We use tree RT (A,M) to define a game between two players: Eve
chooses a successor in nodes of the form q : (a(N0, N1), ρ, ε), and Adam in nodes
(q0, q1) : (a(N0, N1), ρ, ε). We set the rank of nodes labelled q : (a(N0, N1), ρ, ε) to
Ω(q) and the ranks of all the other nodes to 0. We can use max parity condition
to decide who wins an infinite play. Let us call the resulting game K(A,M).

The following is a direct consequence of the definitions.

Proposition 1. Eve has a strategy from the root position in K(A,M) iff A
accepts Tree(M).

Hence the model checking problem reduces to deciding who has a winning
strategy from the root of K(A,M). To decide this we will define a finite game and
then show that the winner in this game is the same as the winner in K(A,M).

4 Finite game G(A,M)

The game K(A,M) may have infinitely many positions as there may be infinitely
many closures that are created. In order to obtain a finite game we abstract the
closures to some finite set. Closures are created by the application rule, so this
is where we will concentrate our efforts. As in the construction for a pushdown
game [Wal01] we will use alternation to “disarm” the application rule. Instead
of putting a closure on the stack we will put an assumption as to how we will
get to a position where the closure is used. At the same time we will check what
happens when we use the closure under the assumptions we have made. Since
the closure can be of higher type, the assumptions are a bit more complicated
than in pushdown game.

Definition 3 (Residuals). Recall that Q is the set of states of A and d is the
maximal value of the rank function of A. For every type τ = τ1 → · · · → τk → 0
the set of residuals Dτ is the set of functions Dτ1 → · · · → Dτk → P(Q× [d]).

For example, we have that R0 is P(Q× [d]) and R0→0 is P(Q× [d])→ P(Q× [d]).
The meaning of residuals will become clearer when we will define the game.

A position of the game G(A,M) will be of one of the forms:

q : (N, ρ, S), (q0, q1) : (N, ρ, S) (q,R) : (N, ρ, S)

Krivine machines and higher-order schemes 7

where q, q0, q1 are states of A, N is a term (more precisely a subterm of M), ρ is
an environment assigning a residual to every variable that has a free occurrence
in N and S is a stack of residuals. Of course the types of residuals will agree with
the types of variables/arguments they are assigned too. As there are only finitely
many residuals of each type, the game G(A,M) has finitely many positions.

We need one more operation before defining the game. Take a rank r and a
residual R : Dτ1 → · · · → Dτk → D0. Recall that D0 = P(Q × N). We define
R�r to be the function such that for every sequence of arguments S:

R�r (S) = {(q1, r1) ∈ R(S) : r1 > r} ∪ {(q1, r2) : (q1, r1) ∈ R(S), r2 ≤ r1 = r}

The idea is that (q1, r1) ∈ R(S) means that Eve is allowed to reach a leaf labelled
with a state q1 if r1 is the maximal rank between the creation and the use of the
closure. With this residual at hand we see rank r. If (q1, r1) ∈ R(S) and r1 > r
then we are still waiting for r1 so we just keep the pair. If r1 < r then such a pair
is impossible and is removed. If r1 = r then in the future we can see any rank
not bigger than r. This explains the second component of the sum. We state a
simple but useful property of the operation.

Lemma 1. For every residual R and ranks r1, r2: (R�r1)�r2= R�max(r1,r2).

If ρ is an environment then ρ �r is an environment such that for every x:
(ρ�r)(x) = ρ(x)�r.

We have all ingredients to define transitions of the game G(A,M). Most of
the rules are just reformulation of the rules in K(A,M):

q : (λx.N, ρ,R · S)→ q : (N, ρ[x 7→ R], S)

q : (a(N0, N1), ρ, ε)→ (q0, q1) : (a(N0, N1), ρ, ε) for (q0, q1) ∈ δ(q, a)

(q0, q1) : (a(N0, N1), ρ, ε)→ qi : (Ni, ρ�Ω(qi), ε) for i = 0, 1

q : (Y N, ρ, S)→ q : (N(Y N), ρ, S)

We now proceed to the rule for application. Consider q : (NK, ρ, S) with N
of type τ = τ1 → · · · → τk → 0. We have a transition

q : (NK, ρ, S)→ (q,R) : (NK, ρ, S)

for every residual R : Dτ1 → . . . Dτk → D0. From this position we have transi-
tions

(q,R) : (NK, ρ, S)→ q : (N, ρ,R�Ω(q) ·S)

(q,R) : (NK, ρ, S)→ q′ : (K, ρ�r′ , R1 · · ·Rl) for every R1 ∈ Dτ1 ,. . . ,Rl ∈ Dτl

and (q′, r′) ∈ R�Ω(q) (R1, . . . , Rl).

Here R�Ω(q) is needed to “normalise” the residual, so that it satisfies the invari-
ant described below.

Since we are defining a game we need to say who makes a choice in which
vertices. Eve chooses a successor from vertices of the form q : (NK, ρ, S) and

8 S. Salvati and I. Walukiewicz

q : (a(N0, N1), ρ, S). It means that she can choose a residual, and a transi-
tion of the automaton. This leaves for Adam the choices in nodes of the form
(q0, q1) : (a(N0, N1), ρ, S) and (q,R)(NK, ρ, S). So he chooses a direction, or
decides whether to accept (by choosing a transition of the first type) or contest
the residual proposed by Eve.

Observe that we do not have a rule for nodes with a term being a variable.
This means that such a node has no successors, so we need to say who is the
winner when the node is reached. Consider a node

q : (x, ρ, S) with ρ(x) = Rx and S = R1 · · ·Rk.

Eve wins in this position if (q,Ω(q)) ∈ Rx(R1, . . . , Rk).
Finally, we need to define ranks. It will be much simpler to define ranks on

transitions instead of nodes. All the transitions will have rank 0 but for two
cases:

– a transition (q,R) : (NK, ρ, S)→ q′ : (K, ρ�r′ , R1 · · ·Rk) has rank r′;
– (q0, q1) : (a(N0, N1), ρ, S)→ qi : (Ni, ρ�Ω(qi), S �Ω(qi)) has rank Ω(qi).

A play is winning for Eve iff the sequence of ranks on transitions satisfies the
parity condition: the maximal rank appearing infinitely often is even.

5 Equivalence of K(A,M) and G(A,M)

In this section we present the main result of the paper

Theorem 1. Eve wins in G(A,M) iff Eve wins in K(A,M).

Since G(A,M) is finite, this gives the decidability of the winner in K(A,M)
and hence also of the model-checking problem. We will show how to construct
the winning strategy for Eve in G(A,M) from her winning strategy in K(A,M).
In the appendix we show with very similar arguments the analogous fact for
Adam.

Let us fix a winning strategy σ of Eve in K(A,M), and consider the tree Kσ
of plays respecting this strategy. This is a subtree of K(A,M). We will define the
strategy for Eve in K(A,M) that will use σ to guess residual in the application
rule. The first step before constructing the strategy is to calculate residuals R(v)
and res(v, v′) for all nodes in the tree Kσ.

Residuals R(v) and res(v, v′) The crucial step in the proof is assignment of resid-
uals to positions of K(A,M). Thanks to typing, this can be done by induction
on the order of type. We will assign a residual R(v) to every closure v. We also
define a variation of this notion: a residual R(v) seen from a node v′, denoted
res(v, v′). The two notions are the main technical tools used in the proof of the
theorem. Before proceeding we will need one simple abbreviation. If v is an an-
cestor of v′ in Kσ then we write max(v, v′) for the maximal rank appearing on
the path between v and v′, including both ends.

Krivine machines and higher-order schemes 9

Consider an application node v in K(A,M). It means that v has a label of the
form q : (NK, ρ, S), and its unique successor has the label q : (N, ρ, (v,K, ρ)S).
That is the closure (v,K, ρ) is created in v. We will look at all the places where
this closure is used and summarize the information about them in R(v).

First, suppose that the closure, or equivalently the term K, is of type 0. The
residual R(v) should be also of type 0 which means that R(v) ⊆ Q× [d]. We put

(q′,max(v, v′)) ∈ R(v)

for every node v′ in Kσ labelled q′ : (x, ρ′, ε) such that ρ′(x) = (v,K, ρ). Addi-
tionally, for every descendant v1 of v in Kσ we define res(v, v1) = R(v)�max(v,v1);
intuitively it is R(v) seen from v1.

For the induction step, suppose that K is of type τ1 → · · · → τk → 0 and that
we have already calculated residuals for all closures of types τ1, . . . , τk. Suppose
that we have a closure (v,K, ρ) created at a node v. This time R(v) : Dτ1 →
. . . Dτk → P(Q × [d]). Take a node v′ using the closure. Its label has the form
q′ : (x, ρ′, S′) for some x, ρ′ and S′ such that ρ′(x) = (v,K, ρ). The stack S′ has
the form (v1, N1, ρ1) . . . (vk, Nk, ρk) with Ni of type τi. We put

(q′,max(v, v′)) ∈ R(res(v1, v
′), . . . , res(vk, v

′)) . (2)

As above, for every descendant v1 of v we define res(v, v1) = R(v)�max(v,v1).

For a closure (v,K, ρ) we define res((v,K, ρ), v′) = res(v, v′). For an en-
vironment ρ, the environment ρ′ = res(ρ, v′) is obtained by setting ρ′(x) =
res(ρ(x), v′) for every variable x. Similarly, res(S, v′) is S where res(·, v′) is ap-
plied to every element of the stack. With this notation the condition (2) can be
rewritten as (q′,max(v, v′)) ∈ R(res(S′, v′)).

The strategy in G(A,M) Now we are ready to define the strategy for Eve in
G(A,M). This strategy will use positions in the game K(A,M) and the strategy
σ as hints. The strategy will take a pair of positions (v1, v2) with v1 in G(A,M)
and a v2 in K(A,M). Then the strategy will give a new pair of positions (v′1, v

′
2)

such that v′1 is a successor v1, and v′2 is reachable from v2 using the strategy σ.
Moreover, all visited pairs (v1, v2) will satisfy the following invariant:

v1 labelled by q : (N, ρ1, S1) and v2 labelled by q : (N, ρ2, S2);
where ρ1 = res(ρ2, v2) and S1 = res(S2, v2).

The initial positions in both games have the same labels so the invariant is
satisfied. In order to define the strategy we will consider one by one the rules
defining the transitions in G(A,M).

In most of the cases it is evident what the strategy should do. The only
complicated case is the application rule. Suppose that the term in the label of
v1 is an application, say q : (NK, ρ1, S1). By our invariant we have a position
v2 labelled by q : (NK, ρ2, S2), where ρ1 = res(ρ2, v2) and S1 = res(S2, v2). The
strategy in G(A,M) is to choose R(v2), that is to go from v1 to the node v′1

10 S. Salvati and I. Walukiewicz

labelled (q,R(v2)) : (NK, ρ1, S1). From this node Adam can choose either

q :(N, ρ1, (R(v2)�Ω(q)) · S1), or (3)

q′ :(K, ρ1 �r′ , R1 . . . Rl) where (q′, r′) ∈ R(v2)�Ω(q) (R1, . . . , Rl). (4)

Suppose Adam chooses (3). By definition R(v2) �Ω(q)= res(v2, v2). Hence the
stack (R(v2) �Ω(q)) · S1 is just res((v2,K, ρ2)S2, v2). The unique successor v′2
of v2 is labelled by q : (N, ρ2, (v2,K, ρ2)S2). So the pair (v′1, v

′
2) satisfies the

invariant.
Let us now examine that case when Adam chooses a node of the form (4).

By definition of R(v2) this means that in Kσ there is a node v′2 labelled q′ :
(x, ρ′2, S

′
2) with ρ′2(x) = (v2,K, ρ2) and res(S′2, v

′
2) = R1 . . . Rk. Moreover r′ =

max(v2, v
′
2). The successor v′′2 of v′2 is labelled by q′ : (K, ρ2, S

′
2). We can take

it as a companion for v′1 since ρ1 �r′= res(ρ2, v2) �max(v2,v′′2)= res(ρ2, v
′′
2) by

Lemma 3. Hence the strategy is able to preserve the invariant.
In the appendix we prove that the strategy is winning. The main point is to

check what happens in variable nodes.

6 Global model checking

In this section we will show how to compute a finite representation of the set
of winning positions of Eve in the game K(A,M). For this we will first define
a, rather straightforward, representation of positions of the game as trees. We
will then show that the set of winning positions for Eve is regular: the tree
representations of winning positions are recognizable by a finite tree automaton.

Recall that positions of K(A,M) are of the form q : (N, ρ, S) where N is a
subterm of M , ρ is an environment assigning a closure to every free variable of
N , and S is a stack of closures. Recall that terms from all the closures of ρ and
S are subterms of M .

We start by defining a representation of closures as trees. We take the set of
all subterms of M as the alphabet: the arity of a letter N being the number of
free variables in N . So, for example, if N does not have free variables then a node
labelled by N is a leaf in a tree. When N has free variables x1, . . . , xl; a closure
(N, ρ) is represented by a tree whose root is labelled by N and the subtree ti
rooted in i-th child representing ρ(xi); for i = 1, . . . , l. For t of this form, we
write term(t) to denote the lambda term obtained by substituting term(xi) for
xi in N , for i = 1, . . . , l. Observe that term(t) is closed: it has no free variables.

A position q : (N, ρ, S) of K(A,M) is represented as a tree whose root labelled
q : τN has the sequence of children: the tree rooted in the first child representing
(N, ρ), and the others representing the closures from S in the same order as in
S. Hence the number of children of the root depends on the size of S that in
turn is determined by the type τN of N .

Since representations of configurations are finite trees over a finite ranked
alphabet, we can use standard finite automata to recognize sets of such trees.
This gives a notion of a regular set of positions of K(A,M).

Krivine machines and higher-order schemes 11

Theorem 2. For every A and M : the set of representations of positions of
K(A,M) that are winning for Eve is regular.

In order to prove the theorem we define an alternating tree automaton, and
show that it accepts the desired set of configurations.

Of course we would like to use our reduction from infinite to finite games. Let
term(N, ρ, S) be the term denoted by the closure (N, ρ) applied to terms denoted
by the closures in S. It is a closed term of type 0. Of course the behaviours of
the Krivine machine from (N, ρ, S) and (term(N, ρ, S), ∅, ε) are the same, that
is they give the same Böhm trees. This implies that Eve wins from q : (N, ρ, S)
in K(A,M) iff she wins from q : (term(N, ρ, S), ∅, ε) in K(A, term(N, ρ, S)). By
the reduction theorem (Theorem 1) the later is equivalent to Eve winning from
q : (term(N, ρ, S), ∅, ε) in the finite game G(A, term(N, ρ, S)). This is this last
condition that our automaton will check.

At the core of the construction we will have an automaton recognizing clo-
sures. Its states will be pairs (q,R), where q is a state and R a sequence of
residuals. In a state (q,R) when reading a symbol N the automaton will do the
following:

1. It will check if the type of N corresponds to the type of R, namely that R
is a sequence of arguments of right types. The automaton will reject if it is
not the case.

2. Next, it will guess an assignment ρN of residuals to free variables of N , such
that the position q : (N, ρN , R) is winning for Eve in G(A,M).

3. For every free variable xi of N , every stack Ri of residuals of appropriate
type and every qi such that (qi, ri) ∈ ρN (xi)(Ri) the automaton will send a
copy of itself with the state (qi, Ri) to the i-th child of the root. If there are
no copies to be send then the automaton just accepts.

Before we describe the language accepted by this automaton in the next Lemma,
we need to define a slight generalization of the finite games introduced section 4.
Given a closed term N of type α (α may be higher-order) we define G(A, N) to
be the game that has the same transitions and the same winning conditions as
the one in section 4 and that contains all the positions q : (N, ∅, R) where q is a
state of A and R is a sequence of residuals with the correct types with respect
to N .

Lemma 2. For every tree t representing a closure (N, ρ) every sequence R of
residuals of a type determined by the type of N , and every state q:

A accepts t from (q,R) iff q : (term(t), ∅, R) is winning for Eve in G(A, term(t))

The lemma allows us to construct an automaton recognizing winning posi-
tions. Recall that a position q : (N, ρ, S) is encoded as with q, τN in the root,
one son for (N, ρ) and a son for every element of S. In the initial state when
reading q : τN the automaton guesses a sequence of residuals R of types de-
termined by τN . It then starts the above automaton in the state (q,R) on the
son representing (N, ρ). On the son representing the i-th element of the stack it

12 S. Salvati and I. Walukiewicz

starts the above automaton in (qi, Ri) for every Ri of appropriate type and qi
such that (qi, r) ∈ R(Ri). In short, the automaton simulates several instances of
the application rule.

7 Conclusions

In this paper we have proposed to use Krivine machines to analyse higher-order
recursive schemes. Using two prominent results in the area we have demonstrated
that rich structure of this formalism allows to write compact and powerful in-
variants on computation. The proof of decidability of local model checking gives
a good example of this. The proof for global model checking shows that the
structure of configurations of the Krivine machine, although rich, is quite easy
to work with. This said Krivine machine is a very sophisticated model despite its
simple presentation. As it happens, its rich and relatively rigid structure appears
to be a good frame that helps formulating strong invariants of the Böhm tree it
computes with rather elementary definitions.

Let us give some more comments on the relations with the proof of Kobayashi
and Ong [KO09]. The later has been a remarkable achievement showing that
one can prove the result with the assumption method (in the spirit of [Wal01])
on the level of terms instead of CPDA. Our residuals are very similar to the
additional indices in types introduced in that paper. Also handling of ranks
via �Ω(q) operation is similar in both proofs. The typing rule for application
gives naturally essentially the same rule as we use here. The finite game in that
paper is rather different though, as the typing system of Kobayashi and Ong
has not been designed to handle fixpoints or lambda-abstraction. The proof of
the correctness of the reduction is just different since without configurations of
Krivine machine it is very difficult to state the correspondence between nodes
in the tree generated by the scheme and nodes in the finite game.

In our opinion, the presented proof of decidability of global model check-
ing is an important argument in favor of the use of Krivine machines. With
CPDA, the only induction parameter available is the rank of the stack. The
result in [BCOS10] is proved by reducing the stack level one by one. This is
technically very difficult.

In the present paper we have kept models of λY - calculus in the background.
Yet, the two proofs strongly suggest that there is a finitary model where we can
calculate the behaviour of a fixed automaton on a given term. It would be very
interesting to find a useful representation of this model. The main obstacle is to
understand the meaning of the fixpoint operator.

References

BCOS10. Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong, and Olivier
Serre. Recursion schemes and logical reflection. In Proceedings of the 2010
25th Annual IEEE Symposium on Logic in Computer Science, LICS ’10,
pages 120–129, Washington, DC, USA, 2010. IEEE Computer Society.

Krivine machines and higher-order schemes 13

BO09. C. Broadbent and C.-H. Luke Ong. On global model checking trees gen-
erated by higher-order recursion schemes. In Proceedings of 12th Inter-
national Conference on Foundations of Software Science and Computa-
tional Structures (FOSSACS 2009), volume 5504 of LNCS, pages 107–121.
Springer, 2009.

CHM+08. Arnaud Carayol, Matthew Hague, Antoine Meyer, Luke Ong, and Olivier
Serre. Winning regions of higher-order pushdown games. In Proceedings of
the Twenty-Third Annual IEEE Symposium on Logic in Computer Science,
LICS 2008 Twenty-Third Annual IEEE Symposium on Logic in Computer
Science (LICS 2008), pages 193–204, Pittsburgh United States, 2008. IEEE
Computer Society.

CR58. H.B. Curry and R.Feys. Combinatory Logic, volume 1. North-Holland
Publishing Co., Amsterdam, 1958.

Dam82. Werner Damm. The IO- and OI-hierarchies. Theoretical Computer Science,
20:95–207, 1982.

DF80. Werner Damm and Elfriede Fehr. A schematalogical approach to the alaly-
sis of the procedure concept in algol-languages. In CLAAP, pages 130–134.
Université de Lille 1, 1980.

HMOS08. Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre.
Collapsible pushdown automata and recursion schemes. In LICS, pages
452–461. IEEE Computer Society, 2008.

Kar10. Alexander Kartzow. Collapsible pushdown graphs of level 2 are tree-
automatic. In Jean-Yves Marion and Thomas Schwentick, editors, STACS,
volume 5 of LIPIcs, pages 501–512. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2010.

KNU02. Teodor Knapik, Damian Niwinski, and Pawel Urzyczyn. Higher-order push-
down trees are easy. In Springer, editor, Proc. FoSSaCS’02, volume 2303,
pages 205–222, 2002.

KNUW05. Teodor Knapik, Damian Niwinski, Pawel Urzycyzn, and Igor Walukiewicz.
Unsafe grammars and pannic automata. In Springer, editor, ICALP 05,
number 3580 in LNCS, pages 1450–1461, 2005.

KO09. Naoki Kobayashi and Luke Ong. A type system equivalent to modal mu-
calculus model checking of recursion schemes. In Proceedings of 24th Annual
IEEE Symposium on Logic in Computer Science (LICS 2009), Los Angeles,
pages 179–188, 2009.

Kri07. Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-
Order and Symbolic Computation, 20(3):199–207, 2007.

Ong06. C.-H. Luke Ong. On model-checking trees generated by higher-order re-
cursion schemes. In LICS, pages 81–90. IEEE Computer Society, 2006.

Plo77. Gordon D. Plotkin. Lcf considered as a programming language. Theor.
Comput. Sci., 5(3):223–255, 1977.

Wal01. Igor Walukiewicz. Pushdown processes: Games and model checking. Infor-
mation and Computation, 164(2):234–263, 2001.

Wan07. Mitchell Wand. On the correctness of the krivine machine. Higher-Order
and Symbolic Computation, 20:231–235, 2007. 10.1007/s10990-007-9019-8.

A Proofs from Section 4

Lemma 3. For every residual R and ranks r1, r2: (R�r1)�r2= R�max(r1,r2).

14 S. Salvati and I. Walukiewicz

Proof. Suppose r1 ≥ r2. We show (R �r1) �r2= R �r1 . Fix a state q and look at
all the pairs with this state. The pairs (q, r) with r > r1 are the same in R and
(R �r1) �r2 . If (q, r1) 6∈ R then there is no pair (q, r) in R �r1 with r ≤ r1, and
�r2 does nothing for pairs with state q. If (q, r1) ∈ R then all the pairs (q, r) for
r ≤ r1 are in R�r1 . The operation �r2 does not add or remove any pairs with the
state q.

When r1 < r2 we show that (R�r1)�r2= R�r2 . The proof is similar.

B From Eve’s winning strategy in K(A,M) to his
winning strategy in G(A,M)

We need to show that the strategy defined in Section 5 is winning. Consider
a sequence of nodes (v11 , v

1
2), (v21 , v

2
2), . . . consistent with the strategy. Suppose

that this sequence is infinite. By construction we have that v12 , v
2
2 , . . . is a path

in Kσ, hence a play winning for Eve. We have defined the strategy in such a way
that a rank of a transition from vi1 to vi+1

1 is the same as the maximal rank of a
node on the path between vi2 and vi+1

2 . Hence v11 , v
2
1 , . . . is winning for Eve too.

It remains to check what happens when a maximal play is finite. This means
that the path ends in a pair (v1, v2) where v1 is a variable node. Such a node is
labelled by q : (x, ρ1, S1). To show that Eve wins here we need to prove that

(q,Ω(q)) ∈ Rx(R1, . . . , Rk) where Rx = ρ1(x) and (R1 . . . Rk) = S1.

By the invariant we have that the companion node v2 is labelled by q : (x, ρ2, S2)
and ρ1 = res(ρ2, v2), S1 = res(S2, v2). Suppose that ρ2(x) = (v,N, ρ). We
have Rx = R(v) �max(v,v2), since ρ1 = res(ρ2, v2). By definition of R(v) we get
(q,max(v, v2)) ∈ R(v)(res(S2, v2)). Then from the definition of �max(v,v2) oper-
ation: (q,max(v, v2)) ∈ R(v)(res(S2, v2)) �max(v,v2). Which implies (q,Ω(q)) ∈
R(v)(res(S2, v2)) �max(v,v2) since Ω(q) ≤ max(v, v2). This is the required state-
ment (q,Ω(q)) ∈ Rx(R1, . . . , Rk).

C From Adam’s winning strategy in K(A,M) to his
winning strategy in G(A,M)

Let us fix a winning strategy θ of Adam in K(A,M), and consider the tree Kθ of
plays respecting this strategy. This is a subtree of K(A,M). We assign a residual
to every closure appearing in Kθ in exactly the same way as we have done in the
previous section.

The invariant In order to formulate the invariant for the strategy we introduce
complementarity predicate Comp(R1, R2) between a pair of residuals:

– For R1, R2 ∈ D0 we have Comp(R1, R2) if R1 ∩R2 = ∅.

Krivine machines and higher-order schemes 15

– For R1, R2 ∈ Dτ where τ = τ1 → · · · → τk → 0 we have Comp(R1, R2) if for
all (R1,1, . . . , R1,k), (R2,1, . . . , R2,k) ∈ Dτ1×· · ·×Dτk such that Comp(R1,i, R2,i)
for all i = 1, . . . , k we get R1(R1,1, . . . , R1,k) ∩R2(R2,1, . . . , R2,k) = ∅.

For two closures (v,N, ρ) and (v′, N, ρ′) the predicate Comp((v,N, ρ), (v′, N, ρ′))
holds if Comp(R(v), R(v′)) is true. For two environments ρ, ρ′ we write Comp(ρ, ρ′)
if the two environments have the same domain and for every x, the predicate
Comp(ρ(x), ρ′(x)) holds. Finally Comp(S, S′) if the two sequences are of the
same length and the predicate holds for every coordinate.

It is important to observe that Comp behaves well with respect to�r operation

Lemma 4. If Comp(R1, R2) then also Comp(R1 �r, R2 �r) for every rank r.

Proof. Take a pair (q1, r1). In the case when r1 > r by definition we have:
(q1, r1) ∈ R �r iff (q1, r1) ∈ R. Hence, (q1, r1) can be in at most one of R1 �r,
R2 �r. When r1 ≤ r then (q1, r1) ∈ R�r iff (q1, r) ∈ R. Once gain, (q1, r1) can be
in at most one of R1 �r, R2 �r.

Given two sequences S1 and S2 of the correct type with respect to R1 and R2

and such that Comp(S1, S2), since Comp(R1, R2), we have R1(S1)∩R2(S2) = ∅.
Let’s suppose that (q1, r1) is in R1 �r (S1), then either r1 > r and (q1, r1) is
in R1(S1) so that (q1, r1) is neither in R2(S2) nor in R2 �r (S2); or r1 ≤ r and
(q1, r) is in R1(S1) so that (q1, r) is not in R2(S2) and (q1, r1) is not in R2 �r (S2).
Similarly we get that whenever (q2, r2) is in R2 �r (S2) it is not in R1 �r (S1).
Therefore, we finally have that R1 �r (S1) ∩ R2 �r (S2) = ∅ and finally that
Comp(R1 �r, R2 �r).

As in the case for Eve, the strategy for Adam will take a pair of vertices
(v1, v2) from G(A,M) and K(A,M), respectively. It will then consult the strat-
egy σ for Adam in K(A,M) and calculate a new pair (v′1, v

′
2). All the pairs will

satisfy the invariant:

v1 labelled by q : (M,ρ1, S1) and v2 labelled by q : (M,ρ2, S2);
where Comp(ρ1, res(ρ2, v2)) and Comp(S1, res(S2, v2));

The strategy We define the strategy by considering one by one the rules for
constructing the tree K(A,M). Apart from the immediate cases we have the
following.

Transition rule If a label of v1 is of the form q : (a(M0,M1), ρ1, ε) then in Kθ
this node has a son (q0, q1) : (a(M0,M1), ρ1, ε) for every (q0, q1) ∈ δ(q, a). The
same happens from v2: it has successors (q0, q1) : (a(M0,M1), ρ2, ε). Now each
such successor is a node of Adam so it has itself a unique successor in Kθ. Let
us suppose that Adam chooses q0 : (M0, ρ2, ε). We make the strategy to choose
from (q0, q1) : (a(M0,M1), ρ1, ε) the node v′2 labelled q0 : (M0, ρ1 �Ω(q0), ε). By
definition and Lemma 3 we have that res(ρ2, v

′
2) = res(ρ2, v2)� Ω(q0). It follows

from Lemma 4 that Comp(ρ1 �Ω(q0), res(ρ2, v
′
2)) holds.

16 S. Salvati and I. Walukiewicz

Application rule Eve can choose a transition

q : (MN, ρ1, S1)→ (q,R) : (MN, ρ1, S1)

for some residual R and then Adam has a choice between the transitions:

(q,R) : (MN, ρ1, S1)→ q : (M,ρ1, R�Ω(q) ·S1)

(q,R) : (MN, ρ1, S1)→ q′ : (N, ρ1 �r′ , R1 · · ·Rk) for (q′, r′) ∈ R�Ω(q) (R1, . . . , Rk)

At the same time in node v2 of K(A,M) a new closure for N is created, hence
we have a new residual R(v2). We have two cases

Suppose Comp(R �Ω(q), R(v2)) holds. In this case Adam chooses for v′1 the
node labelled q : (M,ρ1, R �Ω(q) ·S1). For v′2 he can choose the successor of v2.
Since it is labeled by q : (M,ρ2, (v2, N, ρ)S2), the invariant holds.

The other case is when Comp(R�Ω(q), R(v2)) does not hold. This means that
there are (R1,1, . . . , R1,k) and (R2,1, . . . , R2,k) such that Comp(R1,i, R2,i) for all
i = 1, . . . , k and R �Ω(q) (R1,1, . . . , R1,k) ∩ R(v2)(R2,1, . . . , R2,k) 6= ∅. Let (q′, r′)
be the element from the intersection. Since (q′, r′) ∈ R(v2)(R2,1, . . . , R2,k),
there is a node v′2 labelled by q′ : (x, ρ′2, S

′
2) such that ρ′2(x) = (v2, N, ρ2) and

res(S′2, v
′
2) = (R2,1, . . . , R2,k). We choose for v′1 the node labelled q′ : (N, ρ1 �r′

, R1,1 · · ·R1,k). We need to show that Comp(ρ1 �r′ , res(ρ2, v
′
2)) holds. Take a vari-

able y,by hypothesis we have Comp(ρ1(y), res(ρ2(y), v2)), since max(v2, v
′
2) = r′

we have by Lemma 4 that as required Comp(ρ1(y)�r′ , res(r2(y), v2)�r′).

The strategy is winning As in the case of the strategy for Eve, it is easy to show
that every infinite play is winning. It remains to check what happens if v1 is a
variable node. Such a node is labelled by q : (x, ρ1, S1). To show that Adam wins
here we need to prove that

(q,Ω(q)) 6∈ Rx(R1, . . . , Rk) where Rx = ρ1(x) and (R1 . . . Rk) = S1.

By the invariant, the companion node v2 is labelled by q : (x, ρ2, S2) and
Comp(Rx, res(ρ2, v2)(x)), Comp(S1, res(S2, v2)) hold. Suppose ρ2(v2) = (v,N, ρ).
Then (q,max(v, v2)) ∈ R(v)(res(S2, v2)) by the definition of R(v). Hence also
(q,max(v, v2)) ∈ R(v)(res(S2, v2)) �max(v,v2), and in consequence (q,Ω(q)) ∈
R(v)(res(S2, v2)) �max(v,v2). Since R(v) �max(v,v2)= res(ρ2, v2)(x) we get by the
invariant that Comp(Rx, res(r2, v2)(x)). As Comp(S1, res(S2, v2)) we conclude
by the definition of Comp.

D Proofs from Section 6

y

Lemma 5. For every tree t representing a closure (N, ρ)every sequence S of
residuals of a type determined by the type of N , and every state q:

A accepts t from (q, S) iff q : (term(t), ∅, S) is winning for Eve in G(A, term(t))

Krivine machines and higher-order schemes 17

Proof. The proof is by induction on the size of t.
When t has only the root, the statement is immediate.
For the induction step consider first the left to right direction. Suppose t

has a root labelled by N and let t1, . . . , tk be its children. The existence of
a run on t gives us an environment ρN such that the position q : (N, ρN , S)
is winning for Eve in G(A,M). Moreover, this run gives an accepting run on
term(ti) from the state (qi, Si); for every Si and qi such that (qi, ri) ∈ ρN (xi)(Si).
By induction assumption Eve has a winning strategy from qi : (term(ti), ∅, Si)
in G(A, term(ti)). Observe that term(ti) is a closed term so the environment is
empty.

Our goal is to show how Eve can win from the position q : (term(t), ∅, S). She
should start by playing exactly the same way as from q : (N, ρN , S) as long as it
is possible. It stops being possible when the play she reaches a leaf qi : (xi, ρi, Si).
It means that Eve reaches at this point a position labelled q : (term(ti), ∅, Si).
Since qi : (xi, ρi, Si) is winning we get that (qi, r

′) ∈ ρi(xi)(Si) for some r′.
Moreover, as xi is a variable free in N , we either have ρi(xi) = ρN (xi) (when N
is of the form xiN1 . . . Np) or ρi(xi) = ρN (xi) �r for some r (using Lemma 3).
So, there is ri such that (qi, ri) ∈ ρN (xi)(Si). But then, as we have noted above,
Eve has a winning strategy from q : (term(ti), ∅, Si) is winning in G(A, term(ti)).
The same strategy is winning from this position in G(A, term(ti)).

For the induction step for the right to left direction let us take a winning
strategy for Eve from the position q : (term(t), ∅, R). Let us write term(t) as N [σ]
where N is the label of the root of t. Now rewrite the winning strategy from q :
(term(t), ∅, S) using N [σ] notation. For every free variable xi of N look at all the
positions qi : (xi[σ], ρi, Si). Such a position corresponds to qi : (term(ti), ρi, Si).
It is winning for Eve as it is reached by following a winning strategy. Since
term(ti) does not have free variables, the position qi : (term(ti), ∅, Si) is also
winning. By induction assumption, we have an accepting run on ti from the
state (qi, Si). We add all such (qi, ri) to ρN (xi)(Si). By definition we get that
q : (N, ρN , S) is winning for Eve. Hence in order to accept t from the state (q,R)
the automaton should choose ρN .

	Krivine machines and higher-order schemes
	S. Salvati and I. Walukiewicz

