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Abstract. We define a notion of recognizable sets of simply typed λ-
terms that extends the notion of recognizable sets of strings or trees.
This definition is based on finite models. Using intersection types, we
generalize the notions of automata for strings and trees so as to grasp
recognizability for λ-terms. We then expose the closure properties of this
notion and present some of its applications.

1 Introduction

Formal language theory is mainly concerned with the study of structures like
strings, trees or even graphs. In this paper we try to add simply typed λ-terms
to the scope of this theory. This article is a first step: the definition of recognizable
sets which are a fundamental notion of formal language theory.

Languages of λ-terms appear in several research areas, but there has been
really few research explicitly mentioning them and even fewer studying them. To
our knowledge the first work explicitly defining a notion of language of λ-terms
is that of de Groote [1]. In mathematical linguistics, the pioneering work Mon-
tague [2] shows how to connect syntax and semantics of natural language with
the simply typed λ-calculus. Syntactic structures are interpreted via a homomor-
phism built with λ-terms. The normal forms obtained this way denote formulae
of higher-order logic whose interpretation in a suitable model gives the seman-
tics of the sentence. The set of formulae that this technique allows to generate
can be seen as a language and one may wonder whether such a language can
be parsed similarly to other languages like context-free languages. Parsing such
languages results in generating sentences from their meaning representation. We
have showed that this could effectively be done [3].

Still in mathematical linguistics, the type-logical tradition originating from
Lambek’s work [4], defines syntactic structures as proofs in some substructural
logic. Several proposals have emerged in order to control the structure of those
proofs such as in Moortgat’s work [5] and his followers. These proofs may be
represented as simply typed λ-terms and the set of syntactic structures defines
a language of λ-terms.



Since simply typed λ-terms generalize both strings and trees, a notion of
recognizable language of simply typed λ-terms should naturally extend those al-
ready defined for strings and trees. Furthermore, these languages should also be
closed under the operational semantics of the λ-calculus, i.e. βη-convertibility.
The easiest way to obtain such an extension is to use the algebraic characteri-
zation of recognizable sets of strings or trees which says that recognizable sets
are precisely the sets that are the union of equivalence classes of a finite con-
gruence. Generalizing this definition to sets of simply typed λ-terms consists in
saying that such sets are recognizable if and only if they the set of terms that
are interpreted as certain points in a finite model. But such a definition may
not be useful in certain situations, this is the reason why we need a notion of
automaton of λ-terms that coincides with that of recognizability. We define such
automata using intersection types.

This work provides a natural framework in which several results that have
appeared in the literature on simply typed λ-calculus can be related. In particu-
lar, our work shows that Urzyczyn’s result on the undecidability of the emptiness
problem for intersection types[6] can be seen as a corollary of Loader’s result on
the undecidability of λ-definability [7]. Moreover, we have showed in [3] that
the singleton language can be defined with intersection types, the equivalence
we establish here between recognizability in terms of finite models and in terms
of automata gives an alternate proof of Statman’s completeness theorem [8]
(see also [9]). Furthermore, Statman [8] has showed that higher order match-
ing is related to λ-definability. Since our notion of recognizability is related to
λ-definability it gives tools with which we can study this problem.

The paper is organized as follows: section 2 gives the necessary definitions,
section 3 gives the definition of recognizable sets of λ-terms. In section 4 we
give an automaton-like characterization of recognizability. Section 5 gives its
closure properties and section 6 shows some basic applications of the notion of
recognizability for parsing and higher order matching. Finally we conclude in
section 7.

2 Preliminaries

We here briefly review various notions concerning the simply typed λ-calculus
and some related notions.

2.1 Simply typed λ-calculus

Higher Order Signatures (HOS) declare a finite number of constants by assigning
them types. An HOS Σ is a triple (A, C, τ), where A is a finite set of atomic types,
from which the set of complex types, TΣ , is built using the binary infix operator
→, C is a finite set of constants and τ is a function from C to TΣ . As usual, we
will consider that → associates to the right and write α1 → · · · → αn → α for
the type (α1 → (· · · → (αn → α) · · · )). The order of a type α, ord(α), is 1 when
α is atomic and max(ord(α1) + 1, ord(α2)) when α = α1 → α2. By extension,



the order of a HOS is the maximal order of type it associates to a constant.
We suppose that we are given an infinite countable set of λ-variables V . We use
types à la Church and variables explicitly carry their types. So we will write xα,
yα or zα (possibly with indices) the elements of V × {α}, the variables of type
α. A HOS Σ defines a set of simply typed λ-terms ΛΣ . This set is the union of
the sets of the family (Λα

Σ)α∈TΣ
defined as the smallest sets verifying:

1. xα ∈ Λα
Σ ,

2. for c ∈ C, c ∈ Λ
τ(c)
Σ ,

3. if M1 ∈ Λα→β
Σ and M2 ∈ Λα

Σ then (M1M2) ∈ Λβ
Σ ,

4. if M ∈ Λβ then λxα.M ∈ Λα→β
Σ .

We take for granted the notions of free variables, closed terms, substitution, the
various notions of conversions and reductions associated to the λ-calculus, the
notions of normal form, of η-long form (or long form) and the notion of linearity.
We write Λα

Σ,W to designates the set of terms of type α built on Σ whose set of
free variables is included in W .

2.2 Trees and strings as λ-terms

A HOS is said to be a tree-HOS when it is a second order HOS and that it uses
only one type namely o. We write on → o in the place of o→ · · · → o︸ ︷︷ ︸

n

→ o and

say that a constant of type on → o has arity n. It is easy to see that every freely
and finitely generated sets of ranked trees can be seen as a the closed normal
terms of type o built on a tree-HOS.

A HOS is said to be a string-HOS when it is a tree-HOS whose constants all
have arity 1. Strings are represented as closed terms of type o→ o and the string
c1 . . . cn is represented by the term λxo.c1(. . . (cnxo) . . .) denoted by /c1 . . . cn/.
The empty string is λxo.xo and the concatenation operation can be represented
by function composition λxo.s1(s2 xo) (c.f. [1]).

2.3 Homomorphisms

A homomorphism between the signatures Σ1 and Σ2 is a pair (g, h) such that g
maps TΣ1 to TΣ2 , h maps ΛΣ1 to ΛΣ2 and verify the following properties:

1. g(α→ β) = g(α)→ g(β),
2. h(xα) = xg(α),
3. h(c) is a closed term of Λ

g(τ(c))
Σ2

,
4. h(M1M2) = h(M1)h(M2) and
5. h(λxβ .M) = λxg(β).h(M).

A homomorphism is said to be linear whenever constants are mapped to
linear terms. We write H(α) and H(M) respectively instead of g(α) and of
h(M) for a given homomorphism H = (g, h). Note that if H is a homomorphism
from Σ1 to Σ2 and M ∈ Λα

Σ1
then H(M) ∈ Λ

H(α)
Σ2

.



The order of a homomorphismH is the maximal order of the type it associates
to an atomic type. The usual notion of tree-homomorphism (resp. string homo-
morphism) is a first order homomorphism (in our sense) between tree-signatures
(resp. string-signatures). A first order homomorphism between Σ1 and Σ2 that
maps constants of Σ1 to constants of Σ2 is called a relabeling.

2.4 Models

Given a signature Σ, a full model of Σ is a pair M = ((Mα)α∈TΣ
, ρ) where:

1. (Mα)α∈TΣ
is a family of sets verifying:

(a) for all α, β ∈ TΣ ,Mα→β =MαMβ

,
(b) the sets Mα such that α is atomic are pairwise disjoint.

2. ρ is a function from C toMα so that α = ρ(c).

A full model, M = ((Mα)α∈TΣ
, ρ), of Σ is said finite when for all α ∈ TΣ , Mα

is a finite set. Remark that M is finite if and only if for all atomic types α,Mα

is finite.
Given M = ((Mα)α∈TΣ

, ρ) a full model of Σ, the terms of Λα
Σ are interpreted

as elements ofMα. This interpretation necessitates the definition of variable as-
signments which are partial functions that associate elements ofMα to variables
like xα. A variable assignment is said finite when its domain is finite. Given a
variable assignment ν, a variable xα and m ∈ Mα we define ν[xα ← m] to be
the variable assignment verifying:

ν[xα ← m](yβ)
{

m if yβ = xα

ν(yβ) otherwise

Given a full model M = ((Mα)α∈TΣ
, ρ) a variable assignment ν, the inter-

pretation of the elements of ΛΣ (whose sets of free variables are included in the
domain of definition of ν) in M is inductively defined as follows:

1. [[xα]]Mν = ν(xα)
2. [[c]]Mν = ρ(c)
3. [[M1M2]]Mν = [[M1]]Mν ([[M2]]Mν )
4. [[λxα.M ]]Mν is the function which maps m ∈Mα to [[M ]]Mν[xα←m].

It is well-known that the semantics of λ-terms is invariant modulo βη-reduction.

3 Recognizable sets of λ-terms

We wish to extend the notion of recognizability that already exists for strings
and trees to λ-terms. An abstract way of defining recognizability for strings
and trees is to use Myhill-Nerode theorem [10], [11], that describes it in terms of
congruence of finite index over strings or trees which is equivalent to describing it
in terms of finite algebra for trees or finite semigroups for strings. This approach
has been successfully extended in the seminal paper [12] to any abstract algebra.
We shall follow this line of work in order to define recognizability for the simply
typed λ-calculus. Since the finite full models form the functional closure of finite
algebra, we use them so as to extend recognizability to λ-terms.



Definition 1. Given a HOS Σ and α ∈ TΣ a set R included in Λα
Σ is said to

be recognizable iff there is a finite and full model M = ((Mα)α∈TΣ
, ρ) a finite

variable assignment ν and a subset P of Mα such that: R = {M |[[M ]]Mν ∈ P}.

Note that in this definition when ν is chosen to be the empty assignment
function then the set R only contains closed terms. In particular, when Σ is
a tree (resp. string) signature, and that α is the atomic type o (resp. the type
o → o) then the set of closed λ-terms that are recognizable correspond exactly
to set of recognizable trees (resp. strings).

The result by Loader [7] shows that in general it is undecidable to check
whether a recognizable set is empty. But as soon as the finite and full model and
the assignment function are given we can check whether a term is in the set. In
what follows we give a mechanical way (corresponding to automata for trees or
strings) to define recognizable sets and check whether a certain term belongs to
that set.

A classical and simple example of recognizable set of trees being the set of
true boolean formulae, we exemplify the notion of recognizability for λ-terms
with the set of true Quantified Boolean Formulae (QBF). For this it suffices to
use a HOS B whose constants are: ∧ : b2 → b, ∨ : b2 → b, ¬ : b→ b, 1 : b, 0 : b,
∀ : (b → b) → b and ∃ : (b → b) → b. We use a finite model B = ((Bα)α∈TB

, ρ)
such that Bb = {0; 1} and ρ associates the obvious functions to the constants of
B. Then the set of terms representing a true QBF is the set of closed λ-terms of
Bb which are interpreted as 1 in B and therefore this set is recognizable.

4 Automata characterizing recognizable sets

We here generalize the notion of automata for trees and strings in order to obtain
a mechanical definition of recognizability for λ-terms. Our notion of automaton is
based on the notion of Higher Order Intersection Signature (HOIS) introduced
in [3] which, in turn, is based on intersection types [13]. A HOIS is a tuple
Π = (Σ, I, ι, χ) where Σ is a HOS, I is a finite set of atomic intersection types,
ι is a function from I to the atomic types of Σ, χ is a function that associates
to every element of C a subset of ∩τ(c)

Π where (∩α
Π)α∈TΣ

is the smallest family
verifying:

1. for α and atomic type ∩α
Π = ι−1(α),

2. ∩α→β
Π = 2∩

α
Π × {α} × ∩β

Π (we write 2P , the powerset of the set P )

A trivial induction on the structure of α shows that for each type α, the set ∩α
Π

is finite.
We now define the type system that allows to associate types to λ-terms.

Given a HOIS Π = (Σ, I, ι, χ), a Π-typing environment (or simply, typing envi-
ronment, when there is no ambiguity) , is a partial mapping from typed variables
to 2∩Π whose domain is finite and such that Γ (xα), when it is defined, is included
in ∩α

Π . We write Γ to denote the domain of Γ . Judgements over Π are objects
of the form Γ `Π M : p where Γ is a typing environment, M is an element of



ΛΣ and p is an element of ∩Π . Judgements are derived by using the following
inference system:

p ∈ Γ (xα)
Axiom

Γ `Π xα : p

p ∈ χ(c)
Const

Γ `Π c : p

Γ `Π M : p p vα
Π q

Sub
Γ `Π M : q

Γ, xα : S `Π M : p
Abst

Γ `Π λxα.M : (S, α, p)

Γ `Π M : (S, α, p) N ∈ Λα
Σ,Γ

∀q ∈ S. Γ `Π N : q
App

Γ ` (MN) : p

Where the relation vα
Π is defined as follows:

i ∈ ι(α)

i vι
Π i

T ⊆ ∩α
Π ∀p ∈ S.∃q ∈ T.q vα

Π p

T Eα
Π S

S Eα
Π T q vβ

Π p

(T, α, q) vα→β
Π (S, α, p)

Notice that the rule App, has two premises, concerning N . The reason of
being of the premise N ∈ Λα

Σ,Γ
is that when M has an intersection type of the

form (∅, α, p), the premise ∀q ∈ S. Γ `Π N : q is trivially true and without
such a premise we would derive judgments on terms which would not be simply
typed.

We will use the notation Γ `Π M : S where S is a subset of ∩α
Π to denote

the all the judgements of the form Γ `Π M : p where p in S. In the same spirit,
given S and T that are respectively subsets of ∩α

Π and of ∩β
Π , we write (S, α, T )

to denote the subset of ∩α→β
Π , {(S, α, p)|p ∈ T}.

We now give the principal properties of that system. The proofs of those
properties can be found in [3].

Theorem 1 (subject reduction). If Γ `Π M : p is derivable and M
∗→βη N

then Γ `Π N : p is derivable.

Notice that this Theorem would only hold for β-reduction without the use of
the rule Sub.

Theorem 2 (subject expansion). If M ∈ Λα
Σ, M

∗→βη N and Γ `Π N : p is
derivable then Γ `Π M : p is derivable.

Theorem 3 (Singleton). Given M ∈ Λα
Σ, there is Π, Γ and S ⊆ ∩α

Π such
that given N ∈ Λα

Σ, Γ `Π N : S is derivable if and only if M =βη N .

This Singleton Theorem, requires some comments. We proved it referring to
coherence theorems such as the one proved in [14]. It is also related to a Theorem
proved by Statman [8], [9], since we will see that HOIS and finite full models
can be represented one in the other.

Since, with intersection type we can represent graphs of functions, the set
of λ-terms that are interpreted as a certain element in a finite full model are
exactly the λ-terms that verify a certain judgement.



Theorem 4. Given a HOS Σ, a finite model of Σ, M = (Mα, ρ), a finite
variable assignment ν over M and an element e of Mα then there is a HOIS
over Σ, Π, a typing environment Γ and a subset S of ∩α

Π such that for every
λ-term M the two following properties are equivalent:

1. [[M ]]Mν = e
2. Γ `Π M : S

A consequence of the previous theorem is that we can obtain the undecid-
ability result by [6] about the emptiness of intersection type as a corollary of the
undecidability of λ-decidability [7].

We now prove the converse of the previous theorem, that is, typability prop-
erties in HOIS can be seen as properties of interpretations in finite full models.
The principle of this proof is to interpret intersection types as functions operat-
ing over intersection types.

We define the operator app which maps, for all α and β, 2∩
α→β
Π × 2∩

α
Π to

2∩
β
Π . It is defined by: app(S, T ) = {p|∃(Q,α, p) ∈ S.T E Q}
The finite model in which we will interpret intersection types built over Π is

MΠ = ((Mα)α∈IA , ρ) where for α atomic we let Mα be 2ι−1(α). The definition
of ρ requires an auxiliary function Fα that sends subsets of ∩α

Π to subsets of
Mα and that verifies:

1. for α atomic and S included in ∩α
Π we let Fα(S) = {T ⊆ ∩α

Π |S ⊆ T},
2. for S included in ∩α→β

Π we let

Fα→β(S) = {h ∈Mα→β |∀T ⊆ ∩α
Π .∀g ∈ Fα(T ).h(g) ∈ Fβ(app(S, T ))}

It is easy to verify that for every S included in ∩α
Π , the set Fα(S) is not empty.

We choose ρ(c) as an element of Fτ(c)(χ(c)). We then have the following theorem.

Theorem 5. Given a HOS Σ, a HOIS Π over Σ, Γ and S a subset of ∩α
Π , we

set ν(xα) to be an element of Fα(Γ (xα)), then the two following properties are
equivalent:

1. Γ `Π M : S
2. [[M ]]MΠ

ν belongs to Fα(S)

The Theorems 4 and 5 relate finite models and typability in HOIS. This leads
us to the definition of a generalized notion of automaton, typing-automata.

Definition 2. A typing-automaton, A, over a HOS Σ is a tuple (α, Π, Γ, {S1; . . . Sn})
where: α ∈ TΣ, Π is a HOIS over Σ, Γ is a Π-typing environment, for all i in
{1; . . . ;n}, Si is a subset of ∩α

Π . The language defined by A is

L(A) = {M |∃i ∈ N. Γ `Π M : Si}

Using Theorems 4 and 5 we get:

Theorem 6. A language of λ-terms L is recognizable if and only if there is a
typing-automaton A such that L = L(A).



5 Closure properties

5.1 Boolean closure

In this section we shall quickly outline how to construct of typing-automata for
the boolean closure properties of recognizable sets of λ-terms. Interestingly these
constructions can be seen as generalizations of the usual constructions that are
used for tree/string-automata. For example, concerning the intersection of two
recognizable languages, we can construct the product of two typing-automata.
We first start by defining the product of two HOIS.

Definition 3. Given Π1 = (Σ, I1, ι1, χ1) and Π2 = (Σ, I2, ι2, χ2) we define the
HOIS Π1 ⊗Π2 to be (Σ, I, ι, χ) where:

1. I is a subset of I1 × I2 which is equal to {(p1, p2)|ι1(p1) = ι2(p2)},
2. ι((p1, p2)) = ι1(p1), note that by definition of I, ι((p1, p2)) = ι2(p2),
3. χ(c) = {p1 ⊗ p2|p1 ∈ χ1(c) and p2 ∈ χ2(c)}.

where given p1 in ∩α
Π1

and p2 in ∩α
Π2

we define p1 ⊗ p2 by:

1. if α is atomic then p1 ⊗ p2 = (p1, p2)
2. if α = α1 → α2 then p1 = (S1, α1, q1) and p2 = (S2, α2, q2) and p1 ⊗ p2 =

(S1 ⊗ S2, α1, q1 ⊗ q2) where S1 ⊗ S2 = {r1 ⊗ r2|r1 ∈ S1 and r2 ∈ S2}

If we define the product of two typing environment Γ and ∆ to be Γ ⊗ ∆
such that Γ ⊗∆(x) = Γ (x)⊗∆(x), we can prove the following property:

Theorem 7. The judgements Γ `Π1 M : P and ∆ `Π2 M : Q are derivable if
and only if the judgement Γ ⊗∆ `Π1⊗Π2 M : P ⊗Q is derivable.

This allows us to define the product A⊗ B of two typing-automata A and B.

Definition 4. Given two typing-automata over some HOS Σ, A = (α, Π1, Γ, T1)
and B = (α, Π2,∆, T2), we let A⊗B be (α, Π1⊗Π2, Γ⊗∆, T1⊗T2) where T1⊗T2

is the set {S1 ⊗ S2|S1 ∈ T1 and S2 ∈ T2}.

Theorem 8. Given two typing automata of the same type over some HOS Σ,
A and B we have L(A⊗ B) = L(A) ∩ L(B).

The closure under complement of the class of recognizable sets of λ-terms,
is a direct consequence of its definition in terms of finite models. Interestingly,
if one wishes to construct the typing-automaton recognizing the complementary
language of a given typing-automaton, then one would use the construction that
serves in Theorem 5 which on a tree or string automaton would corresponds
to determinization. This induces a notion of deterministic typing-automata that
grasps the notion of recognizability, and corresponding to the fact that intersec-
tion types correspond to partial function over the finite model generated by the
atomic intersection types.



5.2 Homomorphisms

It is well-known that recognizable sets of strings are closed under arbitrary ho-
momorphisms while recognizable sets of trees are closed under linear homomor-
phisms. We will see that recognizable sets of λ-terms are not even closed under
relabeling. This has the consequence, that Monadic Second Order Logic (MSO)
over the structure of normal λ-terms is not grasped by our notion of recogniz-
ability, since relabelings allow to represent set quantification. On the other hand,
alike strings and trees, recognizable sets of λ-terms are closed under arbitrary
inverse homomorphisms.

We now turn to show that recognizable sets of λ-terms are not closed under
relabeling. In order to show this we use the following signature Σ = {∀ : (b →
b) → b,∧ : b → b → b,∨ : b → b → b,¬ : b → b, C : b → b → b, B : b → b → b}.
Since terms built on Σ are usual boolean expressions, we shall use the standard
notation for those expressions instead of the λ-term notation. Thus we shall
write ∀x.t, t1 ∧ t2 and t1 ∨ t2 instead of ∀(λx.t), ∧t1 t2 and ∨t1 t2. The terms
built on Σ are interpreted in a finite model B = ((Bα)α∈TΣ

, ρ) where Bb = {0; 1}
and ρ interprets the usual boolean connectives and quantifiers (∧, ∨, ¬ and ∀)
with their usual truth tables and ρ interprets the connectives C and B as the
functions such that ρ(C)xy = x and ρ(B)xy = y. By definition the set T of
closed terms whose semantic interpretation in B is 1 is recognizable.

We use a relabeling H which maps the terms built on Σ to terms built on
Σ′ = {∀ : (b→ b)→ b,∧ : b→ b→ b,∨ : b→ b→ b,¬ : b→ b, ./: b→ b→ b} so
the constants ∀, ∧, ∨ and ¬ are mapped to themselves by H and C and B are
both mapped to ./.

We let ⇔ be the λ-term λxy.(x∧ y)∨ (¬x∧¬y); as for the other connective,
we adopt an infix notation, i.e. we shall write t1 ⇔ t2 instead of ⇔ t1 t2.

As the connective C (resp. B) takes the value of its left (resp. right) argument,
if f and g are terms whose free variables are x1, . . . , xn, then we have the
following identities [[∀x1. . . .∀xn.(Cf g) ⇔ f ]]B = 1 and [[∀x1. . . .∀xn.(Bf g) ⇔
g]]B = 1.

The closed term λxb
1 . . . xb

n.t built on Σ can be interpreted as a function
from {0; 1}n to {0; 1} (modulo curryfication) in B, i.e. an n-ary boolean func-
tion. For a given n there are 2n+1 such functions and we know that for each
such function f we can build, using only ∧, ∨ and ¬, a term f̃ such that
[[λx1 . . . xn.f̃ ]]B = f . Given F = {f1; . . . ; fp} a set of such functions, we write
[F ] the term ./ f̃1(./ f̃2(. . . (./ f̃p−1f̃p) . . .)). Remark that for all i in {1; . . . ; p},
there is Hi such that H(Hi) = [F ] and [[∀(x1. . . .∀(xn.Hi ⇔ f̃i) . . .)]]B = 1 and
thus ∀(x1. . . .∀(xn.[F ] ⇔ f̃i) is in H(T ). Furthermore for every H such that
H(H) = F there is i in {1; . . . ; p} such that [[∀(x1. . . .∀(xn.H ⇔ f̃i) . . .)]]B = 1.
If we suppose that H(T ) is recognizable, then there is a finite model M =
((Mα)α∈TΣ

, ρ) and a subset N ofMb such that the closed terms M are in H(T )
if and only if [[M ]]M ∈ N ; we assume that Mb contains q elements. Each closed
term λxb

1 . . . xb
n.M built on Σ′ is interpreted in M as a function from {1; . . . ; q}n

to {1; . . . ; q} (modulo curryfication). We are going to show that for every sets
of n-ary boolean functions F and G, it is necessary that [[λxb

1 . . . xb
n.[F ]]]M and



[[λxb
1 . . . xb

n.[G]]]M are different when F and G are different. Indeed, if F and G
are different, we can assume without loss of generality that F is not empty,
and then there is a boolean function f which is in F and which is not in G.
Since there is H such that H(H) = [F ] and [[∀x1. . . .∀xn.H ⇔ f̃ ]]B = 1, then
∀x1. . . .∀xn.[F ] ⇔ f̃ is in H(T ). But for an n-ary boolean g, there is an H ′

such that H(H ′) = [G] and [[∀x1. . . .∀xn.H ′ ⇔ g̃]]B = 1 iff g is in G. Thus the
term ∀x1. . . .∀xn.[G]⇔ f̃ is not in H(T ) and [[λxb

1 . . . xb
n.[F ]]]M is different from

[[λxb
1 . . . xb

n.[G]]]M. But there are 22n+1
sets of n-ary boolean functions while there

are qn+1 functions from {1; . . . ; q}n to {1; . . . ; q} and thus for n sufficiently big,
it is not possible to verify that [[λxb

1 . . . xb
n.[F ]]]M and [[λxb

1 . . . xb
n.[G]]]M are dif-

ferent when F and G are different. Therefore, H(T ) is not a recognizable set.
This implies that the class of recognizable sets of λ-terms is not closed under
relabeling.

While there seems to be no interesting class of homomorphisms under which
our notion of recognizability is closed, we can show that recognizable sets of
λ-terms are closed under inverse homomorphism.

Theorem 9. Given Σ1, Σ2 two HOS and H a homomorphism between Σ1 and
Σ2, if R is a recognizable set of Σ2 then H−1(R) ∩ Λα

Σ,V is also recognizable.

Recognizable sets contain only λ-terms of a given type and there is no reason
why H−1(R) is a set containing terms having all the same type. So intersecting
H−1(R) with set set of the form Λα

Σ,V is necessary.

6 Some applications of recognizability

We here quickly review some direct applications of the notion of recognizability
in the simply typed λ-calculus.

6.1 Parsing

Theorem 9 gives a very simple definition of parsing for many formalisms. Indeed
in formalisms, such as Context Free Grammars, Tree Adjoining Grammars, Mul-
tiple Context Free Grammars, Parallel Multiple Context Free Grammars etc. . .
can be seen as the interpretation of trees via homomorphism (see [15]). Thus
these grammars can be seen a 4-tuple (Σ1, Σ2,H, S) where Σ1 is a multi-sorted
tree signature, Σ2 is a string signature, H is a homomorphism from Σ1 to Σ2

and S is the type of the trees that are considered as analyses. Thus if we want to
parse a word w we try to find the set {M ∈ ΛS

Σ1
|M is closed and H(M) =βη w}

which is actually H−1({w}). But we know from Theorem 3 that {w} is a rec-
ognizable set and thus parsing amounts to compute the inverse homomorphic
image of a recognizable set. This gives a new proof of the theorem of [16] which
proves that the set of parse trees of a sentence in a context free grammars is a
recognizable set, and it furthermore generalizes the result to a wide family of
formalisms. Moreover, this view on parsing also applies to grammars generat-
ing tree or λ-terms, it also shows that parsing a structure is similar to parsing



recognizable sets. Parsing recognizable sets instead of singleton structures has
the advantage that it allows to parse ambiguous inputs, such as noisy phonetic
transcriptions, or ambiguous tagging of sentences. . .

6.2 Higher order matching

The γ-higher-order matching problem (γ-HOM), with γ ∈ {β;βη}, consists in
solving an equation of the form M

?=γ N where N is a closed term. A solution of
such an equation is a substitution σ such that M.σ =γ N . Using the extraction
Lemma of [3], and Theorem 3, it is easy to see that the solutions of βη-HOM
form finite unions of cartesian products of recognizable sets. Observing this,
allows us to obtain in an alternative way the relation between λ-definability and
βη-HOM showed in [8]. Furthermore, we can easily obtain the result that βη-
HOM is decidable (see [17]) when the terms in a solution are arity bounded, i.e.
under the constraint that the number of variables that can be free in a subterm
is bounded by some number k. Indeed, because of the subformula property and
the bound on the number of free variables, arity-bounded terms of a given type
can all be represented with finitely many combinators; this means that we can
represent those terms in a tree-HOS Σ and recover them with a homomorphism
H. Thus, the set S of terms that are solution of arity bounded βη-HOM can
be effectively represented as a recognizable set of trees, namely H−1(S) , the
emptiness of recognizable sets of trees being decidable this gives the decidability
of arity bounded βη-HOM. In particular, this leads to the decidability of arity
bounded βη-HOM. Since arity-bounded βη-HOM is more general than 3rd and
4th order βη-HOM [17], this technique sheds some light on the results obtained
by [18] that relate the solutions of these special cases to tree automata. Contrary
to most approach to HOM, the one we use is completely direct, we do not need
to transform the problem within a set of interpolation equations.

β-HOM [19] is undecidable while βη-HOM seems to be decidable [20]. But
there is no satisfying explanation on the difference between β-HOM and βη-
HOM so as to account satisfactorily of that difference. But as we have seen,
intersection types make a discrimination between β-reduction and βη-reduction
with the rule Sub, without which the subject reduction Theorem does not hold
for βη-reduction. Thus intersection types seem to be a good tool to investigate
this problem.

7 Conclusion and future work

We have defined a notion of recognizability for the λ-calculus that naturally ex-
tends recognizability for trees or strings. We have exhibited the closure properties
of this notion and showed how it could be exploited to understand parsing of the
higher order matching problem. Contrary to strings and trees where recogniz-
ability comes with three kinds of characterization, a mechanical one (automata),
an algebraic one and a logical one (Monadic Second Order Logic, MSOL), here
our notion only comes with a mechanical and an algebraic characterization. It



seems difficult to come up with a logical characterization since this notion is
not closed under relabeling. And closure under relabeling is central to represent
quantification in MSOL. As we wish to use this notion of recognizability so as
to describe particular sets of λ-terms, it would be nice to obtain a connection
with some logic. First-order logic would be a first step. A more general ques-
tion would be whether there is a logic that exactly corresponds to this notion of
recognizability.

Another question is to characterize the restrictions under which the emptiness
of recognizable sets is decidable. Theorem 9 gives a positive answer when the
terms are bound to be generated with a finite set of combinators since it reduces
this emptiness problem to the emptiness problem of some recognizable set of
trees. But we do not know whether there are weaker constraints for which this
holds. When we look at the situation for graphs, there is no class of graphs [21]
which can be generated only with infinitely many combinators (this means that
the class of graphs has an infinite treewidth) for which this emptiness problem
is decidable. Thus, this question can be related to the definition of a suitable
notion for normal λ-terms that would be similar to treewidth for graphs.

Finally we hope that the notion of recognizability for λ-terms can be of
interest in the study of trees generated by higher-order programming schemes.
It has been showed that those trees had a decidable MSO theory[22]. It is likely
that intersection types should be more adapted to conduct this proof, and yield
to new techniques.
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