

▲日▼▲□▼▲□▼▲□▼ □ のので

Pushdown automata of order 2 and applications to recognizability

J. Ferté, N. Marin, G. Sénizergues

Université de Bordeaux, LaBRI,

06 Décembre 2011

Projet FREC, 5-6 Décembre 2011

contents

- 2 Preliminaries
- 3 Characterization theorem
- 4 Skimming theorem
- 5 Rational sets of endomorphisms

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

6 Quadratic word equations

The results

THE RESULTS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Context

Context

[Fratani-Sénizergues APAL'06 Integer sequences of level k] [Sénizergues CSR'07 Word sequences of level k]

Theorem

A map $f : X^* \to Y^*$ has level $k \ge 2$ iff it is a (k - 1)-fold composition of maps of level 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The results

Main theorem

Theorem

Let X, Y be two finite alphabets, $f : X^* \to Y^*$ a mapping. The following conditions are equivalent : 1- f belongs to $\mathbb{S}_2(X^*, Y^*)$ i.e. is computed by some strongly deterministic pushdown of pushdown automaton 2- f is a HDTOL 3- f fulfills a system of catenative recurrent equations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The results

Three applications

A1: skimming theorem for rational series [Schutzenberger Cong. Int. Math, 1970].

New proof + extension to HDT0L's.

A2: rational subsets of HOM(A^*, A^*) are not closed under intersection

A3: the set of solutions of a quadratic equation, over words, is an index language.

PRELIMINARIES

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Preliminaries

Pushdown automata of order 2

Formalism: [Damm-Goerdt Information and Control 86] The set of pushdown stores of level 2 over Γ is:

 $2 - pds(\Gamma) := (\Gamma[\Gamma^*])^*$

Function:

topsyms :
$$2 - pds(\Gamma) \rightarrow \Gamma^{\leq 2}$$

Operations:

 $pop_1, pop_2, push_1, push_2$

Examples: $pop_1(A_0[xyy]A_1[xyy]A_1[\varepsilon]) = A_1[xyy]A_1[\varepsilon]$ $pop_2(A_0[xyy]A_1[xyy]A_1[\varepsilon]) = A_0[yy]A_1[xyy]A_1[\varepsilon].$ $push_1(A_1)(A_0[xyy]A_1[xyy]A_1[\varepsilon]) = A_1[xyy]A_0[xyy]A_1[xyy]A_1[\varepsilon])$ $push_2(y)(A_0[xyy]A_1[xyy]A_1[\varepsilon]) = A_0[yyy]A_1[xyy]A_1[\varepsilon])$ $push_2(xy)(A_0[xyy]A_1[xyy]A_1[\varepsilon]) = A_0[xyyy]A_1[xyy]A_1[\varepsilon])$

Preliminaries

Pushdown automata of order 2

strong determinism

Let
$$\mathbb{A} = (Q, X, \Gamma, \delta, q_0, A_0)$$
 be a 2-pda.
 \mathbb{A} will be said strongly deterministic if :
 $\forall q \in Q, \forall \gamma \in \text{TOPSYMB}(\Gamma),$

$$\sum_{\bar{\boldsymbol{a}} \in \boldsymbol{X}^{\leq 1}} \operatorname{Card}(\delta(\boldsymbol{q}, \bar{\boldsymbol{a}}, \gamma)) \leq 1$$

Note: very close to a pushdown transducer of level 2 from strings to strings; just see Γ as the input alphabet, X as the output alphabet.

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • • •

Computable sequences of order 2

Definition (2-computable sequences)

A mapping $f : X^* \to Y^*$ is called a 2-computable mapping (or sequence) iff there exists a 2-*sdpda* \mathbb{A} , over a pushdown-alphabet $\Gamma \supseteq X$, with terminal alphabet Y, such that, for every $u \in X^*$:

$$(q_0, f(u), A_0[u]) \vdash^*_{\mathcal{A}} (q_0, \varepsilon, \varepsilon).$$

We denote by $\mathbb{S}_2(X^*, Y^*)$ the set of all 2-computable sequences mappings from X^* to Y^* .

Catenative recurrences

Definition (catenative recurrent relations)

Given a finite set I and a family of mappings indexed by I, $f_i : X^* \to Y^*$ (for $i \in I$), we call system of catenative recurrent relations over the family $(f_i)_{i \in I}$ a system of the form

$$f_i(\mathbf{x}w) = \prod_{j=1}^{\ell(i,x)} f_{lpha(i,x,j)}(w)$$
 for all $i \in I, x \in X, w \in X^*$

where $\ell(x, i) \in \mathbb{N}, \alpha(i, x, j) \in I$.

Lindenmayer systems

Definition (HDT0L, [Karhumaki and alii Handbook, 1997])

Let $f : X^* \to Y^*$. The mapping f is called a HDTOL mapping (or sequence) iff there exists a finite alphabet A, a homomorphism $H : X^* \to Hom(A^*, A^*)$, an homomorphism $h \in Hom(A^*, Y^*)$ and a letter $a \in A$ such that, for every $w \in X^*$

 $f(w) = h(H^w(a)).$

Characterization theorem

CHARACTERIZATION THEOREM

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Characterization theorem

Main theorem

Theorem

Let X, Y be two finite alphabets, $f : X^* \to Y^*$ a mapping. The following conditions are equivalent : 1- f belongs to $\mathbb{S}_2(X^*, Y^*)$ i.e. is computed by some strongly deterministic pushdown of pushdown automaton 2- f is a HDTOL 3- f fulfills a system of catenative recurrent equations

▲日▼▲□▼▲□▼▲□▼ □ のので

Characterization theorem

Example: automaton

$$\begin{split} \mathbb{A} &:= (Q, \{a, b\}, \Gamma, \delta, q_0, A_0): \\ Q &:= \{q_0, q_1, q_{0,x}, q_{1,x}, q_{0,y}, q_{1,y}\} \\ \Gamma &:= \{A_0, A_1, x, y, a, b\} \\ \delta(q_0, \varepsilon, A_i z) &:= (q_{i,z}, \text{pop}_2) \quad \text{for } i \in \{0, 1\}, z \in \{x, y\} \\ \delta(q_{0,x}, \varepsilon, A_0 \bar{a}) &:= (q_0, \text{push}_1(A_0 A_1)) \quad \text{for } \bar{a} \in \{x, y, \varepsilon\} \\ \delta(q_{0,y}, \varepsilon, A_0 \bar{a}) &:= (q_0, \text{push}_1(A_1)) \quad \text{for } \bar{a} \in \{x, y, \varepsilon\} \\ \delta(q_{1,x}, \varepsilon, A_1 \bar{a}) &:= (q_0, \text{push}_1(A_1 A_0)) \quad \text{for } \bar{a} \in \{x, y, \varepsilon\} \\ \delta(q_{1,y}, \varepsilon, A_1 \bar{a}) &:= (q_0, \text{push}_1(A_1 A_0)) \quad \text{for } \bar{a} \in \{x, y, \varepsilon\} \\ \delta(q_0, a, A_0) &:= (q_0, \text{push}_1(A_1 A_0)) \quad \text{for } \bar{a} \in \{x, y, \varepsilon\} \\ \delta(q_0, b, A_1) &:= (q_0, \text{pop}_1) \\ \delta(q_0, p, p_0) \\ \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Characterization theorem

Example: derivations

Basic derivations:

$$\begin{array}{rcl} (q_0, A_0[{\color{black}{x}} u], q_0) & \rightarrow^*_{\mathbb{A}} & (q_0, A_0[u], q_0)(q_0, A_1[u], q_0) \\ (q_0, A_0[{\color{black}{y}} u], q_0) & \rightarrow^*_{\mathbb{A}} & (q_0, A_1[u], q_0) \\ (q_0, A_1[{\color{black}{x}} u], q_0) & \rightarrow^*_{\mathbb{A}} & (q_0, A_1[u], q_0)(q_0, A_0[u], q_0) \\ (q_0, A_1[{\color{black}{y}} u], q_0) & \rightarrow^*_{\mathbb{A}} & (q_0, A_1[u], q_0)(q_0, A_0[u], q_0) \\ (q_0, A_0[\varepsilon], q_0) & \rightarrow^*_{\mathbb{A}} & a \\ (q_0, A_1[\varepsilon], q_0) & \rightarrow^*_{\mathbb{A}} & b. \end{array}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�?

Characterization theorem

Example: $f_0(x^3)$

$$\begin{array}{ll} (q_0, A_0[{\sf x} u], q_0) & \to^*_{\mathbb{A}} & (q_0, A_0[u], q_0)(q_0, A_1[u], q_0) \\ (q_0, A_0[{\sf y} u], q_0) & \to^*_{\mathbb{A}} & (q_0, A_1[u], q_0) \\ (q_0, A_1[{\sf x} u], q_0) & \to^*_{\mathbb{A}} & (q_0, A_1[u], q_0)(q_0, A_0[u], q_0) \\ (q_0, A_1[{\sf y} u], q_0) & \to^*_{\mathbb{A}} & (q_0, A_1[u], q_0)(q_0, A_0[u], q_0) \end{array}$$

Therefore we get:

$$\begin{array}{ll} (q_0, A_0[x \times x], q_0) & \to_{\mathbb{A}}^* & (q_0, A_0[x \times], q_0)(q_0, A_1[x \times], q_0) \\ & \to_{\mathbb{A}}^* & (q_0, A_0[x], q_0)(q_0, A_1[x], q_0)(q_0, A_1[x], q_0)(q_0, A_0[x], q_0) \\ & \to_{\mathbb{A}}^* & (q_0, A_0[\varepsilon], q_0)(q_0, A_1[\varepsilon], q_0)^2(q_0, A_0[\varepsilon], q_0) \cdot \\ & & (q_0, A_1[\varepsilon], q_0)(q_0, A_0[\varepsilon], q_0)^2(q_0, A_1[\varepsilon], q_0) \\ & \to_{\mathbb{A}}^* & abbabaab. \end{array}$$

Characterization theorem

Example: morphisms

The corresponding HDT0L: $X := \{x, y\}, Y := \{a, b\}, \Phi : X^* \to HOM(Y^*, Y^*)$ is defined by $\Phi^x(a) := ab, \ \Phi^x(b) := ba, \ \Phi^y(a) := b, \ \Phi^y(b) := ba.$

We obtain the family $(f_i)_{i \in \{0,1\}}$ of HDT0L maps:

$$f_0(u) := \Phi^u(a), \ f_1(u) := \Phi^u(b).$$

(Note that $n \mapsto f_0(x^n)$ is the Thue-Morse sequence and $n \mapsto f_0(y^n)$ is the Fibonacci sequence).

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Characterization theorem

Example:catenative recurrence

These maps fulfill the system of catenative relations:

$$\begin{cases} f_0(xu) = f_0(u)f_1(u) \\ f_0(yu) = f_1(u) \\ f_1(xu) = f_1(u)f_0(u) \\ f_1(yu) = f_1(u)f_0(u) \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Skimming theorem

SKIMMING THEOREM

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Skimming theorem

Classical skimmimg theorem

rational series:recall

Definition

Let X be a finite alphabet and $f : X^* \to \mathbb{N}$ be some map. The map f is a rational series iff, f belongs to some finitely generated \mathbb{N} -submodule M of $\mathbb{N} \ll X \gg$, which is closed under left-residual.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Skimming theorem

Classical skimmimg theorem

Theorem

Let X be a finite alphabet, $f : Y^* \to \mathbb{N}$ be some map and $f' : Y^* \to \mathbb{N}$ be defined by:

$$f'(u) := max\{0, f(u) - 1\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If f is a \mathbb{N} -rational series, then f' is \mathbb{N} -rational too.

First proof: [Schutzenberger Cong. Int. Math, 1970] Other proof: [Sakarovitch-De Souza STACS 2008]

Skimming theorem

FREC-definition of HDT0L's

Definition

Let X, Y be finite alphabets and $f : X^* \to Y^*$ be some map. The map f is a HDT0L iff, f belongs to some finitely generated submonoid M of $\langle MAP(X^*, Y^*), \cdot, w \mapsto \varepsilon \rangle$, which is closed under left-residual by pairs (x, ε) (for $x \in X$).

▲日▼▲□▼▲□▼▲□▼ □ のので

Skimming theorem

Skimming HDT0L's

Theorem

Let X, Y be finite alphabets. The set of HDT0L's from X^{*} to Y^{*} is closed under left-residual by pairs (ε, y) (for $y \in Y$)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Skimming theorem

More general version

Theorem

Let X, Y, Z, T be four finite alphabets and $f: X^* \to Y^*, g: Y^* \to Z^*, h: Z^* \to T^*$, be some maps. If f, hare rational maps and g is an HDTOL, then $f \circ g \circ h$ is an HDTOL.

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

Skimming theorem

More general version

Sketch of proof:

Case 1: f is a gsm use the (standard) definition of HDT0L's Case 2: h is a r-to-l gsm use catenative recurrences Case 3: h is a l-to-r gsm use sdpda of level 2. Principle: direct product of the spda with the gsm. \Diamond

▲日▼▲□▼▲□▼▲□▼ □ のので

Rational sets of endomorphisms

RATIONAL SETS of ENDOMORPHISMS

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 • • • • • •

Rational sets of endomorphisms

The monoid of endomorphisms

Question: Is the set of rational subsets of $(HOM(A^*, A^*), \circ, Id)$ closed under intersection ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Rational sets of endomorphisms

The monoid of endomorphisms

Notation:
$$w \diamond f$$
 means $f(w)$.

Lemma

For every rational subset R of HOM(A^* , A^*) and every $w \in A^*$, the set { $w \diamond f \mid f \in R$ } is an indexed-language.

Sketch of proof:

There exists some finite alphabet X, a monoid homomorphism $H: X^* \to HOM(A^*, A^*)$ and a rational subset $R_X \subseteq X^*$ such that

 $R = \{H^u \mid u \in R_X\}.$

The language L can be rewritten as

$$L = \{ w \diamond H^u \mid u \in R_X \}.$$

L is recognized by an adaptation of the 2-dpda computing $u \mapsto (w \diamond H^u)$. \diamond

Rational sets of endomorphisms

An example

Let

$$A := \{x, y, z, t\}$$

$$h_1: \quad x \mapsto xy, \quad y \mapsto y, \quad z \mapsto z, \quad t \mapsto t,$$

$$h_2: \quad x \mapsto x, \quad y \mapsto yx, \quad z \mapsto z, \quad t \mapsto t,$$

$$h_3: \quad x \mapsto x, \quad y \mapsto y, \quad z \mapsto zt, \quad t \mapsto t,$$

$$R := (h_1 \circ h_3)^* \circ h_2^*, \ S := h_1^* \circ (h_2 \circ h_3)^*$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Rational sets of endomorphisms

An example

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

We observe that $h_1 \circ h_3 = h_3 \circ h_1$ and $h_2 \circ h_3 = h_3 \circ h_2$.

Rational sets of endomorphisms

An example

$$R \cap S = \{h_1^n h_2^n h_3^n \mid n \ge 0\}.$$

It follows that

$$\{x \diamond h \mid h \in R \cap S\} = \{x(yx^n)^n \mid n \ge 0\}.$$

But this last language has been shown to do not be an indexed-language in: [Hayashi 73 Th. 5.3] [Gilman 96 Corollary 4]. By Lemma 6: $R \cap S$ is not rational.

Quadratic word equations

QUADRATIC WORD EQUATIONS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Quadratic word equations

An example

Equation:

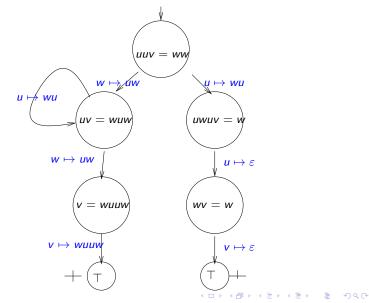
S : uuv = ww

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Quadratic word equations

An example

The automaton:



Quadratic word equations

Set of hom-solutions

$$\mathsf{SOL}_h(\mathcal{S}) = (\mathbf{f} + \mathbf{g} \circ \mathbf{h}^* \circ \mathbf{k}) \circ \mathsf{HOM}(\mathcal{U}^*, \mathcal{U}^*).$$

where

f :	$u\mapsto w,$	$v \mapsto \varepsilon$,	$w\mapsto w,$
g :	$u\mapsto u,$	$v\mapsto v,$	$w\mapsto uw,$
h :	$u\mapsto wu,$	$v\mapsto v,$	$w\mapsto w,$
k :	$u\mapsto u,$	$v \mapsto wuuw$,	$w\mapsto uw.$

Quadratic word equations

Set of words-solutions

$$\begin{aligned} \mathsf{SOL}_w(\mathcal{S}) &:= & \{\varphi(u) \# \varphi(v) \# \varphi(w) \mid \varphi \in \mathsf{SOL}_h \} \\ \mathsf{SOL}_w(\mathcal{S}) &= & \{\bar{w} \# \varepsilon \# \bar{w} \mid \bar{w} \in \mathcal{U}^* \} \cup \\ & \{ (\bar{u}\bar{w})^n \bar{u} \# \bar{w} \bar{u}^2 \bar{w} \# (\bar{u}\bar{w})^n \bar{u} (\bar{u}\bar{w}) \mid \bar{u}, \bar{v}, \bar{w} \in \mathcal{U}^* \}. \end{aligned}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Quadratic word equations

Set of words-solutions

Theorem

For every finite quadratic system of word equations S, the set of hom-solutions $SOL_h(S)$ is rational.

(almost true) follows from [Diekert Lothaire chap. 12]

Theorem

For every finite quadratic system of word equations S, the set of word-solutions $SOL_w(S)$ is an indexed-language.

(perfectly true)