
Morphic words and recursion schemes

Laurent BRAUD

FREC meeting, LABRI

6 dec 2011

Context

Graphs and trees with decidable MSO-theory :
I pushdown/Caucal hierarchy
I recursion schemes : [Damm], and recently

[Knapik-Niwiński-Urzyczyn], [Ong]
I infinite words : ult. periodic, morphic [Carton-Thomas]

This talk :
1. relationship between order-1 schemes and morphic words
2. extension to order 2

Context

Graphs and trees with decidable MSO-theory :
I pushdown/Caucal hierarchy
I recursion schemes : [Damm], and recently

[Knapik-Niwiński-Urzyczyn], [Ong]
I infinite words : ult. periodic, morphic [Carton-Thomas]

This talk :
1. relationship between order-1 schemes and morphic words
2. extension to order 2

Recursion schemes : first order
Term grammar with
I terminals T = {a, b, f , g . . . },
I nonterminals N = {S, F, G . . . },
I a specific starting nonterminal S
I one rewriting rule per nonterminal, using variables
X = {x, y . . . }.

Every symbol α has fixed arity ρ(α).

T = {f , g, a}
N = {S, F}

S =⇒ F

a

F

x

=⇒ f

F

g

x

x F

x

Here ρ(f) = 3, ρ(F) = ρ(g) = 1, ρ(a) = 0.

Recursion schemes : first order
Term grammar with
I terminals T = {a, b, f , g . . . },
I nonterminals N = {S, F, G . . . },
I a specific starting nonterminal S
I one rewriting rule per nonterminal, using variables
X = {x, y . . . }.

Every symbol α has fixed arity ρ(α).

T = {f , g, a}
N = {S, F}

S =⇒ F

a

F

x

=⇒ f

F

g

x

x F

x

Here ρ(f) = 3, ρ(F) = ρ(g) = 1, ρ(a) = 0.

Recursion schemes : first order

S =⇒ F

a

F

x

=⇒ f

F

g

x

x F

x

A scheme builds a (possibly) infinite tree of terminals.

S ⇒ F

a

⇒ . . . f

f

f

... g

g

a

...

g

a

f

... g

a

...

a f

... a ...

Recursion schemes : first order

S =⇒ F

a

F

x

=⇒ f

F

g

x

x F

x

A scheme builds a (possibly) infinite tree of terminals.

S ⇒2 f

F

g

a

a F

a

⇒ . . . f

f

f

... g

g

a

...

g

a

f

... g

a

...

a f

... a ...

Recursion schemes : first order

S =⇒ F

a

F

x

=⇒ f

F

g

x

x F

x

A scheme builds a (possibly) infinite tree of terminals.

S ⇒3 f

f

F

g

g

a

g

a

F

g

a

a F

a

⇒ . . . f

f

f

... g

g

a

...

g

a

f

... g

a

...

a f

... a ...

Recursion schemes : first order

S =⇒ F

a

F

x

=⇒ f

F

g

x

x F

x

A scheme builds a (possibly) infinite tree of terminals.

S ⇒3 f

f

F

g

g

a

g

a

F

g

a

a F

a

⇒ . . .

f

f

f

... g

g

a

...

g

a

f

... g

a

...

a f

... a ...

Recursion schemes : first order

S =⇒ F

a

F

x

=⇒ f

F

g

x

x F

x

A scheme builds a (possibly) infinite tree of terminals.

S ⇒3 f

f

F

g

g

a

g

a

F

g

a

a F

a

⇒ . . . f

f

f

... g

g

a

...

g

a

f

... g

a

...

a f

... a ...

Frontiers of limit trees

We are interested in infinite words that appear in schemes.

S =⇒
F

a

F

x
=⇒

f

x
f

b
F

f
x x

JSK =
f

a
f

b
f

f
a a

f
b ...

Fr(JSK) = abaab . . . a2i
b . . .

Frontiers of limit trees

We are interested in infinite words that appear in schemes.

S =⇒
F

a

F

x
=⇒

f

x
f

b
F

f
x x

JSK =
f

a
f

b
f

f
a a

f
b ...

Fr(JSK) = abaab . . . a2i
b . . .

Frontiers of limit trees

Let T be an infinite term and let the frontier Fr(T) be the colored
order of leaves in left-right order.

The ω-frontier ω-Fr(T) is the initial part of Fr(T) of type ω,
when it exists.

Proposition
For any tree generated by an order-1 scheme, there is a tree generated
by a order-1 scheme where the rightmost branch is the only infinite
branch, and with the same ω-frontier.
The trees with one infinite rightmost branch are called combs.

Frontiers of limit trees

Let T be an infinite term and let the frontier Fr(T) be the colored
order of leaves in left-right order.
The ω-frontier ω-Fr(T) is the initial part of Fr(T) of type ω,
when it exists.

Proposition
For any tree generated by an order-1 scheme, there is a tree generated
by a order-1 scheme where the rightmost branch is the only infinite
branch, and with the same ω-frontier.
The trees with one infinite rightmost branch are called combs.

Frontiers of limit trees

Let T be an infinite term and let the frontier Fr(T) be the colored
order of leaves in left-right order.
The ω-frontier ω-Fr(T) is the initial part of Fr(T) of type ω,
when it exists.

Proposition
For any tree generated by an order-1 scheme, there is a tree generated
by a order-1 scheme where the rightmost branch is the only infinite
branch, and with the same ω-frontier.
The trees with one infinite rightmost branch are called combs.

Morphic words

Σ is an alphabet. A morphism τ on Σ∗ is such that

τ(ab) = τ(a)τ(b).

Let τ be a morphism on Σ∗ s.t. there is a ∈ Σ with τ(a) ∈ aΣ.

τ(a) = au
τ2(a) = auτ(u)
τ3(a) = auτ(u)τ2(u)

. . .
τω(a) = auτ(u) . . .

Words σ(τω(a)) are morphic words, where σ is another
morphism.

Morphic words

Σ is an alphabet. A morphism τ on Σ∗ is such that

τ(ab) = τ(a)τ(b).

Let τ be a morphism on Σ∗ s.t. there is a ∈ Σ with τ(a) ∈ aΣ.

τ(a) = au
τ2(a) = auτ(u)
τ3(a) = auτ(u)τ2(u)

. . .
τω(a) = auτ(u) . . .

Words σ(τω(a)) are morphic words, where σ is another
morphism.

Morphic words : example

τ(a) = abcc σ(a) = a
τ(b) = b σ(b) = b
τ(c) = cc σ(c) = a

τ(a) = abcc
τ2(a) = abccbcccc

. . .
τω(a) = abccb . . . c2i

b . . .
σ(τω(a)) = abaab . . . a2i

b . . .

Morphic words : example

τ(a) = abcc σ(a) = a
τ(b) = b σ(b) = b
τ(c) = cc σ(c) = a

τ(a) = abcc

τ2(a) = abccbcccc
. . .

τω(a) = abccb . . . c2i
b . . .

σ(τω(a)) = abaab . . . a2i
b . . .

Morphic words : example

τ(a) = abcc σ(a) = a
τ(b) = b σ(b) = b
τ(c) = cc σ(c) = a

τ(a) = abcc
τ2(a) = abccbcccc

. . .

τω(a) = abccb . . . c2i
b . . .

σ(τω(a)) = abaab . . . a2i
b . . .

Morphic words : example

τ(a) = abcc σ(a) = a
τ(b) = b σ(b) = b
τ(c) = cc σ(c) = a

τ(a) = abcc
τ2(a) = abccbcccc

. . .
τω(a) = abccb . . . c2i

b . . .

σ(τω(a)) = abaab . . . a2i
b . . .

Morphic words : example

τ(a) = abcc σ(a) = a
τ(b) = b σ(b) = b
τ(c) = cc σ(c) = a

τ(a) = abcc
τ2(a) = abccbcccc

. . .
τω(a) = abccb . . . c2i

b . . .
σ(τω(a)) = abaab . . . a2i

b . . .

First result

Theorem
ω-frontiers of limit trees of (order-1) recursion schemes are exactly
morphic words.

A nonterminal F has a useless parameter index i when xi does
not appear in JF−→x K.

Lemma (usefulness)
For any order-1 scheme, there is an order-1 scheme generating the
same tree and where every nonterminal has only useful parameters.

Lemma (linearization)
For any order-1 scheme S generating a comb, there is S′ with only
two nonterminals {S, R} such that Fr(S) = Fr(S′). Moreover, each
rewriting rule has exactly one occurence of R and none of S.

First result

Theorem
ω-frontiers of limit trees of (order-1) recursion schemes are exactly
morphic words.
A nonterminal F has a useless parameter index i when xi does
not appear in JF−→x K.

Lemma (usefulness)
For any order-1 scheme, there is an order-1 scheme generating the
same tree and where every nonterminal has only useful parameters.

Lemma (linearization)
For any order-1 scheme S generating a comb, there is S′ with only
two nonterminals {S, R} such that Fr(S) = Fr(S′). Moreover, each
rewriting rule has exactly one occurence of R and none of S.

First result

Theorem
ω-frontiers of limit trees of (order-1) recursion schemes are exactly
morphic words.
A nonterminal F has a useless parameter index i when xi does
not appear in JF−→x K.

Lemma (usefulness)
For any order-1 scheme, there is an order-1 scheme generating the
same tree and where every nonterminal has only useful parameters.

Lemma (linearization)
For any order-1 scheme S generating a comb, there is S′ with only
two nonterminals {S, R} such that Fr(S) = Fr(S′). Moreover, each
rewriting rule has exactly one occurence of R and none of S.

Proof sketch

S ⇒
F

F

x y

⇒
F

σ(∆)

σ(x) σ(y)

u

τ(x) τ(y)

I Letters : {c ∈ T | ρ(c) = 0} ∪ {x, y, ∆}
I τ(c) = c for all c ∈ T,
I ∆ is the root : τ(∆) = ∆u

Proof sketch

S ⇒
F

F

x y

⇒
F

σ(∆)

σ(x) σ(y)

u

τ(x) τ(y)

I Letters : {c ∈ T | ρ(c) = 0} ∪ {x, y, ∆}
I τ(c) = c for all c ∈ T,
I ∆ is the root : τ(∆) = ∆u

Proof sketch

S ⇒
F

F

x y

⇒
F

σ(∆)

σ(x) σ(y)

u

τ(x) τ(y)

I Letters : {c ∈ T | ρ(c) = 0} ∪ {x, y, ∆}
I τ(c) = c for all c ∈ T,
I ∆ is the root : τ(∆) = ∆u

Proof sketch

S =⇒
F

a

F

x
=⇒

f

x
f

b
F

f
x x

Letters : {∆, a, b, x}

σ(∆) = ε τ(∆) = ∆xb
σ(a) = a τ(a) = a
σ(b) = b τ(b) = b
σ(x) = a τ(x) = xx

Towards next-order morphic words

Can we expect to
I increase subword complexity?

Theorem (Allouche-Shallit)
The number of words of length n in a morphic word is at most O(n2).
I increase growth rate?

Theorem (Carton-Thomas)
The sequence of indexes of a given letter in a morphic word is at most
O(kn) for some k.

Recursion schemes : next order
Instead of simply arity, symbols have fixed type (starting with a
base type o :
I terminals T = {a, b, f , g . . . },
I nonterminals N = {S, F, G . . . },
I a specific starting nonterminal S
I rewriting rules for each nonterminal, using variables
X = {x, y, φ, ψ . . . }.

F

φ x

⇒ φ

F

F

φ

x

x : o F : (o→ o)→ o→ o
φ : o→ o Fφ : o→ o

Recursion schemes : next order
Instead of simply arity, symbols have fixed type (starting with a
base type o :
I terminals T = {a, b, f , g . . . },
I nonterminals N = {S, F, G . . . },
I a specific starting nonterminal S
I rewriting rules for each nonterminal, using variables
X = {x, y, φ, ψ . . . }.

F

φ x

⇒ φ

F

F

φ

x

x : o F : (o→ o)→ o→ o
φ : o→ o

Fφ : o→ o

Recursion schemes : next order
Instead of simply arity, symbols have fixed type (starting with a
base type o :
I terminals T = {a, b, f , g . . . },
I nonterminals N = {S, F, G . . . },
I a specific starting nonterminal S
I rewriting rules for each nonterminal, using variables
X = {x, y, φ, ψ . . . }.

F

φ x

⇒ φ

F

F

φ

x

x : o F : (o→ o)→ o→ o
φ : o→ o Fφ : o→ o

Champernowne

The Champernowne’s constant is simply the concatenation of
numbers.

012345677891011 . . .
011011100101110 . . .

Champernowne : scheme approach

S =⇒ f

0 f

1 F

f

1

G

φ x

=⇒ f

φ

f

x 0

φ

f

x 1

F

φ

=⇒ f

f

φ

0

φ

1

F

G

φ

S : o f : o→ o→ o
F : (o→ o)→ o 0 : o
G : (o→ o)→ o→ o 1 : o

Champernowne : scheme approach
S =⇒ f

0 f

1 F

f

1

G

φ x

=⇒ f

φ

f

x 0

φ

f

x 1

F

φ

=⇒ f

f

φ

0

φ

1

F

G

φ

S =⇒
S

2 f

0 f

1 f

f

f

1 0

f

1 1

F

G

f

1

Champernowne : scheme approach
S =⇒ f

0 f

1 F

f

1

G

φ x

=⇒ f

φ

f

x 0

φ

f

x 1

F

φ

=⇒ f

f

φ

0

φ

1

F

G

φ

S =⇒
S

3 f

0 f

1 f

f

f

1 0

f

1 1

f

f

G

f

1

0

G

f

1

1

F

G

G

f

1

Champernowne : scheme approach
S =⇒ f

0 f

1 F

f

1

G

φ x

=⇒ f

φ

f

x 0

φ

f

x 1

F

φ

=⇒ f

f

φ

0

φ

1

F

G

φ

S =⇒
S

5 f

0 f

1 f

f

f

1 0

f

1 1

f

f

f

f

1 f

0 0

f

1 f

0 1

f

f

1 f

1 0

f

1 f

1 1

F

G

G

f

1

Linearization of order-2 schemes

Can we have the same linearization lemma as before?

Lemma
For any scheme in S2, there is a scheme in S2 with only useful
nonterminals generating the same tree.

H

φ x

⇒ f

φ

x

H

F H

G x

(H−→a means “argument i has arity recuded by ai)

Linearization of order-2 schemes

Can we have the same linearization lemma as before?

Lemma
For any scheme in S2, there is a scheme in S2 with only useful
nonterminals generating the same tree.

H

φ x

⇒ f

φ

x

H

F H

G x

(H−→a means “argument i has arity recuded by ai)

Linearization of order-2 schemes

Can we have the same linearization lemma as before?

Lemma
For any scheme in S2, there is a scheme in S2 with only useful
nonterminals generating the same tree.

H

φ x

⇒ f

φ

x

H

F H

G x

F : o→ o, G : o→ o
 F : o

(H−→a means “argument i has arity recuded by ai)

Linearization of order-2 schemes

Can we have the same linearization lemma as before?

Lemma
For any scheme in S2, there is a scheme in S2 with only useful
nonterminals generating the same tree.

H(1,0)

φ′ x

⇒ f

φ′ H(1,0)

F H(0,0)

G x

H(0,0)

φ x

⇒ f

φ

x

H(1,0)

F H(0,0)

G x

(H−→a means “argument i has arity recuded by ai)

Linearization

Nonterminals are separated into
I semiterminals : nonterminals rewriting into finite trees,
I ∞-nonterminals the other ones.

Lemma (linearization)
For any order-2 scheme S generating a comb, there is S′ with only
two ∞-nonterminals {S, R} such that Fr(S) = Fr(S′). Moreover,
their rewriting rules have exactly one occurence of R and none of S.

Linearization

Given the shape of the tree, we actually never have two
∞-nonterminals at the same time.

S⇒∗
F

...

G

t1
G

Linearization

Given the shape of the tree, we actually never have two
∞-nonterminals at the same time.

S⇒∗
F

...

G

t1
G
⇒∗

t1
G

...

G F′

t0
F′

or

G F′

Linearization

Given the shape of the tree, we actually never have two
∞-nonterminals at the same time.

S⇒∗
F

...

G

t1
G
⇒∗

t1
G

...

G F′

t0
F′

or

G F′

⇒∗

...

F′ G′

Term words

Alphabet Σ =
⋃n

i=0 Σi where Σ0 is called “letters”.

θ := ε | a ∈ Σ0 | f (θ, . . . , θ︸ ︷︷ ︸
i

), f ∈ Σi | θ · θ

We use variables from V = {z1, . . . } to define
Σ(z̄) = {f (z1, . . . , zk) | f ∈ Σk}.
Let τ, σ be two morphisms on Σ(z̄)∗ w.r.t. concatenation.

for f ∈ Σk and z1, . . . , zk ∈ V ,
τ(f (z1, . . . , zk)) ∈ TW(Σ ∪ {z1, . . . , zk})
σ(f (z1, . . . , zk)) ∈ TW(Σ0 ∪ {z1, . . . , zk})

= (Σ0 ∪ {z1, . . . , zk})∗

Term words

Alphabet Σ =
⋃n

i=0 Σi where Σ0 is called “letters”.

θ := ε | a ∈ Σ0 | f (θ, . . . , θ︸ ︷︷ ︸
i

), f ∈ Σi | θ · θ

We use variables from V = {z1, . . . } to define
Σ(z̄) = {f (z1, . . . , zk) | f ∈ Σk}.

Let τ, σ be two morphisms on Σ(z̄)∗ w.r.t. concatenation.

for f ∈ Σk and z1, . . . , zk ∈ V ,
τ(f (z1, . . . , zk)) ∈ TW(Σ ∪ {z1, . . . , zk})
σ(f (z1, . . . , zk)) ∈ TW(Σ0 ∪ {z1, . . . , zk})

= (Σ0 ∪ {z1, . . . , zk})∗

Term words

Alphabet Σ =
⋃n

i=0 Σi where Σ0 is called “letters”.

θ := ε | a ∈ Σ0 | f (θ, . . . , θ︸ ︷︷ ︸
i

), f ∈ Σi | θ · θ

We use variables from V = {z1, . . . } to define
Σ(z̄) = {f (z1, . . . , zk) | f ∈ Σk}.
Let τ, σ be two morphisms on Σ(z̄)∗ w.r.t. concatenation.

for f ∈ Σk and z1, . . . , zk ∈ V ,
τ(f (z1, . . . , zk)) ∈ TW(Σ ∪ {z1, . . . , zk})
σ(f (z1, . . . , zk)) ∈ TW(Σ0 ∪ {z1, . . . , zk})

= (Σ0 ∪ {z1, . . . , zk})∗

2-morphic words

This definition is extended on term words by

for f ∈ Σk
and t1, . . . , tk ∈ TW(Σ),

τ(f (t1, . . . , tk)) = τ(f (z1, . . . , zk))[∀i, zi := τ(ti)]
σ(f (t1, . . . , tk)) = σ(f (z1, . . . , zk))[∀i, zi := σ(ti)]

Let ∆ ∈ Σ0, words of the form σ(τω(∆)) are 2-morphic words.

Champernowne : 2-morphic words

Σ0 = {0, 1} and Σ1 = {g}.

τ(∆) = ∆g(0)g(1)
τ(g(z)) = g(z0)g(z1)

σ(∆) = 01
σ(g(z)) = 1z

In addition τ(1) = σ(1) = 1 and τ(0) = σ(0) = 0.

τ(∆) = ∆ g(0) g(1)

τ(2)(∆) = ∆ g(0) g(1) g(00) g(01) g(10) g(11)
σ(τ(2)(∆)) = 01 10 11 100 101 110 111

Champernowne : 2-morphic words

Σ0 = {0, 1} and Σ1 = {g}.

τ(∆) = ∆g(0)g(1)
τ(g(z)) = g(z0)g(z1)

σ(∆) = 01
σ(g(z)) = 1z

In addition τ(1) = σ(1) = 1 and τ(0) = σ(0) = 0.

τ(∆) = ∆ g(0) g(1)
τ(2)(∆) = ∆ g(0) g(1) g(00) g(01) g(10) g(11)

σ(τ(2)(∆)) = 01 10 11 100 101 110 111

Champernowne : 2-morphic words

Σ0 = {0, 1} and Σ1 = {g}.

τ(∆) = ∆g(0)g(1)
τ(g(z)) = g(z0)g(z1)

σ(∆) = 01
σ(g(z)) = 1z

In addition τ(1) = σ(1) = 1 and τ(0) = σ(0) = 0.

τ(∆) = ∆ g(0) g(1)
τ(2)(∆) = ∆ g(0) g(1) g(00) g(01) g(10) g(11)

σ(τ(2)(∆)) = 01 10 11 100 101 110 111

Final result

Theorem
The frontiers of combs generated by order-2 schemes are exactly
2-morphic words.

A safe scheme : in every rule F−→x ⇒ TF, and every subterm t of
TF, the order of t is lower of equal to any order of xi inside it.
The proof of the theorem translates words into safe schemes.

Moreover, by MSO properties of the pushdown hierarchy,
2-morphic words are also
I ω-frontiers of safe trees,
I paths generated by order-3 safe schemes.

What about unsafe ones?

Final result

Theorem
The frontiers of combs generated by order-2 schemes are exactly
2-morphic words.
A safe scheme : in every rule F−→x ⇒ TF, and every subterm t of
TF, the order of t is lower of equal to any order of xi inside it.
The proof of the theorem translates words into safe schemes.

Moreover, by MSO properties of the pushdown hierarchy,
2-morphic words are also
I ω-frontiers of safe trees,
I paths generated by order-3 safe schemes.

What about unsafe ones?

Final result

Theorem
The frontiers of combs generated by order-2 schemes are exactly
2-morphic words.
A safe scheme : in every rule F−→x ⇒ TF, and every subterm t of
TF, the order of t is lower of equal to any order of xi inside it.
The proof of the theorem translates words into safe schemes.

Moreover, by MSO properties of the pushdown hierarchy,
2-morphic words are also
I ω-frontiers of safe trees,
I paths generated by order-3 safe schemes.

What about unsafe ones?

Consequences

We apply properties of the pushdown hierarchy.

Corollary
For any 2-morphic word w,
I the MSO theory of w is decidable;
I for any MSO-transduction T , if T (w) is a word, it is a

2-morphic word.
I the sequence of indexes of a given letter in a morphic word is at

most O(22Cn
) for some C. The bound is tight.

Other example : characteristic word of (n!)n≥0, known as the
Liouville constant.

Conclusion and beyond

This construction builds a new class of graphs for order-2
schemes.
I What about higher orders? can we still linearize ?
I Connexion with classes Sk of [Fratani-Senizergues], or

k-automatic words by [Bárány] ?
I And beyond the pushdown/Caucal/scheme hierarchy?

the characteristic word of(
222...}

n
)

n≥0

has decidable MSO-theory [Thomas]

