Morphic words and recursion schemes

Laurent BRAUD

FREC meeting, LABRI

6 dec 2011

Context

Graphs and trees with decidable MSO-theory :
» pushdown/Caucal hierarchy
» recursion schemes : [Damm], and recently
[Knapik-Niwinski-Urzyczyn], [Ong]

> infinite words : ult. periodic, morphic [Carton-Thomas]

Context

Graphs and trees with decidable MSO-theory :
» pushdown/Caucal hierarchy
» recursion schemes : [Damm], and recently
[Knapik-Niwinski-Urzyczyn], [Ong]
> infinite words : ult. periodic, morphic [Carton-Thomas]
This talk :
1. relationship between order-1 schemes and morphic words
2. extension to order 2

Recursion schemes : first order
Term grammar with
» terminals T = {a,b,f,g...},
» nonterminals N = {S,F,G...},
» a specific starting nonterminal S

» one rewriting rule per nonterminal, using variables
X ={xy...}.
Every symbol « has fixed arity p(«).

Recursion schemes : first order
Term grammar with

terminals T = {a,b,f,g...},

» nonterminals N = {S,F,G...},

a specific starting nonterminal S

v

v

v

one rewriting rule per nonterminal, using variables
X ={xy...}.
Every symbol « has fixed arity p(«).

T=1{fga} F = f
N = {S,F} | I
X F X F
|
: !
S = F |
\ X

Recursion schemes : first order

S = F F = f
\ \ AN
a X F X F
\
$ |
!

A scheme builds a (possibly) infinite tree of terminals.

S = F

a

Recursion schemes : first order

s = F F =

\ RN

a x F X F

\
s

X

A scheme builds a (possibly) infinite tree of terminals.

S =2 f
/u\F

a

8 — 0Q— "

Recursion schemes : first order

s = F F =

\ RN

a x F X F

\
s

X

A scheme builds a (possibly) infinite tree of terminals.

AN,
SN

a

S =3

a—0g—

Q—0Q—0q—M
Q—0Q — "

Recursion schemes : first order

s = F F =

\ RN

a x F X F

\
s

X

A scheme builds a (possibly) infinite tree of terminals.

AN,
SN

a

S =3 = ...

a—0g—

Q—0Q—0q—M
Q—0Q — "

Recursion schemes : first order

s = F F =

s =3 f f
IS I

I N B D N

I /NI

& a & P& a8

L

Frontiers of limit trees

We are interested in infinite words that appear in schemes.

F F .
s = | =/ f.
a X x / F
b \
/f\
X X
f\f
[[S]]: a/ \f\
b/ f
/f\b
a a

Frontiers of limit trees

We are interested in infinite words that appear in schemes.

F F .
s = | =/ f.
a X x / F
b \
/f\
X X
f\f
[[S]]: u/ \f\
b/ f
/f\b
a a

Fr([S]) = abaab .. a%b...

Frontiers of limit trees

Let T be an infinite term and let the frontier Fr(T) be the colored
order of leaves in left-right order.

Frontiers of limit trees

Let T be an infinite term and let the frontier Fr(T) be the colored
order of leaves in left-right order.

The w-frontier w-Fr(T) is the initial part of Fr(T) of type w,
when it exists.

Frontiers of limit trees

Let T be an infinite term and let the frontier Fr(T) be the colored
order of leaves in left-right order.

The w-frontier w-Fr(T) is the initial part of Fr(T) of type w,
when it exists.

Proposition

For any tree generated by an order-1 scheme, there is a tree generated
by a order-1 scheme where the rightmost branch is the only infinite
branch, and with the same w-frontier.

The trees with one infinite rightmost branch are called combs.

Morphic words

Y is an alphabet. A morphism T on X* is such that

T(ab) = t(a)T(b).

Morphic words

Y is an alphabet. A morphism T on X* is such that
T(ab) = t(a)T(b).

Let T be a morphism on X* s.t. there is a € X with 7(a) € aX.

T(a) = au

2(a) = aut(u)
@) = aut(u)t®(u)
() = aut(u)...

Words o (1% (a)) are morphic words, where ¢ is another
morphism.

Morphic words : example

(a)
(b)

(e)

|
S

(ayl

Morphic words : example

T(a) = abcc
() = b
T(c) = cc

(ayl

Morphic words : example

T(a) = abcc

() = b

T(c) = cc
(a)

o(a)

o(b)

o(c)
abce
abcecbecce

(ayl

Morphic words : example

T(a) = abcc
() = b
T(c) = cc
T(a) =
2(a) =

abce
abcecbecce

[N

abeeb ... 2b. ..

Morphic words : example

T(a) = abcc

T(b) = b

T(c) = cc
T(a) =
2(a) =

ﬂ

g

—
AN

~—
i1l

[N

abce
abcecbecce

abecb . . .c2ivb ...
abaab . ..a%b. ..

First result

Theorem
w-frontiers of limit trees of (order-1) recursion schemes are exactly
morphic words.

First result

Theorem

w-frontiers of limit trees of (order-1) recursion schemes are exactly
morphic words.

A nonterminal F has a useless parameter index i when x; does
not appear in [F 4

Lemma (usefulness)

For any order-1 scheme, there is an order-1 scheme generating the
same tree and where every nonterminal has only useful parameters.

First result

Theorem
w-frontiers of limit trees of (order-1) recursion schemes are exactly
morphic words.

A nonterminal F has a useless parameter index i when x; does
not appear in [F 4
Lemma (usefulness)

For any order-1 scheme, there is an order-1 scheme generating the
same tree and where every nonterminal has only useful parameters.

Lemma (linearization)

For any order-1 scheme & generating a comb, there is &' with only
two nonterminals {S, R} such that Fr(&) = Fr(&'). Moreover, each
rewriting rule has exactly one occurence of R and none of S.

Proof sketch

Proof sketch

AA B 42
» Letters: {c € T | p(c) =0} U{x,y, A}

» 7(c) =cforallc €T,
» Aistheroot: T(A) = Au

Proof sketch

» Letters: {c € T | p(c) =0} U{x,y, A}
» T(c) =cforallc e T,
» Aistheroot: T(A) = Au

Proof sketch

e —
/ N
S =
VAN
S, =
N
=
L—=
L—
~—
=
f <
<
» 2
m\w
—
)
=
V)
—

=
Aﬂbm

w IO T

AN NN
SRS

A N— N

TE5EE

Towards next-order morphic words

Can we expect to

> increase subword complexity?

Theorem (Allouche-Shallit)
The number of words of length n in a morphic word is at most O (n?).

» increase growth rate?

Theorem (Carton-Thomas)

The sequence of indexes of a given letter in a morphic word is at most
O(k") for some k.

Recursion schemes : next order

Instead of simply arity, symbols have fixed type (starting with a
base type o :

» terminals T = {a,b,f,g... },

» nonterminals N = {S,F,G...},

» a specific starting nonterminal S

» rewriting rules for each nonterminal, using variables

X ={xy ¢ ...}

Recursion schemes : next order

Instead of simply arity, symbols have fixed type (starting with a
base type o :

v

terminals T = {a,b,f,g... },

» nonterminals N = {S,F,G...},

> a specific starting nonterminal S

» rewriting rules for each nonterminal, using variables

X ={xy ¢ ...}
AT
¢ x F
/ N\
l‘: X
¢
X : o F : (0—~0)—0—0

¢ : o—o0

Recursion schemes : next order

Instead of simply arity, symbols have fixed type (starting with a
base type o :

v

terminals T = {a,b,f,g... },

» nonterminals N = {S,F,G...},

> a specific starting nonterminal S

» rewriting rules for each nonterminal, using variables

X ={xy ¢ ...}
AT
¢ x F
/ N\
F‘ X
¢
X : o F : (0—~0)—0—0

¢ : o—o Fp : o—o

Champernowne

The Champernowne’s constant is simply the concatenation of

numbers.
012345677891011. ..

011011100101110...

Champernowne : scheme approach

/\ /G\ /N
f ¢ ¢ ¢

Champernowne : scheme approach

G
SN AT T TN
o f ¢ x ¢ ¢ ¢ f F
/' \ | | /N |
! f /f\ /f\ T T?
f X 0 X 1 0o 1¢
i
2
s & f
/ N\
0o f
/ \
1 _f

—_
N
~
[e]
H\
—
~
—_
_—"—0Q0—T

Champernowne : scheme approach

S G F =
:>/f\ /\:/\ | /f\
o f $ x ¢ [¢ f F
/' N\ I I /N
! T /f\ /f\ | 4\7?
f XYoo X 1 0 1¢
i
3
—
s = f
/ N\
o f
/ N\

f/\f /\
VANV /\
1 01 1

/\ /\

f f

——m—0—0—m

Champernowne : scheme approach

S G F =
:>/f\ /\:>/\ | /f\
o f $ x ¢ [¢ f F
/' N\ I I /N
! f /f\ /f\ | 4\7?
f XYoo X 1 0 1¢
i
5
—
s = f
/ N\
o f
/ N\

011011 1

Linearization of order-2 schemes

Can we have the same linearization lemma as before?

Linearization of order-2 schemes

Can we have the same linearization lemma as before?

Lemma
For any scheme in Sy, there is a scheme in S, with only useful
nonterminals generating the same tree.

/H\:/f\
¢ x ¢ H
/N

x F H

/\

G X

Linearization of order-2 schemes

Can we have the same linearization lemma as before?

Lemma
For any scheme in Sy, there is a scheme in S, with only useful
nonterminals generating the same tree.

/H\ = /f\ F:0—-0, G:o—o0
¢ N ¢ u ~F:o0
/N
x F H
/\
G X

Linearization of order-2 schemes

Can we have the same linearization lemma as before?

Lemma
For any scheme in Sy, there is a scheme in S, with only useful
nonterminals generating the same tree.

Haoy = f Hopop = f
N /N / N\ /N
¢' x ¢ Hap ¢ x ¢ Hap
/ N\ |/
F Hpop) x F Hqyp
/ N\ /\
G X G X

(H means “argument i has arity recuded by 4;)

Linearization

Nonterminals are separated into
» semiterminals : nonterminals rewriting into finite trees,

> co-nonterminals the other ones.

Lemma (linearization)

For any order-2 scheme & generating a comb, there is &' with only
two oo-nonterminals {S, R} such that Fr(&) = Fr(&'). Moreover,
their rewriting rules have exactly one occurence of R and none of S.

Linearization

Given the shape of the tree, we actually never have two
co-nonterminals at the same time.

Linearization

Given the shape of the tree, we actually never have two
co-nonterminals at the same time.

S =*

Linearization

Given the shape of the tree, we actually never have two
co-nonterminals at the same time.

S =*

Term words

Alphabet X = (JI_, X; where X is called “letters”.

O:=elacXy|f(0,...,0),fcX|0-0

Term words

Alphabet X = (JI_, X; where X is called “letters”.
0 := eEX € |0-0
elaeXolf(E, ‘ 0).f € i
1

We use variables from V = {z1, ... } to define

Z(Z) = {f(Zl,...,Zk) ‘f € Zk}.

Term words

Alphabet X = (JI_, X; where X is called “letters”.

0 .= eX € |6-0
elaeXo|f(b,. ‘ ,0),f |

We use variables from V = {zj, ... } to define

Z(Z) = {f(Zl,...,Zk) ‘f € Zk}.

Let 7, 0 be two morphisms on %(Z)* w.r.t. concatenation.

forf € Yyand zy,...,zt €V,
T(f(Zl,...,Zk)) € TW(ZU{Z],...,Z](})
o(f(z1,...,z)) € TW(EoU{z1,...,2z})
= (ZO U {le~ . '/‘Zl<})>~<

2-morphic words

This definition is extended on term words by

for f € X
and ty,...,f € TW(Z),

T(f(t, ... k) = T(f(z1,...,2k))[Vi zi =
0-<f(t1l"'/tk)> = U(f 21, - - lzk) [Vi,Zi =

T(t;)]
o(t)]

Let A € Xy, words of the form ¢ (7% (A)) are 2-morphic words.

Champernowne : 2-morphic words

Yo ={0,1} and X1 = {g}.

T(A) = Ag(0)g(1)
T(8(2)) = g(20)g(21)

o(A) = 01
r(gz) = 1z

In addition 7(1) = ¢(1) = 1 and 7(0) = ¢(0) = 0.

Champernowne : 2-morphic words

Yo ={0,1} and X1 = {g}.

T(A) = Ag(0)g(1)
T(8(2)) = g(20)g(21)

o(A) = 01
r(gz) = 1z

In addition 7(1) = ¢(1) = 1 and 7(0) = ¢(0) = 0.

T(A)
72 (A)

A g(0) g(1) g(00) g(01) g(10) g(11)

Champernowne : 2-morphic words

Yo ={0,1} and X1 = {g}.

Ag(0)g(1)
g(20)g(z1)
01
1z

In addition 7(1) = ¢(1) = 1 and 7(0) = ¢(0) = 0.

g
g(0) g(1) g(00) g(01) g(10) g(11)
o1 10 11 100 101 110 111

=
I

Final result

Theorem
The frontiers of combs generated by order-2 schemes are exactly
2-morphic words.

Final result

Theorem

The frontiers of combs generated by order-2 schemes are exactly
2-morphic words.

A safe scheme : in every rule F Y = Tr, and every subterm t of
Tr, the order of t is lower of equal to any order of x; inside it.
The proof of the theorem translates words into safe schemes.

Final result

Theorem
The frontiers of combs generated by order-2 schemes are exactly
2-morphic words.

A safe scheme : in every rule F Y = Tr, and every subterm t of
Tr, the order of t is lower of equal to any order of x; inside it.
The proof of the theorem translates words into safe schemes.

Moreover, by MSO properties of the pushdown hierarchy,
2-morphic words are also

» w-frontiers of safe trees,

» paths generated by order-3 safe schemes.
What about unsafe ones?

Consequences

We apply properties of the pushdown hierarchy.
Corollary

For any 2-morphic word w,
> the MSO theory of w is decidable;

> for any MSO-transduction T, if T (w) is a word, it is a
2-morphic word.

> the sequence of indexes of a given letter in a morphic word is at
most O (22" for some C. The bound is tight.

Other example : characteristic word of (n!),>0, known as the
Liouville constant.

Conclusion and beyond

This construction builds a new class of graphs for order-2
schemes.

» What about higher orders? can we still linearize ?

» Connexion with classes Sy of [Fratani-Senizergues], or
k-automatic words by [Bérany] ?

» And beyond the pushdown/Caucal/scheme hierarchy?
the characteristic word of

).

has decidable MSO-theory [Thomas]

