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Context

Graphs and trees with decidable MSO-theory :
I pushdown/Caucal hierarchy
I recursion schemes : [Damm], and recently

[Knapik-Niwiński-Urzyczyn], [Ong]
I infinite words : ult. periodic, morphic [Carton-Thomas]

This talk :
1. relationship between order-1 schemes and morphic words
2. extension to order 2



Context

Graphs and trees with decidable MSO-theory :
I pushdown/Caucal hierarchy
I recursion schemes : [Damm], and recently
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Recursion schemes : first order
Term grammar with
I terminals T = {a, b, f , g . . . },
I nonterminals N = {S, F, G . . . },
I a specific starting nonterminal S
I one rewriting rule per nonterminal, using variables
X = {x, y . . . }.

Every symbol α has fixed arity ρ(α).

T = {f , g, a}
N = {S, F}

S =⇒ F

a

F

x

=⇒ f

F

g

x

x F

x

Here ρ(f ) = 3, ρ(F) = ρ(g) = 1, ρ(a) = 0.
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Frontiers of limit trees

We are interested in infinite words that appear in schemes.

S =⇒
F

a
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f
b ...

Fr(JSK) = abaab . . . a2i
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Frontiers of limit trees

Let T be an infinite term and let the frontier Fr(T) be the colored
order of leaves in left-right order.

The ω-frontier ω-Fr(T) is the initial part of Fr(T) of type ω,
when it exists.

Proposition
For any tree generated by an order-1 scheme, there is a tree generated
by a order-1 scheme where the rightmost branch is the only infinite
branch, and with the same ω-frontier.
The trees with one infinite rightmost branch are called combs.
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Morphic words

Σ is an alphabet. A morphism τ on Σ∗ is such that

τ(ab) = τ(a)τ(b).

Let τ be a morphism on Σ∗ s.t. there is a ∈ Σ with τ(a) ∈ aΣ.

τ(a) = au
τ2(a) = auτ(u)
τ3(a) = auτ(u)τ2(u)

. . .
τω(a) = auτ(u) . . .

Words σ(τω(a)) are morphic words, where σ is another
morphism.
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Morphic words : example
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τ(b) = b σ(b) = b
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First result

Theorem
ω-frontiers of limit trees of (order-1) recursion schemes are exactly
morphic words.

A nonterminal F has a useless parameter index i when xi does
not appear in JF−→x K.

Lemma (usefulness)
For any order-1 scheme, there is an order-1 scheme generating the
same tree and where every nonterminal has only useful parameters.

Lemma (linearization)
For any order-1 scheme S generating a comb, there is S′ with only
two nonterminals {S, R} such that Fr(S) = Fr(S′). Moreover, each
rewriting rule has exactly one occurence of R and none of S.
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Proof sketch

S ⇒
F

F

x y

⇒
F

σ(∆)

σ(x) σ(y)

u

τ(x) τ(y)

I Letters : {c ∈ T | ρ(c) = 0} ∪ {x, y, ∆}
I τ(c) = c for all c ∈ T,
I ∆ is the root : τ(∆) = ∆u
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Towards next-order morphic words

Can we expect to
I increase subword complexity?

Theorem (Allouche-Shallit)
The number of words of length n in a morphic word is at most O(n2).
I increase growth rate?

Theorem (Carton-Thomas)
The sequence of indexes of a given letter in a morphic word is at most
O(kn) for some k.



Recursion schemes : next order
Instead of simply arity, symbols have fixed type (starting with a
base type o :
I terminals T = {a, b, f , g . . . },
I nonterminals N = {S, F, G . . . },
I a specific starting nonterminal S
I rewriting rules for each nonterminal, using variables
X = {x, y, φ, ψ . . . }.

F

φ x

⇒ φ
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x

x : o F : (o→ o)→ o→ o
φ : o→ o Fφ : o→ o
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Champernowne

The Champernowne’s constant is simply the concatenation of
numbers.

012345677891011 . . .
011011100101110 . . .



Champernowne : scheme approach
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Linearization of order-2 schemes

Can we have the same linearization lemma as before?

Lemma
For any scheme in S2, there is a scheme in S2 with only useful
nonterminals generating the same tree.

H

φ x

⇒ f

φ

x

H

F H

G x

(H−→a means “argument i has arity recuded by ai)
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Linearization of order-2 schemes

Can we have the same linearization lemma as before?

Lemma
For any scheme in S2, there is a scheme in S2 with only useful
nonterminals generating the same tree.
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Linearization

Nonterminals are separated into
I semiterminals : nonterminals rewriting into finite trees,
I ∞-nonterminals the other ones.

Lemma (linearization)
For any order-2 scheme S generating a comb, there is S′ with only
two ∞-nonterminals {S, R} such that Fr(S) = Fr(S′). Moreover,
their rewriting rules have exactly one occurence of R and none of S.



Linearization

Given the shape of the tree, we actually never have two
∞-nonterminals at the same time.

S⇒∗
F

...

G

t1
G
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Term words

Alphabet Σ =
⋃n

i=0 Σi where Σ0 is called “letters”.

θ := ε | a ∈ Σ0 | f (θ, . . . , θ︸ ︷︷ ︸
i

), f ∈ Σi | θ · θ

We use variables from V = {z1, . . . } to define
Σ(z̄) = {f (z1, . . . , zk) | f ∈ Σk}.
Let τ, σ be two morphisms on Σ(z̄)∗ w.r.t. concatenation.

for f ∈ Σk and z1, . . . , zk ∈ V ,
τ(f (z1, . . . , zk)) ∈ TW(Σ ∪ {z1, . . . , zk})
σ(f (z1, . . . , zk)) ∈ TW(Σ0 ∪ {z1, . . . , zk})

= (Σ0 ∪ {z1, . . . , zk})∗
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2-morphic words

This definition is extended on term words by

for f ∈ Σk
and t1, . . . , tk ∈ TW(Σ),

τ(f (t1, . . . , tk)) = τ(f (z1, . . . , zk))[∀i, zi := τ(ti)]
σ(f (t1, . . . , tk)) = σ(f (z1, . . . , zk))[∀i, zi := σ(ti)]

Let ∆ ∈ Σ0, words of the form σ(τω(∆)) are 2-morphic words.



Champernowne : 2-morphic words

Σ0 = {0, 1} and Σ1 = {g}.

τ(∆) = ∆g(0)g(1)
τ(g(z)) = g(z0)g(z1)

σ(∆) = 01
σ(g(z)) = 1z

In addition τ(1) = σ(1) = 1 and τ(0) = σ(0) = 0.

τ(∆) = ∆ g(0) g(1)

τ(2)(∆) = ∆ g(0) g(1) g(00) g(01) g(10) g(11)
σ(τ(2)(∆)) = 01 10 11 100 101 110 111
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Final result

Theorem
The frontiers of combs generated by order-2 schemes are exactly
2-morphic words.

A safe scheme : in every rule F−→x ⇒ TF, and every subterm t of
TF, the order of t is lower of equal to any order of xi inside it.
The proof of the theorem translates words into safe schemes.

Moreover, by MSO properties of the pushdown hierarchy,
2-morphic words are also
I ω-frontiers of safe trees,
I paths generated by order-3 safe schemes.

What about unsafe ones?
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Consequences

We apply properties of the pushdown hierarchy.

Corollary
For any 2-morphic word w,
I the MSO theory of w is decidable;
I for any MSO-transduction T , if T (w) is a word, it is a

2-morphic word.
I the sequence of indexes of a given letter in a morphic word is at

most O(22Cn
) for some C. The bound is tight.

Other example : characteristic word of (n!)n≥0, known as the
Liouville constant.



Conclusion and beyond

This construction builds a new class of graphs for order-2
schemes.
I What about higher orders? can we still linearize ?
I Connexion with classes Sk of [Fratani-Senizergues], or

k-automatic words by [Bárány] ?
I And beyond the pushdown/Caucal/scheme hierarchy?

the characteristic word of(
222...}

n
)

n≥0

has decidable MSO-theory [Thomas]


