Coq: What, Why, How?

Who: Yves Bertot

When: July 2012

- What is Coq?
- A programming language
- A proof development tool
- Why do we use Coq?
- To develop software without errors (CompCert)
- To develop mathematical proofs (Four Colors Theorem)
- To use the computer to verify that all details are right
- How does one use Coq?
- Describe four components : the data, the operations, the properties, the proofs
- The topic of this week-long course.

Describing the data

- Case-based
- show all possible cases for the data
- a finite number of different cases (bool,disjoint sum)
- Structured
- each case has all the components needed in the data (product)
- Sometimes recursive
- recognize repetition to tame infinite datatypes (list)
- Theoretical foundation : algebraic datatypes, term algebras, cartesian products, disjoint sums, least and greatest fixed points

Describing the operations

- Functional programming : each operation is described as a function
- Map inputs to outputs, do not modify
- Programmation guided by the cases from data-types
- Avoid undefined values
- all cases must be covered
- Computation must be guaranteed to terminate
- safer programming

Describing the properties

- A predefined language for logic : and, or, forall, exists
- Possibility to express consistency between several functions
- example whenever $f(x)$ is true, $g(x)$ is a prime number
- A general scheme to define new predicates: inductive predicates
- example the set of even numbers is the least set E so that $0 \in E$ and $x \in E \Rightarrow x+2 \in E$
- foundation : least fixed points

Proving properties of programs

- First state an objective, then use logical steps to make it simpler
- Goal oriented approach, backward reasoning
- Consider a goal $P(a)$,
- Suppose there is a theorem $\forall x, Q(x) \wedge R(x) \Rightarrow P(x)$
- By choosing to apply this theorem, get two new goals: $Q(a)$ and $R(a)$
- The system makes sure no condition is overlooked
- A collection for tools specialized for a variety of situations
- Handle equalities (rewriting), induction, numeric computation, function definitions, etc...

A commented example on sorting : the data

Inductive listZ : Type :=
nilZ | consZ (hd : Z) (tl : listZ).

Notation "hd :: tl" := (consZ hd tl).

The operations

```
Fixpoint insert (x : Z) (l : listZ) :=
    match l with
    | nilZ => x::nilZ
    | hd::tl =>
        if Zle_bool x hd then x::l else hd::insert x tl
end.
```

Fixpoint sort 1 :=
match 1 with
| nilZ => nilZ
| hd::tl => insert hd (sort tl)
end.

The properties

- Have a property sorted to express that a list is sorted
- Have a property permutation 1112

Definition permutation 11 12 := forall x , count x l1 = count x 12 .

- assuming the existence of a function count

Proving the properties

Two categories of statements :

- General theory about the properties (statements that do not mention the algorithm being proved)
- $\forall x$ y l, sorted (x::y::l) $\Rightarrow \mathrm{x} \leq \mathrm{y}$
- transitive(permutation)
- Specific theory about the properties being proved
- $\forall \mathrm{x}$ l, sorted $1 \Rightarrow \operatorname{sorted}($ insert x 1$)$
- $\forall \mathrm{x}$ l, permutation (x::1) (insert x l)

First steps in Coq

First steps in Coq

Write a comment "open parenthesis-star", "star-close parenthesis"
(* This is a comment *)
Give a name to an expression
Definition three := 3 .
three is defined
Verify that an expression is well-formed
Check three.
three : nat
Compute a value
Compute three.
= 3 : nat

Defining functions

Expressions that depend on a variable
Definition add3 (x : nat) := x + 3 . add3 is defined

The type of values

The command Check is used to verify that an expression is well-formed

- It returns the type of this expression
- The type says in which context the expression can be used

Check $2+3$.
$2+3$: nat

Check 3.
3 : nat

Check $(2+3)+3$.
$(2+3)+3: n a t$

The type of functions

The value add3 is not a natural number
Check add3.
add3 : nat -> nat
The value add3 is a function

- It expects a natural number as input
- It outputs a natural number

Check add3 + 3.
Error the term "add3" has type "nat -> nat" while it is expected to have type "nat"

Applying functions

Function application is written only by juxtaposition

- Parentheses are not mandatory

Check add3 2.
add3 2 : nat

Compute add3 2.
= 5 : nat

Check add3 (add3 2).
add3 (add3 2) : nat

Compute add3 (add3 2).
$=8: n a t$

Functions with several arguments

At definition time, just use several variables
Definition s3 (x y z : nat) := x + y + z. s3 is defined
Check s3.
s3 : nat -> nat -> nat -> nat
Function with one argument that return a function.
Check s3 2.
s3 2 : nat -> nat -> nat
Check s3 21.
s3 21 : nat -> nat

Anonymous functions

Functions can be built without a name
Construct well-formed expressions containing a variable, with a header

Check fun (x : nat) => x + 3.
fun x : nat => $x+3$: nat -> nat
This is called an abstraction
The new expression is a function, usable like add3 or s3 21

Functions are values

- The value add3 2 is a natural number,
- The value s3 2 is a function,
- The value s3 21 is a function, like add3

Compute s3 21.

$$
=\text { fun } z: n a t=>S(S(S z)): n a t->n a t
$$

Function arguments

- Functions can also expect functions as argument (higher order)

Definition rep2 (f : nat -> nat) (x : nat) := f (f x). rep2 is defined

Check rep2.
rep2 : (nat -> nat) -> nat -> nat

Definition rep2on3 (f : nat -> nat) := rep2 f 3.

Check rep2on3.
rep2on3 : (nat -> nat) -> nat

Programming by cases

- Datatypes are described by giving disjoint cases
- A single case can group several components
- When defining a function, all cases must be covered pattern-matching construct
- match ... with

Case1 => ... | Case2 a b => ... | ... end

- For example the data-type of lists
- Two cases : empty list (called nil) or object with two components (called cons, notation a :: l')

Example datatype : lists

Print list.
Inductive list (A : Type) : Type := nil : list A | cons : A -> list A -> list A
(* Example function that adds the first two elements of a l Definition addf2 (l : list nat) : nat :=
match 1 with
| nil => 0
| a::nil => a
| $a:: b:: 1$ => a + b
end.

Recursion on lists

Three kinds of recursive functions in Coq, all restricted We have time to see only the first kind

- Keyword : Fixpoint
- Recursive call must occur on sub-lists
- Easiest way to recognize sublists : variables from pattern-matching
- Already seen with the sorting example
- Avoid non-terminating computation

Example recursion

```
Fixpoint dl (l : list nat) (n : nat) : list nat :=
    match 1 with
        nil \(=>\) nil
    | a::l' \(\Rightarrow\) n * a : : dl l' \((\mathrm{n}+1)\)
    end.
```


A few datatypes

- An introduction to some of the pre-defined parts of Coq
- Grouping objects together: tuples
- Natural numbers and the basic operations
- Boolean values and the basic tests on numbers

Putting data together

- Grouping several pieces of data : tuples,
- fetching individual components : pattern-matching,

Check $(3,4)$.
(3, 4) : nat * nat
Check

$$
\text { fun } \mathrm{v} \text { : nat * nat }=>
$$

match v with (x, y) => $x+y$ end.
fun v : nat * nat \Rightarrow let $(x, y):=v$ in $x+y$
: nat * nat -> nat

Numbers

As in programming languages, several types to represent numbers

- natural numbers (non-negative), relative integers, more efficient reprentations
- Need to load the corresponding libraries
- Same notations for several types of numbers : need to choose a scope
- By default : natural numbers
- Good properties to learn about proofs
- Not adapted for efficient computation

Focus on natural numbers

Require Import Arith. Open Scope nat_scope.

Check 3.
3 : nat

Check S.
S : nat -> nat

Check S 3.
4 : nat
Check 3 * 3.
3 * 3 : nat

Recursion on natural numbers

- natural numbers are either 0 or the successor of another
- Two cases for programming, recursion on the only component

Print nat.
Inductive nat : Set := 0 : nat | S : nat -> nat
Fixpoint mult2 (n : nat) : nat :=
match n with $0=>0 \mid S p$ S (S (mult2 p)) end.
Compute mult2 3.
= 6 : nat

Boolean values

- Values true and false
- Usable in if .. then . . else .. statements
- comparison function provided for numbers
- To find them : use the command Search bool
- Or Search (nat -> nat -> bool)

