
Coq: What, Why, How?

Coq: What, Why, How?

Who: Yves Bertot

When: July 2012

Coq: What, Why, How?

I What is Coq ?
I A programming language
I A proof development tool

I Why do we use Coq ?
I To develop software without errors (CompCert)
I To develop mathematical proofs (Four Colors Theorem)
I To use the computer to verify that all details are right

I How does one use Coq ?
I Describe four components : the data, the operations, the

properties, the proofs
I The topic of this week-long course.

Coq: What, Why, How?

Describing the data

Describing the data

I Case-based
I show all possible cases for the data
I a finite number of different cases (bool,disjoint sum)

I Structured
I each case has all the components needed in the data

(product)
I Sometimes recursive

I recognize repetition to tame infinite datatypes (list)

I Theoretical foundation : algebraic datatypes, term algebras,
cartesian products, disjoint sums, least and greatest fixed
points

Coq: What, Why, How?

Describing the operations

Describing the operations

I Functional programming : each operation is described as a
function

I Map inputs to outputs, do not modify
I Programmation guided by the cases from data-types
I Avoid undefined values

I all cases must be covered
I Computation must be guaranteed to terminate

I safer programming

Coq: What, Why, How?

Describing the properties

Describing the properties

I A predefined language for logic : and, or, forall, exists
I Possibility to express consistency between several functions

I example whenever f (x) is true, g(x) is a prime number
I A general scheme to define new predicates : inductive

predicates
I example the set of even numbers is the least set E so that

0 ∈ E and x ∈ E ⇒ x + 2 ∈ E
I foundation : least fixed points

Coq: What, Why, How?

Proving properties of programs

Proving properties of programs

I First state an objective, then use logical steps to make it
simpler

I Goal oriented approach, backward reasoning

I Consider a goal P(a),
I Suppose there is a theorem ∀x ,Q(x) ∧ R(x)⇒ P(x)
I By choosing to apply this theorem, get two new goals : Q(a)

and R(a)
I The system makes sure no condition is overlooked
I A collection for tools specialized for a variety of situations
I Handle equalities (rewriting), induction, numeric computation,

function definitions, etc...

Coq: What, Why, How?

A commented example on sorting

A commented example on sorting : the data

Inductive listZ : Type :=
nilZ | consZ (hd : Z) (tl : listZ).

Notation "hd :: tl" := (consZ hd tl).

Coq: What, Why, How?

A commented example on sorting

The operations

Fixpoint insert (x : Z) (l : listZ) :=
match l with
| nilZ => x::nilZ
| hd::tl =>

if Zle_bool x hd then x::l else hd::insert x tl
end.

Fixpoint sort l :=
match l with
| nilZ => nilZ
| hd::tl => insert hd (sort tl)
end.

Coq: What, Why, How?

A commented example on sorting

The properties

I Have a property sorted to express that a list is sorted
I Have a property permutation l1 l2

Definition permutation l1 l2 :=
forall x, count x l1 = count x l2.

I assuming the existence of a function count

Coq: What, Why, How?

A commented example on sorting

Proving the properties

Two categories of statements :
I General theory about the properties (statements that do not

mention the algorithm being proved)
I ∀x y l, sorted (x::y::l) ⇒ x ≤ y
I transitive(permutation)

I Specific theory about the properties being proved
I ∀x l, sorted l ⇒ sorted(insert x l)
I ∀x l, permutation (x::l) (insert x l)

Coq: What, Why, How?

First steps in Coq

First steps in Coq

Coq: What, Why, How?

First steps in Coq

First steps in Coq
Write a comment “open parenthesis-star”, “star-close parenthesis”

(* This is a comment *)

Give a name to an expression

Definition three := 3.
three is defined

Verify that an expression is well-formed

Check three.
three : nat

Compute a value

Compute three.
= 3 : nat

Coq: What, Why, How?

First steps in Coq

Defining functions

Expressions that depend on a variable

Definition add3 (x : nat) := x + 3.
add3 is defined

Coq: What, Why, How?

First steps in Coq

The type of values

The command Check is used to verify that an expression is
well-formed

I It returns the type of this expression
I The type says in which context the expression can be used

Check 2 + 3.
2 + 3 : nat

Check 3.
3 : nat

Check (2 + 3) + 3.
(2 + 3) + 3 : nat

Coq: What, Why, How?

First steps in Coq

The type of functions

The value add3 is not a natural number

Check add3.
add3 : nat -> nat

The value add3 is a function
I It expects a natural number as input
I It outputs a natural number

Check add3 + 3.
Error the term "add3" has type "nat -> nat"
while it is expected to have type "nat"

Coq: What, Why, How?

First steps in Coq

Applying functions
Function application is written only by juxtaposition

I Parentheses are not mandatory

Check add3 2.
add3 2 : nat

Compute add3 2.
= 5 : nat

Check add3 (add3 2).
add3 (add3 2) : nat

Compute add3 (add3 2).
= 8 : nat

Coq: What, Why, How?

First steps in Coq

Functions with several arguments

At definition time, just use several variables

Definition s3 (x y z : nat) := x + y + z.
s3 is defined
Check s3.
s3 : nat -> nat -> nat -> nat

Function with one argument that return a function.

Check s3 2.
s3 2 : nat -> nat -> nat
Check s3 2 1.
s3 2 1 : nat -> nat

Coq: What, Why, How?

First steps in Coq

Anonymous functions

Functions can be built without a name
Construct well-formed expressions containing a variable, with a
header

Check fun (x : nat) => x + 3.
fun x : nat => x + 3 : nat -> nat

This is called an abstraction
The new expression is a function, usable like add3 or s3 2 1

Coq: What, Why, How?

First steps in Coq

Functions are values

I The value add3 2 is a natural number,
I The value s3 2 is a function,
I The value s3 2 1 is a function, like add3

Compute s3 2 1.
= fun z : nat => S (S (S z)) : nat -> nat

Coq: What, Why, How?

First steps in Coq

Function arguments

I Functions can also expect functions as argument (higher order)

Definition rep2 (f : nat -> nat) (x : nat) := f (f x).
rep2 is defined

Check rep2.
rep2 : (nat -> nat) -> nat -> nat

Definition rep2on3 (f : nat -> nat) := rep2 f 3.

Check rep2on3.
rep2on3 : (nat -> nat) -> nat

Coq: What, Why, How?

First steps in Coq

Programming by cases

I Datatypes are described by giving disjoint cases
I A single case can group several components
I When defining a function, all cases must be covered

pattern-matching construct
I match ... with

Case1 => ... | Case2 a b => ... | ...
end

I For example the data-type of lists
I Two cases : empty list (called nil) or object with two

components (called cons, notation a :: l’)

Coq: What, Why, How?

First steps in Coq

Example datatype : lists

Print list.
Inductive list (A : Type) : Type :=

nil : list A | cons : A -> list A -> list A

(* Example function that adds the first two elements of a list. *)
Definition addf2 (l : list nat) : nat :=

match l with
| nil => 0
| a::nil => a
| a::b::l’ => a + b
end.

Coq: What, Why, How?

First steps in Coq

Recursion on lists

Three kinds of recursive functions in Coq, all restricted
We have time to see only the first kind

I Keyword : Fixpoint
I Recursive call must occur on sub-lists
I Easiest way to recognize sublists : variables from

pattern-matching
I Already seen with the sorting example
I Avoid non-terminating computation

Coq: What, Why, How?

First steps in Coq

Example recursion

Fixpoint dl (l : list nat) (n : nat) : list nat :=
match l with

nil => nil
| a::l’ => n * a :: dl l’ (n + 1)
end.

Coq: What, Why, How?

Defined datatypes and notations

A few datatypes

I An introduction to some of the pre-defined parts of Coq
I Grouping objects together : tuples
I Natural numbers and the basic operations
I Boolean values and the basic tests on numbers

Coq: What, Why, How?

Defined datatypes and notations

Putting data together

I Grouping several pieces of data : tuples,
I fetching individual components : pattern-matching,

Check (3,4).
(3, 4) : nat * nat

Check
fun v : nat * nat =>

match v with (x, y) => x + y end.
fun v : nat * nat => let (x, y) := v in x + y

: nat * nat -> nat

Coq: What, Why, How?

Defined datatypes and notations

Numbers

As in programming languages, several types to represent numbers
I natural numbers (non-negative), relative integers,

more efficient reprentations
I Need to load the corresponding libraries
I Same notations for several types of numbers : need to choose

a scope
I By default : natural numbers

I Good properties to learn about proofs
I Not adapted for efficient computation

Coq: What, Why, How?

Defined datatypes and notations

Focus on natural numbers

Require Import Arith.
Open Scope nat_scope.

Check 3.
3 : nat

Check S.
S : nat -> nat

Check S 3.
4 : nat

Check 3 * 3.
3 * 3 : nat

Coq: What, Why, How?

Defined datatypes and notations

Recursion on natural numbers

I natural numbers are either 0 or the successor of another
I Two cases for programming, recursion on the only component

Print nat.
Inductive nat : Set := O : nat | S : nat -> nat
Fixpoint mult2 (n : nat) : nat :=

match n with 0 => 0 | S p => S (S (mult2 p)) end.

Compute mult2 3.
= 6 : nat

Coq: What, Why, How?

Defined datatypes and notations

Boolean values

I Values true and false
I Usable in if .. then .. else .. statements
I comparison function provided for numbers
I To find them : use the command Search bool
I Or Search (nat -> nat -> bool)

	Describing the data
	Describing the operations
	Describing the properties
	Proving properties of programs
	A commented example on sorting
	First steps in Coq
	Defined datatypes and notations

