Inductive properties (2)

Assia Mahboubi, Pierre Castéran, Yves Bertot Paris, Beijing, Bordeaux, Suzhou

16 novembre 2011

Inversion Techniques

Let us consider the following theorem.

1 subgoal

The induction H tactic call applied the induction principle le_ind with $P := fun \ m : nat \Rightarrow n = m$.

How did we solve this problem in good old times?

We could prove the following "inversion lemma" (a kind of reciprocal of the constructors).

Lemma le_inv : forall n p: nat,

left; reflexivity.

```
1 subgoal
```

Note that le_inv is an expression of the minimality of le, with explicit equalities that can be used with injection and discriminate.

Let's come back to our initial lemma

```
Lemma le_n_0old_times : forall n:nat, n <= 0 -> n = 0.
Proof.
intros n H;
  destruct (le_inv _ _ H) as [HO | [q [Hq Hq0]]].
2 subgoals
 n: nat
 H \cdot n <= 0
 H0: n = 0
 n = 0
```

assumption.

The inversion tactic

The inversion tactic derives all the necessary conditions to an inductive hypothesis. If no condition can realize this hypothesis, the goal is proved by *ex falso quod libet*. See also: inversion_ clear

```
Lemma foo : (1 \le 0).
```

The inversion tactic

The inversion tactic derives all the necessary conditions to an inductive hypothesis. If no condition can realize this hypothesis, the goal is proved by *ex falso quod libet*. See also: inversion_ clear

```
Lemma foo : ~(1 <= 0).
Proof.
intro h;inversion h.
Qed.</pre>
```

```
Lemma le_n_0: forall n, n \le 0 \rightarrow n = 0.
Proof.
 intros n H; inversion H.
1 subgoal
 n: nat
 H: n <= 0
 H0: n = 0
  0 = 0
trivial.
Qed.
```

```
Lemma le_Sn_Sp_inv: forall n p, S n <= S p -> n <= p.
Proof.
intros n p H; inversion H.</pre>
```

2 subgoals

. . .

constructor.

1 subgoal

Require Import Le.

apply le_trans with (S n); repeat constructor; assumption.

Qed.

Comparison with other kinds of predicate definitions

Let us consider le again. Several other definitions can be given for this mathematical concept.

Comparison with other kinds of predicate definitions

Let us consider le again. Several other definitions can be given for this mathematical concept.

First, we could use the plus function.

```
Definition Le (n p : nat) : Prop :=
    exists q:nat, q + n = p.
```

Comparison with other kinds of predicate definitions

Let us consider le again. Several other definitions can be given for this mathematical concept.

First, we could use the plus function.

```
Definition Le (n p : nat) : Prop :=
    exists q:nat, q + n = p.
```

We can also give a recursive predicate :

ena.

Both definitions are equivalent to Coq's le (exercise).

Predicates and boolean functions

Let us consider the following function:

```
Fixpoint leb n m : bool :=
    match n, m with
    |0, _ => true
    |S i, S j => leb i j
    | _, _ => false
end.
```

le or leb?

```
Compute leb 5 45.

= true: bool

Lemma L5_45: 5 <= 45.

Proof.

repeat constructor.

Qed.
```

le or leb?

```
Compute leb 5 45.

= true: bool

Lemma L5_45: 5 <= 45.

Proof.

repeat constructor.

Qed.

Just try Print L5_45.!
```

We can build a bridge between both aspects by proving the following theorems :

```
Lemma le_leb_iff : forall n p, n <= p <-> leb n p = true.

Lemma lt_leb_iff : forall n p, n  leb p n = false.
```

(* Proofs left as exercise *)

```
Lemma L: 0 <= 47.
Proof.
  rewrite le_leb_iff.
1 subgoal</pre>
```

leb 0 47 = true
reflexivity.
Qed.

```
Lemma leb_Sn_n: forall n p, leb n (n + p)= true.
Proof.
 intros n p;rewrite <- le_leb_iff.</pre>
1 subgoal
 n: nat
 p: nat
  n <= n + p
 SearchPattern (_ <= _ + _).</pre>
 apply le_plus_1; auto.
Qed.
```

A more abstract example

```
Section transitive closures.
Definition relation (A : Type) := A \rightarrow A \rightarrow Prop.
Variables (A : Type)(R : relation A).
(* the transitive closure of R is the least
relation ... *)
Inductive clos_trans : relation A :=
  (* ... that contains R *)
  | t_step : forall x y : A, R x y -> clos_trans x y
  (* ... and is transitive *)
  t_trans : forall x y z : A,
    clos_trans x y -> clos_trans y z
                    -> clos_trans x z.
```

 $R \times V \dots$

```
If some relation R is transitive, then its transitive closure is
included in R:
Hypothesis Rtrans:
   forall x y z, R x y \rightarrow R y z \rightarrow R x z.
Lemma trans_clos_trans : forall a1 a2,
                                clos_trans a1 a2 -> R a1 a2.
Proof.
intros a1 a2 H; induction H.
2 subgoals
 x : A
 y : A
 H:R\times y
```

```
x:A
 y : A
 z:A
 H : clos_trans x y
 H0 : clos_trans y z
 IHclos_trans1 : R x y
 IHclos_trans2 : R y z
  R \times 7
apply Rtrans with y; assumption.
Qed.
```

```
End transitive_closures.
Check trans_clos_trans.
trans_clos_trans
: forall (A : Type) (R : relation A),
      (forall x y z : A, R x y -> R y z -> R x z) ->
      forall a1 a2 : A. clos_trans A R a1 a2 -> R a1 a2
```

```
End transitive_closures.

Check trans_clos_trans.

trans_clos_trans

: forall (A : Type) (R : relation A),

(forall x y z : A, R x y -> R y z -> R x z) ->

forall a1 a2 : A, clos_trans A R a1 a2 -> R a1 a2
```

```
Implicit Arguments clos_trans [A].
Implicit Arguments trans_clos_trans [A].
Check (trans_clos_trans le le_trans).
trans_clos_trans nat le le_trans
: forall a1 a2 : nat. clos_trans le a1 a2 -> a1 <= a2</pre>
```

Inductive definitions and functions

It is sometimes very difficult to represent a function $f: A \rightarrow B$ as a Coq function, for instance because of the :

- Undecidability (or hard proof) of termination
- Undecidability of the domain characterization

This situation often arises when studying the semantic of programming languages.

In that case, describing functions as inductive relations is really efficient.

```
Definition odd n := ~even n.

Inductive syracuse_steps : nat -> nat -> Prop :=
  done : syracuse_steps 1 1
|even_case : forall n p, even n ->
        syracuse_steps (div2 n) p ->
        syracuse_steps n (S p)
|odd_case : forall n p , odd n ->
             syracuse_steps (S(n+n+n)) p ->
             syracuse_steps n (S p).
```

Exercise

Prove the proposition syracuse_steps 5 6.

Specifying programs with inductive predicates

Programs are computational objects. Inductive types provide structured specifications. How to get the best of both worlds?

Specifying programs with inductive predicates

Programs are computational objects.
Inductive types provide structured specifications.
How to get the best of both worlds?
By combining programs with inductive specifications.

Specifying programs with inductive predicates

Let us consider a datatype for comparison w.r.t. some decidable total order. This type already exists in the Standard Library.

```
Inductive Comparison : Type := Lt | Eq | Gt.
```

We can easily specify whether some value of this type is consistent with an arithmetic inequality, through a three place predicate.

```
Inductive compare_spec (n p:nat) : Comparison -> Type :=
| lt_spec : forall Hlt : n < p, compare_spec n p Lt
| eq_spec : forall Heq : n = p, compare_spec n p Eq
| gt_spec : forall Hgt : p < n, compare_spec n p Gt.</pre>
```

We can specify whether some comparison function is correct :

```
Definition cmp_correct (cmp : nat -> nat -> Comparison) :=
  forall n p, compare_spec n p (cmp n p).
```

In order to understand specifications like compare_spec, let us open a section :

```
Section On_compare_spec.
Variable cmp : nat -> nat -> Comparison.
Hypothesis cmpP : cmp_correct cmp.
```

How to use compare_spec

```
Let us consider a goal of the form P n p (cmp n p) where
```

 $P: \mathtt{nat} \rightarrow \mathtt{nat} \rightarrow \mathtt{Comparison} \rightarrow \mathtt{Prop}.$

A call to the tactic destruct (cmpP n p) produces three subgoals :

Example

Let us define functions for computing the greatest [lowest] of tho numbers :

```
Definition maxn n p :=
    match cmp n p with Lt => p | _ => n end.

Definition minn n p :=
    match cmp n p with Lt => n | _ => p end.
```

Proofs of properties of maxn and minn can use this pattern, which will give values to maxn n p, and generate hypotheses of the form n < p, n = p, and p < n.

```
Lemma le_maxn: forall n p, n <= maxn n p.
Proof.
intros n p; unfold maxn; destruct (cmpP n p).
3 subgoals
 cmpP: cmp_correct cmp
 Hlt: n < p
  n <= p
subgoal 2 is:
n <= n
subgoal 3 is:
n <= n
```

Ecah one of the three subgoals is solved with auto with arith.

The following proofs use the same pattern:

```
Lemma maxn\_comm: forall n p, maxn n p = maxn p n.
Proof.
 intros n p; unfold maxn;
 destruct (cmpP n p), (cmpP p n); omega.
Qed.
Lemma maxn_le: forall n p q,
      n \le q \rightarrow p \le q \rightarrow maxn n p \le q.
Proof.
intros n p; unfold maxn; destruct (cmpP n p);
           auto with arith.
Qed.
```

```
Lemma min_plus_maxn : forall n p,
    minn n p + maxn n p = n + p.
Proof.
intros n p; unfold maxn, minn; destruct (cmpP n p);
    auto with arith.
Qed.
```

```
Definition compare_rev (c:Comparison) :=
match c with
 | Lt => Gt
 \mid Eq => Eq
 | Gt => I.t.
 end.
Lemma cmp_rev : forall n p,
   cmp n p = compare_rev (cmp p n).
Proof.
 intros n p; destruct (cmpP n p);destruct (cmpP p n) ;
trivial; try discriminate; intros; elimtype False; omega.
Qed.
```

```
Lemma cmp_antiym : forall n p,
    cmp n p = cmp p n -> n = p.
Proof.
  intros n p;rewrite cmp_rev;
  destruct (cmpP p n);auto ;try discriminate.
Qed.
```

Notice that all the proofs above use only the *specification* of a comparison function and not a concrete definition.

We are now able to provide an implementation of a comparison function, and prove its correctness :

```
End On_compare_spec.
```

end.

```
Lemma compareP : cmp_correct compare.
Proof.
  red;induction n;destruct p;simpl;auto;
  try (constructor;auto with arith).
  destruct (IHn p);constructor;auto with arith.
Qed.
Check maxn_comm _ compareP.
  : forall n p : nat, maxn compare n p = maxn compare p n
```

What you think is not what you get

An odd alternative definition of le:

What you think is not what you get

An odd alternative definition of le:

The third constructor is useless! It may increase the size of the proofs by induction.

Advice for crafting useful inductive definitions

- Constructors are "axioms": they should be intuitively true...
- Constructors should as often as possible deal with mutually exclusive cases, to ease proofs by induction;
- ► When an argument always appears with the same value, make it a parameter
- Test your predicate on negative and positive cases!

A last example : The toy programming language

```
Lemma Assigned_inv1 : forall v w e,
   Assigned_in v (assign w e) ->
  v=w.
Proof
 intros v w e H; inversion H. ...
Lemma Assigned_inv2 : forall v s1 s2,
   Assigned_in v (sequence s1 s2) ->
   Assigned_in v s1 \/ Assigned_in v s2.
Proof.
intros v s1 s2 H; inversion H. ...
```

We can also define a boolean function for testing equality on variables :

```
We define a boolean test for the "assigned" property :
```

Bridge lemmas

```
Lemma Assigned_In_OK : forall v s,
  Assigned_in v s ->
  assigned_inb v s = true.
Proof.
 intros v s H;induction H;simpl;...
Lemma Assigned_In_OK_R :
forall v s, assigned_inb v s = true ->
            Assigned_in v s.
Proof.
 induction s; simpl.
  . . .
```

A small program

```
X := 0;
Y := 1;
Do Z times {
  X := X + 1;
  Y := Y * X
}
```

lacksquare A last example : The toy programming language

```
Definition factorial_Z_program :=
sequence (assign X (const 0))
 (sequence
   (assign Y (const 1))
   (simple_loop (variable Z)
    (sequence
      (assign X
         (toy_op toy_plus (variable X) (const 1)))
      (assign Y
         (toy_op toy_mult (variable Y) (variable X))))).
```

Qed.

```
Lemma Z_{unassigned} : \sim (Assigned_in Z factorial_Z_program).
Proof.
intro H;assert (H0 := Assigned_In_OK _ _ H).
1 subgoal
 H : Assigned_in Z factorial_Z_program
 H0 : assigned_inb Z factorial_Z_program = true
  False
simpl in HO; discriminate HO.
```