
THÈSE
présentée à

L’UNIVERSITÉ DE BORDEAUX

École Doctorale de Mathématiques et Informatique de Bordeaux

par

Julien BENSMAIL

pour obtenir le grade de

DOCTEUR

SPÉCIALITÉ : INFORMATIQUE

Partitions et décompositions de graphes

Soutenue le 10 juin 2014 au Laboratoire Bordelais de Recherche en Informatique (LaBRI)

Après avis des rapporteurs :

Frédéric Havet Directeur de Recherches CNRS à Sophia-Antipolis (France)
Ingo Schiermeyer Professeur à l’Université de Freiberg (Allemagne)

Devant la commission d’examen composée de :

Examinateurs
Cyril Gavoille Professeur à l’Université de Bordeaux (France)
Brett Stevens Professeur à l’Université de Carleton (Canada)
Mariusz Woźniak Professeur à l’Université AGH de Cracovie (Pologne)

Rapporteurs
Frédéric Havet Directeur de Recherches CNRS à Sophia-Antipolis (France)
Ingo Schiermeyer Professeur à l’Université de Freiberg (Allemagne)

Directeurs de thèse
Olivier Baudon Maître de Conférences à l’Université de Bordeaux (France)
Éric Sopena Professeur à l’Université de Bordeaux (France)

-2014-

ii Abstract

Partitions and decompositions of graphs

Abstract:
This thesis is dedicated to the study of two families of graph partition problems.

First, we consider the problem of vertex-partitioning a graph into connected subgraphs.
Namely, given p positive integers n1, n2, ..., np summing up to the order of some graph G, can
we partition V (G) into p parts V1, V2, ..., Vp so that each Vi induces a connected subgraph with
order ni? We then consider stronger questions. Namely, what if we want G to be partitionable
whatever are p and n1, n2, ..., np? What if we also want specific vertices of G to belong to some
specific subgraphs induced by the vertex-partition? What if we want the subgraphs induced by
the vertex-partition to be more than connected? We consider all these questions regarding both
the structural (are there structural properties ensuring that a specific vertex-partition necessarily
exists?) and algorithmic (is it hard to deduce a specific vertex-partition?) points of view.

Then, we focus on the so-called 1-2-3 Conjecture, which asks whether every graph G admits
a neighbour-sum-distinguishing 3-edge-weighting, i.e. a 3-edge-weighting by which all adjacent
vertices of G get distinguished by their sums of incident weights. As a tool to deal with the
1-2-3 Conjecture, we notably introduce the notion of locally irregular edge-colouring, which is
an edge-colouring in which every colour class induces a subgraph whose adjacent vertices have
distinct degrees. The main point is that, in particular situations, a neighbour-sum-distinguishing
edge-weighting of G can be deduced from a locally irregular edge-colouring of it. Our concerns
in this context are mostly algorithmic (can we easily find a neighbour-sum-distinguishing edge-
weighting or locally irregular edge-colouring using the least number of weights or colours?) and
structural (what is the least number of colours in a locally irregular edge-colouring?). We also
consider similar matters in the context of oriented graphs.

Keywords:
partition into connected subgraphs, (preassignable, on-line, recursively) arbitrarily partition-

able graph, neighbour-distinguishing edge- and arc-weighting, locally irregular edge- and arc-
colouring

Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux

351, cours de la Libération
33405 Talence Cedex, France

Résumé iii

Partitions et décompositions de graphes

Résumé :
Cette thèse est dédiée à l’étude de deux familles de problèmes de partition de graphe.

Nous considérons tout d’abord le problème de sommet-partitionner un graphe en sous-graphes
connexes. Plus précisément, étant donnés p entiers positifs n1, n2, ..., np dont la somme vaut
l’ordre d’un graphe G, peut-on partitionner V (G) en p parts V1, V2, ..., Vp de sorte que chaque Vi
induise un sous-graphe connexe d’ordre ni ? Nous nous intéressons ensuite à des questions plus
fortes. Que peut-on dire si l’on souhaite que G soit partitionnable de cette manière quels que
soient p et n1, n2, ..., np ? Si l’on souhaite que des sommets particuliers de G appartiennent à des
sous-graphes particuliers de la partition ? Et si l’on souhaite que les sous-graphes induits soient
plus que connexes ? Nous considérons toutes ces questions à la fois du point de vue structurel
(sous quelles conditions structurelles une partition particulière existe-t-elle nécessairement ?) et
algorithmique (est-il difficile de trouver une partition particulière ?).

Nous nous intéressons ensuite à la 1-2-3 Conjecture, qui demande si tout graphe G admet
une 3-pondération voisin-somme-distinguante de ses arêtes, i.e. une 3-pondération par laquelle
chaque sommet de G peut être distingué de ses voisins en comparant uniquement leur somme
de poids incidents. Afin d’étudier la 1-2-3 Conjecture, nous introduisons notamment la notion
de coloration localement irrégulière d’arêtes, qui est une coloration d’arêtes dont chaque classe
de couleur induit un sous-graphe dans lequel les sommets adjacents sont de degrés différents.
L’intérêt principal de cette coloration est que, dans certaines situations, une pondération d’arêtes
voisin-somme-distinguante peut être déduite d’une coloration d’arêtes localement irrégulière. Nos
préoccupations dans ce contexte sont principalement algorithmiques (est-il facile de trouver une
pondération d’arêtes voisin-somme-distinguante ou une coloration d’arêtes localement irrégulière
utilisant le plus petit nombre possible de poids ou couleurs ?) et structurelles (quel est le plus
petit nombre de couleurs d’une coloration d’arêtes localement irrégulière ?). Nous considérons
également ces questions dans le contexte des graphes orientés.

Mots-clefs :
partition en sous-graphes connexes, graphe (récursivement) arbitrairement partitionnable (k-

préassignable, à la volée), coloration voisin-distinguante d’arêtes ou d’arcs, coloration localement
irrégulière d’arêtes ou d’arcs

Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux

351, cours de la Libération
33405 Talence Cedex, France

iv Remerciements

Remerciements

Bien que les remerciements constituent généralement le seul passage un peu amusant (et facile
à comprendre) d’un manuscrit de thèse, on ne se rend pas compte, avant d’en écrire soi-même,
de la délicatesse que cette tâche représente. D’une part car il faut mesurer le sens de chaque
mot employé (au risque de pouvoir froisser des lecteurs) et surtout n’oublier personne, ce qui
peut vite arriver tant le nombre de personnes que l’on peut être amené à côtoyer en trois ans
est grand. Et d’autre part car écrire ses remerciements demande de se remémorer tout ce qui
a pu se passer en trois ans, faisant au passage bien comprendre, si besoin en était, que la thèse
est désormais bien terminée. Ceci étant dit, c’est donc à mon tour de me lancer, dans la joie et
l’allégresse :) .

Il m’est inconcevable de ne pas adresser mes premiers remerciements à Olivier Baudon et
Éric Sopena, mes deux directeurs de thèse, qui, grâce à leurs qualités complémentaires, m’ont
permis, je le crois, d’effectuer cette thèse dans les meilleures conditions. Je souhaite à tout
doctorant d’avoir, dans son entourage, quelqu’un ayant autant de recul qu’Olivier sur le monde
de l’enseignement et de la recherche. Non seulement ses conseils et anecdotes sont (souvent)
amusants (bien que certains se répètent un peu parfois !), mais ceux-ci sont surtout une source
d’inspiration et de remise en question constante sur la condition d’enseignant-chercheur. Ce qui
est très bien pour garder la tête sur les épaules. Quant à Éric, je reste surtout très impressioné
par sa capacité à s’intéresser à (à peu près) n’importe quel problème de théorie des graphes
(notamment), et par sa patience pour relire tout type de document à à peu près n’importe
quelle heure du jour ou de la nuit (généralement très tard, ou très tôt selon certains). Je ne
saurai jamais assez les remercier tous les deux de m’avoir autant appris lors de ces trois dernières
années, et pour m’avoir permis d’effectuer cette thèse de manière aussi libre, en me permettant
notamment de vagabonder sur des problématiques n’ayant généralement pas de rapport avec
mon sujet d’origine.

Je remercie ensuite tous les membres de mon jury de thèse de s’être intéressés à mes travaux.
Merci donc tout d’abord à Frédéric Havet et Ingo Schiermeyer pour avoir accepté de rapporter
mon manuscrit de thèse, malgré sa longueur, et pour leurs commentaires et critiques constructifs
sur celui-ci. Merci également à Cyril Gavoille pour avoir accepté de présider le jury (encore
une fois, après celui de ma soutenance de Master), ainsi qu’à Brett Stevens et Mariusz Woźniak
d’avoir été présents lors de la soutenance, ce qui m’a réellement touché compte tenu des liens
que j’ai pu tisser avec eux ces trois dernières années. Je remercie également tout ce beau monde
pour les questions intéressantes qu’ils m’ont posées lors de la séance de questions.

Toujours en rapport avec ma soutenance de thèse, je remercie également toutes les personnes
présentes lors de celle-ci. Merci à tous mes collègues et/ou amis pour leur présence. Je suis très
sensible au fait que certains de ceux-ci, de même que les membres de ma famille, aient parfois dû
effectuer un long trajet pour pouvoir être là. Merci également aux quelques personnes qui n’ont
pu être présentes mais ont néanmoins pris la peine de m’envoyer un mail pour me soutenir ou
me féliciter.

Une thèse pouvant difficilement être menée à bien dans de mauvaises conditions, je m’estime
assez priviligié d’avoir pu effectuer ma thèse au LaBRI, qui constitue un environnement très
dynamique et stimulant au quotidien. Je tiens donc à avoir une pensée pour toutes les personnes
(chercheurs, personnels administratifs, techniques...) qui contribuent à la bonne humeur et à
l’ambiance bon enfant au quotidien.

Il me paraît légitime de remercier plus chaleureusement les personnes du LaBRI desquelles
j’ai été le plus proche. À ce titre, il m’est impensable de ne pas mentionner celles et ceux qui ont
effectué leur thèse en même temps que moi, car, quoi qu’on en dise, être dans la même galère forge
forcément des liens :) . Au sein du thème Graphes et Applications, je pense notamment à Clément
Charpentier (la personne derrière la notion avant-gardiste de “vertex crossing number”), Émilie

Remerciements v

Diot (pour sa bonne humeur quotidienne), Florent Foucaud (que je remercie tout particulièrement
pour le thème de son manuscrit de thèse, que le présent document utilise), Hervé Hocquard (qui
m’a initié à la méthode dite du déchargement), Gabriel Renault (avec qui nous nous sommes bien
amusés à Pise, malgré les problèmes de vols), Sagnik Sen (I do hope our quite ambitious paper
on signed graphs will be published somewhere), et Petru Valicov (merci encore pour la super
semaine à Lyon). Parmi les autres doctorants, je remercie notamment Vincent Autefage (mais
où trouve-t-il autant de temps pour faire tout ça ?), Romaric Duvignau (on a passé une bonne
semaine à Perpignan), Noël Gillet (il faudrait que l’on retourne faire un basket-ball un jour),
Christian Glacet (parce qu’enseigner de l’Assembleur, forcément ça rapproche), et Ahmed Wade
(idem, mais pour les Bases de Données). Et, bien évidemment, une ligne spéciale pour Cédric
Teyton, avec qui j’ai passé le plus clair de mon temps ces trois dernières années. En recherche,
je ne sais pas, mais en tout cas, en ping-pong, nous avons fait de belles choses :) . À vous tous,
je vous souhaite une très grande carrière.

Enfin, toujours en ce qui concerne le LaBRI, je tiens également à remercier plus particulière-
ment certains membres permanents. Parmi les personnes que je n’ai pas encore mentionnées
(et qui ne le seront pas plus bas), je retiendrai notamment celles ayant toujours témoigné de
la sympathie à mon égard ou de l’intérêt pour mes travaux. Je pense en particulier à Nicolas
Bonichon (qui a toujours le sourire), Pierre Castéran (toujours le premier arrivé au laboratoire),
Olivier Delmas (toujours un bonjour dans les couloirs), Philippe Duchon (qu’on apprécie tou-
jours avoir dans les publics de séminaire), Olivier Guibert (l’un des rares enseignants de l’IUT de
Bordeaux se rappelant que j’en viens), František Kardoš (merci infiniment de m’avoir emmené
en Slovaquie), Ralf Klasing (toujours une intention sympa), et Arnaud Pêcher (idem, toujours de
bonne humeur). Également, je tiens à remercier de nouveau Brett Stevens pour notre collabora-
tion tout au long de cette dernière année qu’il a passée au LaBRI. Il est vraiment très agréable
de pouvoir travailler avec quelqu’un ayant autant de temps libre, et, bien que nous n’ayons pas
toujours été très heureux dans nos résultats, j’ai beaucoup appris de toutes nos tentatives pour
traiter certains problèmes compliqués.

En parallèle de mes recherches, j’ai également eu la chance de pouvoir enseigner à l’IUT
informatique de Bordeaux, lieu très particulier pour moi puisque j’y ai démarré mes études
universitaires. À ce titre, je ne remercierai jamais assez Isabelle Dutour pour m’avoir donné
cette opportunité, ainsi que pour avoir toujours été bienveillante à mon égard. Depuis cette
expérience, je tiens vraiment à conserver une composante “enseignement” dans mon plan de
carrière. Sans nul doute cela resulte des bonnes conditions dans lesquelles se sont passées ces
trois années d’enseignement. Il me semble alors naturel de remercier tous les enseignants de
l’IUT, qui ont contribué à mon intégration au sein de l’équipe. Je tiens plus particulièrement à
remercier Romain Bourqui, Arnaud Casteigts (qui a toujours eu un mot gentil à mon encontre),
Patrick Félix, Colette Johnen et Nicholas Journet, avec qui j’ai eu l’occasion d’intervenir dans
plusieurs matières.

L’une des choses que je retiendrai de mon expérience dans l’enseignement est que, à mon sens,
un bon enseignant doit être proche de ses étudiants. Mais bien entendu, il faut que la connexion
se fasse dans les deux sens pour qu’un cours se déroule dans les meilleures conditions. Je tiens
donc à remercier ici tous les étudiants qui ont bien voulu jouer le jeu et ont eu une attitude
positive lors de mes cours, les rendant (généralement) plus agréables. J’espère sincèrement que
mes interventions leur auront servi d’une manière ou d’une autre, car s’il est difficile d’être un
bon chercheur, il l’est encore plus d’être un bon enseignant. De la même manière, je tiens à
remercier tous les étudiants que j’ai pu encadrer à l’occasion de projets. Je leur souhaite à tous
une très bonne continuation, quelle que soit la direction qu’ils puissent choisir.

Une partie de la thèse se déroulant à l’extérieur, je tiens également à remercier toutes les
personnes avec qui j’ai pu échanger sur des sujets divers et variés lors de conférences, séminaires,
écoles... Je pense ici naturellement à Marthe Bonamy (qui devrait se faire payer par Hervé

vi Remerciements

pour les slides d’EuroComb 2013), Nicolas Gastineau (encore désolé de n’avoir pu être présent
à ta soutenance de thèse), Ararat Harutyunyan (I do hope we will meet in Lyon soon), Sergey
Kirgizov (merci encore d’être venu de Paris pour ma soutenance), et Reza Naserasr (thank you
for inviting me to a nice working week in Thézac)

During the Ph.D. period, I also had the opportunity to closely collaborate with people from
foreign universities. First, I would like to thank Mariusz Woźniak and his team at AGH University
of Kraków, Poland, for inviting me twice. Thank you in particular to Rafał Kalinowski, Antoni
Marczyk, Mateusz Nikodem, Monika Piśniak and Jakub Przybyło for their sympathy and for
interesting research discussions during my two stays. My thanks again to Mateusz and his wife
for bringing me to an interesting visit of the Kazimierz district. Second, I would also like to
thank Roman Soták and his colleagues at Pavol Jozef Šafárik University of Košice, Slovakia, for
receiving me once for an interesting collaboration about some conjecture by Vizing. I will always
remember the nice basketball game Roman took me to, as well as the wonderful Imaginations
festival. Anyway, thank you all guys for your sympathy and for all research work we have been
interested into together.

Contents vii

Contents

1 Introduction 1

1.1 Context of the thesis . 1

1.2 Definitions, notation, terminology, and related results 2

1.2.1 General mathematics . 2

1.2.2 Graph theory . 3

1.2.3 Probabilistic tools . 19

1.2.4 Computational complexity theory . 19

1.3 List of decision problems . 25

1.3.1 Satisfiability-like problems . 25

1.3.2 Graph problems . 29

1.3.3 Partition problems . 29

I Partitioning graphs into connected subgraphs 31

2 Introduction to Part I 33

2.1 Motivations . 33

2.2 Definitions, terminology and notation . 35

2.3 Related work . 37

2.4 Contributions of Part I . 44

3 Arbitrarily partitionable graphs 49

3.1 On the NP-completeness of Realizable Sequence 50

3.1.1 Restrictions on the sequence . 50

3.1.2 Restrictions on the graph . 55

3.1.3 On the tightness of Győri-Lovász Theorem 63

3.2 Relationship between Πp
2 and partition problems 64

3.3 Three polynomial kernels of sequences . 66

3.3.1 Complete multipartite graphs . 66

3.3.2 Graphs with about a half universal vertices 68

3.3.3 Graphs made up of partitionable components 71

3.4 Minimal arbitrarily partitionable graphs . 79

3.4.1 Minimum order . 79

3.4.2 Maximum degree . 80

3.5 Cartesian products . 83

3.6 Conclusion and open questions . 87

viii Contents

4 Preassignable arbitrarily partitionable graphs 93
4.1 Preliminary remarks and properties . 93
4.2 Powers of graphs with Hamiltonian properties . 95

4.2.1 Powers of traceable graphs . 96
4.2.2 Powers of Hamiltonian graphs . 98

4.3 Minimum size . 100
4.3.1 Harary graphs with odd connectivity at least 5 101
4.3.2 On 2-preassignable arbitrarily partitionable graphs with minimum size . . 109

4.4 On the order of the longest paths . 112
4.5 Cartesian products . 119
4.6 Conclusion and open questions . 123

5 On-line and recursively arbitrarily partitionable graphs 125
5.1 Preliminary remarks and observations . 126
5.2 Algorithmic remarks . 126
5.3 Removing k-cutsets from recursively arbitrarily partitionable graphs 127
5.4 Structural properties of on-line arbitrarily partitionable balloons 129

5.4.1 Number of branches . 129
5.4.2 Some families of 4- or 5-balloons . 130
5.4.3 Order of the smallest branches . 132
5.4.4 Structural consequences on graphs with 2-cutsets 139

5.5 On the order of the longest paths in a recursively arbitrarily partitionable graph . 140
5.5.1 Additive factor . 140
5.5.2 Multiplicative factor . 144

5.6 Conclusion and open questions . 146

6 Conclusion to Part I 149

II Distinguishing the neighbours of a graph via an edge-weighting 155

7 Introduction to Part II 157
7.1 Motivations . 157
7.2 Definitions, terminology and notation . 159
7.3 Related work . 160
7.4 Contributions of Part II . 165

8 Complexity of Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting 171
8.1 Notation, terminology and preliminary remarks 172
8.2 The hardness reduction framework . 175

8.2.1 Overview of the framework . 175
8.2.2 The reduction framework into details . 176
8.2.3 Final details . 179

8.3 First implementation: 0 6∈ {a, b} and b 6= −a . 180
8.4 Second implementation: b = 0 . 184
8.5 Third implementation: b = −a . 187
8.6 Conclusion and open questions . 192

Contents ix

9 Locally irregular edge-colouring of graphs 193
9.1 Decomposing graphs into locally irregular subgraphs 193

9.1.1 Characterization of exceptions . 194
9.1.2 Non-exception graphs are colourable . 195

9.2 Families with irregular chromatic index at most 3 197
9.2.1 Some common families of graphs . 198
9.2.2 Regular graphs with large degree . 202

9.3 Determining the irregular chromatic index of a graph 207
9.3.1 Recognizing exceptions . 207
9.3.2 Trees . 208
9.3.3 General graphs . 218

9.4 Conclusion and open questions . 223

10 Neighbour-outsum-distinguishing arc-weighting of oriented graphs 229
10.1 On oriented versions of the 1-2-3 Conjecture . 229
10.2 Families with neighbour-outsum-distinguishing chromatic index at most 2 231
10.3 Neighbour-Outsum-Distinguishing 2-Arc-Weighting is NP-complete . . . 234
10.4 About an oriented version of the 1-2 Conjecture 239
10.5 Conclusion and open questions . 241

11 Locally irregular arc-colouring of oriented graphs 245
11.1 Families with irregular chromatic index at most 3 245
11.2 Decomposing oriented graphs into six locally irregular subgraphs 248
11.3 Locally Irregular 2-Arc-Colouring is NP-complete 249
11.4 Conclusion and open questions . 254

12 Conclusion to Part II 257

Bibliography 259

Index of definitions 267

List of notation 271

Chapter 1. Introduction 1

Chapter 1

Introduction

This thesis is dedicated to the study of two graph partition problems. So that the context of
this thesis is clear, we start by defining, in Section 1.1, what we consider to be a partition problem
in graph theory. In particular, we recall what these problems are about and which questions are
of interest regarding these. We then briefly present the two families of graph partition problems
considered in this thesis.

The rest of this chapter is dedicated to the introduction of most of the materials which are
necessary to understand our investigations. In Section 1.2, we give most of the general definitions
(as well as some related results), terminology and notation which are used throughout this thesis.
These cover general mathematics, and graph, probability and computational complexity theories.
We end up this introductory chapter by listing some decision problems and their respective
complexity in Section 1.3.

1.1 Context of the thesis . 1
1.2 Definitions, notation, terminology, and related results 2

1.2.1 General mathematics . 2
1.2.2 Graph theory . 3
1.2.3 Probabilistic tools . 19
1.2.4 Computational complexity theory . 19

1.3 List of decision problems . 25
1.3.1 Satisfiability-like problems . 25
1.3.2 Graph problems . 29
1.3.3 Partition problems . 29

1.1 Context of the thesis

A graph partition problem is basically a problem asking whether the elements (generally either
its vertices or its edges, or both of them) of a graph G can be partitioned into parts P1, P2, ..., Pk
in such a way that a set of partition constraints is not violated. We generally make the distinction
between two kinds of such partition constraints:

Intra-constraints: constraints each of P1, P2, ..., Pk must respect,

Inter-constraints: constraints every two distinct Pi and Pj must respect.

Many problems of practical interest (e.g. scheduling problems, allocation problems, etc.)
can be expressed as graph partition problems, so studying a practical problem from the graph
theory point of view can be a convenient way to solve it. Surely the investigations leading to the
well-known Four-Colour Theorem are the most pertinent illustration of this statement. In the
1850’s, Guthrie addressed the following question: given a map, is it always possible to colour
its regions using at most four colours so that every two regions sharing a common border are
not coloured with the same colour? This question, though its simple formulation, showed up to

2 1.2. Definitions, notation, terminology, and related results

be quite challenging and awaited more than one century to be answered in the affirmative by
Appel and Haken in the 1970’s as a graph partition problem [9]. More precisely, they showed
that the vertex set V (G) of every planar graph G can be partitioned into four parts V1, V2, V3, V4

satisfying the intra-constraint that no edge joins two vertices from a same part. This result
implies the positiveness of Guthrie’s question.

Since the above mentioned proof of the Four-Colour Theorem, graph partition problems,
and more particularly graph colouring problems, have become an important field of research in
combinatorics and algorithmic, with hundreds problems of various complexity being introduced
and receiving ingrowing attention in the last decades. Every such partition problem is generally
studied regarding several recurrent aspects, like e.g. the algorithmic aspects of finding a correct
partition of a graph, the structural properties of partitionable graphs, or the optimization concern,
i.e. what can be considered the best partition of a graph?

Two graph partition problems are investigated in this thesis, which we briefly present below.
Refer to Chapters 2 and 7 for complete introductions dedicated to these problems.

• In Part I, we consider several variants of a graph partition problem where one basically
aims at finding a partition of the vertex set of a graph G where each part induces a con-
nected subgraph. We in particular focus, mainly in Chapter 3, on the notion of arbitrarily
partitionable graphs, which are graphs that can be partitioned into arbitrarily many arbi-
trarily large connected subgraphs. In Chapter 4, we study the consequences of additionally
requesting vertices to belong to such or such subgraphs of a graph partition. Replacing the
original connectivity constraint by a stronger constraint, namely a recursive constraint, we
finally study, in Chapter 5, those graphs that are partitionable into arbitrarily many arbi-
trarily large arbitrarily partitionable subgraphs. Our concerns regarding all these notions
are mostly algorithmic (i.e. is it easy to find a partition of a given graph? or is it easy to
recognize a non-partitionable graph?) and structural (i.e. what does a partitionable graph
look like?).

• In Part II, we investigate two graph colouring and weighting problems (which are specific
cases of partition problems) in which one aims at making the adjacent vertices of a graph
G distinguishable regarding some parameters related to a colouring or weighting of the
edges of G. In the first weighting problem, investigated in Chapter 8, two adjacent vertices
are considered distinguished when the sums of their incident weights are different. In the
second colouring problem, which is studied in Chapter 9, two adjacent vertices u and v
are considered distinguished when their degrees in the subgraph induced by the colour
assigned to uv are different. These two problems are also considered regarding oriented
graphs in Chapters 10 and 11, respectively. All these notions are investigated notably with
regards to the algorithmic (i.e. can we easily find a distinguishing weighting or colouring
of a graph?) and the optimization (i.e. what is the least number of weights or colours used
by a distinguishing weighting or colouring of a graph?) points of view.

1.2 Definitions, notation, terminology, and related results

Since a lot of materials from different fields are introduced herein (especially regarding graph
theory), the reader may note that some of the terminology and notation we introduce overlap,
which could be a source of confusion in specific contexts. So we will make sure to not use two
conflicting terminologies or notation simultaneously throughout this thesis.

1.2.1 General mathematics

Informally, amultiset is a set where each element can appear more than once. Although a multiset
M should be rigorously defined as a couple (A, f), where A is the set of elements appearing in

Chapter 1. Introduction 3

M and f(a) is the number of occurrences of every member a of A in M , we herein privilege a
set notation M = {n1, n2, ..., np} for the sake of simplicity, where f(a) of the ni’s are equal to a
in M for every a ∈ A. A partition of an integer n is a multiset {n1, n2, ..., np} summing up to n,
i.e. we have

∑p
i=1 ni = n.

Example 1.1. The multiset {1, 1, 1, 4, 5, 5} forms a partition of 17.

The number of partitions of an integer n is known as the partition number of n, and is
commonly denoted p(n). The partition number function p has been attracting much interest in
number theory, refer e.g. to the book [8] of Andrews dedicated to this topic. One important
property of p is that it asymptotically grows as the exponential function, see e.g. the reference
book [59] of Flajolet and Sedgewick wherein a proof of this statement is provided.

Theorem 1.2 ([59]). The partition number p(n) asymptotically tends to 1
4n
√

3
exp

(
π
√

2n
3

)
.

Let S be a set of mathematical objects. We say that S is partitioned into the k parts
S1, S2, ..., Sp if we have s ∈ ⋃p

i=1 Si for every s ∈ S, and Si ∩ Sj = ∅ for every i 6= j. We most of
the time denote the resulting partition of S either (S1, S2, ..., Sp) or S1∪S2∪ ...∪Sp. A partition
into two parts is sometimes called a bipartition.

1.2.2 Graph theory

For the sake of completeness, we herein present most of the graph theory notions and terminol-
ogy which are used throughout this thesis. Please refer to the reference books by Bondy and
Murty [36] or Diestel [48] for more information on any further detail we would have not presented
herein.

1.2.2.1 Different kinds of graphs

An undirected (simple) graph G is made up of a set V (G) of vertices, along with a set E(G) of
pairs of vertices, called edges. Such a graph is sometimes denoted G = (V (G), E(G)). We refer
to |V (G)| and |E(G)| as the order and the size of G, respectively. An edge {u, v} of G is rather
denoted uv, with u and v being the ends of uv. An edge and its ends are said to be incident ,
while two vertices u and v of G are said adjacent (or neighbouring) if uv ∈ E(G), i.e. u and v
are joined by an edge in G. Similarly, we say that two edges of G are adjacent if they share an
end.

An undirected multigraph is an undirected graph in which two adjacent vertices may be joined
by more than one edge. A multigraph G can hence be formally described as a set of vertices and
a multiset of edges over these vertices (which we still denote E(G) for convenience). Two edges
of a multigraph with the same ends are said parallel .

Hypergraphs are a generalization of undirected simple graphs where each edge may connect
more than just two vertices. Formally, a hypergraph H is made up of one vertex set V (H) and
one set E(H) of hyperedges, which are subsets of V (H). Clearly a hypergraph having all of its
edges consisting in one or two elements is nothing but an undirected graph.

A directed graph D consists of vertices which can be joined by means of two kinds of edges,
rather called arcs in this context (therefore, we denote A(D) the arc set of D). First, every two
vertices u and v of D can be joined by an antisymmetric arc, that is an edge which is assigned a
direction. A directed arc from u to v is denoted −→uv, where the over right arrow is used to make
the direction of the antisymmetric arc joining u and v clear. In such a situation, the vertex u
is called the tail of −→uv, while v is called the head of −→uv. We sometimes say that −→uv is outgoing
from u, and ingoing to v. Second, u and v can be joined by a symmetric arc, which is similar
to an edge in an undirected graph. Equivalently, such an arc can be seen as being directed both
from u and v and from v to u.

4 1.2. Definitions, notation, terminology, and related results

u2u1 u3

u4 u5 u6 u7
(a) An undirected graph with vertex
set {u1, u2, u3, u4, u5, u6, u7} and edge set
{u1u4, u2u3, u2u5, u3u6, u5u6, u6u7}.

u2u1 u3

u4 u5
(b) A multigraph with vertex
set {u1, u2, u3, u4, u5} and edge
multiset {u1u4, u1u4, u1u4,
u1u2, u1u5, u2u5, u2u3, u2u3}.

u2u1 u3

u4 u5 u6

(c) A hypergraph with ver-
tex set {u1, u2, u3, u4, u5, u6}
and hyperedge set
{{u1, u2}, {u1, u2, u4, u5}, {u3, u5, u6}}.

u2u1 u3

u4 u5 u6 u7
(d) A directed graph with vertex set
{u1, u2, u3, u4, u5, u6, u7} and arc set
{−−→u4u1,

−−→u2u3,
−−→u5u2,

−−→u3u6,
−−→u5u6,

−−→u7u6}.

Figure 1.1: Four examples of different kinds of graphs.

An oriented graph
−→
G is a directed graph with no symmetric arcs. Equivalently, every oriented

graph can be obtained from an undirected graph G by orienting each edge uv of G either from u

to v, or from v to u. From this point of view, we hence call
−→
G an orientation of G. Conversely,

we call G the undirected graph underlying
−→
G , and denote it und(

−→
G).

Example 1.3. Figure 1.1 depicts examples of an undirected graph (Figure 1.1.a), a multigraph
(Figure 1.1.b), a hypergraph (Figure 1.1.c) and a directed graph (Figure 1.1.d). The undirected
graph from Figure 1.1.a underlies the directed graph from Figure 1.1.d, which is also an oriented
graph since it has no symmetric arcs.

Though the term “graph” may refer to either of the above kinds of graphs, by a graph it
should be throughout understood that we refer to a simple undirected graph. Every mention
to any other introduced above kind of graphs is done with the use of the convenient qualifier.
Besides, since undirected graphs and oriented graphs are the main concerns of this thesis, we
mainly introduce materials related to these graphs in this section. So again we refer the reader to
the above mentioned reference books for an analogue dedicated to another type of graphs of any
definition, terminology or notation introduced herein (though most of these can be intuitively
guessed).

1.2.2.2 Neighbourhoods and degrees of a vertex

Let G be a graph. In case two vertices u and v of G are not adjacent, we sometimes say that
u and v are independent . The set of vertices adjacent to v in G form its neighbourhood and is
denoted NG(v), or simply N(v) when no ambiguity is possible. The degree of v, denoted dG(v)
(or simply d(v)), is the number of its adjacent vertices in G, that is |N(v)|. A set of pairwise
independent vertices is said independent . The minimum and maximum degrees of G correspond
to the minimum and maximum, respectively, degree of a vertex in G. These parameters are
denoted δ(G) and ∆(G), respectively. A vertex with degree k is sometimes called a k-vertex.

Chapter 1. Introduction 5

u1

u4u3u2 u5

Figure 1.2: A graph with universal and hanging vertices.

A 1-vertex is sometimes referred to as an hanging vertex , while a (|V (G)| − 1)-vertex is said
universal . Assuming u and v are two adjacent vertices of G and v has degree k, we call v a
k-neighbour of u.

Example 1.4. The vertex u1 from the graph G in Figure 1.2 is universal, while u2 is hanging.
The neighbourhood of u3 in G is {u1, u4, u5}, and hence u3 is a 3-vertex. The minimum degree
of G is 1, which is the degree of u2, while its maximum degree is 4, which is the degree of u1.

Two vertices u and v of a directed graph D are considered adjacent if there is an arc (either
antisymmetric or symmetric) involving both u and v. Every vertex v of D has two kinds of
neighbours, namely its inneighbours and outneighbours. Formally, the sets N−D (v) and N+

D (v), or
simply N−(v) and N+(v) when it is clear from the context, of inneighbours and outneighbours,
respectively, of v in D are defined as

N−D (v) = {u ∈ V (D) : −→uv ∈ A(D)} and N+
D (v) = {u ∈ V (D) : −→vu ∈ A(D)},

respectively. Note that the definitions imply that if two vertices u and v are joined by a symmetric
arc, then v ∈ N−(u) and v ∈ N+(v) (and similarly for u). The numbers of inneighbours and
outneighbours of v in D, which correspond to |N−D (v)| and |N+

D (v)|, respectively, are called the
indegree and outdegree, respectively, of v, and are denoted d−D(v) and d+

D(v), respectively. Again,
these parameters are simply denoted d−(v) and d+(v) when no confusion is possible. Similarly as
for the undirected case, we denote δ−(D) and ∆−(D) (resp. δ+(D) and ∆+(D)) the minimum
and maximum indegrees (resp outdegrees) of D, i.e. the minimum and maximum indegrees (resp.
outdegrees) of vertices of D.

Example 1.5. The set of inneighbours of u6 in the oriented graph
−→
G depicted in Figure 1.1.d

is {u3, u5, u7}, while the set of outneighbours of u5 is {u2, u6}. Both the indegree and outdegree
of u3 are equal to 1 in

−→
G . We have δ−(

−→
G) = 0 and ∆−(

−→
G) = 3, which are the indegrees of

u4 and u6, respectively. Besides, we have δ+(
−→
G) = 0 and ∆+(

−→
G) = 2, these values being the

outdegrees of u1 and u5, respectively.

A graph G where all the vertices have the same degree, say k, is called regular . If for some
reason we want to make the value of k explicit, then we say that G is k-regular. Since we have
δ(G) = ∆(G) whenever G is regular, it is understood that by the degree of G, we refer to the
(same) degree of its vertices. We sometimes refer to a 3-regular graph as a cubic graph.

Regarding oriented graphs, we distinguish two notions of regularity. Namely, an oriented
graph

−→
G in which all vertices have the same indegree, say k, is called inregular , or k-inregular.

Similarly we say that
−→
G is outregular or k-outregular when all vertices of

−→
G have outdegree k.

A hypergraph H is said k-uniform (or more generally uniform) if each edge of H includes
exactly k vertices. By definition, a 2-uniform hypergraph is actually a graph.

Example 1.6. In Figure 1.3.a is drawn a cubic graph, while Figure 1.3.b depicts a 2-outregular
oriented graph. The oriented graph from Figure 1.3.b is not inregular since its two left-most
vertices have indegree 1 and 2, respectively.

The density of a graph G corresponds to its ratio

2|E(G)|
|V (G)|(|V (G)| − 1)

.

6 1.2. Definitions, notation, terminology, and related results

(a) A 3-regular graph. (b) An outregular oriented graph.

Figure 1.3: A regular graph and an outregular oriented graph.

u2u1 u3

u5 u6 u7 u8

u4

(a) A subgraph of a graph.

u2u1 u3

u5 u6 u7 u8

u4

(b) An induced subgraph of a graph.

Figure 1.4: Subgraphs (in black only) of two graphs (in black and grey).

Intuitively, this parameter measures how close is G to the graph with the same order and the
maximum number of edges. By a dense graph, we generally refer to a graph with a lot of edges,
i.e. with density close to 1. On the contrary, a sparse graph rather refers to a graph with few
edges, i.e. with density close to 0. No notion of closeness has been ever unanimously adopted,
so these notions of denseness and sparseness graphs are highly context sensitive.

1.2.2.3 Isomorphic graphs

An isomorphism between two graphs G and H is a bijective mapping f : V (G) → V (H)
preserving the adjacencies, that is uv is an edge of G if and only f(u)f(v) is an edge of H.
Two graphs are said isomorphic when there exists an isomorphism between them. By writing
G ' H, we mean that G and H are isomorphic. Set differently, if G is isomorphic to H, then it
means that we can obtain H from G by relabelling the vertices of G.

1.2.2.4 Subgraphs of a graph

Let G be a graph. A subgraph G′ of G is a graph whose vertex set V ′ is a subset of V (G) and
whose edge set E′ is a subset of E(G) restricted to V ′ (i.e. for every edge uv ∈ E′, we have
u, v ∈ V ′). We say that G′ is trivial if either G′ = G or G′ is empty (i.e. V ′ = ∅). In case
V ′ = V , we say that G′ spans G. Conversely, we say that G is a supergraph of G′. If, for every
two vertices u and v of G′, we have uv ∈ E′ if and only if uv ∈ E(G), then we say that G′ is an
induced subgraph of G. Note that for some vertex u of G, the values dG(u) and dG′(u) can be
different. This justifies the above introduction of the notation dG.

Let S ⊆ V (G) be a subset of vertices. We denote by G[S] the subgraph of G induced by
S, that is the induced subgraph of G with vertex set S. Similarly, given a subset F ⊆ E(G) of
edges of G, the induced subgraph G[F] of G is the graph whose edges are those in F and whose
vertices are those of G which are incident to edges in F .

Example 1.7. The subgraph G′1 of the graph G1 depicted in Figure 1.4.a is a spanning subgraph
of G1. It is however not induced since u1 and u5 are vertices of G′1, but u1u5 is an edge of G1

which does not belong to G′1. The subgraph G′2 of the graph G2 depicted in Figure 1.4.b is
induced by {u2, u3, u6, u7}.

Chapter 1. Introduction 7

u2u1 u3

u4 u5 u6
(a) A path of a graph.

u2u1 u3

u5 u6 u7 u8

u4

(b) A cycle of a graph.

Figure 1.5: A path and a cycle (in black only) of two graphs (in black and grey).

Let G′ and G′′ be two subgraphs of G. We say that G′ and G′′ are vertex-disjoint if V (G′)∩
V (G′′) = ∅, i.e. no vertex of G belongs both to G′ and G′′. Similarly, we say that G′ and G′′ are
edge-disjoint if no edge of G belongs both to G′ and G′′. A clique refers to an induced subgraph
G′ of G in which every two vertices are adjacent, i.e. we have uv ∈ E(G′) for every two vertices
u, v ∈ V (G′). The clique number of G, denoted ω(G), is the order of a largest clique of G.
Given a graph H with |V (H)| ≤ |V (G)|, we say that G is H-free if no induced subgraph of G is
isomorphic to H. This notion extends to more than one pattern: given k graphs H1, H2, ...,Hk

with smaller order than G, we say that G is {H1, H2, ...,Hk}-free if no induced subgraph of G is
isomorphic to one of H1, H2, ...,Hk.

Example 1.8. The subgraph G′ induced by {u2, u3, u6, u7} of the graph G drawn in Figure 1.4.b
is a clique with order 4. Since it is the largest clique of G, we have ω(G) = 4.

1.2.2.5 Paths and cycles

A path of a graph G is a sequence (v1, v2, ..., vk) of distinct1 vertices such that vivi+1 is an edge
of G for every i ∈ {1, 2, ..., k − 1}. For the sake of simplicity, such a path is denoted v1v2...vk.
Since a path of G is nothing but a subgraph of G, the notion of order of v1v2...vk directly makes
sense. This parameter, which is equal to k, is denoted |v1v2...vk|. The length of v1v2...vk, denoted
‖v1v2...vk‖, refers to its number of edges (which is k − 1). A path with order 1 is called trivial .
We call v1 and vk the first and last vertices of v1v2...vk, respectively, these two vertices being
the endvertices of v1v2...vk. To clarify the endvertices of a path v1v2...vk of G, we call v1v2...vk a
{v1, vk}-path. A vertex of a path which is not an endvertex is sometimes called an inner vertex.
By the endedges of a path, we similarly refer to those at most two edges whose at least one end
has degree 1.

A cycle of a graph G is a sequence (v1, v2, ..., vk) of distinct1 vertices such that v1v2...vk is a
path of G and vkv1 ∈ E(G). A cycle with consecutive vertices v1, v2, ..., vk is denoted v1v2...vkv1

for short. The notions of order and length (and their associated terminologies) of v1v2...vkv1 are
defined analogously as for paths. Note that, contrary to paths, the order and the length of a
cycle are always equal. A graph with only one induced cycle is said unicyclic. The girth of G is
the length of its smallest cycles. Conversely, by the circumference of G we refer to the length of
its longest cycles. These two values are equal to infinity when G has no induced cycles. A cycle
with length 3 of G is sometimes called a triangle.

Example 1.9. The sequence (u3, u2, u5, u6) of vertices forms a path with order 4 and length 3
in the graph G1 depicted in Figure 1.5.a, so u3u2u5u6 is a {u3, u6}-path of G1. The girth
and circumference of G1 are equal to infinity since G1 has no induced cycles. The sequence
(u1, u2, u3, u4, u8, u7, u6, u5) forms a cycle with length 8 in the graph G2 depicted in Figure 1.5.b,
but G2 is not unicyclic as e.g. u1u2u5u1 is another cycle of G2. The girth of G2 is 3, which
is the length of the triangle u1u2u5u1, while its circumference is 8, which is the length of
u1u2u3u4u8u7u6u5u1.

1We only deal with simple paths or cycles throughout this thesis, that is paths or cycles with no repeated
vertices (aside from the first and last vertices in the case of cycles).

8 1.2. Definitions, notation, terminology, and related results

The order of the longest paths of G is denoted ς(G). A path or cycle with order |V (G)| of G
is said Hamiltonian. A graph with an Hamiltonian path is said traceable, while an Hamiltonian
graph refers to a graph with an Hamiltonian cycle. In case G has an Hamiltonian {u, v}-path
for every u 6= v ∈ V (G), we call G Hamiltonian-connected .

Example 1.10. The path u3u2u5u6 of the graph G1 depicted in Figure 1.5.a is not Hamiltonian.
Besides, it is easily seen that ς(G1) = |V (G1)| − 1 = |u4u1u2u5u6|, and hence that G1 is not
traceable. The cycle u1u2u3u4u8u7u6u5u1 of the graph G2 from Figure 1.5.b is Hamiltonian, and
hence G2 is an Hamiltonian graph. However G2 is not Hamiltonian-connected since it does not
admit any Hamiltonian {u2, u6}-path.

We now consider similar notions for directed graphs. A directed path of a directed graph
D is a sequence (v1, v2, ..., vk) of distinct vertices of D such that −−−→vivi+1 is an arc for every
i ∈ {1, 2, ..., k − 1}. Such a directed path is denoted −−−−−→v1v2...vk and is sometimes called a directed
(v1, vk)-path. The sequence (v1, v2, ..., vk) of distinct vertices of D forms a circuit if −−−−−→v1v2...vk is a
directed path of D and −−→vkv1 ∈ A(D). Again, a circuit is denoted −−−−−−−→v1v2...vkv1. In case an oriented
graph

−→
G has no induced circuit (note that this condition does not imply that und(

−→
G) has no

induced cycles), we call
−→
G acyclic.

1.2.2.6 Modifying a graph

Given two graphs G and H, by G + H we refer to the graph (V (G) ∪ V (H), E(G) ∪ E(H)).
In case we just want to augment G with new vertices v1, v2, ..., vk without having to define a
new graph H as a graph consisting in k independent vertices, we write G + {v1, v2, ..., vk} this
operation for short. Assuming {u1, v1}, {u2, v2}, ..., {uk, vk} are pairs of independent vertices of
G, we denote by G+ {u1v1, u2v2, ..., ukvk} the graph (V (G), E(G) ∪ {u1v1, u2v2, ..., ukvk}).

We now introduce similar operations on G regarding the removal of its vertices or edges. Let
S ⊆ V (G) be a subset of vertices of G. By G− S, we refer to the subgraph

(V (G) \ S,E(G) \
⋃

u∈S

⋃

v∈NG(u)

{uv})

obtained by removing the vertices in S and their incident edges from G. Similarly, given a subset
F ⊆ E(G) of edges of G, we denote G−F the subgraph (V (G), E(G)\F) obtained by removing
the edges in F from G.

Subdividing an edge uv of G means that we add a new vertex in between u and v. Formally,
subdividing uv results in the graph

(G− {uv}+ {w}) + {uw,wv},

where w is a new vertex added to G. By identifying u and v in G, we mean that we “merge” u
and v into a new vertex whose neighbourhood is made up of the neighbourhoods of both u and
v. Formally set, identifying u and v can be seen as resulting in the graph

(G− {v}) +
⋃

w∈NG(v)

{uw}.

By identifying more than two vertices u1, u2, ..., uk, we mean that we first identify u1 and u2,
then identify the resulting vertex and u3, then identify the resulting vertex and u4, and so on.

1.2.2.7 Connectedness and connectivity

A graph G is said connected if there is a {u, v}-path for every two vertices u and v of G. A non-
connected graph is said disconnected . By a connected component of G (or simply component for
short), we refer to a connected subgraph of G which is maximal in terms of order. So equivalently
a graph is connected if and only if it has only one component (i.e. the entire graph).

Chapter 1. Introduction 9

u2u1 u3

u5 u6 u7 u8

u4

(a) A graph with three components.

u2u1

u5 u6 u7 u8

u3 u4

u9
(b) A graph (in black and grey) with a cut vertex (in
grey only).

Figure 1.6: A disconnected graph and a connected graph.

Example 1.11. The graphG drawn in Figure 1.6.a has three components, induced by {u1, u5, u6},
{u2, u3}, and {u4, u7, u8}, respectively. This number of components implies that G is discon-
nected.

A cutset of G is a subset S ⊂ V (G) of vertices such that G−S is disconnected. A cutset with
size k is sometimes called a k-cutset. In case S = {v} is a 1-cutset of G, we call v a cut vertex .
We say that G is k-connected for a positive integer k ≥ 1 if G does not admit a cutset with size
at most k− 1. Clearly 1-connectedness and classic connectedness are equivalent notions. In case
G is connected, the connectivity of G is the positive integer κ(G) ≥ 1 defined as

κ(G) = max{k : G is k-connected}.
Example 1.12. Removing the vertex u7 from the graph G depicted in Figure 1.6.b results in
two components, so u7 is a cut vertex of G. This implies that G is not 2-connected, and hence
that κ(G) = 1.

The connectedness of a graph G can be checked using search algorithms. Such algorithms
consist in starting from a root vertex of G and then inductively traversing the edges joining
discovered vertices and undiscovered vertices as long as we can, i.e. new vertices keep on being
reached. Clearly G is connected if and only if all of its vertices have been reached once the
algorithm is finished. Executing a search algorithm more than once (i.e. from an undiscovered
root vertex remaining after the previous execution) is also a way for identifying all components
of G. During the execution of a search algorithm, assuming we are currently exploring G from
a vertex v, we call a return edge every edge joining v and an already discovered vertex.

The two common search algorithms are the depth-first and breadth-first . The main difference
between them is the strategy for choosing the next vertex to exploit for pursuing the exploration.
Roughly explained, the depth-first search algorithm privileges depth during the exploration of a
graph, while the breadth-first search algorithm rather privileges a wide exploration. These two
algorithms have running time2 O(|V (G)| + |E(G)|), so checking connectedness can be done in
linear time in the general case.

1.2.2.8 Distances and diameters

By the distance dist(G, u, v) between two vertices u and v of a graph G, or simply dist(u, v)
when it is clear from the context, we refer to the length of a smallest {u, v}-path, that is

dist(u, v) = min{‖P‖ : P is a {u, v}-path of G}.

In particular, note that dist(u, v) = 1 for every two adjacent vertices u and v of G, and that
dist(u, u) = 0 since the trivial path has length 0. In case G is not connected and u and v belong
to different components, by the definition we have dist(u, v) =∞.

By diam(G), we refer to the diameter of G defined as
2The notion of time complexity of an algorithm is introduced in upcoming Section 1.2.4.

10 1.2. Definitions, notation, terminology, and related results

u7

u1

u5 u6

u2 u3 u4

Figure 1.7: A graph with diameter 2.

diam(G) = max{dist(u, v) : u and v are two vertices of G},

that is the distance between the two most distant vertices of G. The diameter is a parameter
intuitively measuring how extent is a connected graph (note that a disconnected graph has infinite
diameter).

Example 1.13. In the graph G from Figure 1.7, all two vertices are at distance either 1 (every
pair of adjacent vertices) or 2 (e.g. u2 and u3). So we have diam(G) = 2.

Two notions of distance in oriented graphs are defined, mainly because going from a vertex u
to another vertex v in an oriented graph

−→
G can be easier than going from v to u as the orientation

of the arcs has to be taken into account. The basic distance dist(
−→
G, u, v) from u to v in

−→
G (or

dist(u, v) for short) is defined as

dist(u, v) = min{‖−→P ‖ :
−→
P is a directed (u, v)-path of

−→
G}.

Now, if we are optimistic, then we can consider that u and v are close when one of dist(u, v) or
dist(v, u) is small. This yields to the definition of the weak distance distw(u, v) from u to v in−→
G , which is

distw(u, v) = min{dist(u, v), dist(v, u)}.

On the contrary, if we really want the notion of distance to be representative of the connexion
between u and v in

−→
G , then we come up with the notion of strong distance dists(u, v), which is

defined as

dists(u, v) = max{dist(u, v), dist(v, u)}.

Using these two notions of oriented distance, two notions of oriented diameter then arise depend-
ing on whether we consider the weak or strong definition of distance.

1.2.2.9 Trees and rooted trees

A tree designates a connected graph with no cycle, while a disconnected graph whose all compo-
nents are trees is called a forest . The vertices of a tree are rather called nodes in this context. A
1-node is commonly called a leaf , while every non-leaf node is called an inner node. By choosing
a particular node r as the root of a tree T , one naturally defines an up-bottom orientation of T
from its root to its leaves. The resulting rooted tree is denoted Tr. According to the orientation
of Tr, a node u has at most one neighbour, denoted u−, which is nearer from r than u. This
node, if it exists, is referred to as the father of u in Tr. In contrast, the other neighbours of u,
which are farther from r than u, are called the children of u in Tr. All nodes of Tr which are
farther than u from r are called the descendants of u. Clearly, the root r has no father and the
leaves of Tr have no children, and all non-root nodes of Tr are descendants of r. In the special
case where u has only one child in Tr, we denote by u+ this node.

Chapter 1. Introduction 11

u7

u1

u5 u6

u2 u3 u4

(a) A tree T .

u1

u6

u7

u5 u3

u2

u4
(b) The rooted tree Tu1 .

Figure 1.8: A tree and one of its rooted trees.

Example 1.14. A tree T is depicted in Figure 1.8.a. The rooted tree Tu1 , obtained by rooting
T at u1, is depicted in Figure 1.8.b. The root u1 has three children, namely u5, u6, and u3. The
father of u7 is u6, while the unique child of u7 is u4.

The subtree of Tr rooted at u, denoted Tr[u], is the subgraph induced by u and the descendants
of u in Tr. When dealing with such a subtree, we generally keep on using the same orientation
as in Tr. In this context, the root of Tr[u] is then u.

Now assuming u has p ≥ 0 well-ordered children v1, v2, ..., vp in Tr, where vi is the ith child
of u for every i ∈ {1, 2, ..., p}, by the ith subtree of Tr rooted at u, denoted Tr[u, i], we refer to
the subtree of Tr induced by u, vi, and the descendants of vi in Tr. Note that, in such a subtree,
the root u has only one child, which is vi (so u+ is defined, and u+ = vi). Besides, by identifying
the roots of Tr[u, 1], Tr[u, 2], ..., Tr[u, p] we obtain Tr[u].

1.2.2.10 Weighting or colouring the elements of a graph

Let G be a graph. A weighting of some elements of G (e.g. its vertices and/or edges, etc.) is a
mapping assigning a value from a given set S of values, called weights, to each of these elements.
Most of the time, this set S is considered as being part of R, so, unless specified, it is understood
throughout that a weighting is an assignment of real values. In case the values assigned by the
weighting are not meaningful in the sense that changing some weights do not impact on the
problem we are interested in, we rather speak of a colouring of some elements of G, while a
weight is rather called a colour in this context. For a colouring which is not a weighting, it is
commonly considered that S is of the form {1, 2, ..., k} for the sake of simplicity. So a colouring
is also a weighting, but the converse does not necessarily hold.

The upcoming notions related to weightings naturally transpose to colourings. Three main
kinds of graph weightings are investigated throughout this thesis. Namely, a weighting of G
is called a vertex-, edge-, or total-weighting when this weighting concerns the vertices, edges,
or both the vertices and edges of G, respectively. A maximum subset of elements of G being
assigned a same weight by a weighting forms a weight class. Given a subset S ⊂ R of weights,
an S-weighting w of G is a weighting assigning a value among S to each target element of G. In
the special case where S = {1, 2, ..., k}, we call w a k-weighting. Regarding a total-weighting, it
might be the case that the sets of values assigned to the vertices and to the edges are different,
that is we assign e.g. a weight among {1, 2, ..., k} to the vertices of G and among {1, 2, ..., `} to
the edges of G, with possibly k 6= `. We call such a weighting a (k, `)-total-weighting. We refer
to a (k, k)-total-weighting as a k-total-weighting for short.

12 1.2. Definitions, notation, terminology, and related results

u2u1 u3

u5 u6 u7 u8

u4

(a) A 3-vertex-colouring of a graph.

u2u1 u3

u5 u6 u7 u8

u4

(b) A (3, 2)-total-colouring of a graph.

Figure 1.9: Colourings of two graphs (each colour corresponds to a value among
{1, 2, 3}).

Example 1.15. Figure 1.9.a depicts a 3-vertex-colouring of a graph, while Figure 1.9.b illustrates
a (3, 2)-total-colouring of a graph, where e.g. colours black, grey and white represent colours 1,
2, and 3, respectively, of these colourings.

Well-known particular kinds of graph colourings are proper colourings. A colouring c of G
is said proper if every colour class of c is independent. Applying this concept to the introduced
above notions, we get that a vertex-colouring is proper if every two adjacent vertices have distinct
colours, an edge-colouring is proper if every two adjacent edges receive distinct colours, and a
total-colouring is proper if no two adjacent vertices, no two adjacent edges, and no vertex and
one of its incident edges are assigned the same colour.

Example 1.16. The 3-vertex-colouring represented in Figure 1.9.a is proper since no two ad-
jacent vertices have the same colour. The (3, 2)-total-colouring of the graph G depicted in
Figure 1.9.b is not proper since e.g. the vertex u6 and the edge u2u6 have the same colour, and
similarly for the two edges u5u6 and u6u7. Restricted to its vertices, the total-colouring of G is
however a proper 3-vertex-colouring.

The least number of colours used by a proper vertex-colouring of G is called the chromatic
number of G, denoted χ(G). Similarly are defined the chromatic index of G, denoted χ′(G),
regarding proper edge-colourings of G, and the total chromatic number of G, denoted χ′′(G),
regarding proper `-total-colourings of G. We say that G is k-vertex-colourable if G admits a
proper k-vertex-colouring. The properties of being k-edge-colourable and k-total-colourable are
defined analogously regarding proper edge-colouring and proper `-total-colouring, respectively.
Colouring parameters are generally related to other graph invariants, e.g. ω(G) for χ(G), or
∆(G) for χ′(G). One classic result regarding the chromatic number of graphs is the following
upper bound on χ exhibited by Brooks [40].

Theorem 1.17 ([40]). For every graph G, we have χ(G) ≤ ∆(G) + 1. Besides, we have χ(G) =
∆(G) + 1 if and only if G is an odd length cycle or a complete graph3.

In the classic colouring notions above, it is assumed that all coloured elements are assigned a
colour from a same set S. Assuming now that each coloured element x is assigned a list L(x) of
possible colours, a list colouring of G is obtained by assigning a colour from L(x) to each element
x of G to colour. By a k-list colouring, it should be understood that every list L(x) has size k.

The notion of list colouring can of course be combined with the notions of vertex-, edge-
and total-colouring, as well as specific notions like the one of proper colouring. In particular,
we say that G is k-vertex-choosable if we can obtain a proper k-list vertex-colouring of G no
matter what are the lists of size k assigned to its vertices. Similarly are defined the notions of
k-edge-choosability and k-total-choosability . The parameters χ, χ′ and χ′′ in turn extend to list
colouring as well, though we rather speak of vertex-, edge- and total-choice number, respectively,

3Classes of graphs are introduced in upcoming Section 1.2.2.13.

Chapter 1. Introduction 13

u2u1 u3

u5 u6 u7 u8

u4

(a) A matching of a graph.

u2u1 u3

u5 u6 u7 u8

u4

(b) A path cover of a graph.

Figure 1.10: A matching and a path cover (in black only) of two graphs (in black
and grey).

in this context, which correspond to the least k such that a graph is k-vertex-, k-edge-, or
k-total-choosable, respectively. These parameters are denoted ch, ch′ and ch′′, respectively.

We end up with some terminology associated with edge-colourings. Let c be a k-edge-
colouring of G, and a be a colour used by c. An edge of G is said a-coloured when it is assigned
colour a by c. The a-subgraph of G refers to the subgraph of G induced by all of its a-coloured
edges. Now if v is a vertex of G, by the a-degree of v we refer to the degree of v in the a-subgraph.
This parameter is sometimes denoted dc,a(v). Assuming c is an arc-colouring of a directed graph,
the notions of a-indegree and a-outdegree of v by c are defined analogously. These parameters
are denoted d−c,a(v) and d+

c,a(v), respectively.

1.2.2.11 Covering the elements of a graph

A matching of a graph G is a subset M ⊆ E(G) of edges such that no two edges of M share
an end. A matching with size

⌊
|V (G)|

2

⌋
is called perfect in case |V (G)| is even, or quasi-perfect

otherwise.
A path cover of G is a collection of vertex-disjoint paths covering all vertices of G, or,

equivalently, a partition V1 ∪ V2 ∪ ... ∪ Vk of V (G) such that G[Vi] is traceable for every i ∈
{1, 2, ..., k}. The path cover number of G is defined as

µ(G) = min{k : V (G) admits a partition V1 ∪ V2 ∪ ... ∪ Vk where each G[Vi] is traceable},

i.e. the minimum size of a path cover of G.

Example 1.18. The matchingM of the graphG1 depicted in Figure 1.10.a is not perfect since u1

and u4 are not covered by edges of M . The path cover of the graph G2 depicted in Figure 1.10.b
is one of the smallest path covers of G2 (it is easily seen that G2 has no path covers made up of
only two parts). Therefore, we have µ(G) = 3.

The arboricity of G, denoted a(G), is the smallest number of forests into which G can be
edge-partitioned, that is

a(G) = min{k : E(G) admits a partition E1 ∪ E2 ∪ ... ∪ Ek where each G[Vi] induces a forest}.

A feedback vertex set of G is a subset S ⊂ V (G) of vertices such that G − S is a forest, i.e.
a set whose removal from G removes all cycles of G.

1.2.2.12 Graph operations

Let G and H be two graphs. The disjoint union of G and H is the graph G+H. The complete
join of G and H, denoted G×H, is the graph

(V (G) ∪ V (H), E(G) ∪ E(H) ∪ (V (G)× V (H)))

14 1.2. Definitions, notation, terminology, and related results

(a) The complete join (re-
sulting edges are in grey)
of two graphs (in black
only).

(b) The Cartesian product of two
graphs (edges in each shade of grey
correspond to edges of one operand).

(c) The 2nd power (in grey and black) of
a graph (in grey only).

Figure 1.11: A complete join and Cartesian product of two graphs, and a power
of a graph.

obtained by first considering G + H and then adding all possible edges between vertices which
originally belonged to G and vertices which originally belonged to H.

The Cartesian product of G andH, denoted G�H, is the graph with vertex set V (G)×V (H),
and whose every two vertices (u1, v1) and (u2, v2) are linked by an edge if and only if either

• u1 = u2 and v1v2 ∈ E(H), or

• v1 = v2 and u1u2 ∈ E(G).

Intuitively, G�H is the graph obtained by considering |V (H)| copies of G and connecting them
accordingly to the structure of H (or conversely).

Let k ≥ 1 be a positive integer. The kth power of G, commonly denoted Gk, is the graph
with the same vertex set as G, and in which two vertices of Gk are linked by an edge if they are
at distance at most k in G. Clearly G1 is nothing but G.

Example 1.19. The complete join of two graphs is depicted in Figure 1.11.a, the Cartesian
product of two graphs is illustrated in Figure 1.11.b, and the 2nd power of a graph is represented
in Figure 1.11.c.

1.2.2.13 Classes of graphs

The path with order n is denoted Pn. The star of order n, denoted Sn, is the tree obtained by
considering one central node r, called the root of Sn, and joining it to n− 1 independent nodes.
The star S4 is sometimes called the claw .

A multipode P is a tree made up of exactly one node r with degree at least 3. Equivalently P
is obtained after several subdividings of the edges of Sd(r)+1, the star with order d(r)+1. We call
r the root of P , while the d(r) maximum node-disjoint paths of P − {r} are called the arms of
P . Assuming P has d(r) arms with orders a1, a2, ..., ad(r) ≥ 1, respectively, we sometimes write
Pd(r)(a1, a2, ..., ad(r)) to directly refer to P , and call P a d(r)-pode to emphasize the number of
its arms. We sometimes refer to a 3-pode as a tripode. Note that any multipode Pk(a1, a2, ..., ak)
has order 1 +

∑k
i=1 ai.

A caterpillar refers to a tree made up of one main path to which every node either belongs
or is at distance 1. Note that, in the very special case where only one node u does not belong
to the main path, a caterpillar can be viewed as a tripode P3(1, a, b), where u is joined to va+1

assuming the main path is v1v2...va+b+1. Such a caterpillar is sometimes denoted Cat(a+1, b+1)
for convenience (the order of such a caterpillar is a+ b+ 2).

A comb is a tree with maximum degree 3 whose all nodes with degree 3 are located along a
same path. Every tripode is actually a comb with only one degree-3 node.

Chapter 1. Introduction 15

(a) The path P5. (b) The
claw S4.

(c) The caterpillar Cat(3, 4). (d) A comb (in black and grey) with main
path of length 5 (in black only).

Figure 1.12: Examples of particular trees.

Example 1.20. A path, the claw, a caterpillar, and a comb are illustrated in Figure 1.12.a, .b,
.c, and .d, respectively.

The cycle with order (and length) n is denoted Cn. A sun is a 1-connected unicyclic graph
made up of one main cycle to which degree-1 vertices, called rays, are distinctly attached, i.e.
in such a way that if u and v are two rays then N(u) 6= N(v) (no two rays are attached to the
same vertex of the main cycle).

Let k ≥ 1 and n ≥ k be two integers. The k-connected Harary graph on n vertices, denoted
by Hk,n, is the graph with vertex set {v0, v1, ..., vn−1} and the following edges:

• if k = 2r is even, then two vertices vi and vj are linked if and only if i− r ≤ j ≤ i+ r;

• if k = 2r + 1 is odd and n is even, then Hk,n is obtained by joining vi and vi+n
2
in H2r,n

for every i ∈ {0, 1, ..., n2 − 1};

• if k = 2r + 1 and n are odd, then Hk,n is obtained from H2r,n by first linking v0 to both
vbn

2
c and vdn

2
e, and then each vertex vi to vi+dn

2
e for every i ∈ {1, 2, ..., bn2 c − 1};

where the subscripts are taken modulo n. Note that in every graph Hk,k, every two vertices are
joined by an edge. When k is odd, the neighbours of a vertex vi of Hk,n which are at distance
strictly more than k from vi in the underlying Cn are called the antipodal neighbours of vi (there
are at most two of them). In particular, the vertex vi has two antipodal neighbours if and only
if i = 0, and k and n are both odd. A diagonal edge of Hk,n is an edge linking two antipodal
neighbours of Hk,n. Harary graphs are known as a family of graphs with arbitrary order and
connectivity, and the least number of edges regarding these two parameters.

A balloon is a 2-connected graph B obtained as follows. Consider a multigraph with order 2
whose two vertices r1 and r2 are joined by k ≥ 2 parallel edges. Now subdivide each of these
edges an arbitrarily number of times (but at least one) to get B. Equivalently B can be obtained
by considering paths Pb1 , Pb2 , ..., Pbk , with 3 ≤ b1 ≤ b2 ≤ ... ≤ bk, whose endvertices are denoted
u1 and v1, u2 and v2, ..., and uk and vk, respectively, and identifying all the ui’s, and identifying
all the vi’s. We call r1 and r2 the roots of B. By removing the vertices r1 and r2 from B, we get
a forest of paths, called branches of B, with order b1 − 2, b2 − 2, ..., bk − 2, respectively. An even
branch designates a branch with even order, while an odd branch designates a branch with odd

16 1.2. Definitions, notation, terminology, and related results

(a) The cycle
C5.

(b) A sun (in black and grey) with
two rays (in grey only)

(c) The Harary
graph H3,7.

(d) The 3-balloon
B(1, 2, 3).

(e) The par-
tial 7-balloon
PB(1, 2, 1, 2, 1, 1, 1).

Figure 1.13: Examples of graphs with cyclic structure.

order. We sometimes call B a k-balloon and write B = B(b1 − 2, b2 − 2, ..., bk − 2) to clarify its
number of branches and their lengths.

A partial balloon refers to a connected graph obtained by removing some edges incident with
the roots of a balloon. More precisely, assuming B = B(b1, b2, ..., bx+y+z) is a k-balloon, the
partial (x+y+ z)-balloon B′ = PB(b1, b2, ..., bx, bx+1, bx+2, ..., bx+y, bx+y+1, bx+y+2, ..., bx+y+z) is
obtained by removing from B the edges incident to r2 of the (x+ 1)th, (x+ 2)th, ..., (x+ y)th
branches of B, as well as the edges incident to r1 of the (x+y+1)th, (x+y+2)th, ..., (x+y+z)th
branches of B. The last y+ z branches of B′, which are attached to only one of the two roots of
B′, are said hanging .

Example 1.21. A cycle, a sun, a Harary graph, a balloon, and a partial balloon are illustrated
in Figure 1.13.a, .b, .c, .d, and .e, respectively.

A (k, `)-compound graph is a graph obtained as follows. Let G1, G2, ..., G` be ` graphs such
that for each Gi, with i ∈ {1, 2, ..., `}, there are k vertices ui1, ui2, ..., uik for which

G1[{u1
1, u

1
2, ..., u

1
k}] ' G2[{u2

1, u
2
2, ..., u

2
k}] ' ... ' G`[{u`1, u`2, ..., u`k}].

Then, as Ck,`(G1, G2, ..., G`), we refer to the (k, `)-compound graph obtained by considering the
disjoint union G1+G2+...+G` and identifying the vertices u1

i , u
2
i , ..., u

`
i for every i ∈ {1, 2, ..., k}.

In other words, the graph Ck,`(G1, G2, ..., G`) is made up of ` components “glued” together along k
of their vertices. The k vertices u1, u2, ..., uk resulting from the identifications are called the roots
of Ck,`(G1, G2, ..., G`). Considering the components G1, G2, ..., G` independently, the projection
of every root vertex ui to the jth component Gj is denoted u

j
i .

Chapter 1. Introduction 17

Observation 1.22. Every k-pode Pk(a1, a2, ..., ak) is a (1, k)-compound graph C1,k(Pa1+1, Pa2+1,
..., Pak+1). Every k-balloon B(b1, b2, ..., bk) is a (2, k)-compound graph C2,k(Pb1+2, Pb2+2, ...,
Pbk+2).

A graph G is said to be k-partite (or simply multipartite) for a positive integer k ≥ 2 if
V (G) admits a partition V1 ∪ V2 ∪ ...∪ Vk such that Vi is a non-empty independent set for every
i ∈ {1, 2, ..., k}. A 2-partite graph is rather called a bipartite graph. A bipartite graph with
vertex set A ∪B is said balanced if |A| = |B|, or unbalanced otherwise.

Observation 1.23. Every k-colourable graph is k-partite.

The complete graph on n vertices, denoted Kn, is the graph of order n in which every two
vertices are adjacent. An oriented graph

−→
T whose underlying graph is complete is called a

tournament . We say that
−→
T is transitive if we have −→uw ∈ A(

−→
T) for every two arcs −→uv and −→vw

of
−→
T .
For given k ≥ 2 positive integers p1, p2, ..., pk with 1 ≤ p1 ≤ p2 ≤ ... ≤ pk, the complete

k-partite graph Mk(p1, p2, ..., pk) is the k-partite graph whose vertex set admits a partition V1 ∪
V2 ∪ ...∪ Vk such that Vi is an independent set on pi vertices for every i ∈ {1, 2, ..., k} and which
has the maximum number of edges.

Observation 1.24. Every star Sn is isomorphic to the complete bipartite graph M2(1, n− 1).

A split graph G is a graph whose vertex set V (G) admits a partition I ∪ C such that I is
an independent set and G[C] is a complete graph. A notable split graph is the net , which is
the graph obtained by considering |I| = {u1, u2, u3} and |C| = {v1, v2, v3}, and then adding the
edges u1v1, u2v2 and u3v3. Equivalently, the net can be obtained by replacing the root of the
claw by a triangle.

A planar graph is a graph which can be drawn on the plane in such a way that no two edges
cross. Such a drawing of a graph forms a plane graph. We say that a plane graph is triangulated
if adding any edge to it results in a graph which is not planar.

Example 1.25. A (3, 3)-compound graph, a complete graph, a complete bipartite graph, a split
graph, the net, and a plane triangulation are illustrated in Figure 1.14.a, .b, .c, .d, .e, and .f,
respectively.

Cographs are a family of graphs described by the following rules:

Base case: K1 is a cograph,

Union operation: if G and H are two cographs, then G+H is a cograph,

Join operation: if G and H are two cographs, then G×H is a cograph.

A cograph can be represented as a term involving the three symbols •, + and ×, where •
intends to represent K1. Equivalently, every cograph G admits a cotree representation Tr, i.e.
can be expressed as a rooted tree where every inner node has exactly two children, whose leaves
are the vertices of G, and where each inner node u symbolizes either the union or the join of the
two cographs represented by the two subtrees rooted at the children of u.

Series-parallel graphs are defined as follows. Each series-parallel graph G has two specific
vertices s(G) and t(G) called terminals. Then:

Base case: P2 is a series-parallel graph whose terminals are its two endvertices,

Series composition: if G and H are two series-parallel graphs, then the graph obtained by
identifying t(G) and s(H) is a series-parallel graph with terminals s(G) and t(H),

18 1.2. Definitions, notation, terminology, and related results

(a) A compound graph (in black and
grey) with three roots (in black only)
and three components (in grey only).

(b) The com-
plete graph K5.

(c) The complete
bipartite graph
M2(3, 5) with
parts of size 3
and 5 (in two
shades of grey).

(d) A split graph
with independent
part of size 2 and
complete part of size
3 (in two shades of
grey).

(e) The net. (f) A plane triangu-
lation.

Figure 1.14: Examples of locally dense graphs.

Parallel composition: if G and H are two series-parallel graphs, then the graph obtained by
identifying s(G) and s(H) and identifying t(G) and t(H) is a series-parallel graph with terminals
s(G) = s(H) and t(G) = t(H).

Observation 1.26. Every path Pn is a series-parallel graph obtained from series compositions of
n− 1 copies of P2. Every k-balloon is a series-parallel graph obtained from parallel compositions
of k paths.

One point for introducing cographs and series-parallel graphs is that these graphs are known
to be fair regarding some notoriously hard problems, in the sense that some such problems can
be handled easily when restricted to cographs or series-parallel graphs.

Example 1.27. A cograph and a series-parallel graph are illustrated in Figure 1.15.a, and .b,
respectively.

We now introduce some common classes of graphs which may be obtained using the Cartesian
product operation. For any two positive integers a, b ≥ 1, the grid Ga,b is Pa�Pb. A grid G2,a is
sometimes referred to as a ladder . One interesting class of Cartesian products of graphs is the one
of hypercubes. Hypercubes are defined inductively. The smallest hypercube is Q1 ' K2. Then,
for every n ≥ 2 such that Qn−1 has been defined, the hypercube Qn is Qn−1 �K2. Regarding a
hypercube Qn, we call n the dimension of Qn.

Let Pk = v1v2...vk be the path of order k, and i ∈ {1, 2, ..., k} be any index. In case we are

Chapter 1. Introduction 19

(a) A join of two cographs (in
two shades of grey).

(b) A parallel
composition of
two series-parallel
graphs (in two
shades of grey).

Figure 1.15: Examples of inductively defined graphs.

dealing with a Cartesian product involving Pk, i.e. of the form G�Pk, we refer to the subgraph

Gi = (G�Pk)[
⋃

u∈V (G)

(u, vi)]

as the ith layer of G in G�Pk. For every vertex u ∈ V (G), we refer to the vertex ui = (u, vi)
of G�Pk as the ith layer of u in G�Pk. Similarly, the ith layer in G�Pk of a vertex subset
S ⊆ V (G) is the set Si made up of the ith layers of all vertices in S.

1.2.3 Probabilistic tools

The Erdős-Rényi model refers to sets of random graphs obtained as follows [57]. Let n ≥ 1 be
a positive integer, and p ∈ [0, 1] be a probability. The family G(n, p) of graphs includes graphs
with order n in which every two vertices are joined by an edge with probability p.

We now introduce two classical probabilistic tools, namely the Lovász Local Lemma and the
Chernoff Bound. Roughly set, the Local Lemma states that if a large number of (generally) bad
events are sufficiently independent and each has probability less than 1 to occur, then there is a
positive probability that none of these bad events occurs. This tool has been widely used in the
field of probability for proving the existence of mathematical objects. Refer to e.g. the reference
books of Alon and Spencer [7] and Molloy and Reed [94] for more details on this topic.

Theorem 1.28 (Local Lemma - Symmetric case). Let A1, A2, ..., An be events in an arbitrary
probability space. Suppose that each event Ai is mutually independent of a set of all the other
events Aj but at most D, and that Pr(Ai) ≤ p for every i ∈ {1, 2, ..., n}. If

e · p · (D + 1) ≤ 1,

then Pr(
n⋂
i=1

Ai) > 0.

Theorem 1.29 (Chernoff Bound). Let BIN(n, p) be the sum of n independent variables, each
equal to 1 with probability p and 0 otherwise. Then, for any t with 0 ≤ t ≤ np, we have

Pr(|BIN(n, p)− np| > t) < 2e
− t2

3np .

1.2.4 Computational complexity theory

More precise details on all explanations given throughout this section can be found e.g. in the
book of Garey and Johnson [62]. The goal of computational complexity theory is basically to
assess how hard it is to deal with a mathematical problem, hence defining classes of equivalently
hard problems.

20 1.2. Definitions, notation, terminology, and related results

Decision problems

A problem Π is generally defined as a set of inputs, i.e. objects of possibly different natures, and
a question regarding these inputs. Clearly two different problems Π and Π′ may admit different
kinds of answers to their question (e.g. integers, strings, lists, etc.), yielding a first classification
of mathematical problems. We herein focus on the family of decision problems, which are those
problems whose question is closed, i.e. can only be answered yes or no. Since decision problems
are the only kind of problems considered within this manuscript, the term “decision” is voluntarily
omitted throughout.

An application I of Π to specific values A1, A2, ..., Ak of its inputs, where, again, the Ai’s
may be objects of quite different natures, is called an instance of Π, and is sometimes denoted
<A1, A2, ..., Ak> . We say that I is positive if its answer regarding the question of Π (and the
inputs of I) is yes, or negative otherwise. Since Π is assumed to be a decision problem, by solving
I we mean that we determine correctly whether I is positive or negative. The correct answer to
I, i.e. either yes or no, is called the solution. The size of I, denoted |I|, is generally defined as
the number of bits necessary to describe the inputs of I.

Example 1.30. A typical decision problem is Prime Number, which asks: given an integer n,
is n a prime number? The instance <5> of this problem is positive, while the instance <10> is
negative.

Solving algorithms, and time and space complexities

The usual way for dealing with Π is to design a solving algorithm A for Π, that is a set of
successive atomic tasks (or instructions) which eventually yield a solution when applied to any
input instance I of Π. The efficiency of A can be evaluated regarding several criteria, though the
more usual ones are the amounts of time, counted as a number of instructions, or space, counted
as the number of working memory cells (or bits), A needs before eventually answering. These
amounts are called the time complexity and the space complexity, respectively, of A.

The time and space complexities of A are related to the size of the input instance I it is
asked to solve (in general A must indeed at least “read” all input parameters making up I before
solving it). Therefore, each complexity of A is rather expressed as a function of the size of an
instance of Π. To this end, we make use of the O notation. Formally, let f(n) and g(n) be
two functions defined over a subset of the real numbers. We say that f(n) is O(g(n)) if there
is a positive constant c > 0 and a real number n0 for which f(n) < c · g(n) for every n > n0.
Roughly speaking, saying that f(n) is O(g(n)) means that f(n) asymptotically behaves as g(n),
i.e. for large enough values of n. Since the O notation describes the asymptotic behaviour of
f(n), we generally do not make the constants nor the low-order terms appear since they are
less significant than the highest order term of f(n) of the growth of f(n) (but they are actually
caught by the “hidden” constant c). This simplification permits to lighten the notation by only
keeping the term of interest to characterize the asymptotic growth of a function. We sometimes
also make use of the o notation, where we say that f(n) is o(g(n)) if for every positive constant
c > 0, there exists a real number n0 for which f(n) < c ·g(n) for every n > n0. So the o notation
is stronger than the O one in the sense that every function which is o(g(n)) is also O(g(n)), but
the contrary does not necessarily hold.

Example 1.31. A naive solving algorithm for Prime Number is the trivial division method,
which consists, regarding an instance <n>, in checking whether an integer n′ ∈ {2, 3, ...,√n}
is a divisor of n. Assuming a division is performed in time O(1), the trivial division method is
achieved in time O(

√
n).

Not only we want to find a solving algorithm for Π, but we also want to design a solving
algorithm with the best possible time and/or space complexity regarding an input size n. From
this point of view, it is commonly accepted that a time or space complexity of a solving algorithm

Chapter 1. Introduction 21

is “good” if it is O(nO(1)) (polynomial) and “bad” if it is O(2O(n)) (exponential). By saying that
an algorithm for Π is polynomial-time or exponential-time, it should be understood that its time
complexity is O(|I|O(1)) or O(2O(|I|)), respectively, when applied on an instance I. Notions of
polynomial-space and exponential-space algorithms for Π are defined in an analogous way. It is
important to keep in mind that the above notions of “good” and “bad” algorithms are defined in
an asymptotic context. Notably, a polynomial-time solving algorithm A for Π can be practically
worst than an exponential-time solving algorithm A′ for Π, notably when the constant behind
the time-complexity of A is awful, when dealing with “small” instances of Π.

Common time-related complexity classes

Unless specified, the upcoming sections are dedicated to time complexity only. Based on how
efficiently we can solve some problems, i.e. what is the time complexity of the “fastest” solving
algorithms we can design for these, we obtain a classification of equivalent problems, where
two problems are considered equivalent if they can be solved via algorithms with similar time
complexities. One has to keep in mind that the hierarchy of complexity classes presented herein is
not unique and that other problem classifications could be introduced based on different criteria.
Besides, we only introduce those complexity classes which are relevant regarding the results of
this manuscript.

A very first classification is based on whether a problem can be solved efficiently. On the
one hand, the P complexity class gathers all problems which can be solved in polynomial time.
On the other hand, all problems which can be solved in exponential time belong to the EXP-
TIME complexity class. Clearly P ⊆ EXPTIME.

Example 1.32. Since the trivial division algorithm runs in polynomial time on every instance
of Prime Number, Prime Number is in P.

There is of course a big gap between the P and EXPTIME classes, and it would be quite
awkward to consider that a problem which we cannot solve in polynomial time is nothing more
refined than an EXPTIME problem. So several additional complexity classes in between P and
EXPTIME have been introduced to characterize the time complexity of every problem Π ∈ EXP-
TIME \ P. Among these additional classes, NP and co-NP are of great interest for us. First, the
NP class contains those problems for which we can check in polynomial-time whether an instance
is positive. Basically Π is in NP if we can design a polynomial-time checking algorithm for the
yes, i.e. an algorithm which can, provided an instance I ∈ Π and additional inputs related to I,
determine whether I is positive regarding these additional inputs. Conversely, the co-NP class
includes those problems for which we can design a polynomial-time checking algorithm for the
no. The additional inputs based on which a checking algorithm decides whether an instance is
positive or negative is called a certificate. A checking algorithm aiming at deciding whether an
instance is positive (resp. negative) is sometimes called yes-checking (resp. no-checking).

Example 1.33. A yes-checking algorithm for Prime Number would basically, regarding an
instance <n>, take two integers p and q as input parameters (certificate), and check whether
n = pq.

Clearly we have P ⊆ NP ∩ co-NP since a solving algorithm can be seen as a checking algorithm
requiring no certificate to answer. It is however still far from being clear whether NP ⊆ P. This
yields to surely the major unsolved computer science question.

Question 1.34. Do we have P = NP?

Question 1.34, if true, would have drastic consequences on several fields of nowadays life,
including mathematics, cryptology, computer science, economics, etc.. Unless P = NP, a problem
Π ∈ NP \ P is basically a problem which we do not know how to solve in polynomial time, but,
given an instance I ∈ Π, we can “guess” a certificate (among an exponential set of candidates)
and check whether I is positive regarding this guessed certificate.

22 1.2. Definitions, notation, terminology, and related results

Hardness and completeness

So that we introduce the next complexity notion, we first need to introduce the notion of re-
duction. A reduction from a problem Π to another problem Π′ is a function f : Π → Π′ such
that

an instance I ∈ Π is positive ⇔ f(I) ∈ Π′ is positive.

In case such a reduction from Π to Π′ exists, we say that Π is reducible to Π′, and write Π ≤ Π′.
Besides, we sometimes call f(I) the reduced instance of I (resulting from f). Assuming that the
reduction f can be described as a polynomial-time algorithm, the problem Π′ can be intuitively
regarded as “harder” than Π (and thus using the symbol ≤ makes sense). Indeed, if we had a
polynomial-time solving algorithm for Π′, then we would have one for Π too: given an instance
I ∈ Π, we could just use the solving algorithm for Π′ on f(I). Since both the reduction and the
solving algorithm would run under polynomial time, the whole process would be achieved within
polynomial time too. We write Π ≤p Π′ if Π is polynomial-time reducible to Π′. Of course the
relations ≤ and ≤p are both transitive.

Combining the above complexity classes and this intuitive notion of “harder” problems leads
us to the notion of completeness. We first need a few rough definitions beforehand. A formula
F in conjunctive normal form is a conjunction of clauses C1, C2, ..., Cm each consisting of a
disjunction of literals, where a literal is either a boolean variable xi or its negation xi from a
set of variables {x1, x2, ..., xn}. A (boolean) assignment φ of the variables of F is a function
{x1, x2, ..., xn} → {0, 1}, where each variable xi is either set to true (if φ(xi) = 1) or false
(otherwise, if φ(xi) = 0). This assignment φ naturally transposes to literals. In particular, the
truth value assigned to xi is the opposite of the one assigned to xi. A clause of F is considered
satisfied by φ if at least one of its literals is evaluated true by φ. Finally, we consider that F
is satisfied by φ if φ satisfies all clauses of F . We say that F is satisfiable if there is a truth
assignment to its variables making it satisfied.

Example 1.35. The conjunctive normal form formula F = x1 ∧ (x2 ∨ x3) ∧ (x2 ∨ x2 ∨ x3),
involving three clauses and three variables, is satisfied if we set e.g. φ(x1) = φ(x2) = φ(x3) = 1.

We can now consider the following classic NP problem.

Satisfiability
Instance: A formula F in conjunctive normal form with clauses C1, C2, ..., Cm over variables
x1, x2, ..., xn.
Question: Is F satisfiable?

An important theorem of Cook states that every instance of every problem in NP can be
expressed, in polynomial-time, as an equivalent boolean formula in conjunctive normal form [44].
In other words, every problem in NP reduces to Satisfiability in polynomial time. Regarding
the explanations above, Satisfiability can legitimately be considered as one of the hardest
NP problems. Formally we say that Satisfiability is complete in NP, or NP-complete for
short. Now note that if we have Satisfiability ≤p Π for another NP problem Π, then Π
can also be regarded as one of the hardest problems of NP since every other NP problem Π′ is
polynomial-time reducible to it by transitivity, i.e. we have

Π′ ≤p Satisfiability ≤p Π.

Polynomial-time reductions thus induce notions of equivalent and harder problems for a
given complexity time-related class C, which are defined as follows. Assume C includes a base
C-complete problem Πc, i.e. Πc ∈ C and all other problems of C reduce to Πc in polynomial

Chapter 1. Introduction 23

time. Then any other problem Π satisfying Πc ≤p Π is “harder” than Πc. We call Π C-hard . A
C-hard problem which belongs to C is called C-complete. The fundamental difference between
C-hard and C-complete problems is that finding a polynomial-time solving algorithm for a C-
complete problem results in a polynomial-time algorithm for solving all problems in C, but does
not imply that every C-hard problem is solvable in polynomial time (typically it does not imply
anything regarding C-hard problems not in C).

Polynomial hierarchy

One alternative way to define the NP and co-NP classes is to make use of the notion of oracle. An
oracle for a problem Π is a kind of “black box” which can instantaneously (i.e. with constant time)
determine whether an instance of Π is positive or negative. Then the NP and co-NP classes can
be defined as the sets of problems which admit a polynomial-time yes- or no-checking algorithm,
respectively, making use of an oracle for a P problem.

Generalizing this alternative definition of NP and co-NP leads to the so-called polynomial
hierarchy , which not only contains the classical NP and co-NP classes but also additional com-
plexity classes containing problems with apparently higher time complexity. The polynomial
hierarchy is made up of infinitely many levels, where each ith level consists in three complexity
classes denoted ∆p

i , Σp
i and Πp

i . At the very base of the polynomial hierarchy, i.e. at level 0, we
have

∆p
0 = Σp

0 = Πp
0 = P.

Now, for any i ≥ 1 such that the (i− 1)th level, i.e. the classes ∆p
i−1, Σp

i−1 and Πp
i−1, has been

defined, for a given problem Π, we have:

• Π ∈ ∆p
i if Π admits a polynomial-time solving algorithm using a Σp

i−1 ∪Πp
i−1 oracle,

• Π ∈ Σp
i if Π admits a polynomial-time yes-checking algorithm using a Σp

i−1 ∪Πp
i−1 oracle,

• Π ∈ Πp
i if Π admits a polynomial-time no-checking algorithm using a Σp

i−1 ∪Πp
i−1 oracle.

In particular, we have ∆p
1 = P, Σp

1 = NP, and Πp
1 = co-NP. The union of the complexity classes

from all levels of the polynomial hierarchy is commonly denoted PH.

The above formal definitions of Σp
k and Πp

k are not intuitive for the analysis of decision
problems, but Σp

k and Πp
k problems can generally be easily recognized by using the following

observations. The fact that, for a problem Π ∈ NP, we can efficiently check whether an instance
I of Π is positive is because the question of Π is about the existence of an object related to the
inputs of I. So basically we can guess one certificate for I, which may assess the positiveness of
I. Conversely, the reason why we can easily check whether an instance of a co-NP problem is
negative is because its question asks whether all some objects related to the inputs of I satisfy
some properties. So we can hence show that I is negative by just exhibiting one counterexample
certificate.

According to the above arguments and the relationship between two consecutive levels of the
polynomial hierarchy, it can be easily seen that Σp

k gathers those problems whose question can
be expressed as a formula involving an alternation of k quantifiers (either ∃, the existence, or
∀, the universality) starting from an ∃ symbol. Conversely, a problem in Πp

k has its question
being a formula involving k alternating quantifiers starting with a ∀ universal quantifier. So
the polynomial hierarchy gathers those problems whose questions can be expressed as formulas
involving a constant number of alternating quantifiers.

So that the notions of Σp
k- and Πp

k-complete problems make sense, as explained previously
we just need Σp

k or Πp
k, respectively, problems to which all problems in Σp

k or Πp
k, respectively,

24 1.2. Definitions, notation, terminology, and related results

reduce in polynomial time. Such problems were exhibited independently by Meyer and Stock-
meyer [92] and Wrathall [120]. The archetypal Σp

k-complete problem is the following Σp
k variant

of Satisfiability.

∃∀∃∀... Satisfiability
Instance: A formula F in conjunctive normal form with clauses C1, C2, ..., Cm over variables
X = {x1, x2, ..., xn}, and a partition X1 ∪X2 ∪ ... ∪Xk of X.
Question: Is there a truth assignment to X1 such that for all truth assignments to X2 there exists
a truth assignment to X3 such that for all truth assignments to X4... such that F is satisfied?

Analogously, the base Πp
k-complete problem is the following Πp

k variant of Satisfiability.

∀∃∀∃... Satisfiability
Instance: A formula F in conjunctive normal form with clauses C1, C2, ..., Cm over variables
X = {x1, x2, ..., xn}, and a partition X1 ∪X2 ∪ ... ∪Xk of X.
Question: For all truth assignments to X1 is there a truth assignment to X2 such that for all
truth assignments to X3 there is a truth assignment to X4... such that F is satisfied?

Parameterized time complexity

Parameterized complexity theory is a field of computational complexity theory which gained
ingrowing attention since its recent introduction. The idea is roughly to consider parameters
inherent to a (generally hard) problem Π, and to investigate whether these parameters are
intimately related to the hardness of Π. These parameters can then reveal to not impact on
the hardness of Π, i.e. instances of Π with small or large values of these parameters are as
complicated to handle, or, on the contrary, to be related to the hardness of Π, i.e. instances
of Π with small values of these parameters can be solved drastically easily than instances of Π
having large values of these parameters. So two parameterized versions of Π can show up to
have quite different time complexities, typically if one of these two versions is parameterized by
a crucial parameter making Π difficult. More details on this topic can be found e.g. in the book
of Downey and Fellows [51].

Formally, by a parameter k of Π, we refer to a function assigning a natural number to every
instance of Π. We say that Π is fixed-parameter tractable (when parameterized by k) if every
instance I of Π can be solved with time O(f(k) · |I|O(1)), where f is a computable function of
k. So assuming the value of k associated to I is fixed, we basically get that I can be solved
in time O(|I|O(1)), where f(k) is part of the constant hidden by the O notation, that is in
polynomial time. The function f above can of course be replaced with a function of more than
one parameter, so the definitions above can be naturally adapted to problems parameterized by
several parameters.

Parameterized complexity can be considered as an extension of classic complexity for studying
hard problems, notably NP-complete problems, in the following sense. By definition, an NP-
complete problem Π should not admit a polynomial-time solving algorithm (unless P = NP). So
the next interesting question is to determine whether Π is fixed-parameter tractable regarding
some parameters, i.e. which parameters of Π make Π hard. Of course such parameters should
not be easy to compute since otherwise we would get a polynomial-time solving algorithm for Π.
But studying which aspects of a notoriously hard problem make it hard is generally a fascinating
direction.

Space complexity

It might be the case that a problem Π is apparently so hard that it does not belong to the
polynomial hierarchy at all, i.e. not only solving algorithms but also checking algorithms for

Chapter 1. Introduction 25

Π need more than polynomial time to achieve. In such a situation, it gets more convenient to
estimate the complexity of Π in terms of space required to solve it.

In between PH and EXPTIME is then located the PSPACE class, which contains those prob-
lem which admit a polynomial-space solving algorithm. Clearly we have PH ⊆ PSPACE. Indeed,
by definition, each problem Π in PH admits a polynomial-time checking algorithm. Since this
checking algorithm runs in polynomial time, clearly the certificates it works on have polynomial
size. So basically a polynomial-space solving algorithm for Π would generate all possible cer-
tificates using polynomial space, and call the checking algorithm on each of these (which uses
polynomial space since it runs in polynomial time) to answer.

Similarly as for problems in PH, one straight way for recognizing typical PSPACE problems is
that their questions can be expressed as formulas involving a polynomial number of quantifiers
(either ∃ and ∀). The notion of PSPACE-complete problems is defined analogously as for the
previous complexity classes we have introduced. The archetypal base PSPACE-complete problem
is a PSPACE variant of Satisfiability called Quantified Boolean Formula, which is
similar to the Σp

k and Πp
k variants of Satisfiability, except that the number of quantifiers

involved in its question is not constant. We refer the reader to the work of Stockmeyer and
Meyer [114] for more details on Quantified Boolean Formula.

1.3 List of decision problems

We herein list some decision problems and point out some aspects of their time complexity.

1.3.1 Satisfiability-like problems

Satisfiability is known to remain NP-complete even under strong restrictions on the input
formula, or on the conditions for a clause or the formula to be considered satisfied. Maybe one
of the most known NP-complete restrictions of Satisfiability is 3-Satisfiability, which is
the restriction where the formula is assumed to be a conjunction of 3-clauses.

Definition 1.36. For every k ≥ 1, a k-clause refers to a disjunction of k literals.

3-Satisfiability
Instance: A formula F in conjunctive normal form with 3-clauses C1, C2, ..., Cm over variables
x1, x2, ..., xn.
Question: Is F satisfiable?

3-Satisfiability is one of the twenty-one first problems shown to be NP-complete by
Karp [82].

Theorem 1.37 ([82]). 3-Satisfiability is NP-complete.

Assuming that the clauses of a formula involving 3-clauses are satisfied when they have a cer-
tain number of true literals, we come up with the upcoming two restrictions of 3-Satisfiability.

Definition 1.38. Let F be a formula in conjunctive normal form, and φ be a truth assignment
to the variables of F . We say that F is 1-in-3 satisfied if every of its clauses has exactly one true
literal by φ. We say that F is not-all-equal satisfied if every of its clauses has at least one true
literal and at least one false literal by φ.

1-in-3 Satisfiability
Instance: A formula F in conjunctive normal form with 3-clauses C1, C2, ..., Cm over variables
x1, x2, ..., xn.
Question: Is F 1-in-3 satisfiable?

26 1.3. List of decision problems

Not-All-Equal 3-Satisfiability
Instance: A formula F in conjunctive normal form with 3-clauses C1, C2, ..., Cm over variables
x1, x2, ..., xn.
Question: Is F not-all-equal satisfiable?

1-in-3 Satisfiability and Not-All-Equal 3-Satisfiability were both shown to be NP-
complete by Schaefer’s dichotomy theorem [106].

Theorem 1.39 ([106]). 1-in-3 Satisfiability and Not-All-Equal 3-Satisfiability are
NP-complete.

So that we give the complexity status of restrictions of both 1-in-3 Satisfiability and Not-
All-Equal 3-Satisfiability, we need to introduce further notions. We start by clarifying the
notion of monotone formula.

Definition 1.40. A formula F in conjunctive normal form is monotone if none of its clauses
involves a negated variable.

We also define what is a planar formula.

Definition 1.41. Let F be a formula in conjunctive normal form. By the graph underlying F ,
we refer to the bipartite graph G whose vertex set C ∪ L includes the following vertices:

• for every clause Cj of F , there is a vertex vCj in C,

• for every literal `i of F , there is a vertex v`i in L,

and in which two vertices vCj and v`i are joined if and only if `i ∈ Cj .
Definition 1.42. A formula in conjunctive normal form is planar if its underlying graph is
planar.

We can now introduce the following NP-complete restrictions of 3-Satisfiability, 1-in-3
Satisfiability, and Not-All-Equal 3-Satisfiability, where prefixing every of these prob-
lems with Monotone means that we further assume that the input formula F is monotone,
while prefixing them with Planar means that F is also assumed planar.

Theorem 1.43. The following problems are NP-complete:

• Planar 3-Satisfiability (Lichtenstein [87]),

• Monotone 1-in-3 Satisfiability (Schaefer [106]),

• Planar 1-in-3 Satisfiability (Dyer and Frieze [55]),

• Planar Monotone 1-in-3 Satisfiability (Laroche [85]),

• Monotone Not-All-Equal 3-Satisfiability (Schaefer [106]).

Of course Monotone 3-Satisfiability is trivially in P since every of its instances is posi-
tive. It is further important mentioning that Planar Not-All-Equal 3-Satisfiability was
surprisingly shown to be in P by Moret [96].

We now raise some easy remarks regarding instances of 3-Satisfiability, 1-in-3 Satisfi-
ability and Not-All-Equal 3-Satisfiability.

Observation 1.44. When dealing with a formula F being an instance of 3-Satisfiability,
1-in-3 Satisfiability or Not-All-Equal 3-Satisfiability, we can suppose that all literals
over the variables of F appear in F .

Chapter 1. Introduction 27

Proof. Assume a literal `i does not appear in F . Then just note that

F ∧ (`i ∨ `i ∨ `i)

is a formula involving `i and equivalent to F in case F is an instance of 3-Satisfiability or
Not-All-Equal 3-Satisfiability, while

F ∧ (`i ∨ `i ∨ xn+1) ∧ (xn+1 ∧ xn+1 ∨ xn+1),

where xn+1 is a new variable, is a formula involving `i and equivalent to F when F is an instance
of 1-in-3 Satisfiability. �

Repeating the modification from the proof of Observation 1.44 for all literals which do not
appear in F , we get a formula equivalent to F but involving all possible literals over its variables.
This procedure is achieved in polynomial time.

We now introduce the notion of forced literal before raising more observations.

Definition 1.45. Let F be a formula from an instance of a Satisfiability-like problem. A
literal `i of F is forced to true (resp. false) (by a clause C of F) if, regarding C, necessarily `i is
set to true (resp. false) by every satisfying truth assignment satisfying F .

Observation 1.46. If a clause C of an instance F of 3-Satisfiability is of the form (`i ∨
`i ∨ `i), then `i is forced to true by C.

Observation 1.47. If a clause C of an instance F of 1-in-3 Satisfiability is of the form
(`i ∨ `j ∨ `j) with `i 6= `j, then `i is forced to true and `j is forced to false by C.

Observation 1.48. If a clause of an instance F of 1-in-3 Satisfiability or Not-All-Equal
3-Satisfiability is of the form (`i ∨ `i ∨ `i), then F cannot be satisfied.

Our reductions often make use of the following notation.

Notation 1.49. Let F be a formula from an instance of a Satisfiability-like problem. For
every clause Cj of F , we denote m(Cj) the number of distinct literals in Cj . For every literal `i
(resp. variable xi in case the problem is Monotone) of F , we denote n(`i) (resp. n(xi)) the
number of distinct clauses which contain `i (resp. xi).

As for higher levels of the polynomial hierarchy, all Σp
k and Πp

k versions of 3-Satisfiability,
i.e. ∃∀∃∀...3-Satisfiability and ∀∃∀∃...3-Satisfiability with k alternating quantifiers being
involved, were both shown to be complete in their respective class by Stockmeyer [113] and
Wrathall [120], independently.

Theorem 1.50 ([113] and [120], independently). Every problem ∃∀∃∀...3-Satisfiability or
∀∃∀∃...3-Satisfiability involving exactly k alternating quantifiers is Σp

k- or Πp
k-complete, re-

spectively.

In the same vein, we also introduce the Πp
2-complete version of 1-in-3 Satisfiability.

∀∃ 1-in-3 Satisfiability
Instance: A formula F in conjunctive normal form with 3-clauses C1, C2, ..., Cm over variables
X = {x1, x2, ..., xn}, and a bipartition X1 ∪X2 of X.
Question: For all truth assignments to X1, is there a truth assignment to X2 such that F is
1-in-3 satisfied?

As we did not find any proof of the Πp
2-completeness of ∀∃ 1-in-3 Satisfiability in the lit-

erature, we show it below by reduction from ∀∃ 3-Satisfiability. This reduction is nothing but
a generalization of a common reduction from 3-Satisfiability to 1-in-3 Satisfiability given
by Schaefer in [106].

28 1.3. List of decision problems

Lemma 1.51. ∀∃ 1-in-3 Satisfiability is Πp
2-complete.

Proof. ∀∃ 1-in-3 Satisfiability is clearly in Πp
2. One can indeed design an algorithm that

takes, as inputs, F and a truth assignment φ1 to the variables of X1 for which there is no truth
assignment φ2 to the variables in X2 making F evaluated in a 1-in-3 way. It just has to check that
φ2 does not exist by invoking an oracle dealing with 1-in-3 Satisfiability. Such a checking
algorithm runs in polynomial time regarding the size of F .

We now show that ∀∃ 1-in-3 Satisfiability is Πp
2-complete by reduction from ∀∃ 3-

Satisfiability. From a formula F in conjunctive formal form with 3-clauses C1, C2, ..., Cm
over variables X = {x1, x2, ..., xn} and a bipartition X1∪X2 of X, we construct another formula
F ′ in conjunctive normal form involving 3-clauses over variables among a set X ′ admitting a
bipartition X ′1 ∪X ′2 such that

for all truth assignments φ1 to X1, there exists a truth assignment φ2 to X2 making F satisfied
⇔

for all truth assignments φ′1 to X ′1, there exists a truth assignment φ′2 to X ′2 making F ′ 1-in-3
satisfied.

The reduction is as follows. First, for each clause Ci = (`i1 ∨ `i2 ∨ `i3) of F , add four clauses

(`i1 ∨ ai ∨ bi), (`i2 ∨ ci ∨ di), (`i3 ∨ ei ∨ fi) and (ai ∨ ci ∨ ei)

to F ′, where ai, bi, ci, di, ei and fi are six new variables associated with Ci. Finally, let X ′1 = X1

and X ′2 = X2 ∪
⋃m
i=1{ai, bi, ci, di, ei, fi}. Note that F ′ has 4m clauses and may thus be obtained

in polynomial time.
First suppose that for every truth assignment φ′1 of X ′1 there exists a truth assignment φ′2

of X ′2 for which F ′ is 1-in-3 satisfied. Consider every four clauses (`i1 ∨ ai ∨ bi), (`i2 ∨ ci ∨ di),
(`i3 ∨ ei ∨ fi) and (ai ∨ ci ∨ ei) for every i ∈ {1, 2, ...,m}. Because every clause of F ′ has exactly
one true literal by φ′1 and φ′2, it means that only one element in {ai, ci, ei} is evaluated true by
φ′2. Let us suppose that for such an i we have φ′2(ai) = 1 and φ′2(ci) = φ′2(ei) = 0 without loss
of generality. Thus, we have `i1 evaluated true by either φ′1 or φ′2. It follows that the following
truth assignments φ1 and φ2 of X1 and X2, respectively,

• φ1 = φ′1,

• φ2(x) = φ′2(x) for every x ∈ X2,

make F satisfied. Conversely, suppose that for every truth assignment φ1 of X1 there is a truth
assignment φ2 of X2 such that F has all its clauses satisfied by φ1 and φ2. We explain how to
get a truth assignment φ′2 to X ′2 so that F ′ is evaluated true in a 1-in-3 way under φ′2 and the
truth assignment φ′1 = φ1 to X ′1. First, let φ′2(x) = φ2(x) for every x ∈ X2. We then have
to provide a truth assignment of ai, bi, ci, di, ei and fi by φ′2 for every i ∈ {1, 2, ...,m}. This
assignment depends on the number of true literals in Ci = (`i1 ∨ `i2 ∨ `i3) via φ1 and φ2. Let
φ3 : X1 ∪X2 → {0, 1} be the truth assignment of X1 ∪X2 deduced from φ1 and φ2 as follows:

• for every x ∈ X1, set φ3(xi) = φ1(xi);

• for every x ∈ X2, set φ3(xi) = φ2(xi).

Consider now that the images of the ai’s, bi’s, ci’s, di’s, ei’s and fi’s by φ′2 are the ones
depicted in Table 1.16. It should then be clear that F ′ is evaluated true in a 1-in-3 way under
φ′1 and φ′2. �

Chapter 1. Introduction 29

(φ3(`i1), φ3(`i2), φ3(`i3)) φ′2(ai) φ′2(bi) φ′2(ci) φ′2(di) φ′2(ei) φ′2(fi)

(1, 0, 0) 1 0 0 0 0 0

(0, 1, 0) 0 0 1 0 0 0

(0, 0, 1) 0 0 0 0 1 0

(1, 1, 0) 1 0 0 1 0 0

(1, 0, 1) 1 0 0 0 0 1

(0, 1, 1) 0 0 1 0 0 1

(1, 1, 1) 1 0 0 1 0 1

Table 1.16: Truth assignment of the variables in X2 \X ′2 by φ′2.

1.3.2 Graph problems

We kick off with the following well-known NP-complete problem, whose one first NP-completeness
proof is due to Garey and Johnson [62].

Hamiltonian Path
Instance: A graph G.
Question: is G traceable?

Now consider the following hypergraph colouring problem.

2-Colouring of 3-Uniform Hypergraph
Instance: A 3-uniform hypergraph H.
Question: Is there a 2-vertex-colouring of H such that no edge has its three vertices assigned the
same colour?

2-Colouring of 3-Uniform Hypergraph was shown to be NP-complete by Lovász [88].

Theorem 1.52 ([88]). 2-Colouring of 3-Uniform Hypergraph is NP-complete.

One worthy observation is that every instance of 2-Colouring of 3-Uniform Hyper-
graph can be regarded as an instance of Monotone Not-All-Equal 3-Satisfiability whose
formula has all of its clauses having three distinct variables. We hence get the following.

Observation 1.53. Monotone Not-All-Equal 3-Satisfiability remains NP-complete when
we have m(Cj) = 3 for every clause Cj of F .

1.3.3 Partition problems

One NP-complete partition problem which we use in further chapters is the following.

3-Partition
Instance: A set A = {a1, a2, ..., a3m} of 3m elements, a bound B ∈ Z+, and a size s : A → Z+

such that B
4 < s(a) < B

2 for every a ∈ A and
∑

a∈A s(a) = mB.
Question: Can A be partitioned intom parts A1∪A2∪...∪Am such that we have

∑
a∈Ai s(a) = B

for every i ∈ {1, 2, ...,m}?

One important point of interest is that 3-Partition remains NP-complete when:

• the sizes by s are not small, i.e. at least 2,

• B and min{s(a) : a ∈ A} are larger than an integer constant c ≥ 1, and

• either B or min{s(a) : a ∈ A} has given parity.

30 1.3. List of decision problems

A proof for the above first item only was given by Dell’Amico and Martello in [47]. Our proof
below is slightly different but also agree with the above two other items.

Observation 1.54. 3-Partition remains NP-complete when restricted to an instance <A,B, s>
where s(a) > 1 holds for every element a ∈ A, where B and min{s(a) : a ∈ A} are larger than
an integer constant c ≥ 1, and either B or min{s(a) : a ∈ A} has given parity.

Proof. It is easily seen that <A,B′, s′>, where

• B′ = B + 3,

• s′(a) = s(a) + 1 for every a ∈ A,

is another instance of 3-Partition (in particular B
4 < s(a) < B

2 implies B′

4 < s′(a) < B′

2 for
every a ∈ A) which is equivalent to <A,B, s>. Besides, by successively performing this transfor-
mation an arbitrary number of times starting from <A,B, s>, we keep on getting new instances
of 3-Partition which are equivalent to <A,B, s>. The claim then follows by performing this
transformation the appropriated number of times. In particular, the first condition is met as soon
as the transformation is performed at least once. The second condition is fulfilled by performing
at least c such transformations. If the third condition is not already met, then just perform the
transformation once again. �

Part I

Partitioning graphs into connected
subgraphs

Chapter 2. Introduction to Part I 33

Chapter 2

Introduction to Part I

In this introductory chapter, we give all the contents which are necessary to understand our
results from Chapters 3, 4 and 5. We start by introducing and motivating the notion of ar-
bitrarily partitionable graphs in Section 2.1. We then give formal definitions and terminology
in Section 2.2 which are used throughout Part I. Using these, we detail, in Section 2.3, the
most important past works related to our investigations. We eventually give an overview of our
contributions in Section 2.4.

2.1 Motivations . 33
2.2 Definitions, terminology and notation . 35
2.3 Related work . 37
2.4 Contributions of Part I . 44

2.1 Motivations

Perhaps the most influential result regarding the investigations of Part I is the following one, due
independently to Győri and Lovász in the 1970’s (answering a question raised by Frank during a
conference held at Aberdeen in 1975), though the problem of partitioning graphs into connected
subgraphs surely gained attention earlier.

Theorem 2.1 ([89] and [66], independently). Let G be a k-connected graph, v1, v2, ..., vk be k
distinct vertices of G, and n1, n2, ..., nk be k positive integers summing up to |V (G)|. Then there
exists a partition V1∪V2∪ ...∪Vk of V (G) such that G[Vi] is connected, has order ni, and includes
vi for every i ∈ {1, 2, ..., k}.

The notion of arbitrarily partitionable graphs, which is the main notion investigated in Part I,
is related to Theorem 2.1 and was introduced by Barth, Baudon and Puech for studying the
following practical problem [11]. Assume we own a connected network of resources we want to
share among p ≥ 1 users, where the ith user requests exactly ni ≥ 1 of our resources. For the
sake of performance, we do not want the sharing to be done arbitrarily, but in such a way that
the following two conditions are met:

Condition 1: each resource is attributed to exactly one user,

Condition 2: two resources from a same subnetwork must be able to communicate within it.

Since each user requests a given number of resources, we also have to fulfil the following:

Condition 3: each of the p users gets the number of resources he requests.

We use graph theory to deal with this problem. Our network can be regarded as a graph G
where each vertex of G corresponds to one resource of our network, two vertices u and v of G
being joined by an edge if the associated two resources of our network are directly interconnected.
Sharing our network in such a way that Conditions 1, 2 and 3 are satisfied is then similar to

34 2.1. Motivations

u1 u2 u3

u4 u5 u6 u7

(a) A partition ({u1, u4}, {u2, u5}, {u3, u6, u7})
of the vertex set.

u1

u2 u3 u4

(b) A partition ({u2, u3},
{u1, u4}) of the vertex set.

Figure 2.1: Partitions of two graphs (in black and grey) into subgraphs (in shades
of grey).

finding a partition V1 ∪ V2 ∪ ... ∪ Vp of V (G) (Condition 1) such that G[V1], G[V2], ..., G[Vp] are
connected (Condition 2) and have order n1, n2, ..., np, respectively (Condition 3). So we come
up with the following notion of realization of a sequence in a graph.

Definition 2.2. Let G be a graph, and π = (n1, n2, ..., np) be a sequence of positive integers
summing up to |V (G)|. We say that π is realizable in G if there is a realization of π in G, that
is a partition (V1, V2, ..., Vp) of V (G) such that G[Vi] is connected and has order ni for every
i ∈ {1, 2, ..., p}.
Example 2.3. The partition of the vertex set of the graph G1 depicted in Figure 2.1.a is a
realization of the sequence (2, 2, 3) in G1. On the contrary, the partition of the vertex set of the
graph G2 drawn in Figure 2.1.b is not a realization of (2, 2) in G2 since one of the two induced
subgraphs (the one in light grey) is not connected.

Now assuming that neither the number of users requesting a part of our network nor the
number of resources they each request are known, as the network owner we would like our
network to be shareable at will. Regarding the graph theory point of view, we would then like
the graph underlying our network to be arbitrarily partitionable.

Definition 2.4. A graph G is arbitrarily partitionable if all sequences of positive integers sum-
ming up to |V (G)| are realizable in G.

Example 2.5. It can be checked that the graph in Figure 2.1.a is arbitrarily partitionable.
The graph drawn in Figure 2.1.b is not arbitrarily partitionable since the sequence (2, 2) is not
realizable in it.

Regarding the above practical problem, studying arbitrarily partitionable graphs with respect
to both the algorithmic (is it hard to find a realization of a sequence in a graph? or to recognize
an arbitrarily partitionable graph?) and structural (what does an arbitrarily partitionable graph
look like?) points of view is thus of interest. This practical concern apart, the property of being
arbitrarily partitionable also turned out to be related to some classic notions of graph theory,
especially with the properties of having a (possibly quasi-) perfect matching, which is a necessary
condition for being arbitrarily partitionable, or of being traceable, which is a sufficient condition
for being arbitrarily partitionable.

Though the notion of arbitrarily partitionable graphs is quite natural regarding the above
practical problem, it could be refined to tackle the following two issues arising from our defini-
tions.

Issue 1: When partitioned following a sequence, a graph is fully partitioned at once in the
sense that each of its vertices is included into a part. From the network sharing point of view,
this constraint is like waiting for every single resource of our network to be requested before

Chapter 2. Introduction to Part I 35

eventually satisfying the users. This is of course not satisfying since we would like to satisfy the
users as soon as possible (immediately, ideally).

Issue 2: When a sequence is realized in a graph, the induced subgraphs must only meet the
connectivity constraint. But according to our network analogy, it would be more convenient to
make sure that the allocated subnetworks themselves have the property of being shareable at
will. This would be useful if, for example, a user wants himself to share his subnetwork among
several other users.

To deal with the above two issues, we need notions of graph partitions meeting additional
constraints. We then come up with the following notions of on-line and recursively arbitrarily
partitionable graphs which were introduced by Horňák, Tuza and Woźniak in [72], and Baudon,
Gilbert and Woźniak in [24], respectively.

Definition 2.6. A graph G is on-line arbitrarily partitionable if either

• G ' K1, or

• for every λ ∈ {1, 2, ..., |V (G)| − 1}, there is a bipartition Vλ ∪ V|V (G)|−λ of V (G) such that
G[Vλ] is connected and has order λ, and G[V|V (G)|−λ] is on-line arbitrarily partitionable
and has order |V (G)| − λ.

Definition 2.7. A graph G is recursively arbitrarily partitionable if either

• G ' K1, or

• for every sequence π = (n1, n2, ..., np) of positive integers summing up to |V (G)|, there is a
realization (V1, V2, ..., Vp) of π in G such that G[Vi] is recursively arbitrarily partitionable
for every i ∈ {1, 2, ..., p}.

Then if, as the network owner, we want to tackle Issue 1 or 2, respectively, then we need the
graph underlying our network to be on-line or recursively arbitrarily partitionable, respectively.
This supports the study of both the algorithmic and structural properties of on-line or recursively
arbitrarily partitionable graphs.

2.2 Definitions, terminology and notation

We first raise two important remarks concerning the terminology and notation introduced in
Definition 2.2. It should be clear that what we call a “sequence of integers summing up to
|V (G)|” in this definition is nothing but a multiset of integers performing a partition of |V (G)|.
Since we often deal with the notions of partition of an integer and partition of a set simultaneously
throughout Part I, to avoid any confusion we voluntarily refer to a partition of an integer as a
sequence. Besides, we make use of a tuple notation for denoting a sequence of integers, e.g.
π = (n1, n2, ..., np), and a realization of π in a graph, e.g. (V1, V2, ..., Vp), because of the straight
relationship between these two objects (that is the ith part Vi has size ni). The use of this
notation also allows the introduction of well-defined operations involving sequences of integers
or realizations of sequences in graphs.

Sequences of integers

Let π = (n1, n2, ..., np) be a sequence of p ≥ 1 positive integers. We say that π is an n-sequence
if π forms a partition of n. The n-sequences (1, 1, ..., 1) and (n) are said trivial . By the size of
π, we refer to the number p of elements in π. This parameter is denoted |π|. We sometimes refer
to the sum n of the elements in π as ‖π‖. The spectrum of π, denoted sp(π), is the set of values
which appear in π. Again, the number of elements in sp(π) is the size of sp(π), denoted |sp(π)|.

36 2.2. Definitions, terminology and notation

Example 2.8. The spectrum of the 18-sequence (1, 1, 2, 3, 3, 4, 4) is

sp((1, 1, 2, 3, 3, 4, 4)) = {1, 2, 3, 4}

and has size 4, while (1, 1, 2, 3, 3, 4, 4) has size 7.

Let σ be a permutation of the set {1, 2, ..., p}, and r ∈ {1, 2, ..., p − 1} be an index. Then π
can be partitioned into two sequences π1 = (nσ(1), nσ(2), ..., nσ(r)) and π2 = (nσ(r+1), nσ(r+2),
..., nσ(p)). The definition of a partition of π into more than two sequences is defined analogously.
Writing π = π1 ∪ π2 or π2 = π \ π1 should be clear whenever π1 and π2 form a partition of π, or
a specific ordering of the operand sequences is assumed (e.g. increasing or decreasing order). In
all other cases, the ordering of such resulting sequences will be explicitly given.

Realizations of a sequence

The previous remark also applies to realizations of sequences in graphs, so that we can write
both

(U1, U2, ..., Up) ∪ (V1, V2, ..., Vp′)

and
(V1, V2, ..., Vp) \ (Vi1 , Vi2 , ..., Vip)

when dealing with disjoint subsets of vertices.

The decision problem related to the existence of an ordinary realization of a sequence in a
graph reads as follows.

Realizable Sequence
Instance: a graph G and a |V (G)|-sequence π.
Question: is π realizable in G?

We now consider the recursive variants of the notion of arbitrarily partitionable graphs, i.e.
on-line and recursively arbitrarily partitionable graphs. By an on-line λ-partition of a graph G
for some λ ∈ {1, 2, ..., |V (G)| − 1}, we refer to a bipartition Vλ ∪ V|V (G)|−λ of V (G) such that
G[Vλ] is a connected graph on λ vertices and G[V|V (G)|−λ] is an on-line arbitrarily partitionable
graph on |V (G)| − λ vertices.

As for recursively arbitrarily partitionable graphs, a realization (V1, V2, ..., Vp) of a |V (G)|-
sequence π in G such that G[Vi] is recursively arbitrarily partitionable for every i ∈ {1, 2, ..., p} is
called a recursive realization. We say that π is recursively realizable in G as soon as there exists
a recursive realization of π in G.

Partitioning a graph in every possible manner

Let k ≥ 1 be a positive integer. If all |V (G)|-sequences with size k are realizable in G, then G is
said arbitrarily k-partitionable. So G is arbitrarily partitionable if G is arbitrarily k-partitionable
for every k ∈ {1, 2, ..., |V (G)|}. Similarly as for Realizable Sequence, we introduce the
decision problem associated with the notion of arbitrarily partitionable graphs.

Arbitrarily Partitionable Graph
Instance: a graph G.
Question: is G arbitrarily partitionable?

Regarding the notion of on-line partition introduced in the previous section, rephrased differ-
ently, we get that G is on-line arbitrarily partitionable if G is K1 or there is an on-line λ-partition

Chapter 2. Introduction to Part I 37

of G for every λ ∈ {1, 2, ..., |V (G)|− 1}. Besides, the graph G is recursively arbitrarily partition-
able if G is K1 or all |V (G)|-sequences are recursively realizable in G.

In case G has one of the partition properties above, i.e. G is (possibly on-line or recursively)
arbitrarily partitionable, but G− {e} looses this property for every edge e ∈ E(G), we say that
G is minimal (with respect to this partition property).

Kernel of sequences

Let K be a set of n-sequences for a given value of n ≥ 1. We say that K is realizable in a graph
G with order n if all sequences of K are realizable in G. If G is arbitrarily partitionable if and
only if K is realizable in G, then we call K a kernel for G. This notion of kernel of sequences
extends to families of graphs: we say that K is a kernel for a family F of graphs with order n if
and only if K is a kernel for every member of F . A kernel of n-sequences is said polynomial if it
has size O(nO(1)).

Example 2.9. For every n ≥ 1, by definition, the set

{π : ‖π‖ = n}

is a kernel for the set of all graphs with order n. It is however not polynomial since the number
of n-sequences grows exponentially compared to n, recall Theorem 1.2.

2.3 Related work

The notion of arbitrarily partitionable graphs and its recursive variants have been considered
regarding four main aspects. Firstly, the algorithmic aspect: given a graph G, is it easy to decide
whether some |V (G)|-sequences are realizable in G? Secondly, the structural aspect: what is the
typical structure of an (possibly on-line or recursively) arbitrarily partitionable graph? Thirdly,
the structural properties of minimal arbitrarily partitionable graphs. Fourthly, the relationship
between the properties of being arbitrarily partitionable and being Hamiltonian. We survey some
results related to these four aspects in this section.

Algorithmic aspects of partitioning graphs into connected subgraphs

This section mainly deals with the algorithmic complexity of Realizable Sequence and Ar-
bitrarily Partitionable Graph. One consequence of Theorem 2.1 is that every instance of
Realizable Sequence involving a k-connected graph and a sequence with size k is positive.
However, the two independent proofs of Theorem 2.1 by Győri and Lovász are not constructive,
and hence do not provide an efficient way for deducing a realization of any sequence with size k
in a k-connected graph. Polynomial-time algorithms for deducing such realizations have been
proposed for small values of k and (sometimes) restricted families of k-connected graphs. Such
algorithms were in particular proposed for k = 2 by Suzuki, Takahashi and Nishizeki [115], and
for k = 3 by Miyano, Nishizeki, Takahashi and Uneo [93]. A polynomial-time algorithm for
specific situations of the case k = 4 was also proposed by Nakano, Rahman and Nishizeki in [97].
Namely, their algorithm deduces a realization in case the input graph is a 4-connected planar
graph and the preassigned vertices are located on a same face. A polynomial-time algorithm for
the general case, i.e. for all values of k, was proposed by Ma and Ma in [90] but is unfortunately
wrong, as first mentioned in the work of Nakano, Rahman and Nishizeki [97]. Examples of graphs
on which the algorithm of Ma and Ma fails were explicitly exhibited by Hofer and Lambert [70].

Series of positive results regarding Realizable Sequence were also exhibited by Diwan
in [49] and Diwan and Kurhekar in [50]. In particular, it was proved in [50] that plane triangula-
tions are arbitrarily k-partitionable for every k ≤ 6, this result being tight since there exist plane

38 2.3. Related work

triangulations which are not arbitrarily 7-partitionable. In [49] was considered the partitioning
of k-connected graphs with maximum degree at most k + 1 into at most k + 1 connected parts,
wherein it is shown that such partitions exist when k = 2. So in the same vein as above, these
results yield yet other conditions under which some instances of Realizable Sequence are
necessarily positive.

In general, that is when not restricted to k-connected graphs and sequences with size k,
the Realizable Sequence problem is known to be NP-complete, even under the following
restrictions.

Theorem 2.10. Realizable Sequence is NP-complete, even when

• π = (3, 3, ..., 3) (Dyer and Frieze [54]),

• G is a comb (Ravaux [104]),

• G is a split graph (Broesma, Kratsch and Woeginger [39]).

One important remark to raise regarding Theorem 2.10 is that its first item is tight in the
sense that Realizable Sequence is not NP-complete under the restrictions sp(π) = {k} and
k < 3. It is indeed clear that the |V (G)|-sequence (1, 1, ..., 1) is realizable in every graph G, while
looking for a realization of the |V (G)|-sequence (2, 2, ..., 2) in G is actually similar to finding a
perfect matching of G, which can be done in polynomial time by the so-called Blossom algorithm
by Edmonds [56].

Theorem 2.11 ([56]). A maximum matching of a graph G can be computed in O(|V (G)|O(1)).

The general NP-hardness of Realizable Sequence aside, parameters for which Realiz-
able Sequence is fixed-parameter tractable were exhibited in [104] by Ravaux. In particular,
Ravaux proved that Realizable Sequence can be handled in linear time when restricted to
trees and parameterized by the size of π, and can be generally treated in linear time when
parameterized by both the size of π and the number of vertices with degree at least 3 of G.

The complexity of the Arbitrarily Partitionable Graph problem is still not clear at the
moment. As first pointed out by Barth and Fournier in [12], it is easily seen that Arbitrarily
Partitionable Graph is a Πp

2 problem since its question can be reformulated as ”for every
|V (G)|-sequence π, is there a realization of π in G?”, which clearly catches the form of a Πp

2

question, and Realizable Sequence is in NP (as understood in Theorem 2.10). It has however
not been proved yet whether Arbitrarily Partitionable Graph is Πp

2-complete or not.
The membership of Arbitrarily Partitionable Graph to NP does not seem trivial as

the number of n-sequences is asymptotically exponential in n, recall Theorem 1.2. Hence, a
certificate for an instance <G> of Arbitrarily Partitionable Graph should naively have
exponential size since one would have to provide a concrete proof that all |V (G)|-sequences
are realizable in G (unless we can overcome this, see below). Conversely, the Arbitrarily
Partitionable Graph problem does not seem to be in co-NP. Basically one could point out
a sequence π which is not realizable in G, but then checking in polynomial time whether π is
indeed not realizable in G seems difficult as the number of potential realizations of π in G is also
exponential in |V (G)|.

Arbitrarily Partitionable Graph can nevertheless be handled in polynomial time when
restricted to particular classes of graphs, namely multipodes (as shown by Barth, Baudon and
Puech [11], Barth and Fournier [12], and Ravaux [104]), and split graphs (as shown by Broesma,
Kratsch and Woeginger [39]). The fact that Realizable Sequence is NP-complete when
restricted to split graphs (Theorem 2.10) while Arbitrarily Partitionable Graph is in
P when restricted to split graphs is intriguing but can be explained as follows. Let S(n) denote the
set of split graphs with order n. The membership of Arbitrarily Partitionable Graph to

Chapter 2. Introduction to Part I 39

P when restricted to split graphs results from the fact that every set S(n) admits a polynomial
kernel KS(n) of sequences whose realizability in graphs of S(n) is easy to check. So basically
Realizable Sequence is in P when restricted to graphs of S(n) and sequences of KS(n), but
NP-complete when restricted to graphs of S(n) and some sequences not in KS(n).

We summarize these ideas as follows. By first exhibiting a polynomial kernel KF (n) for
a given family F(n) of graphs with order n, we directly get that Arbitrarily Partition-
able Graph is in NP when restricted to graphs of F(n). By then proving that Realizable
Sequence is in P when restricted to graphs of F(n) and sequences of KF(n), we get that Arbi-
trarily Partitionable Graph is in P for graphs of F(n). These remarks are related to one of
the most important algorithmic open questions related to arbitrarily partitionable graphs, which
was independently raised by Barth and Fournier [12] and Broesma, Kratsch and Woeginger [39].

Conjecture 2.12 ([12] and [39], independently). Arbitrarily Partitionable Graph is in
NP.

Conjecture 2.12 could be basically tackled by showing that every graph admits a polynomial
kernel. It is worth mentioning that it is still unknown whether there are classes of graphs for
which Arbitrarily Partitionable Graph is NP-complete. To prove such a result, i.e. that
Arbitrarily Partitionable Graph is NP-complete when restricted to graphs of F(n), it
would be necessary to show that Realizable Sequence is NP-complete when restricted to
graphs of F(n) and sequences from every polynomial kernel for F(n).

So that the reader gets an idea of what a polynomial kernel may look like, we recall the
following polynomial kernels for T (n), the set of tripodes with order n, which were exhibited
by Barth, Baudon and Puech [11] and Ravaux [104], and split graphs, which was exhibited by
Broesma, Kratsch and Woeginger [39].

Theorem 2.13 ([11] and [104], respectively). For every n ≥ 1, the sets

KT (n) = {π : ‖π‖ = n and (π = (k, k, ..., k, r) or π = (k, k, ..., k, k + 1, k + 1, ..., k + 1, r))}

and

K ′T (n) = {π : ‖π‖ = n and |sp(π)| ≤ 7},

are polynomial kernels for T (n), where k ≤ n− 1 and r < k.

Theorem 2.14 ([39]). For every n ≥ 1, the set

KS(n) = {π : ‖π‖ = n and (π = (1, 3, 3, ..., 3) or sp(π) = {2, 3})}

is a polynomial kernel for S(n).

Ravaux also considered the existence of polynomial kernels for general trees in [104, 105]. In
particular, he proved the following.

Theorem 2.15 ([104, 105]). The set

{π : ‖π‖ = n and |sp(π)| < α}

is a polynomial kernel for trees with order n and diameter n− α.

In this scope, Ravaux addressed the following conjecture in [104] (which was also formulated
by Barth, Fournier and Ravaux in [13]).

Conjecture 2.16 ([13, 104]). There is a polynomial kernel with size O(nO(α)) for combs with
order n and α degree-3 nodes.

40 2.3. Related work

Structural properties of arbitrarily partitionable graphs

Trees have been one of the most investigated families of graphs regarding the structure of arbi-
trarily partitionable graphs, mainly because every graph spanned by an arbitrarily partitionable
tree is arbitrarily partitionable itself (see upcoming Observation 2.27), and because they have
small connectivity. In this context, the most important results are about the maximum degree
of arbitrarily partitionable trees. As a first result, it was proved by Horňák and Woźniak that
arbitrarily partitionable trees have maximum degree at most 6 [73]. This result was then lowered
to 4 by Barth and Fournier, this upper bound being shown to be tight [12].

Theorem 2.17 ([12]). Arbitrarily partitionable trees have maximum degree at most 4.

Additional results regarding the structure of arbitrarily partitionable trees were also exhib-
ited by Barth and Fournier in [12]. At first, they pointed out that every 4-node in an arbitrarily
partitionable tree is adjacent to a leaf. They also showed that the number of arbitrarily par-
titionable trees with maximum degree 3 or 4 is not finite. These results were later completed
by Barth, Fournier and Ravaux in [13], wherein the shape of arbitrarily partitionable trees with
maximum degree 3 is characterized.

Theorem 2.18 ([13]). Every arbitrarily partitionable tree with maximum degree 3 is a comb.

One important reason for investigating more constrained versions of the original definition of
arbitrarily partitionable graphs is that every graph which is “more than arbitrarily partitionable”
(i.e. on-line or recursively arbitrarily partitionable) is also arbitrarily partitionable. Actually the
following hierarchy was proved by Baudon, Gilbert and Woźniak in [24], where PM(n) denotes
the sets of graphs with order n which admit a perfect matching, AP (n) denotes the set of
arbitrarily partitionable graphs with order n, OLAP (n) and RAP (n) respectively denote the
sets of on-line and recursively arbitrarily partitionable graphs with order n, and Tr(n) denotes
the set of traceable graphs with order n.

Theorem 2.19 ([24]). For every n ≥ 1, we have

PM(n) ⊃ AP (n) ⊃ OLAP (n) ⊃ RAP (n) ⊃ Tr(n).

Concrete characterizations of some families of arbitrarily partitionable caterpillars were ex-
hibited by Cichacz, Görlich, Marczyk, Przybyło and Woźniak in [43]. On-line and recursively
arbitrarily partitionable trees have a much more restricted structure than arbitrarily partition-
able trees, as shown by Horňák, Tuza and Woźniak in [72], and Baudon, Gilbert and Woźniak
in [24], respectively. We gather the two resulting characterizations within the next result.

Theorem 2.20 ([72, 24]). A tree T is on-line or recursively arbitrarily partitionable if and only
if T is either a path, the tripode P3(2, 4, 6), or one caterpillar Cat(a, b) with a and b taking values
in Table 2.2.a or Table 2.2.b, respectively.

One motivation for studying arbitrarily partitionable multipodes is that some of their struc-
tural properties can be derived to structural properties of arbitrarily partitionable graphs which
have a cut vertex. Assume indeed that a multipode G = Pk(a1, a2, ..., ak) with order n does not
admit a realization of an n-sequence π. Then every other graph with order n made up of one
cut vertex whose removal results in k components with order a1, a2, ..., ak, respectively, cannot
admit a realization of π since otherwise we could deduce a realization of π in G. This argument
extends to the study of (possibly on-line or recursively) arbitrarily partitionable graphs which
have a cutset with size k and have convenient local partition properties.

Observation 2.21. Let G = Ck,`(Kn1 ,Kn2 , ...,Kn`) be a (k, `)-compound graph where the `
components are complete. If a |V (G)|-sequence π is not realizable in G, then π is not realizable
in every graph G′ with a k-cutset whose removal results in ` components with order n1 − k, n2 −
k, ..., n` − k.

Chapter 2. Introduction to Part I 41

(a) Cat(a, b) is on-line arbitrarily
partitionable.

a b

2, 4 ≡ 1 (mod 2)
3 ≡ 1, 2 (mod 3)
5 6, 7, 9, 11, 14, 19
6 ≡ 1, 5 (mod 6)
7 8, 9, 11, 13, 15
8 11, 19

9, 10 11
11 12

(b) Cat(a, b) is recursively arbi-
trarily partitionable.

a b

2, 4 ≡ 1 (mod 2)
3 ≡ 1, 2 (mod 3)
5 6, 7, 9, 11, 14, 19
6 7
7 8, 9, 11, 13, 15

Table 2.2: Values of a and b, with b ≥ a, for which Cat(a, b) is on-line (a) or
recursively (b) arbitrarily partitionable.

(a) A realization of a sequence in a graph. (b) The same realization in its maximum super-
graph C2,3(K5,K6,K4) with the same structure.

Figure 2.3: Illustration of Observation 2.21.

Observation 2.21 follows from the fact thatG′ is a spanning subgraph ofG, so every realization
of π in G′ is also a realization of π in G.

Example 2.22. Observation 2.21 is illustrated in Figure 2.3. A realization of the sequence
(1, 2, 2, 3, 3) in the graph G from Figure 2.3.a also forms a realization of (1, 2, 2, 3, 3) in the
maximum supergraph of G with the same structure, see Figure 2.3.b. This supergraph is a
compound graph where all components are complete.

Observation 2.21 was notably considered by Baudon, Foucaud, Przybyło and Woźniak in [22]
(although stated differently), wherein properties of the components resulting from the removal
of a cutset with size k from an arbitrarily partitionable graph are exhibited. In particular, they
proved the following.

Theorem 2.23 ([22]). Removing a cutset with size k ≥ 2 from an arbitrarily partitionable graph
can result in arbitrarily many components, but their orders follow an exponential growth. In
particular, if these orders are n1, n2, ..., n`, with n1 ≤ n2 ≤ ... ≤ n`, then we have

ni ≥
1

k
·
i−1∑

j=1

nj

for every i ∈ {2, 3, ..., `}.

Theorem 2.23 is also related to the following theorem by Tutte [117] which concerns the
realizability of the sequence (2, 2, ..., 2) only.

42 2.3. Related work

Figure 2.4: A minimal arbitrarily partitionable non-tree graph.

Theorem 2.24 ([117]). A graph G has a perfect matching if and only if, for every subset S ⊂
V (G), removing S from G results in at most |S| components with odd order.

This approach can also be adapted to deduce structural properties of on-line or recursively
arbitrarily partitionable graphs which have a cutset with given size. In particular, since balloons
form a family of compound graphs, the following can be deduced as an immediate corollary of a
property of recursively arbitrarily partitionable balloons proved by Baudon, Gilbert and Woźniak
in [24].

Corollary 2.25 ([24]). Removing a 2-cutset from a recursively arbitrarily partitionable graph
results in at most five components.

Corollary 2.25 contrasts with Theorem 2.23 since removing a cutset with size 2 from an
arbitrarily partitionable graph can result in arbitrarily many components.

Studies dedicated to the class of partitionable suns may also be found in the literature. In
particular, we refer the reader to works of Kalinowski, Pilśniak, Woźniak and Zioło [75, 76] and
of Baudon, Gilbert and Woźniak [23] who gave full characterizations of on-line and recursively,
respectively, arbitrarily partitionable suns.

It is also worth mentioning that another stronger version of recursively arbitrarily partition-
able graphs was considered by Baudon, Gilbert and Woźniak in [24]. This is defined as follows.

Definition 2.26. A graph G is strongly recursively arbitrarily partitionable if either

• G ' K1, or

• for every |V (G)|-sequence π = (n1, n2, ..., np) and every realization (V1, V2, ..., Vp) of π in
G, the graphs G[V1], G[V2], ..., G[Vp] are strongly recursively arbitrarily partitionable.

Baudon, Gilbert andWoźniak proved that strongly recursively arbitrarily partitionable graphs
are claw- and net-free [24], and hence traceable according to a result of Duffus, Gould and Ja-
cobson [53].

Minimal arbitrarily partitionable graphs

Since adding an edge to a graph cannot decrease its connectivity, adding arbitrarily many edges to
a yet arbitrarily partitionable graph yields another arbitrarily partitionable graph. Equivalently,
every graph which is spanned by an arbitrarily partitionable graph is arbitrarily partitionable
itself.

Observation 2.27. Every graph spanned by a graph with some partition properties has the same
partition properties.

From this easy observation, and since every arbitrarily partitionable tree is minimal (with
regards to the property of being arbitrarily partitionable), one could think that perhaps every
arbitrarily partitionable graph is spanned by an arbitrarily partitionable tree. But this claim
was shown to be false with several authors exhibiting minimal arbitrarily partitionable graphs
which are not trees. For such counterexamples, we refer the reader to works of Baudon, Gilbert
and Woźniak [24], and of Ravaux [104].

Chapter 2. Introduction to Part I 43

Example 2.28. The minimal arbitrarily partitionable non-tree graph exhibited by Ravaux
in [104] is drawn in Figure 2.4.

Minimal arbitrarily partitionable graphs were mainly studied by Ravaux in [104], and Baudon,
Przybyło and Woźniak in [25], though still little is known about these graphs so far. Ravaux
mainly considered the maximum degree of minimal arbitrarily partitionable graphs and notably
showed the following [104].

Theorem 2.29 ([104]). For every minimal arbitrarily partitionable graph G with order n ≥ 4,
we have ∆(G) ≤ n− 2.

Speaking of maximum degree, it is worth mentioning that there does not exist an absolute
constant c such that minimal arbitrarily partitionable graphs have maximum degree at most c.
This was raised by Baudon, Przybyło and Woźniak, who pointed out in [25] that we cannot
remove too many edges from an arbitrarily partitionable k-balloon with large maximum degree
(such balloons exist according to Theorem 2.23) without loosing the property of being arbitrarily
partitionable.

Observation 2.30 ([25]). Minimal arbitrarily partitionable graphs can have arbitrary large max-
imum degree.

One feeling regarding minimal arbitrarily partitionable graphs is that they should be sparse
since otherwise we could easily find edges which are “useless” for partitioning them. So the
following conjecture was raised by Ravaux [104].

Conjecture 2.31 ([104]). Every minimal arbitrarily partitionable graph with order n has size
O(n).

Because all known minimal arbitrarily partitionable graphs have connectivity 1 and the den-
sity of a graph increases with its connectivity, Ravaux legitimately addressed in [104] the following
question related to Conjecture 2.31.

Question 2.32 ([104]). Are there minimal arbitrarily partitionable graphs with arbitrary large
connectivity?

Towards Conjecture 2.31, Baudon, Przybyło and Woźniak focused on the density of minimal
arbitrarily partitionable graphs. In [25], they exhibited a family of minimal arbitrarily partition-
able graphs where every member with order n has size d31n

30 e. These are the densest minimal
arbitrarily partitionable graphs known so far. As other properties, it is also worth mentioning
that these minimal arbitrarily partitionable graphs can have arbitrarily large girth and arbitrarily
many vertex-disjoint cycles.

Theorem 2.33 ([25]). Minimal arbitrarily partitionable graphs can have arbitrarily many vertex-
disjoint cycles with arbitrarily large length.

Arbitrarily partitionable graphs as “almost” Hamiltonian graphs

Every path is obviously arbitrarily partitionable. Following Observation 2.27, we then directly
derive the following (which also follows from Theorem 2.19).

Observation 2.34. Every traceable graph is arbitrarily partitionable.

Since every traceable, and hence Hamiltonian, graph is arbitrarily partitionable, the property
of being arbitrarily partitionable can be seen as a weakening of the property of being Hamiltonian.
It is then natural to investigate how a classic sufficient condition for being Hamiltonian can be
weakened to an analogous sufficient condition for being arbitrarily partitionable. Consider in
particular the following parameter.

Definition 2.35. For every graph G and integer k ≥ 2, the parameter σk(G) is defined as

44 2.4. Contributions of Part I

σk(G) = min{d(v1) + d(v2) + ...+ d(vk) : v1, v2, ..., vk are non-adjacent vertices of G}.

The σk parameters have been widely considered in the literature to exhibit sufficient condi-
tions for Hamiltonicity, refer for instance to [65] for a survey on this topic by Gould. Adapting
such sufficient conditions to arbitrarily partitionable graphs was first considered by Marczyk,
who proved in [91] that every graph G on n ≥ 8 vertices satisfying σ2(G) ≥ n− 3 is arbitrarily
partitionable if and only if G has a perfect matching (or quasi perfect matching if n is odd).
Clearly this result is nothing but a weakening of the well-known Ore’s result stating that every
graph G on n ≥ 3 vertices satisfying σ2(G) ≥ n is Hamiltonian [99].

The result by Marczyk was later strengthened by Horňák, Marczyk, Schiermeyer and Woźniak
in the following way [71]

Theorem 2.36 ([71]). Every graph G on n ≥ 20 vertices satisfying σ2(G) ≥ n− 5 is arbitrarily
partitionable if and only if G has a perfect matching (or quasi perfect matching if n is odd).

The relationship between arbitrarily partitionable graphs and σ3 was considered by Brandt,
who proved that every graph G on n vertices satisfying σ3(G) ≥ n is arbitrarily partitionable if
and only if G admits a perfect matching (or a quasi perfect matching if n is odd) [38]. Relating
the property of being arbitrarily partitionable and σk parameters for k ≥ 4 has not been done
yet.

Another possible direction for weakening results on Hamiltonian graphs was briefly mentioned
in [49], wherein Diwan raised the following.

Conjecture 2.37. For every k ≥ 3, all k-connected k-regular graphs are arbitrarily partitionable.

The counterpart of Conjecture 2.37 for traceable and Hamiltonian graphs was disproved for
k = 3 by Garey, Johnson and Tarjan, who proved that Hamiltonian Path is NP-complete when
restricted to 3-connected 3-regular graphs [63]. Later on, Czumaj and Strothmann generalized
this result to all k ≥ 3 [45]. No results towards Conjecture 2.37 are known so far.

2.4 Contributions of Part I

Chapter 3: Arbitrarily partitionable graphs

Chapter 3 is dedicated to the study of the ordinary notion of arbitrarily partitionable graphs,
that is in which no additional constraint is requested. Our concerns in this scope are mostly
algorithmic and, hence, related to Realizable Sequence and Arbitrarily Partitionable
Graph. Throughout Section 3.1, we exhibit new restrictions on both the sequence structure
(see Section 3.1.1) and the graph structure (see Section 3.1.2) under which Realizable Se-
quence remains NP-complete. These restrictions are new in the sense that they are not caught
by Theorem 2.10. As a side result, we also prove the tightness of Theorem 2.1 in Section 3.1.3.

We then consider the complexity of Arbitrarily Partitionable Graph. In Section 3.2,
we discuss about the Πp

2-completeness of Arbitrarily Partitionable Graph, and mainly
show that a specific problem related to our concerns is Πp

2-complete. In Section 3.3, we show that
Arbitrarily Partitionable Graph is in NP for several classes of graphs, namely complete
multipartite graphs (Section 3.3.1), graphs with about one half universal vertices (Section 3.3.2),
and graphs made up of components with fair partition properties (Section 3.3.3). This is done
by exhibiting new polynomial kernels for these families of graphs. These results support the
prevailing feeling that Arbitrarily Partitionable Graph should be an NP problem, recall
Conjecture 2.12.

Various results are exhibited in the rest of Chapter 3. Some results on minimal arbitrarily
partitionable graphs are first gathered in Section 3.4, wherein are exhibited small minimal arbi-
trarily partitionable non-tree graphs (see Section 3.4.1) and an improvement of Theorem 2.29.

Chapter 2. Introduction to Part I 45

u1 u2 u3

u4 u5 u6 u7

Figure 2.5: A graph which cannot be partitioned under specific vertex-
membership constraints.

We then consider Cartesian product of arbitrarily partitionable graphs in Section 3.5. As a main
result, we get that every Cartesian product G�H, involving two arbitrarily partitionable graphs
G and H, is arbitrarily partitionable whenever |V (H)| ≤ 4.

Chapter 4: Preassignable arbitrarily partitionable graphs

Regarding the practical problem introduced in Section 2.1, one could consider the following
stronger situation. Suppose that we still want to satisfy the p users requesting some resources of
our network, but that k of these users are, for some reason, each allowed to additionally request
one specific resource to belong to his attributed subnetwork.

In order to deal with this stronger problem using graph theory, we need the following defini-
tions.

Definition 2.38. A k-preassignation of a graph G is a k-tuple (v1, v2, ..., vk) of k distinct vertices
of G. The vertices v1, v2, ..., vk are then said to be preassigned .

Definition 2.39. Let G be a graph, π = (n1, n2, ..., np) be a |V (G)|-sequence, and P =
(v1, v2, ..., vk) be a k-preassignation of G with k ≤ p. We say that π is P -realizable in G if
there is a realization (V1, V2, ..., Vp) of π in G satisfying

v1 ∈ V1, v2 ∈ V2, ..., vk ∈ Vk.

Note that, in Definition 2.39, we have adopted the convention that the k preassigned vertices
are intended to belong to the parts of the realization whose sizes are the k first values of the
sequence. So assuming that the k privileged users’ needs are n1, n2, ..., nk and the specific re-
sources they request are those labelled v1, v2, ..., vk, respectively, in the graph G underlying our
network, we get that we can satisfy the augmented resource demand if and only if (n1, n2, ..., np)
is (v1, v2, ..., vk)-realizable in G.

Example 2.40. The realization drawn on Figure 2.1.a of the sequence (2, 2, 3) in a graph G is
also a (u6)-realization of (3, 2, 2) in G since u6 belongs to the part of size 3. However G does not
admit any (u6)-realization of (2, 2, 3) since, for every connected part V1 with size 2 including u6,
the subgraph G− V1 does not admit any realization of (2, 3), see Figure 2.5.

Assuming, as for the initial practical problem, that we do not know either how many users will
ask for resources of our network or how many resources they will request, but we know the number
of special users who will be allowed to each request a specific resource, as network managers we
would like the graph modelling our network to be preassignable arbitrarily partitionable.

Definition 2.41. Let P be a k-preassignation of a graph G. We call G arbitrarily P -partitionable
if, for every k′-preassignation P ′ of G with P ′ ⊆ P , every |V (G)|-sequence with size at least k′

is P ′-realizable in G. We say that G is k-preassignable arbitrarily partitionable if G is arbitrarily
P -partitionable for every k-preassignation P of G.

The notion of graph partition satisfying vertex-assignation constraints is inspired by the
vertex-membership requirement from Theorem 2.1. To the best of our knowledge, this notion

46 2.4. Contributions of Part I

was first considered in the context of arbitrarily partitionable graphs by Diwan and Kurhekar
in [50] under the name of partitionable graphs with basis, though they introduced this notion for
a specific purpose and did not investigate elementary properties of k-preassignable arbitrarily
partitionable graphs.

We focus on preassignable arbitrarily partitionable graphs in Chapter 4. In Section 4.1, we
give very first results regarding these graphs. We then mainly consider the structural aspect. By
studying several classes of graphs (including powers of cycles and Harary graphs) in Sections 4.2
and 4.3, we exhibit a tight lower bound on the size of k-preassignable arbitrarily partitionable
graphs. More precisely, we show that, for every k ≥ 1 and n ≥ k + 1, every k-preassignable
arbitrarily partitionable graph on n vertices cannot have less than dn(k+1)

2 e edges, and that there
exist k-preassignable arbitrarily partitionable graphs with order n and exactly this many edges.

Clearly, the property of being preassignable arbitrarily partitionable requires for a graph
to be dense enough. Actually it turns out that most of the graphs we consider to prove the
previously mentioned results have some convenient Hamiltonian properties making the checking
process easier. In Section 4.4, we thus consider the relationship between the properties of being
preassignable arbitrarily partitionable and Hamiltonian. As a main result, we get that there is
no systematic Hamiltonian property appearing in a preassignable arbitrarily partitionable graph.
For this purpose, we show that the longest path of a k-preassignable arbitrarily partitionable
graph G can be arbitrarily smaller than |V (G)|.

As for arbitrarily partitionable graphs, we also consider, in Section 4.5, the question asking
whether every Cartesian product involving a k-preassignable arbitrarily partitionable graph is
k-preassignable arbitrarily partitionable itself. Our main result in this scope states that G�P` is
1-preassignable arbitrarily partitionable whenever G is 1-preassignable arbitrarily partitionable.

Chapter 5: On-line and recursively arbitrarily partitionable graphs

Chapter 5 is dedicated to the study of on-line or recursively arbitrarily partitionable graphs.
After having given some elementary properties of these graphs in introductory Section 5.1, we
establish, in Section 5.2, the membership to PSPACE of the two decision problems below.

On-Line Arbitrarily Partitionable Graph
Instance: a graph G.
Question: is G on-line arbitrarily partitionable?

Recursively Arbitrarily Partitionable Graph
Instance: a graph G.
Question: is G recursively arbitrarily partitionable?

Chapter 5 is then dedicated to two main series of results regarding the structure of on-line
and recursively arbitrarily partitionable graphs.

Our main objective, in Sections 5.3 and 5.4, is to make a first step towards an equivalent of
Theorem 2.23 for on-line or recursively arbitrarily partitionable graphs, which could be highly
different as suggested by Theorem 2.25. In this scope, we start, in Section 5.3, by showing that
removing a k-cutset from a recursively arbitrarily partitionable graph cannot yield more than
4k − 1 components. This result is not tight, but confirms the fact that recursively arbitrarily
partitionable graphs have a more constrained structure than arbitrarily partitionable graphs
(arbitrarily many such components may result from the deletion when dealing with an arbitrarily
partitionable graph). We then focus, in Section 5.4, on the orders of the components resulting
from the removal of a 2-cutset from an on-line or recursively arbitrarily partitionable graph.
As a main result, we obtain that some of these components must be small, i.e. with order
upper-bounded by a constant.

Chapter 2. Introduction to Part I 47

We then investigate the relationship between the properties of being recursively arbitrarily
partitionable and Hamiltonian, which empirically seemed to be somehow related. In Section 5.5,
we exhibit two constructions providing recursively arbitrarily partitionable graphs whose longest
paths are arbitrarily smaller than their orders, hence proving that recursively arbitrarily parti-
tionable graphs (and hence on-line arbitrarily partitionable graphs, recall Theorem 2.19) can be,
in some sense, arbitrarily not Hamiltonian.

Chapter 3. Arbitrarily partitionable graphs 49

Chapter 3

Arbitrarily partitionable graphs

This chapter is dedicated to the study of the classic notion of arbitrarily partitionable graphs.
We mainly investigate both the positive and negative algorithmic aspects related to it. Regard-
ing the negative aspects, we start, in Section 3.1, by exhibiting several conditions concerning the
sequence π (Section 3.1.1) or the graphG (Section 3.1.2) under which Realizable Sequence re-
mains NP-complete. In the same vein, we also show, in Section 3.1.3, that Theorem 2.1 is tight in
the sense that deciding whether a k-connected graph is partitionable into at least k+1 connected
subgraphs (with possibly some of them including preassigned vertices) is NP-complete in general.
We finally discuss the Πp

2-completeness of Arbitrarily Partitionable Graph in Section 3.2,
wherein we show that graph partition problems can be Πp

2-complete. As positive results, we ex-
hibit, in Section 3.3, new polynomial kernel of sequences for several classes of graphs. These
imply the membership to NP of several restrictions of Arbitrarily Partitionable Graph.
As a side result, one of these kernels yields a polynomial-time algorithm for deciding whether a
complete multipartite graph is arbitrarily partitionable, see Section 3.3.1.

The algorithmic point of view apart, we then investigate the structure of minimal arbitrarily
partitionable graphs in Section 3.4. In this scope, we exhibit two small minimal arbitrarily
partitionable non-tree graphs in Section 3.4.1, as well as a slight improvement of Theorem 2.29
in Section 3.4.2.

We finally address a conjecture concerning the Cartesian product of two arbitrarily parti-
tionable graphs in Section 3.5, see Conjecture 3.44. As a first step towards this conjecture,
our main result states that G�H is arbitrarily partitionable whenever G and H are arbitrarily
partitionable and H has order at most 4.

3.1 On the NP-completeness of Realizable Sequence 50
3.1.1 Restrictions on the sequence . 50
3.1.2 Restrictions on the graph . 55
3.1.3 On the tightness of Győri-Lovász Theorem . 63

3.2 Relationship between Πp
2 and partition problems 64

3.3 Three polynomial kernels of sequences . 66
3.3.1 Complete multipartite graphs . 66
3.3.2 Graphs with about a half universal vertices . 68
3.3.3 Graphs made up of partitionable components . 71

3.4 Minimal arbitrarily partitionable graphs . 79
3.4.1 Minimum order . 79
3.4.2 Maximum degree . 80

3.5 Cartesian products . 83
3.6 Conclusion and open questions . 87

Most of the results from Sections 3.1.1, 3.1.3, and 3.2 are about to be published [30]. Our
results from Section 3.3 and Theorem 3.18 are part of an article submitted for publication [33].
The results presented in Section 3.5 are part of a published joint work with Baudon, Kalinowski,
Marczyk, Przybyło and Woźniak [16].

50 3.1. On the NP-completeness of Realizable Sequence

3.1 On the NP-completeness of Realizable Sequence

We herein exhibit new conditions on π or G under which Realizable Sequence (or some
derived problems) remains NP-complete. To that end, we introduce two polynomial reductions
from known NP-complete problems to Realizable Sequence, and then modify these reduc-
tions so that desired properties on π or G appear in a reduced instance. Our first reduction
in Section 3.1.1 is from 1-in-3 Satisfiability and is modified to deduce NP-complete restric-
tions of Realizable Sequence related to π. Our second reduction in Section 3.1.2 is from
3-Partition and is modified to obtain reduced instances of Realizable Sequence in which
G has a specific structure. We finally investigate the tightness of Győri-Lovász Theorem (Theo-
rem 2.1) in Section 3.1.3.

Recall that Realizable Sequence is already known to be NP-complete, see Theorem 2.10,
and hence is in NP by definition. Given an instance <G, π> of Realizable Sequence, one
can basically provide a partition of V (G) to an algorithm checking that the number of parts
and their sizes agree with π, and that the induced subgraphs these parts induce are connected.
Since checking the connectedness of a graph can be done in polynomial time, such a checking
algorithm runs in polynomial time. As this statement depends neither on the structure of G
nor on the elements in π, this implies the membership to NP of all restrictions of Realizable
Sequence we consider throughout. Therefore we only focus on the NP-hardness of restricted
versions of Realizable Sequence, but their membership to NP is understood. We also some-
times voluntarily omit to mention the fact that our reductions are performed in polynomial time,
as this fact can be checked easily.

3.1.1 Restrictions on the sequence

3.1.1.1 Sequences with fixed size

We investigate the consequences on Realizable Sequence of fixing the size of π as a constant.
Said differently we are interested in the following refined decision problem.

Realizable Size-k Sequence
Instance: A graph G and a |V (G)|-sequence π with size k.
Question: Is π realizable in G?

Since the |V (G)|-sequence π = (|V (G)|) is realizable in G if and only if G is connected,
the problem Realizable Size-1 Sequence is in P. We show below that Realizable Size-k
Sequence is NP-complete for every k ≥ 2, and hence that Realizable Sequence should not
be fixed-parameter tractable when parameterized by |π|. This result is shown in two steps. We
first show, in Theorem 3.1, that Realizable Size-2 Sequence is NP-complete by reduction
from 1-in-3 Satisfiability. We then explain, in Theorem 3.2, how to modify our reduction
from 1-in-3 Satisfiability to Realizable Size-2 Sequence so that we get a reduction from
1-in-3 Satisfiability to Realizable Size-k Sequence for any k ≥ 3.

Theorem 3.1. Realizable Size-2 Sequence is NP-complete.

Proof. We prove that Realizable Size-2 Sequence is NP-hard by reduction from 1-in-3
Satisfiability. From a given formula F in conjunctive normal form whose clauses include
three literals, we construct a graph GF and a |V (GF)|-sequence πF with size 2 such that

F is 1-in-3 satisfiable
⇔

πF is realizable in GF .

Chapter 3. Arbitrarily partitionable graphs 51

vx2vx1 vx3

vx1 vx2

S1 S2 S3

Sc

S1,3

S1,2 S2,3

vx3

(a) Resulting subgraph in the clause subgraph for
a clause (x1 ∨ x2 ∨ x3) of F .

vx2vx1 vx3

S1,2 S2,3

vC2
vC1

S1,3

(b) Connection between the base and clause sub-
graphs for a clause C1 = (x1 ∨ x2 ∨ x3) of F .

Figure 3.1: Construction of the reduced graph GF .

Recall that we may suppose that all literals over the variables of F appear in F , refer to Obser-
vation 1.44. Recall further that F has 2n literals and m clauses.

The graph GF is made up of two main vertex-disjoint subgraphs. The first one is the clause
subgraph. Each literal `i of F is associated with a literal vertex v`i in the clause subgraph. For
each pair {`i, `i} of negated literals `i and `i of F , we then link the literal vertices v`i and v`i to
the root vertex of a star Si with n vertices of degree 1. Two literal vertices v`i and v`j such that
`j 6= `i are similarly linked to the root vertex of a star Si,j with n vertices of degree 1 if they
appear in a same clause of F . We finally add a connecting star Sc with n vertices of degree 1 to
the clause subgraph of GF and link its root to every literal vertex so that the clause subgraph is
connected.

The construction so far is detailed in Figure 3.1.a. Let n2 be the number of vertices of the
clause subgraph. Then we have

n2 ≤ 2n+ n(n+ 1) + 3m(n+ 1) + n+ 1

since there are exactly 2n literals and n pairs of literals of the form {`i, `i} in F , all the clauses
of F can have distinct literals, and the connecting star Sc has exactly n vertices of degree 1.

The second subgraph of GF is the base subgraph. With each clause Cj in F we associate a
clause vertex vCj in the base subgraph that is linked to n2 − n vertices of degree 1. For each
j ∈ {1, 2, ...,m−1}, we finally add the edge vCjvCj+1 to E(GF) so that the clause vertices induce
a path in GF . If we denote by n1 the number of vertices of the base subgraph of GF , then we
have

n1 = m(n2 − n+ 1).

We end up the construction of GF by adding the following edges between the base and clause
subgraphs of GF : for each clause Cj = (`i1 ∨ `i2 ∨ `i3) in F , we just add vCjv`i1 , vCjv`i2 , and
vCjv`i3 to E(GF). This connection is illustrated in Figure 3.1.b.

The number of vertices of GF is n1 + n2, and hence the construction of GF is performed
in polynomial time regarding the size of F . Consider now the sequence πF = (n1 + n, n2 − n).

52 3.1. On the NP-completeness of Realizable Sequence

Since the two elements of πF are strictly greater than 1, every part U from a realization R of
πF in GF covering the root vertex of a star subgraph must also contain all the vertices of degree
1 attached to it. Indeed, if this were not the case, then the graph GF − U would contain at
least two components and, thus, the part of R different from U could not induce a connected
subgraph of GF .

For this reason, observe that, because of all the induced stars Sn2−n+1 in the base subgraph
of GF , this subgraph must be covered by the part V1 with size n1 + n of a realization (V1, V2) of
πF in GF . Starting from this, we then have to add n additional vertices from the clause subgraph
of GF to V1. For a similar reason as the one above, we can only pick up some literal vertices
of GF since picking up any other vertex would disconnect GF into too many small components.
According to our construction, we also cannot add to V1 two literal vertices v`i and v`j such that
`i and `j are negated literals, or appear in a same clause of F , since otherwise this would once
again make the subgraph GF − V1 = GF [V2] disconnected.

We can then deduce a 1-in-3 truth assignment of the variables of F from a realization R =
(V1, V2) of πF in GF and vice-versa. If R is a correct realization of πF in GF , then there are
exactly n literal vertices v`i1 , v`i2 , ..., v`in from the clause subgraph of GF which belong to V1.
Since GF [V2] is connected, setting the literals `i1 , `i2 , ..., `in true makes F evaluated true in a
1-in-3 way since no pair of these literals is a literal of F and its negation or appears in a same
clause of F . Conversely, if F is 1-in-3 satisfiable, then let φ : {`1, `2, ..., `2n} → {0, 1} be a
satisfying 1-in-3 truth assignment of its literals. Then observe that (V1, V2), where

• V1 contains all the vertices from the base subgraph of GF and every literal vertex v`i from
the clause subgraph of GF such that φ(`i) = 1,

• V2 = V (GF) \ V1,

is a correct realization of πF in GF according to the arguments above. �

We now explain how to generalize the reduction from the proof of Theorem 3.1 so that we
get a reduction from 1-in-3 Satisfiability to Realizable Size-k Sequence for any k ≥ 3.

Theorem 3.2. For every k ≥ 2, Realizable Size-k Sequence is NP-complete.

Proof. The proof that Realizable Size-k Sequence is NP-hard for a fixed value of k ≥ 3 is
based on our reduction from 1-in-3 Satisfiability to Realizable Size-2 Sequence (proof of
Theorem 3.1). More precisely, we modify the instance resulting from the reduction, i.e. the graph
GF and the sequence πF , so that |πF | = k and the arguments given in the proof of Theorem 3.1
are still correct and not altered by the modifications.

So that we introduce these modifications, we beforehand need to introduce the following
graph construction.

Construction 3.3. Given a graph H, a vertex v ∈ V (H), and an arbitrary integer a ≥ 3, the
(a, v)-star augmentation of H is the graph obtained as follows:

1. consider the disjoint union of H and the star Sa with a− 1 vertices of degree 1,

2. add an edge between v and the root of Sa.

This construction is illustrated in Figure 3.2. We first show that Realizable Size-3 Se-
quence is NP-hard by reduction from 1-in-3 Satisfiability before generalizing our arguments.
From a formula F in conjunctive normal form involving 3-clauses, we construct a graph GF and
a |V (GF)|-sequence πF = (n1, n2, n3) with size 3 such that

F is 1-in-3 satisfiable
⇔

πF is realizable in GF .

Chapter 3. Arbitrarily partitionable graphs 53

v
H

(a) A graphH with
a vertex v.

v
H

︷
︸︸

︷

a

(b) An arbitrary (a, v)-star augmenta-
tion of H.

Figure 3.2: Illustration of the star augmentation operation.

By applying the reduction from 1-in-3 Satisfiability to Realizable Size-2 Sequence
from the proof of Theorem 3.1, we get a graph G′F and a |V (G′F)|-sequence π′F = (n′1, n

′
2)

with size 2 which is realizable in G′F if and only if F is 1-in-3 satisfiable. Besides, recall that
n′1, n

′
2 ≥ 2. Now consider, as GF , an (a, v)-star augmentation of G′F where a = n′1 + n′2 + 1 and

v ∈ V (G′F) is arbitrary, and set πF = (a, n′1, n
′
2). In a realization (U, V1, V2) of πF in GF , note

that, because n′1, n′2 ≥ 2, the star subgraph Sa of GF resulting from the star augmentation must
be covered entirely by the part U with size a since covering it with one of the other two parts
would disconnect GF into too many small components. Therefore, πF is realizable in GF if and
only if π′F is realizable in G′F , and by transitivity we get that F is 1-in-3 satisfiable if and only
if πF is realizable in GF .

One can repeat the previous transformation as many times as wanted until πF has desired
size k. At each step, we get another instance of Realizable Sequence which is equivalent
to the previous one but whose sequence has one more element. Namely, from the instance
F of 1-in-3 Satisfiability we first construct an equivalent instance of Realizable Size-2
Sequence using the reduction from the proof of Theorem 3.1. From this instance of Realizable
Size-2 Sequence is then obtained an equivalent instance of Realizable Size-3 Sequence by
performing a star augmentation. Using the same construction, we then get an equivalent instance
of Realizable Size-4 Sequence. And so on. All these reduced instances are equivalent to F
by transitivity. We thus get that Realizable Size-k Sequence is NP-hard for every k ≥ 3. �

3.1.1.2 Sequences with fixed spectrum size

For every k ≥ 2, note that the elements of the sequence πF resulting from our reduction from 1-in-
3 Satisfiability to Realizable Size-k Sequence (proof of Theorem 3.2) all have distinct
values since each of these successively obtained elements is expressed as a summation of the
previously obtained elements. Hence not only |πF | = k, but we also have |sp(πF)| = k. Recall
further that Realizable Sequence remains NP-complete when |sp(π)| = 1, see Theorem 2.10.

From these two facts, we directly get that Realizable Sequence remains NP-complete un-
der the assumption that |sp(π)| = k for every constant integer k ≥ 1. Consequently Realizable
Sequence should not be fixed-parameter tractable when parameterized by |sp(π)|.
Theorem 3.4. For every k ≥ 1, Realizable Sequence remains NP-complete when restricted
to sequences with spectrum of size k.

3.1.1.3 Sequences with fixed preassignation size

We now consider the hardness of realizing a sequence in a graph when a preassignation must be
respected. We hence focus on the following refined version of Realizable Sequence.

Realizable Sequence with Preassignation
Instance: A graph G, a |V (G)|-sequence π, and a preassignation P of G.
Question: Is π P -realizable in G?

54 3.1. On the NP-completeness of Realizable Sequence

v
H

(a) A graphH with
a vertex v.

v
H

︷ ︸︸ ︷a

(b) An arbitrary (a, v)-path augmentation of H.

Figure 3.3: Illustration of the path augmentation operation.

Similarly as for Realizable Sequence and Realizable Size-k Sequence, the following
refinement of Realizable Sequence with Preassignation is more convenient for a sharper
study of the restrictions we are interested in.

Realizable Size-k Sequence with k′-Preassignation
Instance: A graph G, a |V (G)|-sequence π with size k, and a k′-preassignation P of G.
Question: Is π P -realizable in G?

For every problem Realizable Size-k Sequence with k′-Preassignation, we have k ≥
k′ by definition. Besides, Realizable Size-k Sequence with 0-Preassignation is equivalent
to Realizable Size-k Sequence which was shown to be in P for k = 1, and NP-complete for
every k ≥ 2 in previous Section 3.1.1.1. Note further that an instance of Realizable Size-
1 Sequence with 1-Preassignation is positive if and only if G is connected. Therefore
Realizable Size-1 Sequence with 1-Preassignation is in P.

We now prove that the remaining problems, i.e. Realizable Size-k Sequence with
k′-Preassignation with k ≥ 2 and 1 ≤ k′ ≤ k, are all NP-complete. As a consequence,
we directly get that Realizable Size-k Sequence with k′-Preassignation should not be
fixed-parameter tractable when parameterized by both k and k′.

Theorem 3.5. For every k ≥ 2 and k′ ∈ {0, 1, 2, ..., k}, Realizable Size-k Sequence with
k′-Preassignation is NP-complete.

Proof. Note first that every polynomial-time checking algorithm for Realizable Sequence can
be modified so that it still runs in polynomial time but also checks whether the input realization of
π in G respects a preassignation. Therefore Realizable Sequence with Preassignation is
in NP.

Let k ≥ 2 and k′ ∈ {0, 1, 2, ..., k} be fixed. Recall that if k′ = 0, then Realizable Size-k
Sequence with k′-Preassignation is nothing but Realizable Size-k Sequence, which
is NP-hard by Theorem 3.1. Suppose thus that k′ ≥ 1. We show that Realizable Size-k
Sequence with k′-Preassignation is NP-hard by using our reduction from 1-in-3 Satisfia-
bility to Realizable Size-k Sequence (proof of Theorem 3.2) and the following construction.

Construction 3.6. Given a graph H, a vertex v ∈ V (H), and an arbitrary integer a ≥ 1, the
(a, v)-path augmentation of H is the graph obtained as follows:

1. consider the disjoint union of H and Pa, the path of order a,

2. add an edge between v and one endvertex of Pa.

This construction is depicted in Figure 3.3. First suppose that k − k′ ≥ 2. From F , start by
constructing a graph GF and a |V (GF)|-sequence πF = (n1, n2, ..., nk−k′) with size k − k′ such
that F is 1-in-3 satisfiable if and only if πF is realizable in GF . This graph GF and this sequence
πF may be obtained using the reduction from the proof of Theorem 3.2 since k − k′ ≥ 2. Let us

Chapter 3. Arbitrarily partitionable graphs 55

now denote by G′F the graph obtained from GF by performing k′ arbitrary path augmentations,
e.g. one (a1, v)-path augmentation, one (a2, v)-path augmentation, etc., for an arbitrary vertex
v ∈ V (GF) and arbitrary integers a1, a2, ..., ak′ ≥ 1. Let u1, u2, ..., uk′ denote the vertices with
degree 1 of the resulting hanging paths, where ui is the endvertex of the ith path augmentation.
Finally, let π′F = (a1, a2, ..., ak′ , n1, n2, ..., nk−k′) and P ′F = (u1, u2, ..., uk′) be a |V (G′F)|-sequence
with size k and a k′-preassignation of G′F , respectively.

Since the first k′ parts U1, U2, ..., Uk′ of a P ′F -realization of π′F in G′F must induce connected
subgraphs of G′F on a1, a2, ..., ak′ vertices, respectively, including u1, u2, ..., uk′ , respectively, the
only way for choosing the part Ui is to pick up every vertex resulting from the ith path augmen-
tation for every i ∈ {1, 2, ..., k′}. Once these parts U1, U2, ..., Uk′ have been picked up, we still
have to find a realization (V1, V2, ..., Vk−k′) of the remaining sequence (n1, n2, ..., nk−k′) = πF
in the remaining graph G′F −

⋃k′

i=1 Ui = GF . Hence, π′F is P ′F -realizable in G′F if and only if
πF is realizable in GF . By transitivity, we get that F is 1-in-3 satisfiable if and only if π′F is
P ′F -realizable in G′F .

Note that this reduction does not work when k − k′ ∈ {0, 1} since Realizable Size-0 Se-
quence and Realizable Size-1 Sequence are not NP-hard. But recall that, in the reduction
from 1-in-3 Satisfiability to Realizable Size-2 Sequence, some vertices from the base and
clause subgraphs of GF , respectively, have to be covered by the parts with size n1 and n2, respec-
tively, of a realization of πF in GF . Thus, we could, without altering the equivalence, request
up to two preassigned vertices, and directly get that Realizable Size-2 Sequence with 1-
Preassignation and Realizable Size-2 Sequence with 2-Preassignation are NP-hard.
By then performing the same reduction scheme as above but from one of these two problems,
we get that Realizable Size-k Sequence with k′-Preassignation is also NP-hard when
k − k′ ∈ {0, 1}. �

3.1.2 Restrictions on the graph

The cornerstone of the upcoming complexity results is the following straightforward reduction
from 3-Partition to Realizable Sequence.

Proposition 3.7. 3-Partition is polynomial-time reducible to Realizable Sequence.

Proof. Consider an instance <A,B, s> of 3-Partition. We produce an instance of Realizable
Sequence, i.e. a graph G and a |V (G)|-sequence π, such that

<A,B, s> admits a solution
⇔

π is realizable in G.

As in the definition of 3-Partition, we here and further let |A| = 3m and A = {a1, a2,
..., a3m}. The graph G is a disconnected one only consisting in m vertex-disjoint arbitrar-
ily partitionable components with order B (e.g. the complete graph KB, the path PB, etc.).
In particular we have |V (G)| = mB =

∑
a∈A s(a). Now consider, as π, the |V (G)|-sequence

(s(a1), s(a2), ..., s(a3m)).
The equivalence between the two instances is easy to visualize. Consider any part Vi with

size s(ai) from a realization of π in G. Then Vi includes vertices from one component of G only
since otherwise G[Vi] would not be connected. So basically if a realization of π in G exists, then
it means that each of the components of G is covered by three parts with size s(ai1), s(ai2) and
s(ai3), and thus that s(ai1) + s(ai2) + s(ai3) = B. A solution to <A,B, s> can then directly be
deduced from a realization of π in G, and conversely by similar arguments. �

Hence, if, from an instance <A,B, s> of 3-Partition, we can produce a graph G and
a |V (G)|-sequence π such that, in every realization of π in G, some parts are “forced” to in-
clude some vertices of G so that what remain are m vertex-disjoint arbitrarily partitionable

56 3.1. On the NP-completeness of Realizable Sequence

︷ ︸︸ ︷sm
︷

︸︸
︷

︷ ︸︸ ︷m

B

Figure 3.4: Structure of the reduced multipode.

(these actually only need to be arbitrarily 3-partitionable) components with order B and the
sequence (s(a1), s(a2), ..., s(a3m)), then, according to Proposition 3.7, by transitivity we get that
the instance <G, π> of Realizable Sequence is equivalent to the instance <A,B, s> of 3-
Partition.

3.1.2.1 Multipodes

As mentioned in Theorem 2.10, it was shown by Ravaux in [104] that Realizable Sequence is
NP-complete when restricted to combs. The reduction designed by Ravaux to show this statement
actually provides combs with α degree-3 nodes, where α is linear with the size of an instance of
the reduced problem.

We show below that Realizable Sequence remains NP-complete when restricted to mul-
tipodes, i.e. to trees with only one node with degree at least 3. This contrasts with the fact that
Arbitrarily Partitionable Graph is in P when restricted to multipodes, as mentioned in
introductory Section 2.3.

Theorem 3.8. Realizable Sequence is NP-complete when restricted to multipodes.

Proof. The reduction is from 3-Partition. Given an instance <A,B, s> of 3-Partition, we
construct a multipode G and a |V (G)|-sequence π such that

<A,B, s> admits a solution
⇔

π is realizable in G.

Recall that we may suppose that s(a) > 1 holds for every a ∈ A according to Observation 1.54.
Let sm = max{s(a) : a ∈ A}, and consider G = Psm+m(1, 1, ..., 1, B,B, ..., B) the multipode
with sm arms of order 1 and m arms of order B (see Figure 3.4). Now, as π, consider π =
(sm + 1, s(a1), s(a2), ..., s(a3m)).

The keystone of the reduction is that, because no element of π is equal to 1, in every realization
of π in G the part containing the root of G necessarily also contains all nodes from the arms
with order 1. Since there are sm arms with order 1 in G, the part containing the root must thus
have size at least sm + 1. So basically the part with size sm + 1 of every realization of π in G
must include the root of G as well as all the nodes from its sm arms with order 1.

Once this part is picked, what remain are a forest of m paths PB and the sequence (s(a1),
s(a2), ..., s(a3m)). Hence finding a realization of π in G is equivalent to the problem of finding a
realization of (s(a1), s(a2), ..., s(a3m)) in a forest of m paths PB, while this problem is equivalent
to solving <A,B, s> according to the arguments in the proof of Proposition 3.7. The NP-hardness
of Realizable Sequence when restricted to multipodes then follows by transitivity. �

Chapter 3. Arbitrarily partitionable graphs 57

KB KB

sm

r

︷ ︸︸ ︷

︷ ︸︸ ︷m

Figure 3.5: Structure of the reduced cograph.

3.1.2.2 Cographs

The question of the recognition of arbitrarily partitionable cographs was notably addressed by
Broesma, Kratsch and Woeginger in [39]. Although we have no clue regarding the status of
Arbitrarily Partitionable Graph when restricted to cographs, we herein show, as a first
result, that Realizable Sequence remains NP-complete when restricted to cographs.

Note at first that the reduction described in the proof of Proposition 3.7 can be directly used
to prove the NP-completeness of Realizable Sequence when restricted to non-connected
cographs.

Proposition 3.9. Realizable Sequence remains NP-complete when restricted to non-connected
cographs.

Proof. Just perform the reduction from 3-Partition to Realizable Sequence described in
the proof of Proposition 3.7 so that each of them components of the reduced graph G is a copy of
KB. Then the equivalence holds according to the arguments given in the proof of Proposition 3.7.
Clearly G is a cograph since complete graphs are cographs defined as

Kn =

{
• if n = 1

• ×Kn−1 otherwise,

and G is nothing but a disjoint union of m copies of KB. �

Since studying arbitrarily partitionable graphs only makes sense in the context of connected
graphs, we prove the analogue of Proposition 3.9 for connected cographs.

Theorem 3.10. Realizable Sequence is NP-complete when restricted to connected cographs.

Proof. The reduction is similar to the one for multipodes (proof of Theorem 3.8), with the
exception that G differs a bit since a multipode is generally not a cograph. This time, the graph
G is obtained as follows (see Figure 3.5). Start from a single vertex r. Now, add sm copies of
K1 as well as m copies of KB to the graph. Finally turn r into a universal vertex. The sequence
π is obtained similarly as in the proof of Theorem 3.8.

The equivalence between the instance <G, π> of Realizable Sequence and <A,B, s>
then follows from the same reasons, namely because all elements in π have value at least 2 and
a lot of vertices of G only neighbour r. Besides G is a cograph whose one representation is

• × (•+ •+ ...+ •+KB +KB + ...+KB),

where the terms “•” and “KB” are repeated sm and m times, respectively, in the parentheses. �

58 3.1. On the NP-completeness of Realizable Sequence

B

︷
︸︸

︷

︷ ︸︸ ︷m︷ ︸︸ ︷2sm

Figure 3.6: Structure of the reduced balloon.

3.1.2.3 Series-parallel and balloon graphs

We herein show that Realizable Sequence remains NP-complete when restricted to balloons,
which, recall, are series-parallel graphs. This result is interesting for two reasons. First because
the class of balloons turned out to be interesting regarding the structure of arbitrarily parti-
tionable 2-connected graphs, as explained in Section 2.3. Second because series-parallel graphs
shown up to have convenient properties when dealing with some notoriously hard problems. This
NP-complete restriction hence confirms the hardness of Realizable Sequence.

Theorem 3.11. Realizable Sequence is NP-complete when restricted to balloons.

Proof. We use the same reduction scheme as in the proofs of Theorems 3.8 and 3.10, but modify
the construction of G so that this graph is a balloon, and modify π accordingly so that its
elements sum up to |V (G)|.

As G, just consider G = B(1, 1, ..., 1, B,B, ..., B) the (2sm + m)-balloon with 2sm branches
with order 1, and m branches with order B (see Figure 3.6). Now, as π, consider π = (sm + 1,
sm + 1, s(a1), s(a2), ..., s(a3m)).

Because every vertex from a branch with order 1 of G only neighbours the roots of G, it has
to belong, in every realization of π in G, to a same part as one of the roots. Said differently,
the at most two parts covering the roots of G also have to cover all of the vertices from the
branches with order 1. Because there are 2sm branches with order 1, these at most two parts
must cover at least 2sm + 2 vertices. In view of the part sizes of π, in every realization of π in
G we necessarily have to use the two parts with size sm + 1 to cover all these vertices. Once
these two parts have been picked, what remain are a forest of m paths PB with order B and the
sequence (s(a1), s(a2), ..., s(a3m)). The equivalence between <G, π> and <A,B, s> then follows
from the arguments in Proposition 3.7. �

3.1.2.4 Graphs with given connectivity

As shown by Győri and Lovász, recall Theorem 2.1, realizations of small sequences, i.e. with size
at most k, necessarily exist in k-connected graphs. Although k-connected graphs have minimum
degree k, this property does not make these graphs dense enough to necessarily be arbitrarily
partitionable (consider e.g. a k-connected complete bipartite graph with no perfect matching).
Generalizing the hardness reduction from Theorem 3.11 for balloons, we actually prove that
Realizable Sequence is NP-complete for graphs with fixed connectivity (or, equivalently,
that Realizable Sequence should not be fixed-parameter tractable when parameterized by
κ(G)).

Chapter 3. Arbitrarily partitionable graphs 59

KB KB

︷︸︸︷

m

r1 r2 rk

︷ ︸︸ ︷ksm

Figure 3.7: Structure of the reduced k-connected graph.

Theorem 3.12. For every k ≥ 1, Realizable Sequence is NP-complete when restricted to
k-connected graphs.

Proof. The reduction is again inspired by the reduction we used in the proofs of Theorem 3.8,
3.10 and 3.11. Let k ≥ 1 be fixed, and construct G as follows (see Figure 3.7). Add k vertices
r1, r2, ..., rk to G, as well as ksm copies of K1 and m copies of KB. Finally, for every i ∈
{1, 2, ..., k} add an edge between ri and every vertex of V (G) \ {r1, r2, ..., rk}. To obtain the
instance <G, π> of Realizable Sequence, just set

π = (sm + 1, sm + 1, ..., sm + 1, s(a1), s(a2), ..., s(a3m)),

where the value sm + 1 appears exactly k times at the beginning of π.
The graph G, which is clearly a k-connected graph with k-cutset {r1, r2, ..., rk}, has to be

thought of as a kind of balloon, where r1, r2, ..., rk would be its roots and the components
isomorphic to K1 or KB its branches. According to the same arguments as in the proof of
Theorem 3.11, the k parts with size sm + 1 of a realization of π in G must each include one root
vertex and sm vertices from components isomorphic to K1. What remain once these k parts
have been picked are m vertex-disjoint components isomorphic to KB, as well as the sequence
(s(a1), s(a2), ..., s(a3m)). The equivalence between <A,B, s> and <G, π> then follows from the
arguments given in the proof of Proposition 3.7. �

3.1.2.5 Regular graphs

We now focus on the NP-completeness of Realizable Sequence when restricted to regular
graphs, which make up a class of graphs of interest regarding arbitrarily partitionable graphs,
recall Conjecture 2.37. Regarding Conjecture 2.37, it would be interesting to prove that Re-
alizable Sequence remains NP-complete when restricted to k-regular graphs for every fixed
k ≥ 3 (though it would not prove or disprove this conjecture).

As a first observation, note that, in the line of Proposition 3.9, the straight reduction from
the proof of Proposition 3.7 can be directly modified to prove the following.

Proposition 3.13. For every k ≥ 3, Realizable Sequence is NP-complete when restricted
to non-connected k-regular graphs.

60 3.1. On the NP-completeness of Realizable Sequence

Proof. Let k ≥ 3 be fixed. We use the reduction scheme from 3-Partition to Realiz-
able Sequence we introduced in the proof of Proposition 3.7. Let <A,B, s> be an in-
stance of 3-Partition. We may suppose that B ≥ k + 1 and B is even, recall Observa-
tion 1.54. As the sequence π of the reduced instance of Realizable Sequence, just consider
π = (s(a1), s(a2), ..., s(a3m)). As its graph G, just consider

G = Hk,B +Hk,B + ...+Hk,B,

the disjoint union of m copies of Hk,B, the k-connected Harary graph with order B.
Since B is even, by construction Hk,B, and hence G, is k-regular. Besides, it is easily seen

that Hk,B is Hamiltonian (and even traceable), and hence arbitrarily partitionable according to
Observation 2.34. The arguments from the proof of Proposition 3.7 then directly imply that
<G, π> and <A,B, s> are equivalent. �

Since only connected graphs are concerned by Conjecture 2.37, studying whether an equiv-
alent of Proposition 3.13 for connected graphs holds makes more sense. We prove below that
such a result is true for every k ≥ 5 odd, though we think our reduction could be adapted to
some of the remaining values of k with some more efforts. But, although not complete, this re-
sult already ensures that Realizable Sequence should not be fixed-parameter tractable when
parameterized by k when assumed G is a connected k-regular graph. Since a k-regular graph is
a specific case of graph with maximum degree k, this result also implies the non-fixed parameter
tractability of Realizable Sequence when parameterized by the maximum degree of G.

Theorem 3.14. For every k ≥ 5 odd, Realizable Sequence is NP-complete when restricted
to connected k-regular graphs.

Proof. The reduction is again based on the reduction scheme from the proof of Proposition 3.7
we used to prove the previous results. Let k ≥ 5 odd, and consider an instance <A,B, s> of
3-Partition. We produce an instance <G, π> of Realizable Sequence which is equivalent
to <A,B, s> with the property that G is a connected k-regular graph. The value sm related to
<A,B, s> is defined similarly as previously, and we analogously define si = min{s(a) : a ∈ A}.
Recall that we may suppose that si − 1 is even according to Observation 1.54.

The reduced graph G is made up of several of the upcoming gadgets. We make use of the
notation introduced in Section 1.2.2.13 to deal with Harary graphs.

Construction 3.15. A (B, k)-gadget is a graph H obtained by starting with H being the k-
connected Harary graph Hk,B on B vertices, and then removing some edges from H. In case B
is even (and hence H is k-regular so far), just remove the edge v0v1 from H. Now in case B
is odd, remove the edges v0vbB

2
c and v0vdB

2
e from H. The (at most three) vertices of H which

where incident to removed edges are called the roots of H.

Note that every (B, k)-gadget H is almost k-regular in the sense that either its roots have
degree k − 1 while all its non-root vertices have degree k (when B is even), or H has three
roots whose one has degree k − 2 while the other two have degree k − 1, and the non-root
vertices of H have degree k (when B is odd). Besides, it is easily seen that a (B, k)-gadget is
traceable (and hence arbitrarily partitionable according to Observation 2.34) since Harary graphs
are Hamiltonian.

Construction 3.16. A (si − 1, k)-gadget H is obtained similarly as a (B, k)-gadget, i.e. by
removing specific edges from a Harary graph. Recall that si − 1 is even. First consider H as
being the k-regular Harary graph Hk,si−1 on si − 1 vertices, and just remove the edge v0v1 from
H. Again we call v0 and v1 the roots of H.

Note again that a (si − 1, k)-gadget is a traceable graph and is almost k-regular in the sense
used above. We finally need to introduce what we call a Yk-gadget.

Chapter 3. Arbitrarily partitionable graphs 61

Hk,si−1 Hk,si−1 Hk,si−1 Hk,si−1

︷ ︸︸ ︷ ︷ ︸︸ ︷
⌊k2⌋ ⌊k2⌋

︷︸︸︷

k − 1

Figure 3.8: A Yk-gadget. The bottommost white vertex is the root of the gadget.
The upmost white vertices are the roots of (si − 1, k)-gadgets.

vi vi+1

Yk Yk

︷ ︸︸ ︷k − 2

Yk Yk

︷ ︸︸ ︷k − 2

Bi+1Bi

Figure 3.9: Illustration of the construction for B even. The white vertices are the
roots of some gadgets.

Construction 3.17. A Yk-gadget H is obtained by starting from the star Sk on k vertices. We
refer to the vertex with degree k − 1 of H as its root . Now, for each vertex v adjacent with
the root of H (such a vertex has degree 1 so far), add edges joining v and the roots of bk2c new
(si − 1, k)-gadgets.

The structure of a Yk-gadget is depicted in Figure 3.8. By construction, note that all vertices
of a Yk-gadget H but its root (which has degree k− 1) have degree k. The gadget H can be seen
as a tree whose leaves are (si − 1, k)-gadgets.

We can now describe the graph G of the reduced instance of Realizable Sequence. First
add m vertices v0, v1, ..., vm−1 to G, as well as m (B, k)-gadgets B0, B1, ..., Bm−1. Next, proceed
as follows, where the indices are taken modulo m.

• If B is even, then start by adding an edge between vi and the root of k− 2 new Yk-gadgets
for every i ∈ {0, 1, 2, ...,m − 1}. Then, for every i ∈ {0, 1, ...,m − 1}, assuming u1 and u2

are the roots of Bi, add the edges viu1 and u2vi+1 to G.

• If B is odd, then start by adding an edge between vi and the root of k− 3 new Yk-gadgets
for every i ∈ {0, 1, 2, ...,m− 1}. Then, for every i ∈ {0, 1, ...,m− 1}, assuming u1, u2 and
u3 are the roots of Bi, add viu1, u2vi+1 and u3vi+1 to G.

The construction is illustrated in Figure 3.9. Note that G is k-regular, since only the roots
of its gadgets did not have degree k, but we added edges incident to these vertices so that their
degree is exactly k. Set y = 1+ (k−2)|V (Yk)| if B is even, and y = 1+ (k−3)|V (Yk)| otherwise,
where Yk denotes a Yk-gadget (basically y is the order of the components obtained by removing

62 3.1. On the NP-completeness of Realizable Sequence

the (B, k)-gadgets from G). To obtain the instance <G, π> of Realizable Sequence, finally
consider

π = (y, y, ..., y, s(a1), s(a2), ..., s(a3m)),

where there are m occurrences of the element y at the beginning of π.

The equivalence between <G, π> and <A,B, s> follows from the same arguments as in the
previous proofs. Consider any vertex u from one of the Yk-gadgets of G which is joined to some
(si − 1, k)-gadgets. Since k ≥ 5, there are at least two such gadgets attached to u. Because
removing u from G leaves two “small” components with order si − 1 and all elements of π are
strictly greater than si − 1, note that every part of a realization of π in G including u also has
to cover all vertices from all (si− 1, k)-gadgets attached to u. This part cannot be one part with
size at most sm since otherwise we would have

sm ≥ 2(si − 1) + 1,

but then, since si > B
4 by assumption, we would obtain

sm >
B

2
− 1,

a contradiction to the initial assumptions.

So every such vertex u has to belong to one part with size y of the realization. Due to the
connectivity of the Yk-gadgets, which are 1-connected, every Yk-gadget and the vertex attached
to its root actually have to belong to a same part. What are left once these parts have been picked
are m (B, k)-gadgets and the subsequence (s(a1), s(a2), ..., s(a3m)). Since the (B, k)-gadgets are
arbitrarily partitionable as pointed out above, the claimed equivalence then follows directly by
the arguments given in the proof of Proposition 3.13. �

3.1.2.6 Graphs with about one third universal vertices

Universal vertices are quite helpful for partitioning a graph into connected subgraphs since the
presence of any such vertex in a subgraph implies its connectedness. But clearly a graph with
universal vertices does not have to be arbitrarily partitionable (consider e.g. a star on at least
four vertices).

In the next result, we show that Realizable Sequence remains NP-complete when re-
stricted to graphs with up to one third universal vertices. This result motivates the upcoming
study of the partitioning of graphs with between one third and one half universal vertices in Sec-
tion 3.3.2. The reduction we use is not based on the previous reduction from 3-Partition we
have been exploiting so far.

Theorem 3.18. Realizable Sequence is NP-complete when restricted to graphs with up to
one third universal vertices.

Proof. Recall that Realizable Sequence remains NP-hard when restricted to instances with
π = (3, 3, ..., 3) (but with no conditions on the structure of G), see Theorem 2.10. We use this
restriction of Realizable Sequence for the reduction. Namely, from a graph G on 3n vertices,
we construct a graph G′ with order 3n′ (n′ > n) and up to one third universal vertices, and such
that

the 3n-sequence (3, 3, ..., 3) is realizable in G
⇔

the 3n′-sequence (3, 3, ..., 3) is realizable in G′.

Chapter 3. Arbitrarily partitionable graphs 63

G

I U

Figure 3.10: Structure of the reduced graph with about one third universal ver-
tices. The vertices in U form a clique.

To obtain the graph G′, proceed as follows. Let k ≥ 1 be an arbitrary integer, and add 3k
new vertices to G. Arbitrarily partition these 3k newly added vertices into two parts I ∪ U in
such a way that |I| = 2k and |U | = k. Finally turn the vertices in U into universal vertices.
The graph G′ is thus made of three vertex-disjoint subgraphs G′[I], G′[U] and G′[V (G)], which
are connected in such a way that all vertices from the “central” component G′[U] neighbour all
vertices of G′, the vertices in I neighbour vertices in U only, and G′[V (G)] is nothing but G
(with all possible edges between vertices of U and V (G)). Clearly |V (G′)| = 3n′ = 3(n + k).
Refer to Figure 3.10 for an illustration of this construction.

Note that in every realization of the 3n′-sequence (3, 3, ..., 3) in G′, every vertex from I has
to belong to a same part as a vertex from U because of the structure of G′. Besides, every part
containing a vertex from U can only cover up to two vertices in I. For these reasons, and since
there are 2k vertices in I and k vertices in U by construction, note that, in every realization
of the 3n′-sequence (3, 3, ..., 3) in G′, exactly k parts necessarily consist in exactly one vertex
from U and two vertices from I. Once these k parts are removed from G′, what remains is G.
Hence, the existence of a realization of the 3n′-sequence (3, 3, ..., 3) in G′ only depends on the
existence of a realization of the 3n-sequence (3, 3, ..., 3) in G′ − (I ∪ U) = G. The two instances
of Realizable Sequence are thus equivalent.

It should be clear that the reduction above holds whatever is the value of k. In particular,
note that the order of G gets irrelevant in front of the order of G′, and thus that the number of
universal vertices of G′ tends to one third, as k grows to infinity. �

3.1.3 On the tightness of Győri-Lovász Theorem

We now investigate the tightness of Theorem 2.1 in terms of connectivity and number of pre-
assigned vertices. Theorem 2.1 implies that every instance of Realizable Size-k Sequence
with k′-Preassignation involving a q-connected graph with k′ ≤ k ≤ q is positive. In the
next result, we show that this easiness result is tight in the sense that partitioning a q-connected
graphs into at least q + 1 connected parts is difficult as soon as at least q + 1 vertices are pre-
assigned. Again, as a side result we directly get that Realizable Size-k Sequence with
k′-Preassignation should not be fixed-parameter tractable when parameterized by k, k′ and
κ(G).

Theorem 3.19. For every q ≥ 1, k′ ≥ q+ 1 and k ≥ k′, Realizable Size-k Sequence with
k′-Preassignation is NP-complete when restricted to q-connected graphs.

Proof. First, because Realizable Size-k Sequence with k′-Preassignation is NP-complete
for every k ≥ 2 and our proof of this statement was obtained by reducing instances of 1-in-3
Satisfiability to instances of Realizable Sequence involving 1-connected graphs, see the
proof of Theorem 3.5, the statement holds for q = 1.

64 3.2. Relationship between Πp
2 and partition problems

We now prove the general case, i.e. q ≥ 2, by reduction from 1-in-3 Satisfiability. Let k′ ≥
q+1 and k ≥ k′ be fixed. Given a formula F being an instance of 1-in-3 Satisfiability, produce
a graph GF , a |V (GF)|-sequence πF = (n1, n2, ..., nk−q+1), and a (k′−q+1)-preassignation PF =
(u1, u2, ..., uk′−q+1) of GF such that F is 1-in-3 satisfiable if and only if πF is PF -realizable in GF .
This reduced instance may be obtained by using the reduction given in the proof of Theorem 3.1
and the star and path augmentation constructions, recall Constructions 3.3 and 3.6, respectively.
Now consider the following instance <G′F , π

′
F , P

′
F> of Realizable Size-k Sequence with k′-

Preassignation.

• G′F is obtained by successively adding q − 1 universal vertices v1, v2, ..., vq−1 to GF .

• π′F = (1, 1, ..., 1, n1, n2, ..., nk−q+1) is a |V (G′F)|-sequence with q − 1 1’s.

• P ′F = (v1, v2, ..., vq−1, u1, u2, ..., uk′−q+1) is a k′-preassignation of G′F .

Clearly, G′F is q-connected since GF is 1-connected, and π′F and P ′F have size k and k′,
respectively. Besides, since preassigning a vertex to a part with size 1 is like removing it from
the graph, what is left once the vertices v1, v2, ..., vq−1 have been preassigned to parts with size 1
of a P ′F -realization of π′F in G′F is GF , πF and PF . Therefore, π′F is P ′F -realizable in G′F if and
only if πF is PF -realizable in GF . By transitivity, we hence get that F is 1-in-3 satisfiable if and
only if π′F is P ′F -realizable in G′F . �

3.2 Relationship between Πp
2 and partition problems

As mentioned in Section 2.3, the membership of Arbitrarily Partitionable Graph to Πp
2

follows directly from the membership of Realizable Sequence to NP. We however do not
know whether Arbitrarily Partitionable Graph is Πp

2-complete. Indeed, most of known
Πp

2-complete problems are “completion” problems, i.e. problems of the form "For every X, is
there a Y such that...?" with the two input objects X and Y being of the same nature (e.g.
truth assignments, sets of vertices, etc.). Refer e.g. to the compendium [107] by Schaefer and
Umans, wherein several Πp

2-complete problems are listed, to have an illustration of this claim.
So although the question of Arbitrarily Partitionable Graph catches the form of a Πp

2

question, it is however different from the form of a Πp
2-complete question. This is one reason why

it seems difficult to design a reduction from one classic Πp
2-complete problem to Arbitrarily

Partitionable Graph.
In order to show that graph partition problems are not “incompatible” with the notion of

Πp
2-complete problems, we introduce another related problem.

Definition 3.20. Let G be a graph and π = (n1, n2, ..., np) be a |V (G)|-sequence. Given an
` ∈ {1, 2, ..., p}, an n`-partition-level for π and G is a set L` of subsets of V (G) that induce
connected subgraphs of G with order n`. An (n1, n2, ..., n`)-partition-hierarchy L for π and G
is a collection L = (L1, L2, ..., L`), where Li is an ni-partition-level for every i ∈ {1, 2, ..., `},
such that no subsets in Li and Lj intersect for i 6= j. We finally say that π is L-realizable
in G if, for every collection (V1, V2, ..., V`) of subsets from the partition-levels of L such that
V1 ∈ L1, V2 ∈ L2, ..., V` ∈ L`, there exists a realization (V1, V2, ..., V`, V`+1, V`+2, ..., Vp) of π in G.

In other words, we are given partial realizations of π in G (or, more precisely, ways for picking
the connected parts associated with the ` first elements of π), whose parts are dispatched into
` partition-levels, and we ask whether each of these partial realizations is extendible to a whole
realization of π in G. A partition-hierarchy is actually a compact way to describe a large number
of partial realizations.

Chapter 3. Arbitrarily partitionable graphs 65

a b

d e

c

(a) K1,4.

a

e b

d c
(b) K5.

Figure 3.11: Labellings of the graphs K1,4 and K5.

Example 3.21. Consider the two graphs K1,4 and K5 of Figure 3.11. Let π = (1, 1, 3) be a
5-sequence, let L1 = ({a}, {c}) and L2 = ({b}, {e}) be two 1-partition-levels for π and both
K1,4 and K5, and L = (L1, L2) be a (1, 1)-partition-hierarchy for π and both K1,4 and K5.
Clearly π is not L-realizable in K1,4 since ({c}, {b}, V (K1,4) \ {c, b}) is not a realization of π in
K1,4. However, π is L-realizable in K5 since ({a}, {b}, V (K5) \ {a, b}), ({a}, {e}, V (K5) \ {a, e}),
({c}, {b}, V (K5) \ {c, b}) and ({c}, {e}, V (K5) \ {c, e}) are realizations of π in K5.

We now focus on the complexity of the problem associated with the definitions above.

Dynamic Realizable Sequence
Instance: A graph G, a |V (G)|-sequence π = (n1, n2, ..., np′ , np′+1, np′+2, ..., np) with size p ≥ p′,
and a (n1, n2, ..., np′)-partition-hierarchy L for π and G.
Question: Is π L-realizable in G?

It is worth mentioning that Dynamic Realizable Sequence does not seem to be in co-
NP (for the same reason as Realizable Sequence does not seem to belong to co-NP) or in
NP since the number of partial realizations encoded by a partition-hierarchy may be exponential
compared to the input size. Dynamic Realizable Sequence however has a typical Πp

2-
complete problem form, as proved in the next result.

Theorem 3.22. Dynamic Realizable Sequence is Πp
2-complete.

Proof. Dynamic Realizable Sequence is clearly a Πp
2 problem. Given a combination of parts

(V1, V2, ..., Vp′) from L, we can, using an oracle for a problem in NP ∪ co-NP, check in polynomial
time whether these parts cannot be extended to get a realization of π in G. For this purpose,
we just have to invoke an oracle for Realizable Sequence to make sure that the sequence
(np′+1, np′+2, ..., np) is indeed not realizable in G−⋃p′

i=1 Vi.
We now show that Dynamic Realizable Sequence is complete in Πp

2 by reduction from
∀∃ 1-in-3 Satisfiability, which is Πp

2-complete according to Lemma 1.51. Our reduction is
nothing but a Πp

2-complete version of the reduction from 1-in-3 Satisfiability to Realizable
Sequence we gave in the proof of Theorem 3.1. Remember that, in this reduction, setting a
literal of F to true is simulated, in the reduced instance <GF , πF> of Realizable Sequence,
by adding the corresponding literal vertex of GF to the part with size n1 + n of a realization of
πF in GF . We here want to keep this relationship between attributing a truth value to a literal
of F and adding the associated literal vertex of GF to one of the two parts of a realization of
πF in GF . Given a truth assignment φ1 to the variables in X1, it means that we have to check
whether the partial realization of πF in GF whose part with size n1 + n contains the literal
vertices associated with the true literals via φ1 is extendible to a realization of πF in GF . All
these possible partial realizations (i.e. associated with all possible truth assignments to X1) are
encoded by a partition-hierarchy for πF and GF .

66 3.3. Three polynomial kernels of sequences

Set X1 = {x1, x2, ..., xn′} and X2 = {xn′+1, xn′+2, ..., xn}. First of all, let GF be the graph
obtained from F using the reduction we gave in the proof of Theorem 3.1. Then, let

πF = (1, 1, ..., 1, n1 + n− n′, n2 − n)

be a |V (GF)|-sequence with size n′ + 2, let Li = {{vxi}, {vxi}} be a 1-partition-level for πF and
GF for every xi ∈ X1, and L = (L1, L2, ..., Ln′) be a (1, 1, ..., 1)-partition-hierarchy for πF and
GF . With every truth assignment φ1 to X1 setting n′ literals of F to true is then associated the
combination of vertex-disjoint subsets (V1, V2, ..., Vn′) from L where Vi = {vxi} if φ1(xi) = 1 or
Vi = {vxi} otherwise for every i ∈ {1, 2, ..., n′}. This association is clearly bijective.

Let us now suppose that for every truth assignment φ1 to X1 there exists a truth assignment
φ2 to X2 such that F is 1-in-3 satisfied. Then the partition (V1, V2, ..., Vn′+2) of V (GF), where

• for every i ∈ {1, 2, ..., n′}, we have Vi = {vxi} if φ1(xi) = 1 or Vi = {vxi} otherwise,

• Vn′+1 contains all the vertices from the base subgraph of GF and every literal vertex v`i of
the clause subgraph of GF such that φ2(`i) = 1,

• Vn′+2 = V (GF) \⋃n′+1
i=1 Vi,

is a realization of πF in GF according to the arguments we gave in the proof of Theorem 3.1.
Because of the bijection described above, it follows that every combination of parts from the
1-partition-levels of L can be extended to a realization of πF in GF .

Conversely, suppose that every combination (V1, V2, ..., Vn′) of subsets from the 1-partition-
levels of L is extendible to a realization (V1, V2, ..., Vn′+2) of πF in GF . As explained above, the
partition (V1, V2, ..., Vn′) is associated with a truth assignment φ1 to X1, while from the literal
vertices contained in Vn′+1 we can deduce a truth assignment φ2 to X2 such that F is 1-in-3
satisfied by φ1 and φ2 (see the proof of Theorem 3.1). Then for every truth assignment to X1,
there exists a truth assignment to X2 making F 1-in-3- satisfied, as claimed. �

3.3 Three polynomial kernels of sequences

In this section, we exhibit polynomial kernels of sequences for three classes of graphs, namely
complete multipartite graphs (Section 3.3.1), graphs with about one half universal vertices (Sec-
tion 3.3.2), and graphs made up of partitionable components (Section 3.3.3).

3.3.1 Complete multipartite graphs

A lot of complete multipartite graphs are arbitrarily partitionable since they are traceable. How-
ever, all complete multipartite graphs are not arbitrarily partitionable. To be convinced of that
statement, note that every graph M2(1, k) with k ≥ 3 odd does not admit a perfect matching,
and hence any realization of the (1 + k)-sequence (2, 2, ..., 2).

We herein prove the following result.

Theorem 3.23. Arbitrarily Partitionable Graph is in P when restricted to complete
multipartite graphs.

So that we describe how we proceed to prove Theorem 3.23, we need to introduce a few
terminology beforehand.

Notation 3.24. Let k ≥ 2 and n ≥ k be two integers. We denote byMk(n) the set of complete
k-partite graphs with order n. We denote by KMk

(n) the following set of n-sequences:

KMk
(n) = {π : ‖π‖ = n and sp(π) = {1, 2}}.

Chapter 3. Arbitrarily partitionable graphs 67

(a) A realization of (2, 2, 1, 1, 1, 1, 1, 1). (b) A realization of (5, 4, 1).

Figure 3.12: Deduction of a realization of a sequence not in KMk
(n) (b) in a

complete multipartite graph (in black and grey) from a realization of a sequence in
KMk

(n) (a). The connected subgraphs induced by the realizations are depicted in
black only.

Theorem 3.23 is proved as follows. First, we prove that KMk
(n) is a (obviously polynomial)

kernel forMk(n). We then prove that Realizable Sequence is in P when restricted to graphs
ofMk(n) and sequences of KMk

(n). These two results directly imply Theorem 3.23.

The proof that KMk
(n) is a kernel forMk(n) relies on the following lemma.

Lemma 3.25. Let G = Mk(p1, p2, ..., pk) be a complete k-partite graph with k ≥ 2 and order
n ≥ k, and π = (n1, n2, ..., np) be an n-sequence. If π is realizable in G, then every n-sequence
π′ = π \ (ni, ni1 , ni2 , ..., nip′) ∪ (ni + ni1 + ni2 + ...+ nip′), where ni ≥ 2 and ni1 , ni2 , ..., nip′ are
distinct arbitrary elements of π \ (ni), is realizable in G.

Proof. Let (V1, V2, ..., Vp) be a realization of π in G. Since ni ≥ 2, observe that G[Vi ∪ {u}] is
connected for every vertex u 6∈ Vi of G, and so is every subgraph G[Vi ∪ Vj] with j 6= i. It then
follows directly that

(V1, V2, ..., Vi−1, Vi ∪ Vi1 , Vi+1, Vi+2, ..., Vp) \ (Vi1)

is a realization of the n-sequence (n1, n2, ..., ni−1, ni + ni1 , ni+1, ni+2, ..., np) \ (ni1) in G (see
Figure 3.12). Repeating the same argument as many times as necessary, we eventually get a
realization of π′ in G. �

Theorem 3.26. For every k ≥ 2 and n ≥ k, the set KMk
(n) is a kernel forMk(n).

Proof. Let G ∈Mk(n) be a complete k-partite graph with order n. We show that G is arbitrarily
partitionable if and only if KMk

(n) is realizable in G. As the necessity follows from the definition
of an arbitrarily partitionable graph, let us focus on the sufficiency. Assume KMk

(n) is realizable
in G, and that π = (n1, n2, ..., np) is an n-sequence with π 6∈ KMk

(n). We deduce an n-sequence
π′ ∈ KMk

(n) whose realizability in G implies the realizability of π in G.
Since π 6∈ KMk

(n), there are elements of π with value at least 3. For each such element ni,
replace ni in π′ with one occurrence of the element 2 and ni − 2 occurrences of the element 1.
Directly transfer every other element of π, i.e. with value at most 2, to π′. By construction, we
have π′ ∈ KMk

(n). Now consider a realization of π′ in G, which exists by assumption, and any
element ni of π which was split into one occurrence of 2 and several occurrences of 1 in π′. Then,
according to Lemma 3.25, we can merge exactly one part with size 2 and ni− 2 parts with size 1
of the realization of π′ in G so that their union induces a connected subgraph of G with order ni.

68 3.3. Three polynomial kernels of sequences

Repeating the same argument for every split element of π, we eventually get a realization of π
in G. �

Clearly, if the n-sequence (2, 2, ..., 2) (or (2, 2, ..., 2, 1) if n is odd) is realizable in a complete
multipartite graph G with order n, then every other n-sequence with spectrum {1, 2} is also
realizable in G. So G is arbitrarily partitionable if and only if it has a matching with size
b |V (G)|

2 c. Since this can be checked in polynomial time, recall Theorem 2.11, we directly get that
Arbitrarily Partitionable Graph is in P when restricted to complete multipartite graphs.
This proves Theorem 3.23.

3.3.2 Graphs with about a half universal vertices

In this section we exhibit a polynomial kernel for graphs with about a half universal vertices.
Recall that graphs having up to one third universal vertices do not have to be arbitrarily par-
titionable, see Theorem 3.18, while graphs with order n and at least dn−5

2 e universal vertices
are arbitrarily partitionable according to Theorem 2.36. There hence should be a threshold t
lying in between n

3 and n
2 such that every graph with order n and at least t universal vertices is

necessarily arbitrarily partitionable.
Towards this question, we investigate the existence of a polynomial kernel for graphs with

about one half universal vertices. In particular, as the main result of this section, we exhibit a
polynomial kernel for graphs with order n and at least dn−ln(n)−2

2 e universal vertices. Although
such graphs have a lot of universal vertices, they do not have to be arbitrarily partitionable
(consider e.g. the situation where all non-universal vertices form an independent set). So having
such a polynomial kernel makes sense.

We start by raising the following easy remark.

Observation 3.27. Let G be a graph with k ≥ 1 universal vertices and order n ≥ k. Then every
n-sequence π = (n1, n2, ..., np) with size p ≤ k is realizable in G.

Proof. Let u1, u2, ..., uk be the universal vertices of G. Under the conditions of the claim, we
deduce a realization (V1, V2, ..., Vp) of π in G as follows. Start with V1 = {u1}, V2 = {u2},
..., Vp = {up}. Now consider the parts V1, V2, ..., Vp consecutively. If Vi already has size ni, i.e.
ni = 1, then consider the next part. Otherwise, add ni−1 arbitrary vertices from V (G)\⋃p

j=1 Vj
to Vi. Clearly Vi has size ni. Besides, because ui ∈ Vi and ui is a universal vertex of G, the
subgraph induced by Vi is connected. �

From now on, it is thus understood that all sequences have size at least k + 1 when dealing
with a graph with k universal vertices. We now introduce a result dealing with the existence of
a particular realization of every sequence which is realizable in a graph having universal vertices.

Lemma 3.28. Let G be a graph with k ≥ 1 universal vertices and order n ≥ k, and π =
(n1, n2, ..., np) be an n-sequence with n1 ≥ n2 ≥ ... ≥ np. If π is realizable in G, then there
exists a realization (V1, V2, ..., Vp) of π in G such that each of V1, V2, ..., Vk contains one universal
vertex.

Proof. The claim means that if π is realizable in G, then there exists a particular realization
of π in G such that each of the k biggest parts includes one universal vertex. Let u1, u2, ..., uk
denote the universal vertices of G, and assume (V1, V2, ..., Vp) is a realization of π in G. If
(V1, V2, ..., Vp) satisfies the conditions of the claim, then we are done. Otherwise, we obtain a
satisfying realization in two steps.

We first modify the realization (V1, V2, ..., Vp) so that each of V1, V2, ..., Vk includes at most
one universal vertex of G. Suppose there is a part Vi with i ∈ {1, 2, ..., k} containing at least
two universal vertices, while another part Vj with j ∈ {1, 2, ..., k} and j 6= i does not contain

Chapter 3. Arbitrarily partitionable graphs 69

v1

v2

Vj

Vi

(a) Two parts Vi and Vj inducing connected sub-
graphs. The part Vi includes two universal ver-
tices.

v1

v2

(b) The universal vertex v1 is moved from Vi
to Vj . The two induced subgraphs are still con-
nected and have the same orders.

Figure 3.13: Moving a universal vertex v1 from a part inducing a connected
subgraph with at least two universal vertices to another part. The original graph is
in black and grey, its white vertices are universal, and the two subgraphs induced
by the two parts are in black only.

any universal vertex. We may suppose that i < j without loss of generality. We prove that
we can exchange vertices between Vi and Vj in such a way that exactly one universal vertex is
moved from Vi to Vj , and this without altering the sizes of Vi and Vj , nor the connectivity of the
subgraphs of G they induce. Let v1 ∈ Vi and v2 ∈ Vj be arbitrary vertices of G such that v1 is
a universal vertex. Then note that G[Vi \ {v1}] remains connected since Vi includes at least two
universal vertices. Besides, the subgraph G[Vj \ {v2} ∪ {v1}] is connected since v1 is a universal
vertex. It then follows that

(V1 , V2 , ... , Vi−1 , Vi \ {v1} ∪ {v2} , Vi+1 , Vi+2 , ... , Vj−1 , Vj \ {v2} ∪ {v1} , Vj+1 , Vj+2 , ... ,
Vp)

is another realization of π in G. Repeating the same argument as many times as necessary, we
eventually get a realization of π in G in which each of the k biggest parts contains at most one
universal vertex. This process is illustrated in Figure 3.13.

Suppose now that every part V1, V2, ..., Vk of (V1, V2, ..., Vp) includes at most one universal
vertex. If each of V1, V2, ..., Vk contains exactly one universal vertex, then the claim is proved.
Otherwise, it means that a part different from V1, V2, ..., Vk includes at least one universal vertex.
Let Vj with j ∈ {k+ 1, k+ 2, ..., p} be such a part whose set U = {u1, u2, ..., uk}∩Vj of universal
vertices is not empty, and let u ∈ U be a universal vertex of Vj . By assumption there is another
part Vi with i ∈ {1, 2, ..., k} such that Vi does not include any universal vertex. We exchange
vertices between Vi and Vj so that they still have size ni and nj , respectively, induce connected
subgraphs of G, and u is the only universal vertex of Vj moved to Vi (so that we do not break
the property that each of the k biggest parts includes at most one universal vertex).

Recall that ni ≥ nj . Then we can find a set X ⊆ Vi such that |X| = nj − |U |+ 1 and G[X]
is connected, e.g. by applying a breadth-first search algorithm. Because u is a universal vertex,
the subgraph of G induced by Vi \X ∪ (Vj \ U) ∪ {u} is connected. It then follows that

(V1 , V2 , ... , Vi−1 , Vi \X ∪ (Vj \U) ∪ {u} , Vi+1 , Vi+2 , ... , Vj−1 , U \ {u} ∪X , Vj+1 , Vj+2 ,
... , Vp)

is a realization of π in G in which the part with size ni now includes a universal vertex, while the
part with size nj has one less universal vertex (see Figure 3.14). Repeating the same arguments
as many times as necessary, we eventually get a realization of π in G satisfying the conditions of
the claim. �

70 3.3. Three polynomial kernels of sequences

Vju

Vi
X

(a) Two parts Vi and Vj inducing con-
nected subgraphs, with |Vi| ≥ |Vj |. The
part Vj includes two universal vertices.
The subgraph induced by X is connected.

u

(b) The vertex u is moved from Vj to
Vi, while X is moved from Vi to Vj .
The two induced subgraphs are still
connected and have the same orders.

Figure 3.14: Moving a universal vertex u from a part to a bigger part. The
original graph is in black and grey, its white vertices are universal, and the two
subgraphs induced by the two parts are in black only.

The kernel presented below relies on the following crucial lemma.

Lemma 3.29. Let G be a graph with k ≥ 1 universal vertices and order n ≥ k, and π =
(n1, n2, ..., np) be an n-sequence with n1 ≥ n2 ≥ ... ≥ np. If π is realizable in G, then every
n-sequence π′ = π \ (ni, ni1 , ni2 , ..., nip′) ∪ (ni + ni1 + ni2 + ...+ nip′), where i ∈ {1, 2, ..., k} and
ni1 , ni2 , ..., nip′ are distinct arbitrary elements of π \ (ni), is realizable in G.

Proof. The claim means that from a realization of π in G, we can deduce a realization in G of
every n-sequence obtained from π by adding one big part size and additional part sizes. Since
π is realizable in G by assumption, there exists a particular realization (V1, V2, ..., Vp) of π in G
such that each of V1, V2, ..., Vk includes one universal vertex, recall Lemma 3.28. There is thus
one vertex in Vi neighbouring every other vertex of G, implying that the subgraph induced by
Vi ∪ Vi1 ∪ Vi2 ∪ ... ∪ Vip′ is connected. It thus follows directly that

(V1, V2, ..., Vi−1, Vi ∪ Vi1 ∪ Vi2 ∪ ... ∪ Vip′ , Vi+1, Vi+2, ..., Vp) \ (Vi1 , Vi2 , ..., Vip′)

is a realization of

π′ = (n1, n2, ..., ni−1, ni + ni1 + ni2 + ...+ nip′ , ni+1, ni+2, ..., np) \ (ni1 , ni2 , ..., nip′)

in G. �

So that we present the main result of this section, we first introduce the following notation.

Notation 3.30. Let k ≥ 1 and n ≥ k be two integers. We denote by Uk(n) the set of graphs
with k universal vertices and order n. We denote by KUk(n) the following set of n-sequences:

KUk(n) = {π : ‖π‖ = n and the greatest element value of π appears at least k + 1 times}.

We prove below that KUk(n) is a kernel for Uk(n) no matter what are the values of k and n.

Theorem 3.31. For every k ≥ 1 and n ≥ k, the set KUk(n) is a kernel for Uk(n).

Proof. Let G ∈ Uk(n) be a graph with order n and k universal vertices with k ≥ 1 and n ≥ k
being fixed. We prove that G is arbitrarily partitionable if and only if KUk(n) is realizable in G.
The necessary condition is obvious by the definition of an arbitrarily partitionable graph, so let
us prove the sufficient condition.

Chapter 3. Arbitrarily partitionable graphs 71

Let us assume KUk(n) is realizable in G. We show that for every sequence π 6∈ KUk(n), we
can deduce a sequence π′ ∈ KUk(n) such that from a realization of π′ in G we can obtain a
realization of π in G. Assume π = (n1, n2, ..., np) with n1 ≥ n2 ≥ ... ≥ np. Since π 6∈ KUk(n),
there are at most k occurrences of n1 in π. The sequence π′ is obtained from π by just replacing
every element ni with i ∈ {1, 2, ..., k} of π by one occurrence of the element nk+1 and ni − nk+1

occurrences of the element 1, and transferring every other element ni with i ∈ {k+1, k+2, ..., p}
to π′ directly.

By construction, the biggest element of π′ has value nk+1, this element value appearing at
least k + 1 times in π′. The sequence π′ thus belongs to KUk(n) and is realizable in G by
assumption. Then Lemma 3.29 implies that from a realization of π′ in G we can deduce a
realization of π in G. More precisely, from a realization of π′ in G obtained using Lemma 3.28,
we can unify connected parts whose sizes result from the split of a single element of π in such a
way that the resulting subgraphs are also connected. �

Every kernel KUk(n) contains n-sequences consisting in one big element value n1 appearing
α ≥ k+1 times, and a partition of n−αn1 whose elements have value at most k. So that KUk(n)
has polynomial size, we need the number of partitions of n−αn1 to be polynomial in n. This is
asymptotically the case when n− αn1 is logarithmic in n, recall Theorem 1.2.

Corollary 3.32. Let k ≥ 1 and n ≥ k be two integers. If k ≥ dn−ln(n)−2
2 e, then the kernel

KUk(n) is polynomial.

Proof. Regarding the terminology above, we have α ≥ k+ 1 and n1 ≥ 2. Since n−αn1 must be
logarithmic in n, we want n−αn1 ≤ ln(n), and hence n−2(k+1) ≤ ln(n). Solving the inequality,
we end up with k ≥ dn−ln(n)−2

2 e. For such a value of k, the size of KUk(n) is asymptotically
O(n3) since n1 and α can take up to n values. �

It is worth recalling that, in the proof of Corollary 3.32, the fact that KUk(n) has polynomial
size mainly depends on the polynomiality of n − αn1. So the inequality n − αn1 ≤ ln(n) can
actually be replaced with n− αn1 ≤ ln(nq) for any fixed constant q ≥ 1. For such a fixed value
of q, we hence get a strengthening of Corollary 3.32, namely that KUk(n) is polynomial whenever
k ≥ dn−ln(nq)−2

2 e (though the size of KUk(n) increases to O(nq+2)). But it is important noting
that there is no constant threshold value of q ≤ n above which the amount dn−ln(nq)−2

2 e becomes
upper-bounded by n

3 .

3.3.3 Graphs made up of partitionable components

We herein focus on (k, `)-compound graphsG = Ck,`(G1, G2, ..., G`) in which every componentGi
is arbitrarily (ui1, u

i
2, ..., u

i
k)-partitionable for every i ∈ {1, 2, ..., `}, where u1, u2, ..., uk designate

the roots of G. It is therefore understood that every compound graph G considered in this section
has all of its components being arbitrarily P -partitionable, where P is the tuple of vertices glued
to form G.

Although a (k, `)-compound graph with the property above has strong local partition prop-
erties, i.e. it is made of ` (more than) arbitrarily partitionable components, it does not have to
be arbitrarily partitionable. To be convinced of that statement, just note that a (1, `)-compound
graph C1,`(P1, P2, ..., P`), obtained by identifying one endvertex of ` ≥ 5 paths P1, P2, ..., P` with
length at least 1, cannot be arbitrarily partitionable, recall Theorem 2.17.

We exhibit below a polynomial kernel of sequences for (k, `)-compound graphs verifying ` ≤ k.
The ideas used throughout are a rough generalization of the arguments used by Ravaux in [104]
to prove that K ′T (n) is a kernel for tripodes. As in previous Section 3.3.2, we first prove some
lemmas beforehand. An important remark to raise is that these lemmas are more general than
needed for our purpose in the sense that they hold for all values of `. So these lemmas could be
reused in future works.

72 3.3. Three polynomial kernels of sequences

Observation 3.33. Let k ≥ 1 and ` ≥ 1 be two integers, and G = Ck,`(G1, G2, ..., G`) be a (k, `)-
compound graph with order n ≥ k. Then every n-sequence π = (n1, n2, ..., np) with size p ≤ k is
realizable in G.

Proof. Let u1, u2, ..., uk denote the root vertices of G. We start by picking some (possibly in-
complete) connected parts of the realization in G1. For this purpose, let

π1 = (n1
1, n

1
2, ..., n

1
p)

be an arbitrary partition of |V (G1)| into p parts such that 1 ≤ n1
i ≤ ni for every i ∈ {1, 2, ..., p}.

Since G1 is arbitrarily (u1
1, u

1
2, ..., u

1
p)-partitionable, there exists a (u1

1, u
1
2, ..., u

1
p)-realization (V 1

1 ,
V 1

2 , ..., V
1
p) of π1 in G1.

In order to get a realization of π in G, we now have to complete the part V 1
i with n′i = ni−n1

i

additional vertices for every i ∈ {1, 2, ..., p}. So, for every i ∈ {1, 2, ..., p}, let (n2
i , n

3
i , ..., n

`
i) be an

arbitrary partition of n′i+`−1 such that n2
i , n

3
i , ..., n

`
i ≥ 1 and nj1+nj2+...+njp = |V (Gj)|−(k−p)

for every j ∈ {2, 3, ..., `}. Now define

πi = (ni1, n
i
2, ..., n

i
p, 1, 1, ..., 1)

for every i ∈ {2, 3, ..., `}, where the value 1 appears k− p times at the end of πi. Since, for every
i ∈ {2, 3, ..., `}, the component Gi is arbitrarily (ui1, u

i
2, ..., u

i
k)-partitionable and the sequence πi

is a |V (Gi)|-sequence, there exists a (ui1, u
i
2, ..., u

i
k)-realization (V i

1 , V
i

2 , ..., V
i
k) of πi in Gi. Now

observe that

(
⋃̀

i=1

V i
1 ,
⋃̀

i=1

V i
2 , ...,

⋃̀

i=1

V i
p)

is a realization of π in G. In particular, every resulting part V 1
i ∪V 2

i ∪ ...∪V `
i with i ∈ {1, 2, ..., p}

has size ni and G[V 1
i ∪ V 2

i ∪ ... ∪ V `
i] is connected since each of G1[V 1

i], G2[V 2
i], ..., G`[V

`
i] is

connected and includes a “local copy” of the root vertex ui. �

From now on, it is thus understood that every considered sequence has sufficiently many
elements, i.e. at least k+ 1 elements when dealing with a (k, `)-compound graph. We now focus
on the existence of a particular realization of every sequence which is realizable in a compound
graph.

Lemma 3.34. Let k ≥ 1 and ` ≥ 1 be two integers, G = Ck,`(G1, G2, ..., G`) be a (k, `)-compound
graph with order n ≥ k, and π = (n1, n2, ..., np) be an n-sequence with n1 ≥ n2 ≥ ... ≥ np. If
π is realizable in G, then there exists a realization (V1, V2, ..., Vp) of π in G such that each of
V1, V2, ..., Vk contains one root vertex.

Proof. Let R = {u1, u2, ..., uk} denote the set of root vertices of G, and assume (V1, V2, ..., Vp) is
a realization of π in G. As in the proof of Lemma 3.28, we successively modify the realization
(V1, V2, ..., Vp) so that it eventually respects the conditions of the claim. If these conditions are
already respected, then we are done. Otherwise, for each element ni of π, let n1

i , n
2
i , ..., n

`
i be

possibly null elements such that

nji = |Vi ∩ V (Gj)| for every j ∈ {1, 2, ..., `}.

If we set ri = |Vi ∩ R|, then we have ni = (
∑`

j=1 n
j
i) − ri(` − 1) for every i ∈ {1, 2, ..., p}.

Besides, if Vi ⊆ (V (Gj) \ {uj1, uj2, ..., ujk}) for some j ∈ {1, 2, ..., `}, i.e. the part Vi only contains
non-root vertices, then we have nji = ni and n

j′

i = 0 for every j′ 6= j. The original realization
(V1, V2, ..., Vp) of π in G can be then rewritten

(
⋃̀

i=1

V i
1 ,
⋃̀

i=1

V i
2 , ...,

⋃̀

i=1

V i
p),

Chapter 3. Arbitrarily partitionable graphs 73

Vi1 Vj1

Vj2

Vi1,1

Vℓ1

(a) The part Vi1 includes two root vertices, while
the part Vi1,1 is included in the bottommost com-
ponent.

(b) One root vertex from Vi1 is now in-
cluded in the part with size |Vi1,1|. The
realization has locally changed (see notably
the part with size |V`1 |), but the inclusion
of the parts in the two components is lo-
cally preserved.

Figure 3.15: Modifying a realization in a compound graph so that each part
includes at most one root vertex. The original graph is in black and grey, its white
vertices are its roots, and the two subgraphs induced by the parts are in black only.

where (V i
1 , V

i
2 , ..., V

i
p) is a realization of (ni1, n

i
2, ..., n

i
p) in Gi for every i ∈ {1, 2, ..., `}. In particu-

lar, at most p of the subgraphs induced by the realization are connected because of the presence
of some root vertices.

We start by modifying the realization so that ri ≤ 1 holds for every i ∈ {1, 2, ..., p}. If this
condition is already met, then consider the next step. Otherwise, let Vi1 , Vi2 , ..., Viα be the parts
of the realization including at least two root vertices, i.e. we have ri1 , ri2 , ..., riα ≥ 2. For each
such part Vi, let Vi,1, Vi,2, ..., Vi,ri−1 be ri − 1 distinct parts of the realization including no root
vertex, i.e. ri,1, ri,2, ..., ri,ri−1 = 0. These additional parts have to be chosen uniquely, i.e. the
indices (i1, 1) , (i1, 2) , ... , (i1, ri1 − 1) , (i2, 1) , (i2, 2) , ... , (i2, ri2 − 1) , ... , (iα, 1) , (iα, 2) , ... ,
(iα, riα − 1) must all be distinct. We modify the realization so that, for every i ∈ {i1, i2, ..., iα},
each of the parts Vi,1, Vi,2, ..., Vi,ri−1 and Vi contains exactly one of the ri root vertices which
originally belonged to Vi (see Figure 3.15). For this purpose, we also need to take into account
the parts of the original realization which include exactly one root vertex. These are denoted
Vj1 , Vj2 , ..., Vjβ . By definition note that

(Vi1 ∪ Vi2 ∪ ... ∪ Viα ∪ Vj1 ∪ Vj2 ∪ ... ∪ Vjβ) ∩R = R,

and also that
α+ β + (ri1 − 1) + (ri2 − 1) + ...+ (riα − 1) = k.

We finally denote by `1, `2, ..., `γ those p− k indices not among {i1, i2, ..., iα} ∪ {(i1, 1), (i1, 2),
..., (i1, ri1 − 1), (i2, 1), (i2, 2), ..., (i2, ri2 − 1), ..., (iα, 1), (iα, 2), ..., (iα, riα − 1)} ∪ {j1, j2, ..., jβ}.

For every i ∈ {1, 2, ..., p}, we split ni into ` elements n1
i
′, n2

i
′, ..., n`i

′ as follows.

• If i ∈ {`1, `2, ..., `γ}, then n1
i
′ = n1

i , n
2
i
′ = n2

i , ..., n
`
i
′ = n`i . In particular, one of the `

resulting elements is equal to ni, while all of the other elements are null.

• If i ∈ {i1, i2, ..., iα}, then n1
i
′ = n1

i − ri + 1, n2
i
′ = n2

i − ri + 1, ..., n`i
′ = n`i − ri + 1.

74 3.3. Three polynomial kernels of sequences

• If i ∈ {(i1, 1) , (i1, 2) , ... , (i1, ri1 − 1) , (i2, 1) , (i2, 2) , ... , (i2, ri2 − 1) , ... , (iα, 1) , (iα, 2)
, ... , (iα, riα − 1)}, then there is a c such that Vi ⊂ V (Gc). Then let nji

′ = ni for j = c, or
nji
′ = 1 otherwise.

• If i ∈ {j1, j2, ..., jβ}, then n1
i
′ = n1

i , n
2
i
′ = n2

i , ..., n
`
i
′ = n`i .

Using the resulting elements, we build ` new sequences π′1, π′2, ..., π′` where each such sequence
π′i is intended to be realized in Gi. Every such sequence π′i is formally defined as follows:

π′i = (nii1
′ , nii2

′ , ... , niiα
′ , nii1,1

′ , nii1,2
′ , ... , nii1,ri1−1

′ , nii2,1
′ , nii2,2

′ , ... , nii2,ri2−1
′ , ... , niiα,1

′ ,

niiα,2
′ , ... , niiα,riα−1

′ , nij1
′ , nij2

′ , ... , nijβ
′ , ni`1

′ , ni`2
′ , ... , ni`γ

′).

Note that according to how the original elements of π have been split, each resulting sequence
π′i sums up to |V (Gi)|. Since Gi is arbitrarily (ui1, u

i
2, ..., u

i
k)-partitionable by assumption, there

exists a (ui1, u
i
2, ..., u

i
k)-realization (V i

1
′, V i

2
′, ..., V i

p
′) of π′i in Gi. It then follows that

(
⋃̀

i=1

V i
1
′,
⋃̀

i=1

V i
2
′, ...,

⋃̀

i=1

V i
p
′)

is a realization of π in G. In particular, each of its k first parts induces a connected subgraph
since it is the union of parts which induce connected subgraphs themselves and include local
copies of a same root vertex. Besides, each resulting part has the correct size regarding π, and
each root vertex belongs to exactly one resulting subgraph. The desired assumptions are then
met.

Let us now assume that ri ≤ 1 holds for every i ∈ {1, 2, ..., p}. If we have r1 = r2 = ... =
rk = 1, then the claim is proved. Otherwise, there is a root vertex u which belongs to a part
Vx with x 6∈ {1, 2, ..., k}, while there exists a y ∈ {1, 2, ..., k} such that ry = 0 and, hence,
we have Vy ⊆ V (Gc) \ {uc1, uc2, ..., uck} for some c ∈ {1, 2, ..., `}. Because every two roots of G
belong to distinct parts of the realization, note that, because ny ≥ nx, it is sufficient to modify
the realization locally, by “swapping” Vx and Vy in Gc. This is done as follows. For every
i ∈ {1, 2, ..., p}, let Ui = Vi ∩ V (Gc), and let i1, i2, ..., ik be the distinct indices of those parts
Ui including one root vertex, and uci1 , u

c
i2
, ..., ucik the root vertices they respectively include. We

additionally denote U`1 , U`2 , ..., U`α those parts different from Ux and Ui1 , Ui2 , ..., Uik .
We may assume that x = ik. Since Gc is arbitrarily (uc1, u

c
2, ..., u

c
k)-partitionable, there exists

a (uci1 , u
c
i2
, ..., ucik−1

, uc)-realization (U ′i1 , U ′i2 , ... , U ′ik−1
, V ′y , V ′x , U ′`1 , U ′`2 , ... , U ′`α) of

(|Ui1 |, |Ui2 |, ..., |Uik−1
|, ny − (|Vx| − |Ux|), nx, |U`1 |, |U`2 |, ..., |U`α |) in Gc. It then follows that

(Vi1 \Ui1 ∪U ′i1 , Vi2 \Ui2 ∪U ′i2 , ... , Vik−1
\Uik−1

∪U ′ik−1
, Vx \Ux ∪ V ′y , V ′x , U ′`1 , U ′`2 , ... , U ′`α)

is a realization of π in G in which u has been switched from the part with size nx to the part with
size ny, and all of the other root vertices remain in the same parts (see Figure 3.16). Repeating
the same argument as many times as needed, we eventually get a realization of π in G satisfying
the conditions of the claim. �

Prior to formulating the main result of this section, we introduce the following notation.

Notation 3.35. Let k ≥ 1, ` ≥ 1, and n ≥ k be three integers. We denote by Ck,`(n) the set of
(k, `)-compound graphs with order n. We denote by KCk,`(n) the following set of n-sequences:

KCk,`(n) = {π : ‖π‖ = n and |sp(π)| ≤ 2k + 6}.

We show below that KCk,`(n) is a polynomial kernel for (k, `)-compound graphs with order n
verifying ` ≤ k.
Theorem 3.36. For every k ≥ 1, ` ≤ k and n ≥ k, the set KCk,`(n) is a kernel for Ck,`(n).

Chapter 3. Arbitrarily partitionable graphs 75

Vx

Vy

(a) The part Vx includes one root vertex
while the part Vy does not include any, but
|Vy| > |Vx|.

(b) The root vertex from Vx is now included
in the part with size |Vy|. The realization has
only changed locally, i.e. in the bottommost
component.

Figure 3.16: Modifying a realization in a compound graph so that each of the
biggest parts includes one root vertex. The original graph is in black and grey, its
white vertices are its roots, and the two subgraphs induced by the parts are in black
only.

Proof. Let G = Ck,`(G1, G2, ..., G`) be a (k, `)-compound graph with order n ≥ k whose parame-
ters k and ` respect the conditions of the statement. We prove that G is arbitrarily partitionable
if and only if KCk,`(n) is realizable in G.

Since every n-sequence is realizable in G under the assumption that G is arbitrarily parti-
tionable, the necessary condition follows directly from the definitions. We thus narrow down
our concern on the sufficient condition. Assume G is not arbitrarily partitionable. We need to
prove that KCk,`(n) is not realizable in G. Since G is not arbitrarily partitionable, there is an
n-sequence π not realizable in G. If π ∈ KCk,`(n), then we are done. Otherwise, i.e. π 6∈ KCk,`(n),
we deduce another n-sequence π′ ∈ KCk,`(n) which is not realizable in G, completing the proof.
Equivalently, we may show that if π′ is realizable in G, then so is π.

Since π 6∈ KCk,`(n), we have sp(π) = {s1, s2, ..., st} with t ≥ 2k + 7 and s1 > s2 > ... > st.
Among the at least k + 7 elements in {sk+1, sk+2, ..., st}, there has to be at least four integers
sp1 > sp2 > sp3 > sp4 with the same parity and such that sp1 ≥ k. The sequence π′ is obtained
by replacing two elements with value sp1 and sp2 , respectively, of π by two elements with value
spm =

sp1+sp2
2 , which is an integer since sp1 and sp2 have the same parity. In doing so, note

that we may have |sp(π′)| ≥ |sp(π)|, but repeating this procedure as many times as necessary,
we get successive n-sequences which are all equivalent in terms of realizability in G (as shown
below), converging to a sequence of KCk,`(n) since all these successive sequences are obtained by
repeatedly dividing original elements of π, making them converge to 1.

Set ∆ = sp1−spm = spm−sp2 . Let further π′ = (n1, n2, ..., np), with n1 ≥ n2 ≥ ... ≥ np, be the
n-sequence obtained from π by replacing two elements with value sp1 and sp2 , respectively, with
two new occurrences nm1 and nm2 of spm . By the choice of sp1 and sp2 , we have n1, n2, ..., nk >
nm1 , nm2 .

Assume π′ is realizable in G. According to Lemma 3.34, there exists a (u1, u2, ..., uk)-
realization (V1, V2, ..., Vp) of π′ in G such that each of the root vertices u1, u2, ..., uk of G distinctly
belongs to one of V1, V2, ..., Vk. We may assume that u1 ∈ V1, u2 ∈ V2, ..., uk ∈ Vk for the sake

76 3.3. Three polynomial kernels of sequences

Vm1

Vm2 ∆

u1 u2 u3 uk

G1

(a) Vm1 and Vm2 are both included in
G1. We can directly transfer ∆ ver-
tices from Vm2 to Vm1 .

∆

∆

a1 a2 ak

Vm2

G1

G2

Vm1

a3

u1 u2 u3 uk

(b) Vm1 and Vm2 are included in G1 and G2, re-
spectively. The parts containing the root vertices
shrink in G1 so that Vm1 can expend, while they
expend in G2, making Vm2 shrink in turn.

Figure 3.17: Exchanging ∆ vertices between the parts Vm1
and Vm2

of a realiza-
tion of π′ in G. The original graph G is in black and grey, and its white vertices
are its root. The dotted sections represent the transferred vertices.

of simplicity. As in the proof of Lemma 3.34, let us rewrite (V1, V2, ..., Vp) as

(
⋃̀

i=1

V i
1 ,
⋃̀

i=1

V i
2 , ...,

⋃̀

i=1

V i
p),

where each subset V j
i corresponds to Vi∩V (Gj). For each such subset, we further write nji = |V j

i |.
By assumption, we have Vm1 ⊆ (V (Gc) \ {uc1, uc2, ..., uck}) and Vm2 ⊆ (V (Gc′) \ {uc

′
1 , u

c′
2 , ..., u

c′
k }),

where c, c′ ∈ {1, 2, ..., `} are possibly equal. We modify the realization in such a way that ∆
vertices are moved from Vm1 to Vm2 in either direction, and this without altering the connectivity
of the subgraphs these parts induce.

Case 1. We have c = c′.
In this situation the parts Vm1 and Vm2 are included in a same component Gc of G, say G1.

We obtain the realization of π in G as follows. Since G1 is arbitrarily (u1
1, u

1
2, ..., u

1
k)-partitionable,

there exists a (u1
1, u

1
2, ..., u

1
k)-realization (V 1

1
′, V 1

2
′, ..., V 1

p
′) of

(n1
1 , n

1
2 , ... , n

1
m1−1 , n

1
m1

+ ∆ , n1
m1+1 , n

1
m1+2 , ... , n

1
m2−1 , n

1
m2
−∆ , n1

m2+1 , n
1
m2+2 , ... , n

1
p)

in G1. It then follows that

((
⋃̀

i=2

V i
1) ∪ V 1

1
′, (
⋃̀

i=2

V i
2) ∪ V 1

2
′, ..., (

⋃̀

i=2

V i
p) ∪ V 1

p
′)

is a realization of π in G. In particular, each part (
⋃`
j=2 V

j
i) ∪ V 1

i
′ with i ∈ {1, 2, ..., k} induces

a connected subgraph of G since it is made up of several connected parts each containing one
local copy of the root vertex ui. This process is depicted in Figure 3.17.a.

Case 2. We have c 6= c′.
From now on, we suppose that the parts Vm1 and Vm2 are included in two different components

Gc and Gc′ , respectively. We may assume that c = 1 and c′ = 2 without loss of generality. We
distinguish two cases to deduce a realization of π in G.

Chapter 3. Arbitrarily partitionable graphs 77

Case 2.1. We have
∑k

i=1(n1
i − 1) ≥ ∆ or

∑k
i=1(n2

i − 1) ≥ ∆.

Assume
∑k

i=1(n1
i − 1) ≥ ∆, and let a1, a2, ..., ak ≥ 0 be integers such that ai ≤ n1

i − 1 for
every i ∈ {1, 2, ..., k}, and ∑k

i=1 ai = ∆. Note that we have both

(

p∑

i=1

n1
i)− (

k∑

i=1

ai) + ∆ = |V (G1)|

and

(

p∑

i=1

n2
i) + (

k∑

i=1

ai)−∆ = |V (G2)|.

A realization of π in G is then obtained as follows. Since G1 is arbitrarily (u1
1, u

1
2, ..., u

1
k)-

partitionable by assumption, there exists a (u1
1, u

1
2, ..., u

1
k)-realization (V 1

1
′, V 1

2
′, ..., V 1

p
′) of

(n1
1 − a1, n

1
2 − a2, ..., n

1
k − ak, n1

k+1, n
1
k+2, ..., n

1
m1−1, n

1
m1

+ ∆, n1
m1+1, n

1
m1+2, ..., n

1
p)

in G1. Similarly G2 is arbitrarily (u2
1, u

2
2, ..., u

2
k)-partitionable and then admits a (u2

1, u
2
2, ..., u

2
k)-

realization (V 2
1
′, V 2

2
′, ..., V 2

p
′) of

(n2
1 + a1, n

2
2 + a2, ..., n

2
k + ak, n

2
k+1, n

2
k+2, ..., n

2
m2−1, n

2
m2
−∆, n2

m2+1, n
2
m2+2, ..., n

2
p).

It then follows that

((
⋃`
i=3 V

i
1) ∪ (V 1

1
′, V 2

1
′) , (

⋃`
i=3 V

i
2) ∪ (V 1

2
′, V 2

2
′) , ... , (

⋃`
i=3 V

i
p) ∪ (V 1

p
′, V 2

p
′))

is a realization of π in G according to the same arguments as those used so far (see Figure 3.17.b).

Case 2.2. We have
∑k

i=1(n1
i − 1) < ∆ and

∑k
i=1(n2

i − 1) < ∆.

In such a situation, we have (
∑k

i=1 n
1
i + n2

i) − 2k < 2∆ − 1, with n1, n2, ..., nk > sp1 by
assumption. Recall also that ni = (

∑`
j=1 n

j
i) − ` + 1 for every i ∈ {1, 2, ..., k}, that k ≥ ` ≥ 2

and sp1 ≥ k, and that ∆ = sp1 − spm with spm =
sp1+sp2

2 . Then we get

k∑

i=1

∑̀

j=3

nji = (
k∑

i=1

ni)− (
k∑

i=1

n1
i + n2

i) + k`− k

> ksp1 − (2∆ + 2k − 1) + k`− k
> ksp1 + k`− 3k − 2∆ + 1

> (k − 2)sp1 − k + 2spm

> (k − 2)sp1 − sp1 + sp1

> (k − 2)sp1 . (3.1)

By assumption we have ` ≤ k, and hence
∑k

i=1 n
α
i > sp1 for an α ∈ {3, 4, ..., `} since otherwise

we would get
∑k

i=1

∑`
j=3 n

j
i < (k − 2)sp1 , contradicting Inequality (3.1).

Assume α = 3 without loss of generality. Since

k∑

i=1

n3
i > sp1 = spm + ∆,

we can “move” the part with size m1 of the realization from G1 to G3 as follows (see Figure 3.18).
First deduce integers a1, a2, ..., ak such that we have ai ≤ n3

i − 1 for every i ∈ {1, 2, ..., k}, and∑k
i=1 ai = spm . According to our terminology, since Vm1 ⊂ V (G1), recall that n1

m1
= nm1 and

78 3.3. Three polynomial kernels of sequences

aka2a1 a3

u1 u2 u3 uk

Vm1

G3

G1

Figure 3.18: Moving the part Vm1
of a realization of π′ in G from G1 to G3. To

this end, the parts containing the root vertices shrink in G3 so that Vm1
can be

moved, while they expend in G1 to fill the empty space. The original graph G is
in black and grey, and its white vertices are its root. The dotted sections represent
the transferred vertices.

n3
m1

= 0. Now, since G1 and G3 are arbitrarily (u1
1, u

1
2, ..., u

1
k)- and (u3

1, u
3
2, ..., u

3
k)-partitionable,

respectively, we can deduce a (u1
1, u

1
2, ..., u

1
k)-realization (V 1

1
′, V 1

2
′, ..., V 1

p
′) of

(n1
1 + a1, n

1
2 + a2, ..., n

1
k + ak, n

1
k+1, n

1
k+2, ..., n

1
m1−1, 0, n

1
m1+1, n

1
m1+2, ..., n

1
p)

in G1, as well as a (u3
1, u

3
2, ..., u

3
k)-realization (V 3

1
′, V 3

2
′, ..., V 3

p
′) of

(n3
1 − a1, n

3
2 − a2, ..., n

3
k − ak, n3

k+1, n
3
k+2, ..., n

3
m1−1, nm1 , n

3
m1+1, n

3
m1+2, ..., n

3
p)

in G3. We then get that

((
⋃`
i=1 V

i
1) \ (V 1

1 , V
3

1) ∪ (V 1
1
′, V 3

1
′) , (

⋃`
i=1 V

i
2) \ (V 1

2 , V
3

2) ∪ (V 1
2
′, V 3

2
′) , ... ,

(
⋃`
i=1 V

i
p) \ (V 1

p , V
3
p) ∪ (V 1

p
′, V 3

p
′))

is another realization of π′ in G with

k∑

i=1

(|V 3
i
′| − 1) =

k∑

i=1

(n3
i − 1)− spm > ∆,

and the parts with size m1 and m2 being now included in V (G3) and V (G2), respectively, hence
meeting the conditions of Case 2.1. Applying the same strategy as for Case 2.1, we eventually
get a realization of π in G. �

To conclude this section, we point out that the size of every kernel KCk,`(n) verifying ` ≤ k
is polynomial regarding n.

Corollary 3.37. For every k ≥ 1, ` ≤ k, and n ≥ k, the kernel KCk,`(n) is polynomial.

Proof. Let k, `, and n be fixed. Every n-sequence π of KCk,`(n) is only defined by the at
most 2k + 6 elements of its spectrum and the number of their occurrences in π. Since these
parameters are all upper-bounded by n, we get that the size of KCk,`(n) is O(n2(2k+6)−1), that
is O(nO(k)). �

Chapter 3. Arbitrarily partitionable graphs 79

u1 u2 u5 u6u3 u4

u7 u8 u9 u10

(a) G1.

v1 v2 v3 v4 v5 v6

v7 v8 v9 v10

(b) G2.

Figure 3.19: Two minimal arbitrarily partitionable non-tree graphs with order 10.

3.4 Minimal arbitrarily partitionable graphs

We herein investigate two aspects related to minimal arbitrarily partitionable graphs. Namely,
we first investigate the minimum order of a minimal arbitrarily partitionable non-tree graph
in Section 3.4.1. We then consider the maximum degree of minimal arbitrarily partitionable
graphs in Section 3.4.2. Our most significant result is an improvement of Theorem 2.29, see
Theorem 3.41.

3.4.1 Minimum order

Since every path Pn is a minimal arbitrarily partitionable graph, we directly get that, for every
n ≥ 1, there are minimal arbitrarily partitionable graphs with order n. Regarding minimal
arbitrarily partitionable non-tree graphs, by Theorem 2.33 we directly get that these graphs can
have arbitrarily large order too.

The only remaining question in the same vein is about the minimum order of minimal arbi-
trarily partitionable graphs which are not trees. The smallest such graphs we found are the two
graphs with order 10 depicted in Figure 3.19. We briefly show below that these graphs indeed
are minimal arbitrarily partitionable graphs.

Proposition 3.38. The two graphs from Figure 3.19 are minimal arbitrarily partitionable graphs.

Proof. Let G1 and G2 denote the graphs from Figures 3.19.a and 3.19.b, respectively. We use
the terminology introduced in Figure 3.19 to deal with the vertices and edges of G1 and G2.
The first step is to show that G1 and G2 are arbitrarily partitionable. We voluntarily skip
this step since it can be done very easily due to the small orders of G1 and G2. Convenient
tools for proving this are the facts that every traceable graph is arbitrarily partitionable, recall
Observation 2.27, plus that plenty of small caterpillars are more than arbitrarily partitionable
according to Theorem 2.20, and hence arbitrarily partitionable, recall Theorem 2.19. These tools
have to be combined with the following straightforward observation.

Observation 3.39. If, for some λ ∈ {1, 2, ..., |V (G)|}, there is a subset of λ vertices Vλ ⊆ V (G)
of a graph G such that G[Vλ] is connected and G − Vλ is arbitrarily partitionable, then every
|V (G)|-sequence including an element with value λ is realizable in G.

We now focus on the minimality of G1 and G2. Namely, we show that removing any edge
from G1 or G2 results in a graph which is not arbitrarily partitionable. Because an arbitrarily
partitionable graph has to be connected, we only have to consider the edges of G1 and G2 which
belong to their cycle. Then the minimality of G1 follows e.g. from the following arguments:

• G1 − {u3u4} does not admit a realization of (2, 2, 2, 2, 2),

• G1 − {u4u9} does not admit a realization of (5, 5),

• G1 − {u8u9} does not admit a realization of (1, 3, 3, 3),

80 3.4. Minimal arbitrarily partitionable graphs

• G1 − {u3u8} does not admit a realization of (5, 5).

Regarding G2, first note that the only realization of (2, 2, 2, 2, 2) in G2 is

({v1, v2}, {v3, v4}, {v5, v6}, {v7, v8}, {v9, v10}).

For this reason, removing either of v3v4 or v7v8 from G2 results in a graph which does not admit
a realization of (2, 2, 2, 2, 2). Regarding the remaining candidate edges, the minimality of G2

follows e.g. from the following arguments:

• G2 − {v2v3} does not admit a realization of (5, 5),

• G2 − {v4v9} does not admit a realization of (5, 5),

• G2 − {v8v9} does not admit a realization of (1, 3, 3, 3),

• G2 − {v2v7} does not admit a realization of (5, 5). �

Regarding the main concern of this section, by Proposition 3.38 we get the following upper
bound.

Corollary 3.40. The minimum order of a minimal arbitrarily partitionable non-tree graph is
upper-bounded by 10.

3.4.2 Maximum degree

We herein improve Theorem 2.29 by showing that minimal arbitrarily partitionable graphs with
order n ≥ 6 have maximum degree at most n− 3. Note that the value of n for which this claim
holds cannot be lowered since P3(1, 1, 2) has maximum degree 3 = |V (P3(1, 1, 2))| − 2 but is
arbitrarily partitionable.

Theorem 3.41. For every minimal arbitrarily partitionable graph G with |V (G)| ≥ 6, we have
∆(G) ≤ |V (G)| − 3.

Proof. We show that an arbitrarily partitionable graph G with |V (G)| ≥ 6 cannot be minimal
whenever ∆(G) ≥ |V (G)| − 2. Since G cannot be minimal arbitrarily partitionable under the
assumption ∆(G) ≥ |V (G)|−1 according to Theorem 2.29, the maximum degree of G is |V (G)|−
2. So there is a vertex u of G which is adjacent to all vertices v0, v1, ..., vn−3 of G but one vertex
w. Since G has to be connected, its vertex w is adjacent to, say, v = v0.

The proof reads as follows. We first show that if any edge from a set F is present in G, then
we can modify every realization R of every |V (G)|-sequence π in G to get another realization R′

of π in G such that some edges of G belong to none of the induced connected subgraphs. In other
words, if at least one edge of F is present in G, then G cannot be minimal. The contradiction
eventually comes from the fact that F is shown to be so important that G cannot be arbitrarily
partitionable.

For the sake of simplicity, we make use of the following notation throughout.

Notation 3.42. For every vertex z ∈ V (G), we denote p(z) the part of R which contains z.

Claim 1. G has no edge viw with i ∈ {1, 2, ..., n− 3}.
Assume that v1w is an edge of G without loss of generality. We show that, under this

assumption, the edge uv1 can be removed from G without altering the property of G of being
arbitrarily partitionable. If p(u) 6= p(v1), then R′ = R remains a realization of π in G − {uv1}.
So, from now on, assume p(u) = p(v1). In case p(u) = p(v1) = p(v) = p(w), note that the

Chapter 3. Arbitrarily partitionable graphs 81

p(v)

p(u)
u

v

w

x1

x2

v1

(a) x1 and x2 are two vertices of p(v) such that
G[p(v) \ {x1, x2}] remains connected.

u

v
x2

x1

w

v1

(b) x1 and x2 are moved to p(u) while w and v1 are
moved to p(v).

Figure 3.20: Exchanging vertices between two parts p(u) and p(v) of a realization
in a graph G with maximum degree |V (G)|−2 so that the edge uv1 becomes useless.
The original graph G is in black and grey, its white vertex u has degree |V (G)|− 2,
and the subgraphs induced by the parts are in black only.

subgraph G[p(u) \ {uv1}] remains connected, so R′ = R is again a realization of π in G−{uv1}.
We then distinguish several subcases.

Case 1.1. We have p(u) = p(v1) = p(w) 6= p(v).
If |p(v)| = 1, then the realization R′ of π in G − {uv1} is obtained by replacing the parts

p(u) and p(v) with p(u) \ {v1} ∪ {v} and {v1}, respectively, in R. Similarly, if |p(v)| = 2, then
R′ can be obtained by replacing the parts p(u) and p(v) with p(u) \ {w, v1} ∪ p(v) and {w, v1},
respectively. In particular, note that p(u) \ {w, v1} ∪ p(v) induces a connected subgraph since u
neighbours all vertices of G but w.

Now assume |p(v)| ≥ 3. Let x1 and x2 be two distinct vertices of p(v) \ {v} such that
G[p(v)\{x1, x2}] remains connected (x1 and x2 can be deduced by considering e.g. two successive
leaves of a tree spanning G[p(v)]). In particular, these two vertices x1 and x2 neighbour u. Then
R′ is obtained by replacing p(u) and p(v) with p(u)\{w, v1}∪{x1, x2} and p(v)\{x1, x2}∪{w, v1},
respectively. This process is illustrated in Figure 3.20.

Case 1.2. We have p(u) = p(v) = p(v1) 6= p(w).
As previously, in case |p(w)| = 1 the realization R′ is directly obtained from R by replacing

the parts p(u) and p(w) with p(u) \ {v1} ∪ {w} and {v1}, respectively. Now for the general case,
i.e. |p(w)| ≥ 2, consider a vertex x ∈ p(w) \ {w} such that G[p(w) \ {x}] remains connected.
Since x is necessarily a neighbour of u, we obtain R′ by just replacing p(u) and p(w) with
p(u) \ {v1} ∪ {x} and p(w) \ {x} ∪ {v1}, respectively.

Case 1.3. We have p(u) = p(v1) 6= p(v) and p(u) = p(v1) 6= p(w).
In case p(v) = p(w), consider a vertex x ∈ p(w) \ {w} such that G[p(w) \ {x}] remains

connected (in particular x = v when |p(w)| = 2). By our choice of x, note that u and x are
adjacent vertices. Then the realization R′ is obtained from R by replacing the parts p(u) and
p(w) with p(u) \ {v1} ∪ {x} and p(w) \ {x} ∪ {v1}, respectively.

If p(v) 6= p(w) and |p(w)| ≥ 2, then just proceed as above. Now if |p(v)| = 1, then we just get
R′ by replacing the parts p(u) and p(v) with p(u) \ {v1} ∪ {v} and {v1}, respectively, in R. The
last case we have to handle is the one where |p(w)| = 1 and |p(v)| ≥ 2. In such a situation, let x
be a vertex of p(v) \ {v} such that G[p(v) \ {x}] remains connected. Clearly we have ux ∈ E(G).
Then R′ is obtained by replacing p(u), p(v), and p(w) with p(u) \ {v1} ∪ {x}, p(v) \ {x} ∪ {w},
and {v1}, respectively, in R.

82 3.4. Minimal arbitrarily partitionable graphs

u

w

v

p(u)

p(w)

p(v1)

x
v1

(a) x is a vertex of p(v1) such that G[p(v1) \ {x}] remains
connected.

u

w

v v1

x

(b) x is moved to p(u) while v is moved to p(v1).

Figure 3.21: Exchanging vertices between two parts p(u) and p(v1) of a realization
in a graph G with maximum degree |V (G)|−2 so that the edge uv becomes useless.
The original graph G is in black and grey, its white vertex u has degree |V (G)|− 2,
and the subgraphs induced by the parts are in black only.

Claim 2. G has no edge vvi with i ∈ {1, 2, ..., n− 3}.
According to Claim 1, it is understood that N(w) = {v} from now on. Assume vv1 belongs

to G without loss of generality. We show below that we can modify R to get another realization
R′ of π in G which does not use the edge uv. As very first cases, note that we may directly choose
R = R′ whenever p(u) 6= p(v) (the edge uv is already useless for R) or p(u) = p(v) = p(v1) (since
G[p(u) \ {uv}] remains connected in such a situation).

We thus now assume that p(u) = p(v) 6= p(v1). First suppose |p(v1)| = 1. By our assump-
tions, recall that either |p(w)| = 1 or p(w) = p(v) holds throughout. In the first case, we obtain
R′ by just replacing p(u) and p(v1) with p(u) \ {v} ∪ {v1} and {v}, respectively, in R. In the
second case, by replacing p(u) and p(v1) with p(u) \ {w} ∪ {v1} and {w}, respectively, in R, all
conditions are now met to apply one strategy we used to deal with one of the very first cases
above.

Second assume |p(v1)| = 2, say p(v1) = {v1, v2} without loss of generality. In case |p(w)| = 1,
we obtain R′ from R by just replacing p(u), p(v1), and p(w) with p(u) \ {v} ∪ {v2}, {v, w}, and
{v1}, respectively. Now if p(w) = p(v), then R′ can be obtained by replacing p(u) and p(v1) with
p(u) \ {v, w} ∪ {v1, v2} and {v, w}, respectively, in R.

Third assume |p(v1)| ≥ 3. If on the one hand we have |p(w)| = 1, then let x be a vertex
from p(v1) \ {v1} such that G[p(v1) \ {x}] remains connected. Then R′ is obtained by replacing
the parts p(u) and p(v1) from R with p(u) \ {v} ∪ {x} and p(v1) \ {x} ∪ {v}, respectively. In
particular, p(u) \ {v} ∪ {x} induces a connected subgraph since u and x are adjacent vertices
(see Figure 3.21). On the other hand, assume p(w) = p(v). Then deduce two vertices x1 and x2

of p(v1) \ {v1} such that G[p(v1) \ {x1, x2}] remains connected. R′ is then obtained by replacing
the parts p(u) and p(v1) with p(u) \ {v, w} ∪ {x1, x2} and p(v1) \ {x1, x2} ∪ {v, w}.

Claim 3. G has no edge vivj with i 6= j and i, j ∈ {1, 2, ..., n− 3}.
Under the assumptions we made so far, we have N(w) = {v} and N(v) = {u,w}. Assume

v1v2 is an edge of G without loss of generality. We show that we can freely remove the edge uv1

of G without altering its property of being arbitrarily partitionable. For this purpose, we again
prove that we can modify every realization R of π in G to get another realization R′ which does
not use uv1.

At very first, note that if p(u) 6= p(v1), then R remains a realization of π in G − {uv1}.
Similarly, if p(u) = p(v1) = p(v2), then the subgraph G[p(u) \ {uv1}] remains connected, so
R′ = R is a correct realization.

Chapter 3. Arbitrarily partitionable graphs 83

Finally consider p(u) = p(v1) 6= p(v2). We choose a vertex x ∈ p(v2) as follows. In case
|p(v2)| = 1, set x = v2. Otherwise, i.e. |p(v2)| ≥ 2, choose, as x, a vertex in p(v2) \ {v2} such
that G[p(v2) \ {x}] remains connected. According to our assumption, we have ux ∈ E(G). Since
N(v2) ∪ {v2} ⊂ N(u), note that the partition R′ obtained from R by replacing the parts p(u)
and p(v2) with p(u) \ {v1} ∪ {x} and p(v2) \ {x} ∪ {v1} is a realization of π in G.

To sum up, if G is a minimal arbitrarily partitionable graph, then the only edges of G are
vw and uvi for every i ∈ {0, 1, 2, ..., n − 3}. So G is isomorphic to a multipode Pk(1, 1, ..., 1, 2)
with k ≥ 4 since |V (G)| ≥ 6. But such a tree cannot be arbitrarily partitionable since it admits
no (possibly quasi-) perfect matching, a contradiction. �

3.5 Cartesian products

As explained in introductory Section 2.3, the properties of being arbitrarily partitionable and
Hamiltonian are related. So one way of investigation is to consider any important result or open
question regarding Hamiltonian graphs, and see what can be said in a very same vein regarding
partitionable graphs.

We herein consider the following open question about the presence of an Hamiltonian cycle
in every Cartesian product of two Hamiltonian graphs.

Conjecture 3.43 ([74]). If two graphs G and H are Hamiltonian, then so is G�H.

In our context, it seems legitimate to address the following.

Conjecture 3.44. If two graphs G and H are arbitrarily partitionable, then so is G�H.

We support Conjecture 3.44 by showing it to hold whenever one operand has order at most 4.

Theorem 3.45. Conjecture 3.44 holds whenever |V (H)| ≤ 4.

Theorem 3.45 follows from the study of the following weaker conjecture, as all arbitrarily
partitionable graphs on at most four vertices are traceable.

Conjecture 3.46. If a graph G is arbitrarily partitionable and another graph H is traceable,
then G�H is arbitrarily partitionable.

According to Observation 2.27, recall that it is sufficient to consider situations where H is a
path to prove Conjecture 3.46. We hence herein focus on Cartesian products of the form G�P`.
Our proof of Theorem 3.45 mainly relies on the following crucial lemma and proposition.

Lemma 3.47. Let ` ≥ 2 be a positive integer, and π = (n1, n2, ..., np) be a sequence of positive
integers such that ‖π‖ ≡ 0 (mod `). If p > `, then π can be partitioned into two non-empty
sequences π1 and π2 such that ‖π1‖ ≡ 0 (mod `) and ‖π2‖ ≡ 0 (mod `).

Proof. If π contains an element ni such that ni ≡ 0 (mod `), then if suffices to consider π1 = (ni)
and π2 = π \ (ni). Suppose then that ni 6≡ 0 (mod `) for every i ∈ {1, 2, ..., p}.

For every j ∈ {1, 2, ..., p}, let sj =
∑j

i=1 ni be the sum of the first j elements of π. If there exist
two indices i1 and i2, with i1 < i2, such that si1 ≡ si2 (mod `), then π1 = (ni1+1, ni1+2, ..., ni2)
and π2 = π \π1 satisfy our conditions. Since the size of the sequence s = (s1, s2, ..., sp) is strictly
greater than `, the number of distinct residues modulo `, there must exist two elements of s
which are congruent modulo `. This ends the proof. �

Proposition 3.48. Let ` ≥ 2 be a positive integer such that H �P` is arbitrarily `′-partitionable
for every connected graph H and integer `′ ≤ `. If a graph G is arbitrarily partitionable, then so
is G�P`.

84 3.5. Cartesian products

G

︷︸
︸︷

︷
︸︸

︷
︷︸

︸︷
‖π1‖
ℓ

‖π2‖
ℓ

‖πr‖
ℓ

(a) π is partitioned into
sequences π1, π2, ..., πr
such that ‖πi‖ ≡ 0
(mod `) and |πi| ≤ ` for
every i ∈ {1, 2, ..., r}.
The sequence
α = (‖π1‖

`
, ‖π2‖

`
, ..., ‖πr‖

`
)

is then realized in G.

︷︸
︸︷

︷
︸︸

︷
︷︸

︸︷

G1 G2

‖π1‖

‖π2‖

‖πr‖

Gℓ

(b) The realization of α in G is extended to G�P`. A realization of
π is then obtained by independently realizing every sequence πi in one
resulting subgraph.

Figure 3.22: Realizing a sequence π with at least ` + 1 elements in a Cartesian
product G�P` involving an arbitrarily partitionable graph G.

Proof. LetG be an arbitrarily partitionable graph with order n, and π be an n`-sequence. If π has
size at most `, then π is realizable inG�P` according to our assumption sinceG is connected. Let
us now suppose that π has size at least `+ 1. By repeatedly applying Lemma 3.47, the sequence
π can be partitioned into non-empty sequences π1, π2, ..., πr such that ‖πi‖ ≡ 0 (mod `) and
|πi| ≤ ` for every i ∈ {1, 2, ..., r}.

Now, for every i ∈ {1, 2, ..., r}, let αi = ‖πi‖
` . Since ‖πi‖ ≡ 0 (mod `), the number αi is an

integer. Clearly α = (α1, α2, ..., αr) is an n-sequence and, because G is arbitrarily partitionable,
admits a realization (V1, V2, ..., Vr) in G. Set

Ui =
⋃̀

j=1

(Vi)
j

for every i ∈ {1, 2, ..., r}. Then U1∪U2∪ ...∪Ur performs a partition of V (G�P`) such that each
part Ui has size αi` = ‖πi‖, see Figure 3.22. Since each subgraph G[Vi] is connected, we infer
by our assumptions that (G�P`)[Ui] admits a realization of πi. To obtain a realization of π in
G�P`, we then just have to consider independent realizations of π1, π2, ..., πr in the subgraphs
of G�P` induced by U1, U2, ..., Ur, respectively. �

Theorem 3.45 is proved by showing that, for every ` ∈ {1, 2, 3, 4}, the Cartesian product
G�P` is arbitrarily `′-partitionable for every connected graph G and `′ ≤ ` so that Proposi-
tion 3.48 is applicable. Since G�P` is obviously arbitrarily 1-partitionable when G is connected,
we focus on the values ` ∈ {2, 3, 4} below.
Proposition 3.49. For every connected graph G and integer ` ≥ 2, the Cartesian product G�P`
is arbitrarily 2-partitionable.

Proof. The result follows from Theorem 2.1 since G�P` is 2-connected under our assumptions
on G and `. �

Chapter 3. Arbitrarily partitionable graphs 85

G1 G2

T 1
1

T 3
2

G3

(a) Case 1.

G1 G2

T 2

S1

S2

G3

(b) Case 2.

Figure 3.23: Realizations in G�P3 deduced in the proof of Proposition 3.50.

Consequently, we may now restrict our concern on sequences with size at least 3 when showing
that G�P` is arbitrarily `′-partitionable for every connected graph G and `′ ≤ `.
Proposition 3.50. For every connected graph G, the Cartesian product G�P3 is arbitrarily
3-partitionable.

Proof. Let π = (n1, n2, n3) be a 3n-sequence, with n1 ≥ n2 ≥ n3, where n = |V (G)|. We may
assume that n1 > n and n3 < n since otherwise n1 = n2 = n3 and (V (G1), V (G2), V (G3)) is a
realization of π in G�P3. We distinguish two cases depending on the value of n2.

Case 1. n > n2.
Let T1, T2 ⊂ V (G) be subsets (with possibly non-empty intersection) of vertices such that

G[T1] and G[T2] are connected subgraphs of G with order n2 and n3, respectively. Observe then
that

(V (G�P3) \ (T 1
1 ∪ T 3

2), T 1
1 , T

3
2)

is a realization of π in G�P3. In particular (G�P3)− (T 1
1 ∪T 3

2) is connected since every vertex
from (V (G1) ∪ V (G3)) \ (T 1

1 ∪ T 3
2) has a neighbour in V (G2), see Figure 3.23.a.

Case 2. 2n > n2 ≥ n.
In such a situation

(V (G1) ∪ S1, V (G3) ∪ S2, T
2)

is a realization of π, where T ⊂ V (G) is chosen is such a way that G[T] is a connected subgraph
with order n3, and S1 and S2 are disjoint subsets of vertices from V (G2) \ T 2 chosen arbitrarily
but satisfy |S1| = n1 − n and |S2| = n2 − n. The important thing to note is that each vertex of
S1 or S2 has a neighbour in both V (G1) and V (G3), so the subgraphs (G�P3)[V (G1)∪S1] and
(G�P3)[V (G3) ∪ S2] are connected, see Figure 3.23.b. �

Proposition 3.51. For every connected graph G, the Cartesian product G�P4 is arbitrarily 3-
and 4-partitionable.

Proof. We refer to |V (G)| as n throughout. First consider a 4n-sequence π = (n1, n2, n3) with
size 3, where n1 ≥ n2 ≥ n3. We distinguish three cases for deducing a realization of π in G�P4.

Case 1. n > n2.
For the same reasons as in the proof of Proposition 3.50,

(V (G�P4) \ (T 1
1 ∪ T 4

2), T 1
1 , T

4
2)

is a realization of π, where T1, T2 ⊂ V (G) are chosen in such a way that they induce connected
graphs with order n2 and n3, respectively, of G.

Case 2. 2n > n2 ≥ n > n3.

86 3.5. Cartesian products

G1 G2

T 2
2

G3 G4

T 1
1 T 3

3

(a) Case 1.

G1 G2 G3 G4

T 3
2

T 1
1

S1

S2

(b) Case 2.

G1 G2 G3 G4

W 3

T 3

S2

S1

(c) Case 3.

Figure 3.24: Realizations in G�P4 deduced in the proof of Proposition 3.51.

First deduce a realization (V1, V2, V3) of (n1, n2−n, n3) in (G�P4)[V (G2)∪V (G3)∪V (G4)]
as in the proof of Proposition 3.50. This realization can then be extended to a realization of π
in G�P4 by simply considering (V1, V2 ∪ V (G1), V3).

Case 3. 2n > n2 ≥ n3 ≥ n.
In such a situation, let T1 ⊂ V (G) be a subset of vertices such that G[T1] is a connected

subgraph of G with order n − (n3 − n). Now choose a vertex u ∈ T1, and let T2 ⊂ V (G) be a
subset of vertices such that G[T2] is a connected subgraph of G on n2 − |T1| vertices including
u. Consider now the partition

(V (G1) ∪ (V (G2) \ T 2
2), T 2

2 ∪ T 3
1 , V (G4) ∪ (V (G3) \ T 3

1))

of V (G�P4). The three subsets of this partition induce connected subgraphs since every vertex
of V (G2) \ T 2

2 has a neighbour in V (G1), every one from V (G3) \ T 3
1 is adjacent to a vertex in

V (G4), and T 3
1 and T 2

2 induce connected subgraphs connected via the edge u2u3. This vertex-
partition is thus a realization of π in G�P4.

Now suppose that π = (n1, n2, n3, n4) is a 4n-sequence with size 4 satisfying n1 ≥ n2 ≥ n3 ≥
n4. Again we may assume that n1 > n and n4 < n since otherwise we have n1 = n2 = n3 =
n4 = n and (V (G1), V (G2), V (G3), V (G4)) is a straight realization of π in G�P4. We deduce a
realization of π in G�P4 by distinguishing the following three cases.

Case 1. n > n2.
Let T3 ⊆ T2 ⊆ T1 ⊂ V (G) be subsets inducing connected subgraphs of G with order n4, n3,

and n2, respectively. Then

(V (G�P4) \ (T 1
1 ∪ T 2

2 ∪ T 3
3), T 1

1 , T
2
2 , T

3
3)

is a realization of π in G�P4 since every vertex from V (G1)\T 1
1 has a neighbour in V (G2)\T 2

2 ,
every vertex from V (G2)\T 2

2 is adjacent to a vertex of V (G3)\T 3
3 , and every vertex of V (G3)\T 3

3

has a neighbour in V (G4), see Figure 3.24.a.

Case 2. n2 ≥ n > n3.

Chapter 3. Arbitrarily partitionable graphs 87

In such a situation, we have 3n > n1 + n3 ≥ 2n and n < n2 + n4 ≤ 2n. Let T1, T2 ⊂ V (G)
be subsets inducing connected subgraphs with order n3 and n4, respectively, in G. Consider the
partition

(V (G2) ∪ (V (G1) \ T 1
1) ∪ S1, V (G4) ∪ S2, T

1
1 , T

3
2)

of V (G�P4), where the subsets S1 and S2 are chosen arbitrarily from V (G3) \T 3
2 in such a way

that S1 ∩ S2 = ∅, and |S1| = n1 + n3 − 2n and |S2| = n − |S1| − n4 = n2 − n hold. Observe
then that this partition is a realization of π in G�P4 since every vertex of (V (G1) \ T 1

1) ∪ S1

has a neighbour in V (G2) and all vertices of S2 are adjacent to some vertices in V (G4), see
Figure 3.24.b.

Case 3. n2 ≥ n3 ≥ n.
Let T ⊂ V (G) be a subset of vertices inducing a connected subgraph with order n4 in G, and

u be a vertex of G which is not a cut vertex. Now construct two subsets S1 ⊂ V (G1) ∪ V (G2)
and S2 ⊂ V (G3) of vertices as follows. Start by putting u1 and u2 into S1, and repeatedly add
an arbitrary new vertex s2 of V (G2) neighbouring a vertex in S1 to S1. Also add s3 to S2 in
case s3 6∈ T 3. Continue the procedure until |S1| + |S2| ≥ n2. Observe that once the procedure
is over, we have |S1| + |S2| ∈ {n2, n2 + 1}. In case |S1| + |S2| = n2 + 1, remove the vertex u1

from S1 so that S1 ∪ S2 is a subset with size n2. Finally, let W 3 be a subset of n3 − n arbitrary
vertices of V (G3) \ (S2 ∪ T 3).

Then

((V (G1) ∪ V (G2) ∪ V (G3)) \ (S1 ∪ S2 ∪ T 3 ∪W 3), S1 ∪ S2, V (G4) ∪W 3, T 3)

is a realization of π in G�P4, see Figure 3.24.c. In particular, the four subgraphs induced by
this partition of V (G�P4) are connected since (G�P4)[S1] is connected by construction, every
vertex from S2 has a neighbour in S1, every vertex from V (G3) \ (S2 ∪ T 3 ∪W 3) is adjacent to
one vertex in V (G2) \S1 which is itself adjacent to one vertex in V (G1), and every vertex in W 3

neighbours a vertex in V (G4). Note further that the choice of u is crucial for the connectedness
of the subgraph with order n1. �

3.6 Conclusion and open questions

Throughout Section 3.1 we have exhibited new conditions regarding both the sequence π or the
graph G under which Realizable Sequence remains NP-complete. Our results in this vein
are not surprising as Realizable Sequence had already shown up to be difficult in general,
recall Theorem 2.10. However these results remain of interest for a better understanding of the
problem. Notably, Theorems 3.10 and 3.11 highlight the fact that Realizable Sequence re-
mains NP-complete when restricted to classes of graphs known to be convenient regarding other
notoriously hard problems. Our investigations have led to a proof of the tightness of Theorem 2.1
in Section 3.1.3: although every k-connected graph can be partitioned into at most k connected
subgraphs, the same problem becomes NP-complete in general whenever at least k+1 connected
parts are each required to contain a specific preassigned vertex.

Regarding our results concerning Realizable Sequence, it would be interesting trying to
push Theorem 3.18 forwards, namely to consider the following.

Question 3.52. What is the greatest c ≥ n
3 such that Realizable Sequence remains NP-hard

when restricted to graphs with order n and up to c universal vertices?

Due to Theorem 2.36, the correct answer to Question 3.52 should be closer to n
3 than to

n
2 . Moving back to our results on Realizable Sequence, the most incomplete result is Theo-
rem 3.14. So we address the following.

Question 3.53. Is Realizable Sequence NP-complete when restricted to connected 3-regular
graphs or connected k-regular graphs with k ≥ 4 even?

88 3.6. Conclusion and open questions

We believe the cases k ≥ 6 even of Question 3.53 could be proved by slightly modifying the
reduction scheme used in the proof of Theorem 3.14. For the remaining cases k = 3 and k = 4,
things seem harder though, for the following reasons. Our reduction relies on the fact that we
are able to construct a regular graph which has a lot of cut vertices (so that the graph can be
disconnected easily) whose removal results in a “large” number of components, but this seems
harder to ensure notably for k = 4. Another annoying fact is that our proof strongly relies on
the parity of both B and si − 1 of the instance <A,B, s> of 3-Partition. Although we can
ensure one of these two parameters has given parity, recall Observation 1.54, we cannot be sure
of the parity of the second parameter, which forces us to distinguish several cases and hence to
define different kinds of gadgets.

Imagining Question 3.53 is true, we would have that Realizable Sequence remains NP-
complete when restricted to k-connected graphs (recall Theorem 3.12) or k-regular graphs for
every k ≥ 3. So the next interesting question would be to investigate the consequences on
Realizable Sequence of fixing both the connectivity q and the regularity ` of G. We formulate
this question as follows.

Question 3.54. For every ` ≥ 3, what is the maximum integer q ≤ ` (if such exists) such that
Realizable Sequence remains NP-complete when restricted to q-connected `-regular graphs ?

Note that Theorem 3.14 implies that q ≥ 1 for every ` ≥ 5 odd. Question 3.53, if true,
would imply the same for the remaining values of `. Conjecture 2.37 would seem to indicate that
k ≤ `− 1 for every ` ≥ 3.

Although we have pointed out, in Section 3.2, some evidences regarding the complexity status
of Arbitrarily Partitionable Graph, we still do not know whether this problem is complete
for some complexity class. As this question remains one of the most important open algorithmic
questions related to arbitrarily partitionable graphs, we raise the following.

Question 3.55. Is there a complexity class C such that Arbitrarily Partitionable Graph is
C-complete?

One direction we considered regarding Question 3.55 is based on the fact that every traceable
graph is arbitrarily partitionable, recall Observation 2.34. Basically, for showing the NP-hardness
of Arbitrarily Partitionable Graph, one could modify one NP-hardness reduction from
an NP-hard problem Π to Hamiltonian Path so that:

• for every positive instance of Π, the reduction provides a traceable reduced graph,

• for every negative instance of Π, the reduction provides a reduced graph which is not only
not traceable, but also not arbitrarily partitionable.

So that the second condition above is fulfilled, by definition we would like a particular sequence
π to be not realizable in the reduced graph whenever the original instance of Π is negative. As
an evidence, this such sequence π should rather have a small spectrum so that the chances that a
realization exists are weaker. Note that this sequence π cannot be π = (2, 2, ..., 2) since otherwise
we would get that the problem of deciding whether a graph has a perfect matching is NP-hard,
which would contradict Theorem 2.11.

Although we did not manage to design such a reduction, we believe that such an approach
could be a promising one. We would suggest to combine it with a reduction given by Karger,
Motwani and Ramkumar in [80] establishing the NP-hardness of the problem of deciding whether
ς(G) ≥ |V (G)| − c for a graph G and every fixed positive constant c ≥ 0.

In Section 3.3, we have exhibited three polynomial kernels of sequences for complete multi-
partite graphs, graphs with about a half universal vertices, and compound graphs made up of

Chapter 3. Arbitrarily partitionable graphs 89

partitionable components. Our kernel KMk
(n) yields a polynomial-time algorithm for recogniz-

ing arbitrarily partitionable complete multipartite graphs (the existence of such an algorithm is
not surprising though due to the density of most of these graphs), while our other two kernels
establish the membership of Arbitrarily Partitionable Graph to NP when restricted to
graphs of Uk(n) and Ck,`(n) with ` ≤ k (this condition is understood below). Another interesting
point regarding KUk(n) is that it is based on a new sequence invariant, namely the number of
occurrences of the biggest element value.

It would be of interest to focus on whether Realizable Sequence is in P when restricted
to either Uk(n) and sequences of KUk(n), or Ck,`(n) and sequences in KCk,`(n). If this were the
case, then we would get that Arbitrarily Partitionable Graph is in P when restricted to
Uk(n) or Ck,`(n), respectively. Though these restrictions are very specific, they would increase
our knowledge of Arbitrarily Partitionable Graph. So we ask the following.

Question 3.56. Is Realizable Sequence in P when restricted to either Uk(n) and sequences
of KUk(n), or Ck,`(n) and sequences in KCk,`(n) with ` ≤ k?

It is worth noting that the NP-hardness of Realizable Sequence when restricted to, say,
Uk(n) and sequences of KUk(n) would not imply the NP-hardness of Arbitrarily Partition-
able Graph when restricted to graphs of Uk(n). This fact would indeed not refute the existence
of another polynomial kernel K ′Uk(n) for Uk(n) different from KUk(n) such that Realizable Se-
quence is in P when restricted to Uk(n) and sequences of K ′Uk(n).

Although our kernel KCk,`(n) is a generalization of the kernel K ′T (n) described in Theo-
rem 2.13, it does not hold for tripodes (which are (1, 3)-compound graphs) since, for k = 1,
Theorem 3.36 ensures that KCk,`(n) is a kernel for ` = 1 only (and is hence not interesting in this
case as (k, 1)-compound graphs are arbitrarily partitionable). Note however that the condition
“` ≤ k” in the statement of Theorem 3.36 cannot be strengthened as otherwise the existence of
the parameter α mentioned in the proof would not be guaranteed. The proof given by Ravaux
in [104] for establishing that K ′T (n) is a kernel for tripodes is quite similar to our proof of Theo-
rem 3.36, except that the very special case of a compound graph with exactly three components
permits to consider parts with size sp3 or sp4 and use them to deduce the realization.

Actually the proof from [104] could be easily generalized to show that K ′T (n) is actually a
polynomial kernel for (1, 3)-compound graphs. It is however not clear what a polynomial kernel
for the remaining compound graphs could look like.

Question 3.57. Is there a polynomial kernel for Ck,`(n), where (k, `) 6= (1, 3) and ` > k?

In a more general context, we are still far from a general polynomial kernel for all graphs, if
such exists, which would confirm Conjecture 2.12. Because every polynomial kernel for a family
F of graphs is highly dependent of the structure of the members of F , it might actually be the
case that every polynomial kernel only holds for a very restricted family of graphs. For this
reason, searching polynomial kernels for all graphs could be a quite difficult and tedious task,
unless we can imagine a graph invariant according to which we can exhibit polynomial kernels
for such or such value of this invariant. In this scope, maybe one interesting starting point could
be to exhibit polynomial kernels for graphs with given density. Indeed, as an evidence, and our
results just confirm it, the denser a graph G is, the more probable we can modify a realization
of a |V (G)|-sequence in G to deduce realizations of other |V (G)|-sequences in G. So we address
the following.

Question 3.58. For fixed d, is there a polynomial kernel for graphs with order n and density d?

Our opinion regarding Question 3.58 is that such polynomial kernels should at least exist for
large values of d, i.e. graphs with density at least t with t being close to 1. This value t would
typically be a density threshold under which a graph does not have to have a predictable structure
(making improbable the existence of a systematic polynomial kernel), and above which some local
dense structures should necessarily appear (which would be useful to modify realizations).

90 3.6. Conclusion and open questions

We have considered two aspects related to minimal arbitrarily partitionable graphs in Sec-
tion 3.4. On the one hand, we have exhibited two small minimal arbitrarily partitionable non-tree
graphs in Section 3.4.1. We believe these two graphs, which have order 10, are among the smallest
minimal arbitrarily partitionable graphs in terms of order. Said differently, we strongly believe
the following to be true.

Conjecture 3.59. Minimal arbitrarily partitionable non-tree graphs have order at least 10.

Conjecture 3.59 should be easy to tackle by hand since the number of graphs with order at
most 9 is quite small. In this scope, the spanning argument of Observation 2.27 should be of
great use to reject a lot of candidates. Typically, as soon as a graph with order at most 9 is too
dense, it is likely to be spanned by a path or another arbitrarily partitionable graph (like e.g. a
caterpillar). Although tedious, such an exhaustive method should be successful.

On the other hand, we have slightly improved Theorem 2.29, see Theorem 3.41. Our proof
of Theorem 3.41 relies on the fact that the structure of every graph G with maximum degree
|V (G)|−2 can be initially described as a hierarchy over its vertex set V (G) involving three levels
L0, L1 and L2, making up a partition of V (G), with the following properties:

• |L0| = 1,

• |L1| = |V (G)| − 2 and every vertex of L1 is joined to the vertex in L0,

• |L2| = 1 and the vertex in L2 is joined only to some vertices of L1.

It does not appear obvious to say whether our proof of Theorem 3.41 can be improved to
show e.g. the following general conjecture.

Conjecture 3.60. For every c ≥ 1, there is a positive integer f(c) such that every arbitrarily
partitionable graph G with maximum degree ∆(G)− c and order at least f(c) is not minimal.

Theorems 2.29 and 3.41 state that f(1) = 4 and f(2) = 6, respectively. Generalizing our
proof of Theorem 3.41 for showing e.g. that f(3) exists does not seem obvious. Indeed, note
that, under the assumption c = 3, the initial description of the structure of G as a hierarchy of
vertex levels does not have to be unique. Two main hierarchies may indeed arise, namely

• |L0| = 1,

• |L1| = |V (G)| − 3 and every vertex of L1 is joined to the vertex in L0,

• |L2| = 1 and the vertex in L2 is joined to some vertices of L1,

• |L3| = 1 and the vertex in L3 is joined to the vertex in L2;

or

• |L0| = 1,

• |L1| = |V (G)| − 3 and every vertex of L1 is joined to the vertex in L0,

• |L2| = 2 and the vertices of L2 are joined to some vertices of L1.

So basically, any improvement of our proof of Theorem 3.41 for particular cases of Conjec-
ture 3.59 would have to make the distinction between the different structural hierarchies. Since
the number of such descriptions increases as c increases, things quickly seem hard to handle.

Further directions seem of interest regarding minimal arbitrarily partitionable graphs. To-
wards Conjecture 2.31, it would be interesting investigating how much locally dense can a minimal
arbitrarily partitionable graph be. The notion of local density can notably be regarded as a clique
measure. Since all known minimal arbitrarily partitionable non-tree graphs have girth at least 4,
we have no candidate attesting the following is true.

Chapter 3. Arbitrarily partitionable graphs 91

Question 3.61. For every k ≥ 3, is there a minimal arbitrarily partitionable graph G with
ω(G) = k?

It is also worth mentioning that we did not find a minimal arbitrarily partitionable 2-
connected graph, which would confirm Question 2.32, namely because 2-connected graphs are
already dense enough to allow the modification of every realization so that some edges are not
used. So in order to prove that Question 2.32 is false, which we believe is the good direc-
tion, we propose to first investigate the existence of several realizations of a same sequence in a
graph which is connected enough. As a first step, we address the following conjecture regarding
sequences with spectrum of size 1.

Conjecture 3.62. If a |V (G)|-sequence π = (k, k, ..., k), where |V (G)| ≡ 0 (mod k), is realizable
in a 2-connected graph G, then there is another realization of π in G.

The case k = 2 of Conjecture 3.62 is a direct corollary of a result by Beineke and Plummer
given in [27], wherein it is shown that every 2-connected graph having a perfect matching, i.e. a
realization of the sequence (2, 2, ..., 2), admits at least two such. A more general result is actually
proved in [27], namely that every k-connected graph admitting a perfect matching admits at least
k perfect matchings. This result confirms that the more connected a graph G is, the more freedom
we have to modify and “move” the parts of a realization of a sequence in G, and hence the more
chances we have to find an edge which is useless for partitioning G.

In Section 3.5, we have considered one still holding conjecture about Hamiltonicity in the
context of arbitrarily partitionable graphs. More precisely, we have raised Conjecture 3.46 as a
special case of Conjecture 3.44, and have answered it in the affirmative partially, recall Theo-
rem 3.45. Our proof could be extended to more cases by proving that H �P` is arbitrarily 2-, 3-,
..., `-partitionable whenever H is connected for values of ` ≥ 5 (what we have actually proved
for smaller values of `). But proving this seems to get more and more difficult as ` increases due
to the fact that the connectivity of H �P` does not increase (in case H has connectivity 1, the
Cartesian product G�P` has connectivity only 2 for every ` ≥ 2).

Chapter 4. Preassignable arbitrarily partitionable graphs 93

Chapter 4

Preassignable arbitrarily partitionable
graphs

We herein investigate the notion of k-preassignable arbitrarily partitionable graphs. After
giving some elementary properties of these graphs in Section 4.1, we start, in Section 4.2, by
exhibiting k-preassignable arbitrarily partitionable graphs for every k ≥ 1, namely powers of
paths or cycles.

We then consider some structural properties of k-preassignable arbitrarily partitionable graphs.
We first investigate the minimum size of such a graph in Section 4.3. In particular, for every
k ≥ 1 and n ≥ k+ 1, we show that k-preassignable arbitrarily partitionable graphs on n vertices
have size at least dn(k+1)

2 e, this lower bound being tight. We then consider the relationship
between k-preassignable arbitrarily partitionable graphs and Hamiltonian graphs in Section 4.4.
As a main result, we prove that the longest paths of a k-preassignable arbitrarily partitionable
graph can be arbitrarily small (compared to the order of these graphs).

As for arbitrarily partitionable graphs, see previous Section 3.5, we also consider Cartesian
products of graphs involving preassignable arbitrarily partitionable graphs (see Section 4.5). In
this scope, we suspect G�P` to be k-preassignable arbitrarily partitionable whenever G is k-
preassignable arbitrarily partitionable. We support this conjecture by showing it to hold for the
very first case k = 1.

4.1 Preliminary remarks and properties . 93
4.2 Powers of graphs with Hamiltonian properties 95

4.2.1 Powers of traceable graphs . 96
4.2.2 Powers of Hamiltonian graphs . 98

4.3 Minimum size . 100
4.3.1 Harary graphs with odd connectivity at least 5 . 101
4.3.2 On 2-preassignable arbitrarily partitionable graphs with minimum size 109

4.4 On the order of the longest paths . 112
4.5 Cartesian products . 119
4.6 Conclusion and open questions . 123

The results from Section 4.2 were obtained jointly with Baudon, Przybyło and Woźniak and
were published in [18]. All results from Section 4.3 were obtained with Baudon and Sopena and
have been submitted for publication [19]. Our results from Section 4.4 have also been submitted
for publication [32]. Finally, our results from Section 4.5 were obtained in collaboration with
Baudon, Kalinowski, Marczyk, Przybyło and Woźniak and were published in [16].

4.1 Preliminary remarks and properties

Since a k-preassignable arbitrarily partitionable graph is a graph we can partition into connected
subgraphs even when k of its vertices are preassigned, every such graph has order at least k.
Besides, it is easily seen that every graph with order exactly k is k-preassignable arbitrarily

94 4.1. Preliminary remarks and properties

v1 v2 v3 vk

(a) A graph with no (v1, v2, ..., vk)-realization
of (1, 1, ..., 1, 6).

v1

v2

(b) Removing vertices
from a bipartite graph
so that it admits no per-
fect matching.

Figure 4.1: Removing vertices (in grey only) from graphs (in black and grey) so
that they cannot be partitioned.

partitionable since every graph with order n is partitionable into n parts inducing connected
subgraphs (only the n-sequence (1, 1, ..., 1) is concerned). For this reason, it is understood that
all k-preassignable arbitrarily partitionable graphs considered throughout this chapter have order
at least k + 1.

We start by raising the following counterpart of Observation 2.27 for k-preassignable arbi-
trarily partitionable graphs, which follows from the same arguments.

Observation 4.1. Let k ≥ 1. Every graph spanned by a k-preassignable arbitrarily partitionable
graph is k-preassignable arbitrarily partitionable.

Adding more and more edges to a k-preassignable arbitrarily partitionable graph, we then get
more and more k-preassignable arbitrarily partitionable graphs. Besides, since every subgraph
of a complete graph is traceable, every complete graph on at least k vertices is k-preassignable
arbitrarily partitionable. This should convince the reader that k-preassignable arbitrarily parti-
tionable graphs with order n exist for all values of k, where n ≥ k.

We are here interested in finding k-preassignable arbitrarily partitionable graphs with small
size. Our guesses for candidates in this chapter are mainly influenced by the next observation
following from the fact that requesting a vertex to belong to a subgraph with order 1 is like
removing it from the graph.

Observation 4.2. Let k ≥ 1. Every k-preassignable arbitrarily partitionable graph is (k + 1)-
connected.

Proof. Assume a graph G is not (k + 1)-connected, and let v1, v2, ..., vk be distinct vertices of G
such that G−{v1, v2, ..., vk} is not connected. SinceG−{v1, v2, ..., vk} is not connected, the trivial
(|V (G)| − k)-sequence (|V (G)| − k) cannot be realized in G−{v1, v2, ..., vk}, see Figure 4.1.a. It
then follows that the |V (G)|-sequence (1, 1, ..., 1, |V (G)| − k), where the value 1 appears k times
at the beginning of the sequence, is not (v1, v2, ..., vk)-realizable in G. �

Using Observation 4.2, we can notably prove the following.

Observation 4.3. Let k ≥ 1. Every k-preassignable arbitrarily partitionable graph is also k′-
preassignable arbitrarily partitionable for every k′ ∈ {1, 2, ..., k − 1}.

Proof. Assume G is a k-preassignable arbitrarily partitionable graph, and let π be a |V (G)|-
sequence and P ′ be a k′-preassignation of G. We deduce a P ′-realization of π in G. In case
|π| ≥ k, let P be a k-preassignation of G including P ′, i.e. P ′ ⊂ P . Since G is k-preassignable

Chapter 4. Preassignable arbitrarily partitionable graphs 95

v

Figure 4.2: A connected part (in grey only) with arbitrary size including an arbi-
trary vertex v in an Hamiltonian graph (in black and grey) such that the remaining
graph (in black only) is traceable.

arbitrarily partitionable, we can deduce a P -realization of π in G. This realization also forms
a P ′-realization of π in G. Now assume that |π| < k. Since G is k-preassignable arbitrarily
partitionable, by Observation 4.2 we know that G is (k + 1)-connected. The P ′-realization of π
in G can hence be deduced using Theorem 2.1. �

Clearly the necessary condition from Observation 4.2 is not a sufficient one, i.e. (k + 1)-
connected graphs are not necessarily k-preassignable arbitrarily partitionable. We illustrate this
statement via the following result, which will be of some use in further sections.

Lemma 4.4. Let k ≥ 1 be an integer, and G = (A ∪ B,E) be a bipartite graph with order at
least k + 2. If k and |V (G)| have the same parity, then G cannot be k-preassignable arbitrarily
partitionable.

Proof. Assume k and |V (G)| have the same parity, and choose two subsets X ⊂ A and Y ⊂ B
such that |X| + |Y | = k, and G − (X ∪ Y) is as unbalanced as possible. These subsets can be
obtained e.g. by deriving one of the following two strategies. On the one hand, if k is greater
than, say, |A|, then let X = A and Y be a subset of B with size k − |A|. On the other hand, if
k is smaller than both |A| and |B|, then, assuming |A| ≤ |B|, choose X and Y so that |X| = k
and Y = ∅.

Let A′ = A \X and B′ = B \Y . Since |A′+B′| is even and |A′| 6= |B′|, the graph G[A′ ∪B′]
cannot admit a perfect matching, see Figure 4.1.b. It then follows that the |V (G)|-sequence
(1, 1, ..., 1, 2, 2, ..., 2), where the value 1 appears k times at the beginning of the sequence, is not
(v1, v2, ..., vk)-realizable in G, where {v1, v2, ..., vk} = X ∪ Y . �

Regarding the algorithmic point of view, the problem of deciding whether a sequence is P -
realizable in a graph for some k-preassignation P is NP-complete no matter what is the value
of k, recall Theorem 3.5. Since Realizable Sequence and Realizable Size-k Sequence
with k′-Preassignation have the same complexity status, i.e. preassigning vertices does not
alter the membership of Realizable Sequence to NP, we directly get that the problem

k-Preassignable Arbitrarily Partitionable Graph
Instance: A graph G.
Question: Is G k-preassignable arbitrarily partitionable?

is in Πp
2, for the same reasons as Arbitrarily Partitionable Graph belongs to Πp

2. But
again the Πp

2-completeness of k-Preassignable Arbitrarily Partitionable Graph does
not seem easy to us to establish, recall our explanations from Section 3.2.

4.2 Powers of graphs with Hamiltonian properties

Every traceable or Hamiltonian graph is arbitrarily partitionable according to Observation 2.34.
Actually it is easily seen that every traceable graph is arbitrarily (u)-partitionable, and even
arbitrarily (u, v)-partitionable, where u and v denote the endvertices of one of its Hamiltonian
paths. Besides, every Hamiltonian graph G is 1-preassignable arbitrarily partitionable since

96 4.2. Powers of graphs with Hamiltonian properties

one can pick a connected part with arbitrary size and including one specific vertex along the
Hamiltonian cycle of G in such a way that what remains is traceable (and hence arbitrarily
partitionable), see Figure 4.2.

Observation 4.5. Every Hamiltonian graph is 1-preassignable arbitrarily partitionable.

We generalize Observations 2.34 and 4.5 to powers of traceable or Hamiltonian graphs. More
precisely, we prove that kth powers of traceable or Hamiltonian graphs are (k − 1)- or (2k − 1)-
preassignable arbitrarily partitionable, respectively. These results are tight in the sense that
we cannot preassign more vertices while partitioning these graphs in general because of their
connectivity, recall Observation 4.2.

We throughout make use of the following notation.

Notation 4.6. If G is a graph with a natural ordering of its vertices (typically graphs spanned
by a path or a cycle), then, for every vertex v of G, we denote by v+ (resp. v−) the neighbour of
v succeeding (resp. preceding) v in this ordering. Besides, assuming u and v are two vertices of G
such that u precedes v in the ordering, by uGv we refer to the graph G[{u, u+, (u+)+, ..., v−, v}].

4.2.1 Powers of traceable graphs

We prove below that kth powers of traceable graphs are (k − 1)-preassignable arbitrarily par-
titionable. We actually prove a stronger statement, namely that these graphs can even be
partitioned following k-preassignations involving one of their endvertices. The proof makes use
of the following two observations.

Observation 4.7. Removing the first or last vertex of a kth power of path results in a kth power
of path.

Observation 4.8. Let G = P kn with k ≥ 1 and n ≥ k, and set G′ = G− S where S ⊂ V (G) is
a subset of vertices of G such that no two vertices of S are at distance strictly less than k in the
path Pn underlying G. Then G′ is spanned by a (k − 1)th power of Pn−|S| whose last vertex is
also the last vertex of G (unless this vertex belongs to S).

Proof. Denote v1, v2, ..., vn the consecutive vertices of G. The result follows from the fact that
for every vi 6∈ S, all but at most one neighbour vj of vi with j < i (or i > j) belong to G′. �

Lemma 4.9. Let G = P kn with k ≥ 1 and n ≥ k + 1, and consider an n-sequence π =
(n1, n2, ..., np) and a k-preassignation P of G. If the first or last vertex of G belongs to P ,
then π is P -realizable in G.

Proof. Let v1, v2, ..., vn denote the consecutive vertices of G, and set P = (vi1 , vi2 , ..., vik) with
i1 < i2 < ... < ik. We may assume that ik = n since otherwise we can just relabel the vertices of
G so that this assumption holds. The claim is proved by induction on k. For k = 1, the claim is
true as pointed out in the forewords of Section 4.2. Assume then that k ≥ 2 and the claim holds
for every k′ < k.

Denote by r1, r2, ..., rk−1 the residues modulo k of i1, i2, ..., ik−1, respectively, and let r be
an element of the non-empty set {0, 1, ..., k − 1} \ {r1, r2, ..., rk−1}. We construct a sequence
σ = (vj1 , vj2 , ..., vjq) of q < n distinct vertices of G meeting the following properties:

Rule 1. vj1 = vi1 , and vi2 , vi3 , ..., vik do not belong to σ,

Rule 2. for every ` ∈ {1, 2, ..., q}, the subgraph G[{vj1 , vj2 , ..., vj`}] is connected,

Rule 3. for every ` ∈ {1, 2, ..., q}, the subgraph G−{vj1 , vj2 , ..., vj`} is spanned by the (k− 1)th
power of a path with last vertex vn,

Rule 4. every vertex of G either belongs to σ or neighbours a vertex in σ.

Chapter 4. Preassignable arbitrarily partitionable graphs 97

vi1 vi2 vi3vb

(a) Case n1 ≤ q. The graph G2 − V1 is spanned by a path with last vertex vi3 (in black only).

vi1 vi2 vi3vb

(b) Case n1 > q. The graph G2 − V1 is spanned by a path (in black only), and every vertex of V (G) \ V1

has a neighbour in V1.

Figure 4.3: Situations described in the proof of Lemma 4.9. A square of a path G
(in black and grey) is partitioned following a 3-preassignation (vi1 , vi2 , vi3), where
vi3 is the last vertex of G. The part V1 (in grey only) with size n1 including vi1 is
deduced so that G2 − V1 has certain properties.

This sequence σ is obtained as follows. First we choose every kth vertex of the sequence
(v1, v2, ..., vi1) starting from vi1 , i.e. we set vj1 = vi1 , vj2 = vi1−k, vj3 = vi1−2k, ..., vja = vi1−(a−1)k

where i1−(a−1)k ∈ {1, 2, ..., k}. Note that so far Rule 2 and, according to Observation 4.8, Rule
3 are fulfilled. We then add to σ all the yet not chosen consecutive vertices from the sequence
(v1, v2, ..., vi1) starting from the one with the lowest index, which is either v1 or v2. Note that
Rule 3 (and obviously Rule 2) is still met according to Observation 4.7, and that the vertices not
in σ induce a kth power of a path in G. We end up the construction of σ by adding to σ the
vertex vb not in σ such that b is the smallest index with residue r modulo k which is greater than
i1 and smallest than n (if such a b exists), and then choosing every kth element of the sequence
(vb, vb+1, ..., vn−1) starting from vb, i.e. we set vji1+1 = vb, vji1+2 = vb+k, vji1+3 = vb+2k, ...,
vq = vb+ck where b+ ck ∈ {n−k, n−k+ 1, ..., n−1}. By Observation 4.8, Rule 3 (and obviously
Rule 2) is still met. Moreover, Rule 1 is also fulfilled by our choice of r. Finally, because σ
contains every kth vertex of the sequence (vi1 , vi1+1, ..., vn−1) including vi1 , Rule 4 is also met.

We now obtain a P -realization of π in G as follows. On the one hand, if n1 ≤ q, then set
V1 = {vj1 , vj2 , ..., vjn1}. By the properties of σ, the subgraph G[V1] contains vj1 = vi1 (Rule 1)
and is connected (Rule 2). Now let G′ = G − V1, as well as π′ = π \ (n1) and P ′ = P \ (vi1).
By Rule 1, the vertices of P ′ belong to G′, and G′ is spanned by the (k − 1)th power of a path
whose last vertex is vn according to Rule 3. By induction, we may thus find a P ′-realization
(V2, V3, ..., Vp) of π′ in G′. We eventually get that (V1, V2, ..., Vp) is a P -realization of π in G, see
Figure 4.3.a.

On the other hand, i.e. n1 > q, set V ′1 = {vj1 , vj2 , ..., vjq}, and let G′ = G − V ′1 , as well as
π′ = (n2, n3, ..., np, n1 − q) and P ′ = P \ (vi1). Again by the induction hypothesis, we can find a
P ′-realization (V2, V3, ..., Vp, V

′′
1) of π′ in G′. By Rules 2 and 4, the set V1 = V ′1 ∪ V ′′1 induces a

connected subgraph of G with order n1 and including vi1 . It then follows that (V1, V2, ..., Vp) is
a P -realization of π in G, see Figure 4.3.b. �

Using Lemma 4.9, we deduce the following result.

Theorem 4.10. For every k ≥ 1 and n ≥ k, the graph P kn is (k − 1)-preassignable arbitrarily
partitionable.

Proof. Denote v1, v2, ..., vn the consecutive vertices of P kn , and consider an n-sequence π and
a (k − 1)-preassignation P of P kn . If π has size at most k, then a P -realization of π in P kn
exists according to Theorem 2.1. Otherwise, i.e. π has size at least k + 1, then let P ′ be a k-
preassignation of P kn including v1 and all vertices in P (basically, either v1 does not belong to P
and we just add v1 to P to get P ′, or P ′ is obtained by just adding an arbitrary non-preassigned
vertex to P if v1 already belongs to P). Using Lemma 4.9, we can deduce a P ′-realization of π
in P kn . This also performs a P -realization of π in P kn . �

98 4.2. Powers of graphs with Hamiltonian properties

We finally obtain the following result as a corollary of Observation 4.1.

Corollary 4.11. For every k ≥ 1, the kth power of every traceable graph is (k−1)-preassignable
arbitrarily partitionable.

4.2.2 Powers of Hamiltonian graphs

We now prove the counterpart of Corollary 4.11 for kth powers of Hamiltonian graphs.

Theorem 4.12. For every k ≥ 1 and n ≥ 2k, the graph Ckn is (2k − 1)-preassignable arbitrarily
partitionable.

Proof. Let G = Ckn with k ≥ 1 and n ≥ 2k, and denote v0, v1, ..., vn−1 the consecutive vertices
of G. If k = 1, then G is 1-preassignable arbitrarily partitionable according to Observation 4.5.
Let us thus assume that k ≥ 2, and consider an n-sequence π = (n0, n1, ..., np−1) and a (2k− 1)-
preassignation P = (vi0 , vi1 , ..., vi2k−2

) of G, where i0 < i1 < ... < i2k−2. We show that there
necessarily exists a P -realization of π in G. If π has size at most 2k, then we know that a
P -realization of π in G exists according to Theorem 2.1 since G is 2k-connected.

Assume then that p > 2k. For each vertex vij of G, where j ∈ {0, 1, ..., 2k − 2}, let Dj =
V (v+

ij−1
Gvij) denote the set of vertices lying between vij−1 and vij including vij , and dj = |Dj |

be the number of these vertices, where the indices are counted modulo 2k−1 (here and further).
For every j ∈ {0, 1, ..., 2k − 2}, let further

sj = dj+1 + dj+2 + ...+ dj+k−1 and qj = nj+1 + nj+2 + ...+ nj+k−1.

In particular, we have d0 + d1 + ...+ d2k−2 = n, and n0 + n1 + ...+ n2k−2 < n since p > 2k.
Therefore, there must exist a j ∈ {0, 1, ..., 2k − 2} for which qj < sj , since otherwise we would
obtain the following contradiction:

(k − 1)n > (k − 1)
2k−2∑

j=0

nj =
2k−2∑

j=0

qj ≥
2k−2∑

j=0

sj = (k − 1)
2k−2∑

j=0

dj = (k − 1)n.

Case 1. qj′ ≥ sj′ for some j′ 6= j ∈ {0, 1, ..., 2k − 2}.
Without loss of generality we may assume that j′ = 0 and j = 2k − 2 (we hence have

q2k−2 < s2k−2 and q0 ≥ s0), and v+
i2k−2

= v0, implying both

n0 + n1 + . . .+ nk−2 ≤ d0 + d1 + . . .+ dk−2 − 1 = |{v0, v1, . . . , v
−
ik−2
}| and

n0 + n1 + . . .+ nk−1 ≥ 1 + d1 + d2 + . . .+ dk−1 = |{vi0 , v+
i0
, . . . , vik−1

}|.

Then there exists a t ∈ {0, 1, ..., i0} such that for U = {vt, vt+1, . . . , vik−1
} we have

n0 + n1 + . . .+ nk−2 ≤ |U | − 1 and (4.1)
n0 + n1 + . . .+ nk−1 ≥ |U |.

Note that U ∩ P = {vi0 , vi1 , . . . , vik−1
}. Thus if on the one hand |U | = n0 + n1 + . . .+ nk−1,

then, using Theorems 2.1 and 4.10, we can find a (vi0 , vi1 , ..., vik−1
)-realization (V0, V1, . . . , Vk−1)

of (n0, n1, . . . , nk−1) in G[U], which is k-connected, and a (vik , vik+1
, ..., vi2k−2

)-realization
(Vk, Vk+1, . . . , Vp−1) of (nk, nk+1, . . . , np−1) in G−U , which is the kth power of a path. If on the
other hand we have n0+n1+. . .+nk−1 > |U |, then, according to Inequality 4.1, we can deduce two
positive integers n′k−1 and n

′′
k−1 such that n0+n1+. . .+nk−2+n′k−1 = |U | and n′k−1+n′′k−1 = nk−1.

Let G′ and G′′ be the kth powers of paths induced by U and V (G) \ U , respectively, in G, and
let va 6∈ P be the first non-preassigned vertex after vik−1

following the orientation of G. In
particular, observe that, since |P \ U | = k − 1, this vertex va is a neighbour of vik−1

in G. By

Chapter 4. Preassignable arbitrarily partitionable graphs 99

v−i0 v−ik−1

v+ik−1
(v−t)

−

V ′
k−1

Ck
n − U

v−i2k−2

V ′′
k−1

U

vav−t vi2k−2

vi0 vik−1
vt

(a) Case where q2k−2 < s2k−2 and q0 ≥ s0. The graph Ckn is partitioned into
two parts U and Ckn − U including k and k − 1 preassigned vertices, respectively.
The realization is obtained by considering independent realizations in these two
subgraphs, and then unifying some of the resulting parts.

Vk−1

vik−1

vik−1−nk−1+1

v−ik−1

vik−1−nk−1
vi0v−i0v1 vc

U1

v+ik−1

U2

vi2k−2
v−i2k−2

vd

V ′
r

V ′′
r

vi2k−3

(b) Case where qj < sj for every j ∈ {0, 1, ..., 2k−2}. We pick the connected part Vk−1 and
partition the remaining graph into two parts U1 and U2 each including k − 1 preassigned
vertices. The realization is obtained by filling U1 and U2 with as many parts as possible,
where an “exceeding” part Vr is partially picked in U1 and U2.

Figure 4.4: Situations described in the proof of Theorem 4.12. The graph Ckn is
partitioned following a (2k − 1)-preassignation (vi0 , vi1 , ..., vi2k−2

).

Theorem 2.1 and Lemma 4.9, there exist a (vi0 , vi1 , ..., vik−1
)-realization (V0, V1, . . . , Vk−2, V

′
k−1)

and a (va, vik , vik+1
, ..., vi2k−2

)-realization (V ′′k−1, Vk, Vk+1, . . . , Vp−1) of (n0, n1, . . . , nk−2, n
′
k−1)

and (n′′k−1, nk, nk+1, . . . , np−1), respectively, in G′ and G′′, respectively. It then follows that

(V0, V1, . . . , Vk−2, V
′
k−1 ∪ V ′′k−1, Vk, Vk+1, . . . , Vp−1)

is a P -realization of π in G, see Figure 4.4.a.

Case 2. qj < sj for every j ∈ {0, 1, ..., 2k − 2}.
In this situation, note that there is no k consecutive preassigned vertices of G in P . Note

also that since
n1 + n2 + . . .+ nk−1 = q0 < s0 = d1 + d2 + . . .+ dk−1,

there exists an i′ ∈ {1, 2, . . . , k−1} for which ni′ < di′ . Without loss of generality we may assume
that i′ = k − 1 and vi2k−2

= v0. Set Vk−1 = {vik−1−nk−1+1, vik−1−nk−1+2, . . . , vik−1
}. Clearly, we

have both |Vk−1| = nk−1 and Vk−1∩P = {vik−1
}. Moreover, the sets U1 = {v1, v2, . . . , vik−1−nk−1

}
and U2 = V (G) \ (U1 ∪ Vk−1) induce kth powers of paths G′ and G′′, respectively, in G, such
that P ∩ U1 = {vi0 , vi1 . . . , vik−2

} and P ∩ U2 = {vik , vik+1
. . . , vi2k−2

}. Furthermore, we have

n0 + n1 + . . .+ nk−2 = q2k−2 < s2k−2 = d0 + d1 + ...+ dk−2 < |U1|,

and
nk + nk+1 + ...+ n2k−2 = qk−1 < sk−1 = dk + dk+1 + ...+ d2k−2 = |U2|.

100 4.3. Minimum size

If we are then able to partition the remaining elements n2k−1, n2k, . . . , np−1 of π into two
parts π1 and π2 such that

∑k−2
i=0 ni + ‖π1‖ = |U1| and

∑2k−2
i=k ni + ‖π2‖ = |U2|, then the result

follows again by using Theorem 4.10 twice. Otherwise, there is a value nr ∈ {n2k−1, n2k, ..., np−1}
which can be split into two positive elements n′r and n′′r in such a way that nr = n′r +n′′r , as well
as a partition of {n2k−1, n2k, ..., np−1} \ {nr} into two parts π1 = (n2k−1, n2k, ..., nr−1) and π2 =

(nr+1, nr+2, ..., np−1) such that
∑k−2

i=0 ni+‖π1‖+n′r = |U1|. Let vc be the first vertex of U1 which
does not belong to P , and let vd be the last vertex of U2 which does not belong to P . Since P does
not contain k consecutive vertices of G, the vertices vc and vd are adjacent. Using Lemma 4.9,
we can then deduce a (vi0 , vi1 , ..., vik−2

, vc)-realization (V0, V1, ..., Vk−2, V
′
r , V2k−1, V2k, ..., Vr−1)

of (n0, n1, ..., nk−2, n
′
r, n2k−1, n2k, ..., nr−1) in G[U1], and a (vik , vik+1

, ..., vi2k−2
, vd)-realization

(Vk, Vk+1, ..., V2k−2, V
′′
r , Vr+1, Vr+2, ..., Vp−1) of (nk, nk+1, ..., n2k−2, n

′′
r , nr+1, nr+2, ..., np−1) inG[U2]

since G[U1] and G[U2] are kth powers of paths. It eventually follows that

(V0, V1, . . . , Vr−1, V
′
r ∪ V ′′r , Vr+1, Vr+2, . . . , Vp−1)

is a P -realization of π in G, see Figure 4.4.b. �

Applying the spanning argument from Observation 4.1, we directly get the following.

Corollary 4.13. For every k ≥ 1, the kth power of every Hamiltonian graph is (2k − 1)-
preassignable arbitrarily partitionable.

4.3 Minimum size

As mentioned earlier, starting from powers of traceable or Hamiltonian graphs, we can construct
infinitely many k-preassignable arbitrarily partitionable graphs by repeatedly adding edges in
these graphs, recall Observation 4.1, getting consecutive graphs converging towards complete
graphs. We herein consider the opposite extremal direction, namely what is the minimum size
of a k-preassignable arbitrarily partitionable graph on n vertices? This question is considered
regarding both k and n.

Since every k-preassignable arbitrarily partitionable graph is (k + 1)-connected, recall Ob-
servation 4.2, and every (k+ 1)-connected graph has minimum degree k+ 1, we directly get the
following lower bound.

Observation 4.14. Every k-preassignable arbitrarily partitionable graph with order n ≥ k + 1
has size at least dn(k+1)

2 e.

Note that this lower bound is not theoretical only as it is reached e.g. for odd values of k as
kth powers of cycles, which are minimum in terms of size with regards to their connectivity, are
(2k − 1)-preassignable arbitrarily partitionable, recall Theorem 4.12.

Proposition 4.15. For every k ≥ 1 odd and n ≥ k+2, there are (k+1)-preassignable arbitrarily
partitionable graphs with order n and size n(k+1)

2 .

The aim of this section is to show that the lower bound given by Observation 4.14 is also
reached for even values of k ≥ 2 (and every n ≥ k + 1). For this purpose, we first show in
Section 4.3.1 that k-connected Harary graphs with k ≥ 5 odd are (k−1)-preassignable arbitrarily
partitionable. Since Harary graphs are known to be graphs with minimum size (regarding their
connectivity), we directly get that the lower bound from Observation 4.14 is also reached for every
k ≥ 4 even. Unfortunately, 3-connected Harary graphs are not all 2-preassignable arbitrarily
partitionable. We then introduce another family of graphs in Section 4.3.2, and show its members
to be 2-preassignable arbitrarily partitionable graphs with minimum size.

Chapter 4. Preassignable arbitrarily partitionable graphs 101

v10v9v8v7v6v5v4v3v2v1

Figure 4.5: A graph with a natural ordering (v1, v2, ..., v10) of its vertices, some
of which are preassigned (in white).

4.3.1 Harary graphs with odd connectivity at least 5

Every Harary graph H2k+1,n is spanned by Ckn and is thus a (2k − 1)-preassignable arbitrarily
partitionable graph according to Theorem 4.12. We show below, in Section 4.3.1.2, that an
additional vertex preassignation can always be requested for partitioning these graphs. We
beforehand describe, in Section 4.3.1.1, some particular situations in which the kth power of
a path or cycle can be partitioned into connected subgraphs when strictly more than k − 1 or
2k − 1, respectively, preassigned vertices are specified. These results are of great interest since
Harary graphs admit a lot of powers of paths as induced subgraphs, and are spanned by a power
of a cycle, as mentioned above.

The vertices constituting a k-preassignation P of a graph G form a crucial parameter when
P -realizing a |V (G)|-sequence in G. Our proofs below notably depend on whether P form a
preassigned block.

Definition 4.16. Assuming P is a preassignation of a graph G which admits a natural ordering
of its vertices (like e.g. paths, cycles, or every graph spanned by one such graph), a preassigned
block B of P is a set {vij1 , vij2 , ..., vij`} of consecutive preassigned vertices (following the ordering
of G). We say that B is maximal if neither the vertex preceding vij1 nor the vertex succeeding
vij` are preassigned vertices.

Example 4.17. In the graph depicted in Figure 4.5, the preassigned vertices form two maximal
preassigned blocks, namely {v2, v3} and {v5, v6, v7, v8}. The preassigned block {v6, v7} is not
maximal since e.g. v8 is preassigned and succeeds v7.

4.3.1.1 Partitioning powers of paths or cycles following large preassignations

Recall that kth powers of paths are partitionable under k-preassignations involving one endvertex,
see Lemma 4.9. In the next two results, we exhibit additional situations under which kth powers
of paths can be partitioned following k-preassignations, or even (k + 1)-preassignations.

Lemma 4.18. Let G = P kn with k ≥ 2 and n ≥ k + 1, and consider an n-sequence π =
(n1, n2, ..., np) and a k-preassignation P of G. If the vertices of P do not form a maximal
preassigned block with size k, then π is P -realizable in G.

Proof. We denote v1, v2, ..., vn the consecutive vertices of the path Pn spanning G, and set P =
(vi1 , vi2 , ..., vik), where i1 < i2 < ... < ik. If s =

∑p
j=k+1 nj ≤ i1 − 1, then a P -realization

of π in G is (V1, V2, ..., Vp), where (Vk+1, Vk+2, ..., Vp) is a realization of (nk+1, nk+2, ..., np) in
the traceable graph G[{v1, v2, ..., vs}], and (V1, V2, ..., Vk) is a P -realization of (n1, n2, ..., nk) in
G− {v1, v2, ..., vs} obtained using Theorem 2.1.

Suppose now that s ≥ i1. On the one hand, if n1 ≥ i1, then a correct P -realization of π in G
is (V ′1 ∪ V ′′1 , V2, V3, ..., Vp), where V ′1 = {v1, v2, ..., vi1−1} and (V ′′1 , V2, V3, ..., Vp) is a P -realization
of (n1 − i1 + 1, n2, n3, ..., np) in G− V ′1 obtained via Lemma 4.9. On the other hand, if n1 < i1,
then let V1 be a subset of {v1, v2, ..., vi1} obtained as follows. First, set V1 = {vi1} and then
repeatedly add to V1 the vertex located at distance 2 on the left of the last vertex added to V1 as
long as |V1| < n1 and v1 is not reached. If there is no vertex at distance 2 on the left of the last
vertex added to V1 (but V1 needs additional vertices), then add to V1 every remaining vertex from
{v1, v2, ..., vi1−1} \V1 from left to right until V1 has size n1. Let X = {v1, v2, ..., vi1−1} \V1. Note

102 4.3. Minimum size

that, at the end of the procedure, G[V1] is connected, G[X] is traceable, and vi1−1 ∈ X. Now, if
there exists an r ∈ {k + 1, k + 2, ..., p} such that

∑r
j=k+1 nj = |X|, then a P -realization of π in

G is (V1, V2, ..., Vp) where (Vk+1, Vk+2, ..., Vr) is a realization of (nk+1, nk+2, ..., nr) in G[X] and
(V2, V3, ..., Vk, Vr+1, Vr+2, ..., Vp) is a (vi2 , vi3 ..., vik)-realization of (n2, n3, ..., nk, nr+1, nr+2, ..., np)
in G− {v1, v2, ..., vi1} obtained using Theorem 4.10.

If such a value of r does not exist, then let r be such that
∑r−1

j=k+1 nj < |X| and
∑r

j=k+1 nj >

|X|. Let further n′r = |X| −∑r−1
j=k+1 nj , n

′′
r = nr − n′r, and va 6∈ P be the nearest neighbour of

vi1−1 located on the right of vi1 . Such a vertex necessarily exists since otherwise the preassigned
vertices would form a maximal prescribed block with size k in G. Moreover, either va or vi2
is the first vertex of G − {v1, v2, ..., vi1}. We then obtain a P -realization (V1, V2, ..., Vr−1, V

′
r ∪

V ′′r , Vr+1, Vr+2, ..., Vp) of π in G by considering a (vi1−1)-realization (V ′r , Vk+1, Vk+2, ..., Vr−1) of
(n′r, nk+1, nk+2, ..., nr−1) in G[X] and a (vi2 , vi3 , ..., vik , va)-realization (V2, V3, ..., Vk, V

′′
r , Vr+1,

Vr+2, ..., Vp) of (n2, n3, ..., nk, n
′′
r , nr+1, nr+2, ..., np) in G[{vi1+1, vi1+2, ..., vn}]. These two real-

izations exist according to Lemma 4.9. �

We now strengthen Lemma 4.9 by showing that kth powers of paths are partitionable follow-
ing (k + 1)-preassignations involving their two endvertices.

Lemma 4.19. Let G = P kn with k ≥ 1 and n ≥ k + 2, and consider an n-sequence π =
(n1, n2, ..., np) and a (k+1)-preassignation P of G. If the two endvertices of G belong to P , then
π is P -realizable in G.

Proof. We prove this claim by induction on k. For k = 1, the result is obvious. We thus
now suppose that k ≥ 2 and that the claim holds for every k′ < k. The vertices of G are
denoted similarly as in the proof of Lemma 4.18, and we put P = (vi1 , vi2 , ..., vik+1

), where
1 = i1 < i2 < ... < ik+1 = n. If n1 ≤ i2 − 1, then a correct P -realization of π in G is
(V1, V2, ..., Vp) where V1 = {v1, v2, ..., vn1} and (V2, V3, ..., Vp) is a (vi2 , vi3 , ..., vik+1

)-realization
of (n2, n3, ..., np) in G − V1. This realization necessarily exists according to Lemma 4.9 since
vik+1

is the last vertex of G− V1.

Suppose now that n1 ≥ i2. Observe that {0, 1, ..., k− 1} \⋃k
j=2{ij (mod k)} is not empty, so

let us denote by r one value of this set. The subset V1 of the realization is constructed as follows.
It first contains all the vertices between v1 and vi2−1, i.e. {v1, v2, ..., vi2−1} ⊆ V1. We then add
the vertex va to V1, where a ∈ {i2 + 1, i2 + 2, ..., i2 + k− 1} is such that a ≡ r (mod k). Finally,
as long as |V1| < n1 and we do not reach vn, we repeatedly add to V1 the vertex at distance k
on the right from the last one added to V1, i.e. va+k, then va+2k, and so on. According to our
choice of r, these vertices are not preassigned ones and, at every moment of the procedure, the
subgraph G − V1 is spanned by the (k − 1)th power of a path, recall Observation 4.8, and the
subgraph G[V1] is connected.

On the one hand, if V1 = n1 holds once the procedure is achieved, then (V1, V2, ..., Vp) is
a P -realization of π, where (V2, V3, ..., Vp) is a (vi2 , vi3 , ..., vik+1

)-realization of (n2, n3, ..., np) in
G−V1 which necessarily exists by the induction hypothesis since vi2 and vik+1

are the endvertices
of G− V1.

On the other hand, if |V1| < n1 holds after the end of the procedure, then each vertex from
V (G)\V1 has a neighbour in V1. Hence, we can obtain a P -realization (V1∪V ′1 , V2, V3, ..., Vp) of π
in G, where (V2, V3, ..., Vp, V

′
1) is a (vi2 , vi3 , ..., vik+1

)-realization of (n2, n3, ..., np, n1−|V1|) in G−
V1. Once again, such a realization necessarily exists according to the induction hypothesis. �

We now prove an analogous result concerning cycles to the power of at least 2, which is
crucial for our upcoming results related to Harary graphs.

Lemma 4.20. Let G = Ckn with k ≥ 2 and n ≥ 2k + 1, and consider an n-sequence π = (n0,
n1, ..., np−1) and a 2k-preassignation P of G. If the vertices of P do not form two maximal
preassigned blocks with size k, then π is P -realizable in G.

Chapter 4. Preassignable arbitrarily partitionable graphs 103

Proof. We denote v0, v1, ..., vn−1 the consecutive vertices of the cycle Cn underlying G, and set
P = (vi0 , vi1 , ..., vi2k−1

) with i0 < i1 < ... < i2k−1. Quite similarly as in the proof of Theorem 4.12,
for every j ∈ {0, 1, ..., 2k − 1}, let

sj =
∑j+k−1

`=j d` and qj =
∑j+k−1

`=j n`,

where the values d0, d1, ..., d2k−1 (and the associated sets D0, D1, ..., D2k−1) are computed sim-
ilarly as in the proof of Theorem 4.12, and the indices are taken modulo 2k. In other words,
every value sj is the order of the graph v+

ij−1
Gvij+k−1

= G[{i+j−1, (i
+
j−1)+, ..., ij+k−1}] including

the k preassigned vertices vij , vij+1 , ..., vij+k−1
, and qj is the amount of vertices required in the

connected subgraphs containing these preassigned vertices in a P -realization of π in G.
Note that there necessarily exists a j ∈ {0, 1, ..., 2k − 1} such that qj ≤ sj since having∑2k−1
j=0 qj >

∑2k−1
j=0 sj implies k

∑2k−1
`=0 n` > k

∑2k−1
`=0 d`, which is impossible as n =

∑2k−1
`=0 d` and

n >
∑2k−1

`=0 n` (if π contains at most 2k elements, then the P -realization can be obtained using
Theorem 2.1). To prove the claim, we distinguish several cases depending on the relationship
between the qj ’s and sj ’s.

Case 1. qj = sj for some j ∈ {0, 1, ..., 2k − 1}.
In this situation, a P -realization of π in G is deduced as follows. Assume j = 0 without loss

of generality. On the one hand, since G[
⋃k−1
`=0 D`] is the kth power of a path, it is k-connected

and thus admits a (vi0 , vi1 , ..., vik−1
)-realization (V0, V1, ..., Vk−1) of (n0, n1, ..., nk−1) according

to Theorem 2.1. On the other hand, the graph G −⋃k−1
`=0 D` is the kth power of a path whose

last vertex is vi2k−1
. Therefore, there exists a (vik , vik+1

, ..., vi2k−1
)-realization (Vk, Vk+1, ..., Vp−1)

of (nk, nk+1, ..., np−1) in this graph by Lemma 4.9. The partition (V0, V1, ..., Vp−1) is then a
P -realization of π in G.

Case 2. We are not in Case 1 and qj > sj for some j ∈ {0, 1, ..., 2k − 1}.
In particular, there exists a value of j for which qj > sj and qj+1 < sj+1. Suppose j = 0

without loss of generality.

Case 2.1. There exists a set X = {v+
i2k−1

, (v+
i2k−1

)+, ..., va} with a ∈ {ik−1 +1, ik−1 +2, ..., ik−1}
such that |X| = q0.

A P -realization of π in G can be obtained as follows. Firstly, let (V0, V1, ..., Vk−1) be a
(vi0 , vi1 , ..., vik−1

)-realization of (n0, n1, ..., nk−1) in G[X]. Such a realization exists by Theo-
rem 2.1 since G[X] is the kth power of a path. Secondly, let (Vk, Vk+1, ..., Vp−1) be a (vik ,
vik+1

, ..., vi2k−1
)-realization of (nk, nk+1, ..., np−1) in G − X which necessarily exists according

to Lemma 4.9 since vi2k−1
is the last vertex of G −X. The partition (V0, V1, ..., Vp−1) is then a

P -realization of π in G.

Case 2.2. Such a set X does not exist.
In such a situation, we have q0 > s0 + dk − 1, i.e.

∑k−1
`=0 n` > (

∑k
`=0 d`) − 1. Besides, since

the n`’s and the d`’s are strictly greater than 0, we get
∑k

`=0 n` ≥ 1 +
∑k

`=1 d`. Since q1 < s1,
i.e.

∑k
`=1 n` <

∑k
`=1 d`, it follows that there exists an n′0 such that 1 ≤ n′0 ≤ n0 and n′0 +∑k

`=1 n` = 1+
∑k

`=1 d` = |{vi0 , v+
i0
, ..., vik}|. A P -realization of π in G is then obtained as follows.

On the one hand, let (V ′0 , V1, V2, ..., Vk) be a (vi0 , vi1 , ..., vik)-realization of (n′0, n1, n2, ..., nk) in
G[{vi0 , v+

i0
, ..., vik}], which exists according to Lemma 4.19 since vi0 and vik are the endvertices

of G[{vi0 , v+
i0
, ..., vik}]. On the other hand, let n′′0 = (n0 − n′0) + 1 (clearly n′′0 ≥ 1), and let

(V ′′0 , Vk+1, Vk+2, ..., Vp−1) be a (vi0 , vik+1
, vik+2

, ..., vi2k−1
)-realization of (n′′0, nk+1, nk+2, ..., np−1)

in G[{v+
ik
, (v+

ik
)+, ..., vi0}], which exists according to Lemma 4.9 since G[{v+

ik
, (v+

ik
)+, ..., vi0}] is the

kth power of a path with last vertex vi0 , and k preassigned vertices are specified. The partition

104 4.3. Minimum size

vi2k−1
vi0

vik−1

vb

va

Figure 4.6: Situation described in the proof of Lemma 4.20, Case 3.1.2.1.

(V ′0 ∪ V ′′0 , V1, V2, ..., Vp−1) is then a P -realization of π in G since G[V ′0] and G[V ′′0] are connected
and both contain the vertex vi0 .

Case 3. qj < sj for every j ∈ {0, 1, ..., 2k − 1}.
We distinguish two subcases.

Case 3.1. There are two consecutive preassigned vertices.
Assume vi0 = v+

i2k−1
without loss of generality.

Case 3.1.1. There is an r ∈ {2k, 2k + 1, ..., p− 1} such that q0 + (
∑r

`=2k n`) = s0.
In this situation, we can deduce a P -realization of π in G as follows. Firstly, let (V0, V1, ...,

Vk−1, V2k, V2k+1, ..., Vr) be a (vi0 , vi1 , ..., vik−1
)-realization of (n0, n1, ..., nk−1, n2k, n2k−1, ..., nr)

in G[
⋃k−1
`=0 D`] which exists according to Lemma 4.9 since vi0 is the first vertex of G[

⋃k−1
`=0 D`],

this graph being the kth power of a path. Secondly, let (Vk, Vk+1, ..., V2k−1, Vr+1, Vr+2, ..., Vp−1)

be a (vik , vik+1
, ..., vi2k−1

)-realization of (nk, nk+1, ..., n2k−1, nr+1, nr+2, ..., np−1) in G−⋃k−1
`=0 D`

which exists for the same reason as previously since vi2k−1
is the last vertex of G−⋃k−1

`=0 D`. The
partition (V0, V1, ..., Vp−1) is then a P -realization of π in G.

Case 3.1.2. Such an r does not exist.
Let r ∈ {2k, 2k + 1, ..., p − 1} be the value for which we have q0 + (

∑r−1
`=2k n`) < s0 and

q0 + (
∑r

`=2k n`) > s0. Such a value exists since q0 < s0 and qk < sk. So let further n′r =
s0 − (q0 + (

∑r−1
`=2k n`)) and n′′r = nr − n′r . Denote by va the last non-preassigned vertex of

G[
⋃k−1
`=0 D`], and by vb the first non-preassigned vertex of G−⋃k−1

`=0 D`.

Case 3.1.2.1. The vertices va and vb are adjacent.
We obtain a P -realization of π inG as follows (see Figure 4.6). Firstly, let (V0, V1, ..., Vk−1, V

′
r ,

V2k, V2k+1, ..., Vr−1) be a (vi0 , vi1 , ..., vik−1
, va)-realization of (n0, n1, ..., nk−1, n

′
r, n2k, n2k+1, ...,

nr−1) in G[
⋃k−1
`=0 D`], which exists by Lemma 4.19 since G[

⋃k−1
`=0 D`] is the kth power of a path

whose endvertices are vi0 and vik−1
. Secondly, let (V ′′r , Vk, Vk+1, ..., V2k−1, Vr+1, Vr+2, ..., Vp−1)

be a (vb, vik , vik+1
, ..., vi2k−1

)-realization of (n′′r , nk, nk+1, ..., n2k−1, nr+1, nr+2, ..., np−1) in G −⋃k−1
`=0 D`. This realization exists according to Lemma 4.19 since G −⋃k−1

`=0 D` is the kth power
of a path, either vb or vik is the first vertex of G − ⋃k−1

`=0 D`, and vi2k−1
is the last vertex of

G −⋃k−1
`=0 D`. It follows that (V0, V1, ..., Vr−1, V

′
r ∪ V ′′r , Vr+1, Vr+2, ..., Vp−1) is a P -realization of

π in G since G[V ′r ∪ V ′′r] is connected because of the edge vavb.

Case 3.1.2.2. The vertices va and vb are not adjacent.
In this situation, vik−1

or vik (or both of them) belongs to a preassigned block with size
at least k. Then one can relabel the preassigned vertices so that vi0 and vi2k−1

correspond to
two consecutive preassigned vertices from this preassigned block, and use the procedures from

Chapter 4. Preassignable arbitrarily partitionable graphs 105

vi2k−1
v−i0 vi0 vi1

Figure 4.7: Situation described in the proof of Lemma 4.20, Case 3.1.2.2. The
part V0 (in grey only) is picked in such a way that G[{vi2k−1

, v+i2k−1
, ..., vi1} \ V0] is

spanned by a path with endvertices vi2k−1
and vi1 (in black only).

Case 3.1. Since qj < sj for every j ∈ {0, 1, ..., 2k − 1}, note that this time the two vertices va
and vb (if these vertices are needed) have to be adjacent since otherwise it would mean that
the preassigned vertices form another preassigned block with size at least k (different from the
first one), implying that there are two preassigned blocks with size k, contradicting the initial
assumption of the lemma.

Case 3.2. There are no two consecutive preassigned vertices.

Case 3.2.1. There exists a set X of consecutive vertices of G such that X ∩ P = {vij , vij+1 , ...,
vij+k−1

} and |X| = qj for some j ∈ {0, 1, ..., 2k − 1}.
In this situation, we obtain a P -realization of π in G as follows. Assume j = 0 without loss

of generality. Firstly, let (V0, V1, ..., Vk−1) be a (vi0 , vi1 , ..., vik−1
)-realization of (n0, n1, ..., nk−1)

in G[X], which exists by Theorem 2.1 since G[X] is the kth power of a path. Secondly, let
(Vk, Vk+1, ..., Vp−1) be a (vik , vik+1

, ..., vi2k−1
)-realization of (nk, nk+1, ..., np−1) in G−X obtained

using Lemma 4.18 since G − X is the kth power of a path (with k ≥ 2) and there are no
consecutive preassigned vertices. Then (V0, V1, ..., Vp−1) is a P -realization of π in G.

Case 3.2.2. qj < sj − dj + 1 for every j ∈ {0, 1, ..., 2k − 1}.

Case 3.2.2.1. There are two preassigned vertices vi` and vi`+1
such that n` + n`+1 ≥ d`+1 + 1.

Assume ` = 0 without loss of generality. Then there exist two sets of consecutive vertices
X = {vi0 , v+

i0
, ..., va} and Y = {v+

a , (v
+
a)+, ..., vi1}, with a ∈ {i0 + 1, i0 + 2, ..., i1 − 1}, |X| ≤ n0

and |Y | ≤ n1. A P -realization of π in G can be then obtained as in Case 3.1 by doing as if vi0
and vi1 were consecutive preassigned vertices, but requesting vi0 and vi1 to belong to subgraphs
with order n0−|X|+ 1 and n1−|Y |+ 1, respectively. It is worth recalling that we are under the
assumption that there are no two consecutive preassigned vertices (so, in particular, the vertices
va and vb, if needed, will be adjacent). For the resulting parts V ′0 and V ′1 , the graphs G[V ′0 ∪X]
and G[V ′1 ∪ Y] are connected, and have order n0 and n1, respectively.

Case 3.2.2.2. nj + nj+1 < dj+1 + 1 for every j ∈ {0, 1, ..., 2k − 1}.
In particular, n0 + n1 < d1 + 1 = |{vi0 , v+

i0
, ..., vi1}|. We cannot have both n0 ≥ dd1+1

2 e
and n1 ≥ dd1+1

2 e, since otherwise we would get n0 + n1 ≥ d1 + 1, a contradiction. Let
us thus suppose that n0 < dd1+1

2 e without loss of generality. Then note that the graph in-
duced by V0 = {vi0 , vi0+2, vi0+4..., vi0+2(n0−1)} has order n0 and contains vi0 , and the graph
G[{vi2k−1

, v+
i2k−1

, ..., vi1} \ V0] is traceable with endvertices vi2k−1
and vi1 , see Figure 4.7.

Let t1 = |{vi1 , v+
i1
, ..., vik}| −

∑k
`=1 n` and t2 = |{v+

i2k−1
, (v+

i2k−1
)+, ..., v−i1}| − n0. From π, we

define three sequences π1, π2 and π3. First, let π1 = (n1, n2, ..., nk, n2k, n2k+1, ..., nr1−1), where
r1 is the unique index in {2k, 2k+ 1, ..., p−1} such that

∑r1−1
`=2k n` ≤ t1 and

∑r1
`=2k n` > t1. Now,

if t1 −
∑r1−1

`=2k n` > 0, then add n′r1 = t1 −
∑r1−1

`=2k n` as the (k + 1)th element of π1. Note that
the elements of π1 sum up to |{vi1 , v+

i1
, ..., vik}|.

Let n′′r1 = nr1 − n′r1 . If n′′r1 ≥ t2, then let π2 = (t2), and set r2 = r1 and n′′r2 = n′′r1 − t2.
Otherwise, let r2 be the index in {r1 + 1, r1 + 2, ..., p − 1} for which n′′r1 +

∑r2−1
`=r1+1 n` ≤ t2

and n′′r1 +
∑r2

`=r1+1 n` > t2. Now let π2 = (n′′r1 , nr1+1, nr1+2, ..., nr2−1). Set nr′2 = t2 − (n′′r1 +

106 4.3. Minimum size

∑r2−1
`=r1+1 n`) and n′′r2 = nr2 − n′r2 , and add n′r2 as the second element of π2 if n′r2 > 0. Observe

that π2 is a (|{v+
i2k−1

, (v+
i2k−1

)+, ..., v−i1}| − n0)-sequence.

Finally, let π3 = (nk+1, nk+2, ..., n2k−1, n
′′
r2 , nr2+1, nr2+2, ..., np−1). Note that π3 sums up to

|{v+
ik
, (v+

ik
)+, ..., vi2k−1

}|.
Remark that every element of π has been associated with one of π1, π2 and π3, and at most

two non-preassigned elements have been split so that the πi’s sum up exactly to the orders of
some subgraphs of G. In the case where π contains one “big” non-preassigned element, it is
even possible that this element was split into three integers among π1, π2 and π3. To obtain
the P -realization of π in G, we realize π1, π2 and π3 in vertex-disjoint subgraphs of G, and this
in such a way that if an original element of π was dispatched into several of the πi’s, then the
associated connected subgraphs perform a whole connected subgraph when unified.

The three realizations R1, R2 and R3 are obtained as follows.

• Let R1 be a (vi1 , vi2 , ..., vik , v
+
i1

)-realization of π1 inG[{vi1 , v+
i1
, ..., vik}], which exists according

to Lemma 4.19 since vi1 and vik are the endvertices of G[{vi1 , v+
i1
, ..., vik}] and there are k+1

preassigned vertices.

• Let R2 be a realization of π2 in G[{v+
i2k−1

, (v+
i2k−1

)+, ..., v−i1} \ V0], which is traceable by our
choice of V0. Additionally request the realization to satisfy the 2-preassignation (v−i1 , v

+
i2k+1

)
when π2 has at least two elements. Such a requirement is allowed according to Lemma 4.19.

• Let R3 be a (vik+1
, vik+2

, ..., vi2k−1
, v−i2k−1

)-realization of π3 in G[{v+
ik
, (v+

ik
)+ , ... , vi2k−1

}].
The existence of such a realization follows from Lemma 4.9 since G[{v+

ik
, (v+

ik
)+ , ... , vi2k−1

}]
is the kth power of a path whose last vertex is vi2k−1

.

The P -realization of π in G is obtained by considering V0 and the parts from R1, R2 and
R3, and unifying those parts whose sizes result from the split of a single element of π (if there
are such). By our choice of the preassigned vertices, these parts have neighbouring vertices (this
follows from the facts that k ≥ 2, and that the preassigned vertices of P are not consecutive),
and thus induce connected subgraphs. This completes the proof. �

It is worth noting that Lemma 4.20 directly provides an alternate proof of Theorem 4.12.
Indeed, suppose we want to P -realize a sequence π in Ckn for some (2k− 1)-preassignation P . If
π has size at most 2k, then a P -realization can be deduced using Theorem 2.1 since Ckn is 2k-
connected. Otherwise π has size at least 2k+ 1 and we can deduce a P -realization by requesting
one “convenient” additional preassigned vertex, that is a vertex such that the vertices of P and
this new vertex do not form two maximal preassigned blocks with size k, so that Lemma 4.20 is
applicable directly.

4.3.1.2 Partitioning Harary graphs following preassignations

Before proving that every Harary graph H2k+1,n is indeed 2k-preassignable arbitrarily partition-
able, we first introduce the following lemma which deals with the traceability of a graph made
up of two linked squares of paths.

Lemma 4.21. If G is a graph such that V (G) = V1∪V2, the subgraphs G[V1] and G[V2] are both
spanned by the square of a path, and there exists an edge joining one vertex of V1 and one of V2,
then G is traceable.

Proof. Let v1, v2, ..., v` and u1, u2, ..., u`′ denote the consecutive vertices of G[V1] and G[V2], and
va ∈ V1 and ub ∈ V2 be two vertices of G such that vaub ∈ E(G). Consider the following subpaths
of G:

Chapter 4. Preassignable arbitrarily partitionable graphs 107

V1

V2

va

ub

Figure 4.8: A spanning path (in black only) of a graph consisting of two linked
squares of paths (in black and grey).

• P = v1v2...va−1;

• Q =

{
va+1va+3...v`−1v`v`−2v`−4...va+2 if `− a is even,
va+1va+3...v`v`−1v`−3...va+2 otherwise;

• R =

{
ub+2ub+4...u`′u`′−1u`′−3...ub+1 if `′ − b is even,
ub+2ub+4...u`′−1u`′u`′−2u`′−4...ub+1 otherwise;

• S = ub−1ub−2...u1.

It is then easy to check that PQvaubRS is an Hamiltonian path of G (see Figure 4.8). �

We are now ready to prove our main result.

Lemma 4.22. For every k ≥ 2 and even n ≥ 2k+1, the Harary graph H2k+1,n is 2k-preassignable
arbitrarily partitionable.

Proof. Let k ≥ 2 and even n ≥ 2k + 1 be fixed, and G = H2k+1,n be the (2k + 1)-connected
Harary graph on n vertices v0, v1, ..., vn−1 (where the ordering follows the ordering of the cycle
Cn spanning G). We prove that every n-sequence π = (n0, n1, ..., np−1) with size p ≥ 2k + 1 is
P -realizable in G, where P is a 2k-preassignation P = (vi0 , vi1 , ..., vi2k−1

) with 0 ≤ i0 < i1 <
... < i2k−1 ≤ n− 1. Since G is (2k+ 1)-connected, we can actually suppose that p > 2k+ 1 since
otherwise a realization can be directly obtained using Theorem 2.1.

We distinguish two main cases.

Case 1. The preassigned vertices do not form two maximal preassigned blocks with size k.
Because k ≥ 2, we can directly deduce a P -realization of π in G in its spanning Ckn via

Lemma 4.20. Such a realization is a P -realization of π in G.

Case 2. The preassigned vertices form two maximal preassigned blocks with size k.
Denote B1 and B2 the two preassigned blocks. In this situation, note that G − P only

remains connected by means of some diagonal edges. Indeed, assume B1 = {vi0 , vi1 , ..., vik−1
}

and B2 = {vik , vik+1
, ..., vi2k−1

} without loss of generality. Then the antipodal neighbours of
v−i0 and v+

ik−1
cannot both belong to B2 since otherwise there would exist a preassigned block

with size at least k + 2. Let us thus denote by va and vb two antipodal neighbours of G such
that va, vb 6∈ B1 ∪ B2. In particular, we may suppose that a ∈ {ik−1 + 1, ik−1 + 2, ..., ik − 1}
and b ∈ {i2k−1 + 1, i2k−1 + 2, ..., i0 − 1} (the indices are here taken modulo n). Let further
a1 = a− ik−1 − 1, a2 = ik − a− 1, a3 = i0 − b− 1 and a4 = b− i2k−1 − 1 denote the number of
consecutive vertices “between” B1, B2 and the two vertices va and vb according to the ordering
of G (see Figure 4.9).

108 4.3. Minimum size

B1 B2

vik

vi2k−2

vik−1

vi1

vi0 vi2k−1

va

vb

a1 a2︷ ︸︸ ︷ ︷ ︸︸ ︷

︷︸︸︷ ︷︸︸︷

a3 a4

Figure 4.9: Configuration described in Case 2 of the proof of Lemma 4.22. The
preassigned vertices are in white.

Case 2.1.
∑k−1

j=0 nj ≤ a1 + a3 + k and
∑2k−1

j=k nj ≤ a2 + a4 + k.
In this situation, we can find two subsets X and Y of consecutive vertices of G such

that |X| =
∑k−1

j=0 nj , |Y | =
∑2k−1

j=k nj , {vi0 , vi1 , ..., vik−1
} ⊆ X, {vik , vik+1

, ..., vi2k−1
} ⊆ Y ,

and va, vb 6∈ X ∪ Y . Since G[X] and G[Y] are kth powers of paths, using Theorem 2.1 we
can deduce a (vi0 , vi1 , ..., vik−1

)-realization (V0, V1, ..., Vk−1) and a (vik , vik+1
, ..., vi2k−1

)-realization
(Vk, Vk+1, ..., V2k−1) of (n0, n1, ..., nk−1) and (nk, nk+1, ..., n2k−1), respectively, in G[X] and G[Y],
respectively. Now, since k ≥ 2, the graph G − (X ∪ Y) is traceable according to Lemma 4.21
and thus admits a realization (V2k, V2k+1, ..., Vp−1) of (n2k, n2k+1, ..., np−1). Finally, the partition
(V0, V1, ..., Vp−1) is a P -realization of π in G.

Case 2.2.
∑k−1

j=0 nj > a1 + a3 + k without loss of generality.

Case 2.2.1.
∑2k−1

j=0 nj ≥ a1 + a2 + 2k + 1.
Under this assumption, we can find two subsets of consecutive vertices X,Y ⊆ V (G) such

that {vi0 , vi1 , ..., vik−1
} ⊆ X, {vik , vik+1

, ..., vi2k−1
} ⊆ Y , |X| =

∑k−1
j=0 nj , |Y | =

∑2k−1
j=k nj ,

and the last vertex of G[X] precedes the first vertex of G[Y]. By Theorem 2.1, we can de-
duce a (vi0 , vi1 , ..., vik−1

)-realization (V0, V1, ..., Vk−1) and a (vik , vik+1
, ..., vi2k−1

)-realization
(Vk, Vk+1, ..., V2k−1) of (n0, n1, ..., nk−1) and (nk, nk+1, ..., n2k−1), respectively, in G[X] and G[Y],
respectively. Finally, since the graph G − (X ∪ Y) is isomorphic to the kth power of a path,
there exists a realization (V2k, V2k+1, ..., Vp−1) of the remaining sequence (n2k, n2k+1, ..., np−1) in
it. We get that (V0, V1, ..., Vp−1) is a P -realization of π in G.

Case 2.2.2.
∑2k−1

j=0 nj < a1 + a2 + 2k + 1.
If it is not possible to choose the subsets X and Y in such a way that they have two neigh-

bouring consecutive vertices along the arc v+
ik−1

Gv−ik , then two such subsets can be obtained so
that they have neighbouring vertices along the arc v+

i2k−1
Gv−i0 . Indeed, in such a situation we

have
∑k−1

j=0 nj > a1 + a3 + k by hypothesis, but
∑k−1

j=0 nj < a1 + a2 + k + 1. This implies that
a2 ≥ a3, and, since a1 + a3 = a2 + a4, that a1 ≥ a4. Hence, we get

∑k−1
j=0 nj ≥ a4 + a3 + k + 1,

which implies that the satisfying two subsets X and Y can be chosen along the arc v+
i2k−1

Gv−i0 .
With these two subsets, a P -realization of π in G can be then obtained as in Case 2.2.1. �

Since two Harary graphs H2k+1,n and H2k+1,n′ , with k ≥ 2, and n ≥ 2k + 1 and n′ ≥ 2k + 1
being even and odd, respectively, are both spanned by Ckn, Case 1 from the proof of Lemma 4.22

Chapter 4. Preassignable arbitrarily partitionable graphs 109

w1
1 w1

2 w1
4w1

3

w2
1 w2

2 w2
3 w2

4

u v

(a) Pr10.

w1
1 w1

2 w1
3

w2
1 w2

2 w2
3

u v o

(b) Pr9.

Figure 4.10: Two examples of Pr graphs.

also holds directly for Harary graphs with odd connectivity and odd order. Despite H2k+1,n and
H2k+1,n′ slightly differ by their diagonal edges, it is easily checked that Case 2 from the proof of
Lemma 4.22 also holds when considering Harary graphs with odd connectivity and odd order.
So our proof of Lemma 4.22 directly holds for these graphs.

Lemma 4.23. For every k ≥ 2 and odd n ≥ 2k+1, the Harary graph H2k+1,n is 2k-preassignable
arbitrarily partitionable.

Our results regarding Harary graphs sum up as follows.

Proposition 4.24. For every k ≥ 4 even and n ≥ k + 1, there are k-preassignable arbitrarily
partitionable graphs with order n and size dn(k+1)

2 e.

4.3.2 On 2-preassignable arbitrarily partitionable graphs with minimum size

Recall that Lemmas 4.22 and 4.23 exclude 3-connected Harary graphs, mainly because Lemma 4.21
does not apply to these graphs. Therefore, our proof of Lemma 4.22 cannot be directly used to
prove that 3-connected Harary graphs are 2-preassignable arbitrarily partitionable.

It actually turns out that 3-connected Harary graphs are not all 2-preassignable arbitrarily
partitionable.

Corollary 4.25. For every n ≡ 2 (mod 4), the Harary graph H3,n is not 2-preassignable arbi-
trarily partitionable.

Proof. This follows from Lemma 4.4 since every such Harary graph is a balanced bipartite graph.
�

In order to prove that there exist 2-preassignable arbitrarily partitionable graphs with the
minimum size indicated by Observation 4.14, we introduce the following class of 3-connected
graphs.

Construction 4.26. Let n ≥ 4. The graph Prn is constructed as follows.

• If n is even, then Prn is obtained from the cycle Cn, whose vertices are successively denoted
by u,w1

1, w
1
2, ..., w

1
n−2
2

, v, w2
n−2
2

, w2
n−2
2
−1
..., w2

1, by adding the edge uv, and the edge w1
iw

2
i for

every i ∈ {1, 2, ..., n−2
2 }.

• If n is odd, then Prn is obtained by first removing the edges w1
1w

2
1 and w1

n−3
2

w2
n−3
2

from

Prn−1, and then adding a new vertex o and the edges ow1
1, ow2

1, ow1
n−3
2

, and ow2
n−3
2

.

Example 4.27. The graphs Pr10 and Pr9 are depicted in Figure 4.10.

110 4.3. Minimum size

(a) uP 1,→
1,4 vP 2,←

4,1 . (b) uP↗1,4v.

Figure 4.11: Two Hamiltonian {u, v}-paths (in black only) of Pr10 (in black and
grey).

For every n ≥ 4, the graph Prn is a 3-connected graph which is minimum in terms of size
since it has size d3n

2 e. To prove that Pr graphs are 2-preassignable arbitrarily partitionable, we
introduce the following sufficient condition which is easier to check in our context.

Observation 4.28. Every Hamiltonian-connected graph is 2-preassignable arbitrarily partition-
able.

Proof. By definition, an Hamiltonian-connected graph G has an Hamiltonian {u, v}-path for
every two distinct vertices u, v ∈ V (G). Since every path can be partitioned following every 2-
preassignation involving its two endvertices, recall Lemma 4.19, we directly get that G is spanned
by an arbitrarily (u, v)-partitionable subgraph. These arguments imply the claim. �

In order to show that every graph Prn is Hamiltonian-connected, we first introduce some
notation.

Notation 4.29. Let G = Prn for some n ≥ 4, and set q = n−2
2 (resp. q = n−3

2) if n is even (resp.
odd). Given two distinct integers x and y taking values in {1, 2, ..., q} (resp. {2, 3, ..., q − 1})
such that x < y, we denote by P↗x,y(G) and P↘x,y(G) the following paths of G:

P↗x,y(G) =

{
w2
xw

1
x if x = y,

w2
xw

1
xP
↘
x+1,y(G) otherwise;

and P↘x,y(G) =

{
w1
xw

2
x if x = y,

w1
xw

2
xP
↗
x+1,y(G) otherwise.

The paths P↖x,y(G) and P↙x,y(G) of G are defined analogously from right to left when x > y. For
every α ∈ {1, 2}, we additionally define Pα,→x,y (G) (resp. Pα,←x,y (G)) for x < y (resp. x > y) to be
the path wαxwαx+1...w

α
y (resp. wαxwαx−1...w

α
y) of G .

It is understood that we have P↗x,y(G) = P↘x,y(G) = Pα,→x,y (G) = ∅ (resp. P↖x,y(G) = P↙x,y(G) =
Pα,←x,y (G) = ∅) whenever x and y have incorrect values (i.e. their values do not belong to the
authorized set or when x > y (resp. x < y)). To lighten the notation, we will voluntarily omit
to mention the parameter G of these paths, when no ambiguity is possible.

Example 4.30. According to our terminology, note that uP 1,→
1,4 vP 2,←

4,1 and uP↗1,4v are Hamilto-
nian paths of Pr10, see Figure 4.11.

We are now ready to prove that every Prn graph is Hamiltonian-connected, and thus 2-
preassignable arbitrarily partitionable according to Observation 4.28.

Lemma 4.31. For every n ≥ 4, the graph Prn is Hamiltonian-connected.

Proof. Let G = Prn, and set q = n−2
2 if n is even, or q = n−3

2 otherwise. Table 4.12 (resp.
Table 4.13) exhibits, given two distinct vertices s and t of G, an Hamiltonian {s, t}-path P of
G when n is even (resp. odd). In Table 4.12 (resp. Table 4.13), it is assumed that 1 ≤ i ≤ q
(resp. 1 < i < q) when j is not defined, and 0 ≤ i < j ≤ q (resp. 1 < i < j < q) otherwise.

Chapter 4. Preassignable arbitrarily partitionable graphs 111

s t P

u v uP↗1,qv

u w1
i

uP↗1,i−1w
2
i P

2,→
i+1,qvP

1,←
q,i if i− 1 is even

uP↘1,i−1w
2
i P

2,→
i+1,qvP

1,←
q,i otherwise

w1
i w1

j

P 1,→
i,j−1P

2,←
j−1,iP

↖
i−1,1uvP

↖
q,j if q − j is even

P 1,→
i,j−1P

2,←
j−1,iP

↖
i−1,1uvP

↙
q,j otherwise

w1
i w2

j

P 1,→
i,j−1P

2,←
j−1,iP

↖
i−1,1uvP

↙
q,j if q − j is even

P 1,→
i,j−1P

2,←
j−1,iP

↖
i−1,1uvP

↖
q,j otherwise

Table 4.12: Proof that Prn is Hamiltonian-connected for every even n ≥ 4.

s t P

o u oP 1,→
1,q vP 2,←

q,1 u

o w1
1

ow1
qvw

2
qP
↖
q−1,2w

2
1uw

1
1 if q is even

ow2
qvw

1
qP
↙
q−1,2w

2
1uw

1
1 otherwise

o w1
i

ow1
1uw

2
1P
↗
2,i−1w

2
i P

2,→
i+1,qvP

1,←
q,i if i is even

ow2
1uw

1
1P
↘
2,i−1w

2
i P

2,→
i+1,qvP

1,←
q,i otherwise

u v uP 2,→
1,q oP 1,→

1,q v

u w1
1 uvP 2,←

q,1 oP 1,←
q,1

u w1
q uvP 2,←

q,1 oP 1,→
1,q

u w1
i

uP 1,→
1,i−1P

2,←
i−1,1ow

2
qvw

1
qP
↙
q−1,i if q − i is even

uP 1,→
1,i−1P

2,←
i−1,1ow

1
qvw

2
qP
↖
q−1,i otherwise

w1
1 w2

1 w1
1uvP

1,←
q,2 P 2,→

2,q ow2
1

w1
1 w1

q P 1,→
1,q−1P

1,←
q−1,1uvw

2
qow

1
q

w1
1 w2

q w1
1ow

2
1uvP

1,←
q,2 P 2,→

2,q

w1
i w1

j

P 1,→
i,j−1P

2,←
j−1,iP

↖
i−1,2w

2
1uw

1
1ow

2
qvw

1
qP
↙
q−1,j if i and q − j are even

P 1,→
i,j−1P

2,←
j−1,iP

↖
i−1,2w

1
1uw

2
1ow

2
qvw

1
qP
↙
q−1,j if i is odd and q − j is even

P 1,→
i,j−1P

2,←
j−1,iP

↖
i−1,2w

2
1uw

1
1ow

1
qvw

2
qP
↖
q−1,j if i is even and q − j is odd

P 1,→
i,j−1P

2,←
j−1,iP

↖
i−1,2w

1
1uw

2
1ow

1
qvw

2
qP
↖
q−1,j if i and q − j are odd

w1
i w2

j

P 1,→
i,j−1P

2,←
j−1,iP

↖
i−1,2w

2
1uw

1
1ow

1
qvw

2
qP
↖
q−1,j if i and q − j are even

P 1,→
i,j−1P

2,←
j−1,iP

↖
i−1,2w

1
1uw

2
1ow

1
qvw

2
qP
↖
q−1,j if i is odd and q − j is even

P 1,→
i,j−1P

2,←
j−1,iP

↖
i−1,2w

2
1uw

1
1ow

2
qvw

1
qP
↙
q−1,j if i is even and q − j is odd

P 1,→
i,j−1P

2,←
j−1,iP

↖
i−1,2w

1
1uw

2
1ow

2
qvw

1
qP
↙
q−1,j if i and n− j are odd

Table 4.13: Proof that Prn is Hamiltonian-connected for every odd n ≥ 5.

Every Hamiltonian path which does not appear in Table 4.12 or Table 4.13 can be deduced from
another Hamiltonian path using the symmetries of G. �

Proposition 4.32. For every n ≥ 4, there are 2-preassignable arbitrarily partitionable graphs
with order n and size d3n

2 e.

We gather Propositions 4.15, 4.24 and 4.32 within the next concluding result.

Theorem 4.33. For every k ≥ 1 and n ≥ k+1, there are k-preassignable arbitrarily partitionable
graphs with order n and size dn(k+1)

2 e.

112 4.4. On the order of the longest paths

G1 G2 Gℓ

u1 u2 uν

Figure 4.14: A sample graph Kν(G1, G2, ..., G`).

4.4 On the order of the longest paths

Along the previous sections, we have pointed out that every traceable graph is arbitrarily parti-
tionable (Observation 2.34), every Hamiltonian graph is 1-preassignable arbitrarily partitionable
(Observation 4.5), and every Hamiltonian-connected graph is 2-preassignable arbitrarily parti-
tionable (Observation 4.28). We herein show that no Hamiltonian property necessarily appears
in preassignable arbitrarily partitionable graphs. More precisely, we show that a k-preassignable
arbitrarily partitionable graph can have its longest paths being arbitrarily smaller than its order,
and can hence be arbitrarily far from being even traceable. For this purpose, we show that a
k-preassignable arbitrarily partitionable graph can have an arbitrarily large path cover number.

The results mentioned above are obtained by studying the following family of graphs.

Construction 4.34. Consider two positive integers ν ≥ 1 and ` ≥ 1, and ` graphs G1, G2, ..., G`.
As Kν(G1, G2, ..., G`), we refer to the graph obtained as follows (see Figure 4.14):

1. take the disjoint union of G1, G2, ..., G`,

2. add ν new vertices u1, u2, ..., uν to the graph,

3. turn u1, u2, ..., uν into universal vertices.

We now exhibit a series of easy remarks related to the path cover number of graphs. As a
first result, observe that the path cover number of a graph Kν(G1, G2, ..., G`) is related to the
path cover numbers of G1, G2, ..., G`.

Observation 4.35. For every ν ≥ 1 and ` ≥ 1 graphs G1, G2, ..., G`, we have µ(Kν(G1, G2, ..., G`)) =
(
∑`

i=1 µ(Gi))− ν.

Proof. Typically a minimum path cover of Kν(G1, G2, ..., G`) is obtained by considering min-
imum path covers of G1, G2, ..., G` and then “glueing” the endvertices of some of the result-
ing paths by using the universal vertices to get longer paths (see Figure 4.15). In particular,
since Kν(G1, G2, ..., G`) has ν universal vertices, we can “replace” ν + 1 vertex-disjoint paths
P1, P2, ..., Pν+1 from minimum path covers of G1, G2, ..., G` with the long path

P1u1P2u2P3...PνuνPν+1,

where u1, u2, ..., uν are the universal vertices of Kν(G1, G2, ..., G`). �

Previous Observation 4.35 implies the following.

Chapter 4. Preassignable arbitrarily partitionable graphs 113

v1 v2 v3

v4

(a) A graph G with
µ(G) = 2.

(b) We have µ(K2(G,G,G)) = 3µ(G)− 2 = 4.

Figure 4.15: Deducing a minimum path cover (in black only) of a graph
Kν(G1, G2, ..., G`) (in black and grey).

Observation 4.36. Let ν ≥ 1 and G1, G2, ..., G` be ` ≥ 1 graphs with µ(G1) ≥ µ(G2) ≥ ... ≥
µ(G`). If ν <

∑`
i=2 µ(Gi), then µ(Kν(G1, G2, ..., G`)) > µ(G1).

Proof. The result follows by just replacing µ(Kν(G1, G2, ..., G`)) in the inequality µ(Kν(G1, G2,
..., G`)) > µ(G1) with its explicit value given by Observation 4.35. �

We now point out the following relationship between µ(G) and ς(G) for every graph G.

Observation 4.37. For every graph G, we have ς(G) ≤ |V (G)| − µ(G) + 1.

Proof. Assume the claim is not true. Then µ(G) > |V (G)| − ς(G) + 1. Now consider a (not
necessarily minimum) path cover C of G including one path with order ς(G). Clearly we have
|C| ≤ |V (G)| − ς(G) + 1 since, in the worst case, all paths of C which do not have order ς(G)
are trivial. We hence have

|V (G)| − ς(G) + 1 < µ(G) ≤ |C| ≤ |V (G)| − ς(G) + 1,

a contradiction. �

On the path cover number of k-preassignable arbitrarily partitionable graphs

We herein show that, given a non-traceable k-preassignable arbitrarily partitionable graph, we
can construct k-preassignable arbitrarily partitionable graphs with arbitrarily large path cover
numbers (and hence arbitrarily small longest paths according to Observation 4.37). This relies
on the following lemma.

Lemma 4.38. Let k ≥ 1, ν ≥ k + 1, and G1, G2, ..., G` be ` ≥ 1 k-preassignable arbitrarily
partitionable graphs. Then Kν(G1, G2, ..., G`) is k-preassignable arbitrarily partitionable if and
only if ν ≥ k + `− 1.

Proof. Let G = Kν(G1, G2, ..., G`) be a graph with order n for given k-preassignable arbitrarily
partitionable graphs G1, G2, ..., G`, and denote u1, u2, ..., uν the universal vertices of G. Consider
further an n-sequence π = (n1, n2, ..., np) and a k-preassignation P = (v1, v2, ..., vk) of G.

Our strategy for deducing a P -realization of π in G relies on the fact that if a partial part of
the realization is missing several vertices but contains one of the universal vertices, say u1, of G,
then we can easily complete this part with arbitrary unused vertices since u1 neighbours every
vertex of G. This property allows us to proceed as follows. Consider one of the Gi’s, say G1,
and pick as many parts of the realization as possible in G1 using the fact that G1 is arbitrarily
partitionable. In case some parts fit exactly in G1, i.e. there is a subsequence of π which sums
up to |V (G1)|, everything is fine. Otherwise, we can “fill” G1 with some parts, but one part

114 4.4. On the order of the longest paths

(a) Filling Step: we pick as many connected
parts in the components as possible. Full parts
are complete, dashed parts are missing vertices,
and dotted parts are extra parts used during the
Completing Step to complete some incomplete
parts.

(b) Completing Step: we include a universal ver-
tex to every incomplete part so that it can be
completed with vertices from extra parts (via the
black edges).

Figure 4.16: Illustration of the Filling and Completing Steps.

exceeds from G1. In this situation, we have to add a universal vertex to this part so that it can
be completed later (if necessary). The only things we have to make sure of are that we respect
the preassignation P when constructing the connected parts, and that not too many parts have
to be completed (i.e. at most ν, the number of universal vertices) once we have filled all of the
Gi’s with as many parts as possible.

We now explicit the two steps necessary to make use of the strategy described above, which
we refer to as the Filling and Completing Steps. An illustration of these two steps is depicted in
Figure 4.16.

Filling Step.
The Filling Step consists in two steps: we first deal with the preassigned universal vertices

before considering the Gi’s and filling them as described above.

Step 1. For every vertex vi ∈ P ∩ U , where U = {u1, u2, ..., uν} is the set of universal vertices
of G, start with the partial part {vi} which will be completed during the Completing Step (this
will be possible since this part already contains a universal vertex).

Step 2. At any moment of the procedure, we denote by πr = (r1, r2, ..., rq) the sequence made
up of the remaining non-preassigned part sizes of π, i.e. which have not been considered yet. In
particular, we start with πr = (nk+1, nk+2, ..., np) (but we always refer to the elements of πr as
r1, r2, ..., rq for the sake of simplicity).

Now consider the Gi’s in order. We assume throughout that we deal with G1 for the sake of
clarity. We distinguish several cases.

Case 1: V (G1) ∩ P = ∅.
We are in the situation whereG1 contains no preassigned vertices. If there is an i ∈ {1, 2, ..., q}

such that r1 +r2 + ...+ri = |V (G1)|, then the parts with size r1, r2, ..., ri of the realization can be
deduced by considering a realization of (r1, r2, ..., ri) in G1, which exists since G1 is arbitrarily
partitionable. In this situation, no part has to be completed.

If r1 + r2 + ...+ rq < |V (G1)| (this in particular occurs when |πr| = 0), then we can deduce a
realization of (r1, r2, ..., rq, |V (G1)|− (r1 +r2 + ...+rq)) in G1, which again exists. Again, no part
has to be completed (actually, the vertices from the part with size |V (G1)| − (r1 + r2 + ...+ rq)
will be available during the Completing Step to fill some partial parts).

If we are not in one of the two previous cases, then there is an i ∈ {1, 2, ..., q} such that
r1 + r2 + ... + ri−1 < |V (G1)| and r1 + r2 + ... + ri > |V (G1)|. Let r′i and r′′i be two positive

Chapter 4. Preassignable arbitrarily partitionable graphs 115

integers such that ri = r′i + r′′i , and r1 + r2 + ... + ri−1 + r′i = |V (G1)|. Since G1 is arbitrarily
partitionable, we can deduce a realization of (r1, r2, ..., ri−1, r

′
i) in G1. In this situation, the part

Vi with size r′i is incomplete and has to be completed with r′′i ≥ 1 additional vertices. Then pick
an unused vertex from U , and add it to Vi so that Vi can be completed during the Completing
Step (if necessary, i.e. if r′′i ≥ 2).

In every of these three situations, remove from πr the elements which have already been
treated.

Case 2: G1 includes t of the preassigned vertices, where 1 ≤ t ≤ k.
Denote v1, v2, ..., vt the vertices of V (G1) ∩ P . We consider three main cases. At first, if

n1 + n2 + ... + nt = |V (G1)|, then just consider a (v1, v2, ..., vt)-realization of (n1, n2, ..., nt) in
G1, which exists since G1 is k-preassignable arbitrarily partitionable with k ≥ t, and hence t-
preassignable arbitrarily partitionable, recall Observation 4.3. Note that in doing so, no partial
part will have to be completed during the Completing Step.

Now, if on the one hand we have n1 + n2 + ...+ nt > |V (G1)|, then let i ∈ {1, 2, ..., t} be the
value for which n1+n2+...+ni−1+(t−(i−1)) < |V (G1)| and n1+n2+...+ni+(t−i) > |V (G1)|. Set
n′i = |V (G1)|−(n1 +n2 + ...+ni−1)−(t− i). Since G1 is k-preassignable arbitrarily partitionable
with k ≥ t, we can deduce a (v1, v2, ..., vt)-realization of (n1, n2, ..., ni−1, n

′
i, 1, 1, ..., 1), where the

value 1 is repeated t − i times, in G1, using e.g. Theorem 2.1 since G1 is (k + 1)-connected
according to Observation 4.2. In doing so, note that all of the preassigned vertices v1, v2, ..., vt
belong to distinct parts. Besides, the parts with size n1, n2, ..., ni−1 are complete, while the ith
part is missing ni−n′i vertices, and the other parts are missing all but one vertex (except if these
parts are intended to have size 1). Then add an unused universal vertex in each of the parts
which have to be completed (there are at most t− i+ 1 of them).

If, on the other hand, we have n1+n2+...+nt < |V (G1)|, then proceed as follows. First, if πr is
empty, then just consider a (v1, v2, ..., vt)-realization of (n1, n2, ..., nt, |V (G1)|−(n1+n2+...+nt))
in G1, which exists since G1 is k-preassignable arbitrarily partitionable with k ≥ t, and hence
t-preassignable arbitrarily partitionable according to Observation 4.3. The vertices from the
resulting part with size |V (G1)|− (n1 +n2 + ...+nt) will actually be used during the Completing
Step to complete some partial parts. Second, if πr has elements, then let i ∈ {1, 2, ..., q + 1} be
the maximum index for which n1 +n2 + ...+nt+ r1 + r2 + ...+ ri−1 < |V (G1)|. In case i = q+ 1,
i.e. all of the parts with size n1, n2, ..., nt as well as those whose sizes are not preassigned can be
picked in G1, just consider a (v1, v2, ..., vt)-realization of

(n1, n2, ..., nt, r1, r2, ..., rq, |V (G1)| − (n1 + n2 + ...+ nt + r1 + r2 + ...+ rq))

in G1, which again exists since G1 is t-preassignable arbitrarily partitionable. Again, the vertices
from the extra part will be available for the Completing Step. If we are not in this case, i.e.
i < q + 1, then again split ri into two integers r′i and r′′i (with ri = r′i + r′′i) such that n1 +
n2 + ... + nt + r1 + r2 + ... + ri−1 + r′i = |V (G1)|, and consider a (v1, v2, ..., vt)-realization of
(n1, n2, ..., nt, r1, r2, ..., ri−1, r

′
i) in G1. Again, add an unused universal vertex to the part with

size r′i so that it can eventually be completed with r′′i −1 additional vertices during the Completing
Step.

Again, after every of these cases, remove the first elements from πr whose associated connected
subgraphs have already been (possibly partially) picked.

Completing Step.
Once the Filling Step is achieved, every part Vi of the (possibly partial) realization is either

complete, i.e. it already has size ni, or is missing some vertices but Vi contains a universal
vertex by construction. Then just add ni − |Vi| unused vertices to Vi, i.e. vertices which belong
to some extra parts. This part still induces a connected subgraph since it contains a universal

116 4.4. On the order of the longest paths

vertex. Repeating this operation for every partial part missing some vertices, we eventually get
a partition of V (G), which is a P -realization of π in G.

Regarding the correctness of the whole process, note that all of the parts induce connected
subgraphs, have the correct sizes, and include, if required, a preassigned vertex. Furthermore
note that the number of partial parts we have to deal with during the Completing Step is at most
k+`−1. Indeed, by Step 1 at most k such partial parts may result (this upper bound is typically
reached in the extremal case where all preassigned vertices are also universal), while at most `−1
such partial parts may arise during Step 2 (this is reached when the picked parts exceed from
the `− 1 first Gi’s considered). The P -realization of π in G is then always eventually obtained
when ν ≥ k+ `− 1, while one can imagine situations in which the Filling and Completing Steps
cannot provide a solution when ν < k + `− 1. �

Using Lemma 4.38, we now prove the main result of this section.

Theorem 4.39. Let k ≥ 1 and G1, G2, ..., Gk+2 be k + 2 copies of a k-preassignable arbitrar-
ily partitionable graph G. If G is not traceable, then µ(K2k+1(G1, G2, ..., Gk+2)) > µ(G) and
K2k+1(G1, G2, ..., Gk+2) is k-preassignable arbitrarily partitionable.

Proof. Since 2k + 1 ≥ k + (k + 2) − 1, the graph K2k+1(G1, G2, ..., Gk+2) is k-preassignable
arbitrarily partitionable according to Lemma 4.38. Besides, since we have

µ(G1) = µ(G2) = ... = µ(Gk+2) = µ(G) ≥ 2

by the non-traceability of G, we get

k+2∑

i=2

µ(Gi) ≥ 2(k + 1) > 2k + 1.

We then also have µ(K2k+1(G1, G2, ..., Gk+2)) > µ(G) according to Observation 4.36, as claimed.
�

Corollary 4.40. Provided a non-traceable k-preassignable arbitrarily partitionable graph, we can
construct k-preassignable arbitrarily partitionable graphs with arbitrarily large path cover number
and arbitrarily small longest paths (compared to their order).

Proof. Let G be such a non-traceable k-preassignable arbitrarily partitionable graph, and let
(G0, G1, G2, ..., Gq) be the sequence of q + 1 graphs defined inductively as follows.

• G0 = G.

• For every i ∈ {1, 2, ..., q}, set Gi = K2k+1(Gi−1, Gi−1, ..., Gi−1) where Gi is made up of k+ 2
components isomorphic to Gi−1.

According to Theorem 4.39, all of the graphs from (G0, G1, G2, ..., Gq) are k-preassignable
arbitrarily partitionable since G0 = G is k-preassignable arbitrarily partitionable by assumption.
Besides, we have

µ(Gq) > µ(Gq−1) > ... > µ(G0).

For this reason, if we write ς(Gi) = |V (Gi)| − ci for every i ∈ {0, 1, ..., q}, where ci ≥ 1 is an
integer, then we get

cq > cq−1 > ... > c0

according to Observation 4.37. This completes the proof. �

Chapter 4. Preassignable arbitrarily partitionable graphs 117

Figure 4.17: A non-traceable 1-preassignable arbitrarily partitionable graph.

On the existence of non-traceable k-preassignable arbitrarily partitionable
graphs

Corollary 4.40 relies on the assumption that there exist, for some k ≥ 1, non-traceable k-
preassignable arbitrarily partitionable graphs. We describe below an inductive construction pro-
viding a non-traceable k-preassignable arbitrarily partitionable graph from (k− 1)-preassignable
arbitrarily partitionable graphs with large path cover numbers. As a basis, this construction then
requires a non-traceable 1-preassignable arbitrarily partitionable graph. Consider the graph de-
picted in Figure 4.17. This graph is obviously non-traceable, and we previously showed in [29]
that this graph is also 1-preassignable arbitrarily partitionable (checking this property is easy
due to its symmetric structure and small order). Using Corollary 4.40, we hence directly get the
following.

Corollary 4.41. 1-preassignable arbitrarily partitionable graphs can have arbitrarily large path
cover number and arbitrarily small longest paths (compared to their order).

Assuming that (k−1)-preassignable arbitrarily partitionable graphs can have arbitrarily large
path cover number, we show below that we can deduce a non-traceable k-preassignable arbitrarily
partitionable graph.

Lemma 4.42. Let k ≥ 1, ν ≥ k+ 1, and G1, G2, ..., G` be ` ≥ 1 (k− 1)-preassignable arbitrarily
partitionable graphs. Then Kν(G1, G2, ..., G`) is k-preassignable arbitrarily partitionable if and
only if ν ≥ max{k + `− 1, `+ 2}.

Proof. Let G = Kν(G1, G2, ..., G`) be a graph with order n for given graphs G1, G2, ..., G`. Let
further π = (n1, n2, ..., np) be an n-sequence, and P = (v1, v2, ..., vk) be a k-preassignation of G.
We exhibit a P -realization of π in G in a very same manner as in the proof of Lemma 4.38, i.e.
by using the Filling and Completing Steps. We hence use the same terminology throughout this
proof.

Every situation described in the proof of Lemma 4.38 can actually be handled similarly
since ν ≥ max{k + ` − 1, ` + 2} ≥ k + ` − 1. The only new situation we have to consider is
when the k preassigned vertices are all located in G1 while G1 is “only” (k − 1)-preassignable
arbitrarily partitionable. In such a situation the Filling Step has to be handled as follows. If
n1 + n2 + ... + nk = |V (G1)|, then we can deduce a (v1, v2, ..., vk)-realization of (n1, n2, ..., nk)
in G1 using Theorem 2.1 since G1 is (k − 1)-preassignable arbitrarily partitionable and is hence
k-connected (see Observation 4.2). No part has to be completed via the Completing Step in this
situation.

In case n1+n2+...+nk > |V (G1)|, we can proceed as in Step 2 from the proof of Lemma 4.38.
Let i ∈ {1, 2, ..., k} be the index for which n1 + n2 + ... + ni−1 + (k − (i − 1)) < |V (G1)| and
n1 + n2 + ...+ ni + (k− i) > |V (G1)|. Again, set n′i = |V (G1)| − (n1 + n2 + ...+ ni−1)− (k− i).
By the k-connectivity of G1, using Theorem 2.1 we can deduce a (v1, v2, ..., vk)-realization of
(n1, n2, ..., ni−1, n

′
i, 1, 1, ..., 1), where the value 1 is repeated k−i times at the end of the sequence,

in G1. Again, each i′th part, with i′ ≥ i, is (possibly) incomplete, so just add a universal vertex
to the corresponding partial part so that it can be completed during the Completing Step (if
needed).

Finally consider the case where n1 + n2 + ... + nk < |V (G1)|. Then let i ∈ {1, 2, ..., q} be
the index for which n1 + n2 + ...+ nk + r1 + r2 + ...+ ri−1 < |V (G1)| and n1 + n2 + ...+ nk +

118 4.4. On the order of the longest paths

G1

w1 w2

Vk U1
vk

u1u2

(a) Initial situation: the preassigned vertex vk
has to be moved from U1 to Vk. The vertices u1

and u2 are universal.

G1

w1 w2 vk

u1u2

(b) The parts Vk \ {w1, w2} ∪ {vk, u2} and U1 \
{vk} ∪ {u1} induce connected parts (in black
only).

Figure 4.18: Moving a preassigned vertex from a part to another one using two
universal vertices.

r1 + r2 + ...+ ri > |V (G1)|. We can suppose that such an index exists since πr cannot be empty
at the beginning of the Filling Step (otherwise by the k-connectivity of G we could directly
deduce a P -realization of π using Theorem 2.1). In particular, if a component includes the k
preassigned vertices, then consider this component as G1 first so that πr is not empty. Again,
split ri into two non-null elements r′i and r

′′
i such that ri = r′i + r′′i and n1 + n2 + ...+ nk + r1 +

r2 + ...+ ri−1 + r′i = |V (G1)|. Consider a (v1, v2, ..., vk−1)-realization (V1, V2, ..., Vk, U1, U2, ..., Ui)
of (n1, n2, ..., nk, r1, r2, ..., ri−1, r

′
i) in G1, which exists since G1 is (k−1)-preassignable arbitrarily

partitionable. The only requirement which may not be fulfilled is the membership of vk to Vk.
If this is already met, then we are done. Otherwise, we modify the parts as follows.

Assume vk ∈ U1 for the sake of simplicity. Let further u1 and u2 be two unused universal
vertices of G. Now let

U ′1 = U1 \ {vk} ∪ {u1}
and

V ′k = Vk \ {w1, w2} ∪ {u2, vk},
where w1 and w2 are any two adjacent vertices of Vk. Clearly G[U ′1] is connected due to the
presence of u1 in this subgraph (which still has order r1 (or r′1)). Similarly, the part V ′k still
induces a connected subgraph (due to the presence of u2) on nk vertices, and now contains vk.
Now w1 and w2 belong to no part, but then we can try to complete the part Ui with w1 and
w2 (recall that Ui is missing r′′i vertices). We may suppose that i 6= 1 since otherwise all the
arguments below hold directly since U ′1 already contains a universal vertex.

If r′′i = 1, then the part is only missing one vertex, so add a universal vertex to it, and create
(possibly) partial parts of the realization Ui+1 and possibly Ui+2 (intended to have size ri+1 and
ri+2, respectively) containing w1, w2, and at most one universal vertex, and inducing connected
subgraphs (if ri+1 ≥ 2, then Ui+1 is sufficient). If r′′i = 2, then add a universal vertex to Ui, as
well as, say, w1, so that Ui has the required size ri. Now create the (possibly partial) part Ui+1

by adding w2 to Ui+1, as well as one universal vertex if ri+1 ≥ 2. In any case, w2 belongs to a
part, which can be completed during the Completing Step if necessary. Now if r′′i ≥ 3, then add
w1, w2, and a universal vertex to the part Ui.

Again, after every of these strategies, remove the part sizes of πr whose associated parts have
already been (possibly partially) picked.

The important thing to be aware of, is that the number of needed universal vertices is
max{k + ` − 1, ` + 2}. The value k + ` − 1 follows from the same arguments as in the proof of

Chapter 4. Preassignable arbitrarily partitionable graphs 119

Lemma 4.38. For the new situations specific to the current proof, note that, in the worst case,
we may need two universal vertices to “move” the preassigned vertex vk from a part to another
one, plus another universal vertex to complete a part which is missing only one vertex (i.e. when
r′′i = 1), and a last universal vertex to complete the part which is intended to contain w1 and w2.
Then what remain are ` − 1 components which do not include preassigned vertices, and ν − 4
universal vertices. As seen in the proof of Lemma 4.38, we then need at most ` − 2 universal
vertices to pick the remaining parts in the remaining components. For this additional case, we
thus need at most 4 + `− 2 = `+ 2 universal vertices. Again, for bad values of ν, we can deduce
situations where a P -realization of π in G cannot be obtained. �

We are now ready to express the main result of this section.

Theorem 4.43. For every k ≥ 1, k-preassignable arbitrarily partitionable graphs can have arbi-
trarily large path cover number and arbitrarily small longest paths (compared to their order).

Proof. The claim is already true for k = 1, recall Corollary 4.41. Now assume it is true for every
value of k up to an i− 1 ≥ 1, and put k = i. The only thing we need to show is that there exists
a non-traceable k-preassignable arbitrarily partitionable graph G so that Corollary 4.40 directly
implies the claim. Said differently, we want G to have µ(G) ≥ 2.

Choose ν ≥ max{k+ 1, 4}, and let G1 and G2 be two (k− 1)-preassignable arbitrarily parti-
tionable graphs satisfying µ(G1) + µ(G2) ≥ ν + 2. Such graphs exist according to the induction
hypothesis. Now set G = Kν(G1, G2). Then G is a k-preassignable arbitrarily partitionable
graph according to Lemma 4.42, and is not traceable since we have

µ(G) = µ(G1) + µ(G2)− ν

according to Observation 4.35, implying µ(G) ≥ 2. This completes the proof. �

4.5 Cartesian products

Similarly as in Section 3.5, we herein focus on Cartesian products G�H involving preassignable
arbitrarily partitionable graphs, and more particularly on the situations where H is traceable.
The very first observation we raise is that if G is k-preassignable arbitrarily partitionable, then
G�P` is not necessarily (k + 1)-preassignable arbitrarily partitionable. Said differently, the
edges of G�P` coming from P` are not sufficient to gain one additional preassignable vertex.
The interesting fact is that this does not follow directly from Observation 4.2 since G�P` has
connectivity κ(G) + 1 for every ` ≥ 2.

Observation 4.44. If ` ≥ 2 and G is a k-preassignable arbitrarily partitionable graph, then
G�P` is not necessarily (k + 1)-preassignable arbitrarily partitionable.

Proof. Let G = C4 be the cycle with order 4. Then G is 1-preassignable arbitrarily partitionable
according to Observation 4.5. Note then that G�P2 is isomorphic to Q3, the hypercube of
dimension 3, which is a balanced bipartite graph. Such a graph is not 2-preassignable arbitrarily
partitionable according to Lemma 4.4. �

The argument given in the proof of Observation 4.44 extends to Cartesian products of the
form Cn�P` with even n ≥ 4 and every ` ≥ 1. One direction of interest is hence to consider
whether the number of vertices we can preassign while partitioning a Cartesian product involving
a preassignable arbitrarily partitionable graph is preserved. We formulate this in the following
weaker form.

Conjecture 4.45. Let k ≥ 1 and ` ≥ 1 be two positive integers. If a graph G is k-preassignable
arbitrarily partitionable, then so is G�P`.

120 4.5. Cartesian products

uj0

Gj Gj+1 Gj+2Gj−2 Gj−1

Figure 4.19: Unifying connected parts from successive layers of G�P`. Dotted
parts joined by an edge are parts whose sizes result from the splitting of a same
element from the original sequence (Case 1).

We here support Conjecture 4.45 by showing it to hold for k = 1.

Theorem 4.46. For every integer ` ≥ 1 and 1-preassignable arbitrarily partitionable graph G,
the Cartesian product G�P` is 1-preassignable arbitrarily partitionable.

Proof. Set n = |V (G)|, and let π = (n1, n2, ..., np) be an n`-sequence and uj0 be a vertex of
G�P`. We explain how to find a (uj0)-realization of π in G�P`. If ` = 1, then G�P` is
isomorphic to G, so a realization can be deduced directly since G is 1-preassignable arbitrarily
partitionable by assumption. Suppose thus that ` ≥ 2.

We distinguish two main cases depending on the value of n1. For each of these cases, the
proof is led in two steps. Roughly, we first possibly modify π by dividing some of its terms
into two or more addends, so that π can be partitioned into ` sequences π1, π2, ..., π` satisfying
‖πi‖ = n for every i ∈ {1, 2, ..., `}. Then, for every i ∈ {1, 2, ..., `}, we construct a realization of
πi in the ith layer Gi of G�P` in such a way that parts whose sizes result from the splitting of
a same element of π yield a connected subgraph when glued together.

Case 1. n1 < n.
Consider the sequence π′ = (n2, n3, ..., np). For every i ∈ {1, 2, ..., `}, we define a capacity

ϕ(i) for the ith layer Gi as follows:

ϕ(i) =

{
n− n1 if i = j,
n otherwise.

We now recursively define ` sequences π1, π2, ..., π` in such a way that each πi sums up to
ϕ(i) as follows. If there is an index q ∈ {2, 3, ..., p} such that

∑q
i=2 ni = ϕ(1), then we set π1 =

(n2, n2, ..., nq), π′′ = (nq+1, nq+2, ..., np), and α(1) = 0 (for each i ∈ {1, 2, ..., `− 1}, the number
α(i) indicates whether the last term of πi originates from the division of a term of π). Otherwise,
let q ∈ {2, 3, ..., p} be such that

∑q−1
i=2 ni < ϕ(1) and

∑q
i=2 ni > ϕ(1), and η1 = ϕ(1) −∑q−1

i=2 ni
and η′2 = nq − η1. We then set π1 = (n2, n3, ..., nq−1, η1), π′′ = (η′2, nq+1, nq+2, ..., np), and
α(1) = 1.

Repeat this procedure with the sequence π′′ and ϕ(2) (instead of π′ and ϕ(1)) in order to
obtain a sequence π2 and the number α(2), and so on. After ` repetitions of this procedure, we
obtain the desired sequences π1, π2, ..., π`. We write πi = (ni1, n

i
2, ..., n

i
pi) for every i ∈ {1, 2, ..., `},

where pi ≥ 1. The important detail to keep in mind is that if an element ni of π has been

Chapter 4. Preassignable arbitrarily partitionable graphs 121

dispatched into two sequences πj1 and πj2 (with j2 = j1 + 1), then the two resulting addends are
the last element of πj1 and the first element of πj2 , respectively.

We begin the construction of a (uj0)-realization of π in G�P` by choosing a (uj0)-realization
(V1, V

j
1 , V

j
2 , ..., V

j
pj) of (n1, n

j
1, n

j
2, ..., n

j
pj) in Gj . Such exists since (n1, n

j
1, n

j
2, ..., n

j
pj) is an

n-sequence and Gj is 1-preassignable arbitrarily partitionable. Next, for every successive i in
(j − 1, j − 2, ..., 1), we proceed as follows (in case j = 1, just skip this step). If α(i) = 0, then
we take an arbitrary realization (V i

1 , V
i

2 , ..., V
i
pi) of πi in Gi. Otherwise, i.e. α(i) = 1, we choose

a vertex ui+1 ∈ V i+1
1 and consider a realization (V i

1 , V
i

2 , ..., V
i
pi) of πi in Gi satisfying ui ∈ V i

pi .
This additional requirement can be imposed since Gi is 1-preassignable arbitrarily partitionable.
Note that the subgraph induced by V i

pi ∪ V
i+1

1 in G�P` is connected via the edge uiui+1.
Now for successive i in (j + 1, j + 2, ..., `) (if j = `, then skip this step), if α(i − 1) = 0,

then consider any realization (V i
1 , V

i
2 , ..., V

i
pi) of πi in Gi. Otherwise, i.e. α(i− 1) = 1, we choose

a vertex ui−1 ∈ V i−1
pi−1

, and choose the realization of πi in Gi so that ui ∈ V i
1 . This is again

possible since Gi is 1-preassignable arbitrarily partitionable. For the same argument as above,
the subgraph (G�P`)[V i−1

pi−1
∪ V i

1] is connected.
We then obtain a realization

R = (V1, V
1

1 , V
1

2 , ..., V
1
p1 , V

2
1 , V

2
2 , ..., V

2
p2 , ..., V

`
1 , V

`
2 , ..., V

`
p`

)

of the sequence
(n1, n

1
1, n

1
2, ..., n

1
p1 , n

2
1, n

2
2, ..., n

2
p2 , ..., n

`
1, n

`
2, ..., n

`
p`

)

in G�P`. Suppose that in the procedure of defining the sequences π1, π2, ..., π`, a certain term
nν of π has been divided into s ≥ 2 addends nipi , n

i+1
1 , ..., ni+s−1

1 . In particular, we have pi+1 =

pi+2 = ... = pi+s−2 = 1 if s ≥ 3. Set Vν = V i
pi ∪ V

i+1
1 ∪ ... ∪ V i+s−1

1 . By our construction, the
subgraph (G�P`)[Vν] is connected, see Figure 4.19. Then replace the parts V i

pi , V
i+1

1 , ..., V i+s−1
1

of R with Vν . A (uj0)-realization of π in G�P` is eventually obtained by repeating the same
operation for all divided terms of π.

Case 2. n1 ≥ n.
Let d = b n1

n−1c and r = n1 (mod (n − 1)) so that n1 = d(n − 1) + r. In order to make the
proof more legible, we distinguish two cases.

Case 2.1. d < j.
In such a situation, we have to pick the connected part V1 including uj0 in the “middle” of

G�P`, that is we cannot just pick all vertices from all layers located on the left of the jth one.
This has to be done in such a way that (G�P`)− V1 remains connected, since otherwise there
is a high risk that the realization of π cannot be deduced.

To take care of this mater, we modify the capacity function ϕ as follows:

ϕ(i) =





1 if i ∈ {j − d+ 1, j − d+ 2, ..., j},
n− r if i = j − d,
n otherwise.

Then set π′ = (n2, n3, ..., np), and define the sequences π1, π2, ..., π` and the integers α(1), α(2), ..., α(`)
similarly as in Case 1 (but using the new capacity function ϕ).

Choose a vertex v ∈ V (G) \ {u0}. We start by deducing a realization in Gj−d. In case
r 6= 0, deduce a realization (W, V j−d

1 , V j−d
2 , ..., V j−d

pj−d) of (r, nj−d1 , nj−d2 , ..., nj−dpj−d) in Gj−d sat-
isfying vj−d ∈ V j−d

pj−d . In case r = 0, consider any realization (V j−d
1 , V j−d

2 , ..., V j−d
pj−d) of πj−d in

Gj−d verifying vj−d ∈ V j−d
pj−d . Such realizations exist since Gj−d is 1-preassignable arbitrarily

partitionable.

122 4.5. Cartesian products

uj0

GjGj−dGj−d−1 Gj+1Gj−d+1

Figure 4.20: Unifying connected parts from successive layers of G�P`. Dotted
parts joined by an edge are parts whose sizes result from the splitting of a same
element from the original sequence (Case 2.1).

Then, we consecutively produce realizations of πj−d−1, πj−d−2, ..., π1 inGj−d−1, Gj−d−2, ..., G1,
respectively, following the same rules as in Case 1. That is, for every successive i in (j − d −
1, j − d − 2, ..., 1), when α(i) = 1 we choose a vertex ui+1 ∈ V i+1

1 , and, using the fact that
G is 1-preassignable arbitrarily partitionable, we deduce a realization (V i

1 , V
i

2 , ..., V
i
pi) of πi in

Gi verifying ui ∈ V i
pi . If α(i) = 0, then we deduce an arbitrary realization instead. For every

i ∈ {j−d+1, j−d+2, ..., j}, we consider ({vi}) as a realization of πi = (1). Next, for successive
i in (j + 1, j + 2, ..., `) we proceed exactly in the same way as in Case 1. Finally set

V1 = W ∪
j⋃

i=j−d+1

(V (Gi) \ {vi}),

which induces a connected subgraph of (G�P`)[V1]. The same arguments as in Case 1 then
imply that we can unify some subsets of the realization

(V1, V
1

1 , V
1

2 , ..., V
1
p1 , V

2
1 , V

2
2 , ...V

2
p2 , ..., V

`
1 , V

`
2 , ..., V

`
p`

)

of the sequence
(n1, n

1
1, n

1
2, ..., n

1
p1 , n

2
1, n

2
2, ...n

2
p2 , ..., n

`
1, n

`
2, ..., n

`
p`

)

in G�P` in order to get a (uj0)-realization of π in G�P`, see Figure 4.20.

Case 2.2. d ≥ j.
If p = 1, then π = (n`) and π is trivially realizable in G�P`. For p ≥ 2, we choose a vertex

v ∈ V (G) \ {u0} and define

V1 = (
r⋃

i=1

V (Gi)) ∪ (
d⋃

i=r+1

(V (Gi) \ {vi})).

Clearly V1 induces a connected subgraph including uj0. Then consider the capacity function ϕ
defined as

ϕ(i) =

{
1 if i ∈ {r + 1, r + 2, ..., d},
n if i ∈ {d+ 1, d+ 2, ..., `},

and deduce sequences πr+1, πr+2, ..., π` and their respective realizations in Gr+1, Gr+2, ..., G`

using the same rules as in Case 1. We can then eventually obtain a (uj0)-realization (V1, V2, ..., Vp)
of π in G�P` similarly as previously, i.e. where each of V2, V3, ..., Vp possibly results from the
union of several parts picked independently in consecutive layers of G�P`. �

Chapter 4. Preassignable arbitrarily partitionable graphs 123

4.6 Conclusion and open questions

The goal of this chapter was to study preassignable arbitrarily partitionable graphs, and es-
pecially to give very first properties of these graphs. We have first exhibited several families
of preassignable arbitrarily partitionable graphs with less edges than complete graphs. In Sec-
tion 4.2, we have showed that powers of traceable or Hamiltonian graphs can be partitioned
even when the maximum number of vertices (indicated by their connectivity) is preassigned,
these results generalizing easy observations regarding the partition of traceable or Hamiltonian
graphs. We have then considered Harary graphs and another class of 3-connected graphs in Sec-
tions 4.3.1 and 4.3.2, respectively. As a main result from our investigations of these two classes
of graphs, we have showed that there are k-preassignable arbitrarily partitionable graphs with
order n and the least possible size (i.e. the one specified by Observation 4.14) for every k ≥ 1
and n ≥ k + 1, recall Theorem 4.33. Due to the strong relationship between powers of paths or
cycles and Harary graphs, as another consequence of our investigations we have also exhibited
situations in which powers of paths or cycles can be partitioned under more preassigned vertices
than indicated by their connectivity, typically when the preassigned vertices do not form a cutset
(recall Lemmas 4.9, 4.18, 4.19 and 4.20).

It would be interesting considering the same concerns regarding arbitrarily P -partitionable
graphs. We in particular address the following question:

Question 4.47. For given k ≥ 1 and n ≥ k+ 1, what is the minimum size of a graph with order
n which is arbitrarily P -partitionable for some k-tuple P of vertices?

Since a k-preassignable arbitrarily partitionable graph is arbitrarily P -partitionable for every
k-tuple P of its vertices by definition, by Theorem 4.33 we directly get, for every k ≥ 1 and
n ≥ k + 1, that dn(k+1)

2 e is an upper bound on the quantity asked in Question 4.47. But this
upper bound should not be tight since an arbitrarily P -partitionable graph does not need to
be as dense as a k-preassignable arbitrarily partitionable graph (in particular, an arbitrarily P -
partitionable graph should not need to be (|P |+1)-connected). To be convinced of this statement,
just recall that a path with order n and endvertices u and v is arbitrarily (u, v)-partitionable
(Observation 2.34) and has size n − 1, while a 2-preassignable arbitrarily partitionable graph
with order n has size at least d3n

2 e (Observation 4.14). So it would be interesting studying
how these two quantities of edges can differ. Answering Question 4.47 would also be interesting
regarding our investigations from Section 3.3.3 of Chapter 3, wherein we have considered a family
of graphs made up of several arbitrarily P -partitionable graphs. This would in particular give
us an indication on how dense these particular graphs can be.

Inspired by those investigations regarding the relationship between arbitrarily partitionable
graphs and Hamiltonian graphs, we have then considered the order of the longest paths in a
preassignable arbitrarily partitionable graph in Section 4.4. In particular, we have provided
several graph constructions showing that k-preassignable arbitrarily partitionable graphs can be
arbitrarily not traceable for every k ≥ 1, i.e. that ς(G) can be arbitrarily smaller than |V (G)| in
general (recall Theorem 4.43).

Similarly as for arbitrarily partitionable graphs, recall Section 3.5, we have then considered
the construction of k-preassignable arbitrarily partitionable graphs using the Cartesian product
of graphs in Section 4.5. In this vein, we have mainly considered whether G�P` can always be
partitioned following a k-preassignation assuming G is k-preassignable arbitrarily partitionable
itself, recall Conjecture 4.45. Towards this conjecture, we have verified the case k = 1, so the
question for all remaining cases is still open and is thus one potential direction for future works.
A mere feeling we have is that a proof for the general case could rely on an induction on both
k and `, and a distinction of all main ways for the preassigned vertices to be located in G�P`.
In case e.g. some of the k preassigned vertices are located on the “left side” of G�P` while the

124 4.6. Conclusion and open questions

remaining preassigned vertices are located on the “right side” of G�P`, we could then use the
induction on k regarding one “left subgraph” and one “right subgraph” of G�P` to obtain two
realizations satisfying parts of the preassignation, and then try to unify these two realizations to
get one whole realization.

In case Conjecture 4.45 is tackled, one could then turn his concern to the following counterpart
of Conjecture 3.44 for preassignable arbitrarily partitionable graphs, which seems way harder to
tackle.

Conjecture 4.48. If two graphs G and H are k-preassignable arbitrarily partitionable, then so
is G�H.

Further directions for studying k-preassignable arbitrarily partitionable graphs are roughly
the same as for arbitrarily partitionable graphs. Studying general structural properties of k-
preassignable arbitrarily partitionable graphs appears to be a convenient direction. It could be
especially interesting investigating what subgraphs cannot appear in a k-preassignable arbitrarily
partitionable graph. As an illustration, removing k vertices from a k-preassignable arbitrarily
partitionable graph G results in a graph which admits a (possibly quasi-) perfect matching,
implying that some local substructures cannot occur in G.

A point behind such considerations is that such studies could have consequences on the al-
gorithmic aspects related to k-preassigned arbitrarily partitionable graphs, in particular on the
status of k-Preassignable Arbitrarily Partitionable Graph, which we still do not know
much about (as briefly mentioned in Section 4.1). Such advancement could in turn have algo-
rithmic consequences on Arbitrarily Partitionable Graph due to the strong relationship
between Arbitrarily Partitionable Graph and k-Preassignable Arbitrarily Parti-
tionable Graph. We hence raise the following counterpart of Question 3.55.

Question 4.49. Is there a complexity class C such that k-Preassignable Arbitrarily Par-
titionable Graph is C-complete?

Due to the similarities between the property of being k-preassignable arbitrarily partitionable
and other classic notions of graph theory where one aims at removing vertices from a graph to
make some properties appear (like e.g. the notion of feedback vertex set, which attracted a lot
of attention, see the survey [58] by Festa, Pardalos and Resende), other natural directions for
future works can surely be suggested by the literature.

Chapter 5. On-line and recursively arbitrarily partitionable graphs 125

Chapter 5

On-line and recursively arbitrarily par-
titionable graphs

We herein consider the two recursive variants of the notion of arbitrarily partitionable graphs,
namely on-line and recursively arbitrarily partitionable graphs. After giving some easy remarks
and observations related to on-line or recursively arbitrarily partitionable graphs in Section 5.1,
and pointing out some hardness evidences regarding On-Line Arbitrarily Partitionable
Graph and Recursively Arbitrarily Partitionable Graph in Section 5.2, we then
mainly focus on the structure of on-line and recursively arbitrarily partitionable graphs.

Our first concern is to step towards a variant of Theorem 2.23 for recursively arbitrarily
partitionable graphs. Towards such, we show, in Section 5.3, that deleting a k-cutset from a
recursively arbitrarily partitionable cannot result in arbitrarily many components, that is at
most 4k − 1. We then focus more specifically on the case k = 2 in Section 5.4 by studying
the structure of on-line arbitrarily partitionable balloons, pursuing works initiated by Baudon,
Gilbert and Woźniak in [24]. Our results in this scope yield structural properties of on-line or
recursively arbitrarily partitionable graphs with a 2-cutset, see summarising Section 5.4.4.

We finally investigate, in Section 5.5, how far from traceable a recursively arbitrarily partition-
able graph can be. In particular, we exhibit two families of recursively arbitrarily partitionable
graphs illustrating the fact that the longest paths of a recursively arbitrarily partitionable graph
G can be arbitrarily smaller than |V (G)| (up to an additive factor).

5.1 Preliminary remarks and observations . 126

5.2 Algorithmic remarks . 126

5.3 Removing k-cutsets from recursively arbitrarily partitionable graphs 127

5.4 Structural properties of on-line arbitrarily partitionable balloons 129

5.4.1 Number of branches . 129

5.4.2 Some families of 4- or 5-balloons . 130

5.4.3 Order of the smallest branches . 132

5.4.4 Structural consequences on graphs with 2-cutsets 139

5.5 On the order of the longest paths in a recursively arbitrarily partitionable
graph . 140

5.5.1 Additive factor . 140

5.5.2 Multiplicative factor . 144

5.6 Conclusion and open questions . 146

The results presented in Section 5.5 were published in [31]. All results presented in Sec-
tion 5.4 were obtained jointly with Baudon, Foucaud and Pilśniak and have been submitted for
publication [15].

126 5.1. Preliminary remarks and observations

5.1 Preliminary remarks and observations

Throughout this chapter, we often make use of the following equivalent condition, first given
by Gilbert [64], for a graph to be recursively arbitrarily partitionable, which is usually easier to
check than the condition from Definition 2.7.

Observation 5.1 ([64]). A graph G is recursively arbitrarily partitionable if either

• G ' K1, or

• for every λ ∈ {1, 2, ..., b |V (G)|
2 c}, there is a bipartition Vλ∪V|V (G)|−λ of V (G) such that G[Vλ]

and G[V|V (G)|−λ] are recursively arbitrarily partitionable, and have order λ and |V (G)| − λ,
respectively.

We now introduce some known structural properties of arbitrarily partitionable balloons.
The following first observation, which is again due to Gilbert [64], follows from the non-existence
of a (possibly quasi-) perfect matching in a balloon under certain circumstances (this is actually
nothing but an application of Theorem 2.24).

Observation 5.2 ([64]). A balloon B is not arbitrarily partitionable if

• |V (G)| is even and B has at least three odd branches,

• |V (G)| is odd and B has at least four odd branches.

The following lemma is nothing but a particular case of Theorem 2.23, though it was first
proved in this specific form by Baudon, Gilbert and Woźniak in [24].

Lemma 5.3 ([24]). If B(b1, b2, ..., bk) is an arbitrarily partitionable balloon satisfying b1 ≤ b2 ≤
... ≤ bk, then we have

2bi ≥
i−1∑

j=1

bj

for every i ∈ {2, 3, ..., k}.

5.2 Algorithmic remarks

Due to the fact that the number of recursive calls needed to check whether a graph G is on-line
or recursively arbitrarily partitionable is not constant but dependent of |V (G)|, the membership
of either of On-Line Arbitrarily Partitionable Graph and Recursively Arbitrarily
Partitionable Graph to the polynomial hierarchy seems improbable. As suggested by this
observation, PSPACE is a more legitimate candidate for the membership of these two problems.
We confirm it in the following result.

Theorem 5.4. On-Line Arbitrarily Partitionable Graph and Recursively Arbi-
trarily Partitionable Graph are in PSPACE.

Proof. By definition, for each of On-Line Arbitrarily Partitionable Graph and Re-
cursively Arbitrarily Partitionable Graph we just have to propose a polynomial-space
algorithm solving it. We herein only propose such an algorithm for Recursively Arbitrarily
Partitionable Graph, but it should be clear that every algorithm for Recursively Ar-
bitrarily Partitionable Graph can easily be modified for On-Line Arbitrarily Par-
titionable Graph due to the likeness of the two underlying checking processes (compare
Definition 2.6 and Observation 5.1).

Chapter 5. On-line and recursively arbitrarily partitionable graphs 127

1 if G ' K1 then
2 return true;

3 else if G is not connected then
4 return false;

5 else
6 foreach λ ∈ {1, 2, ..., b |V (G)|

2 c} do
7 foreach subset Vλ ⊂ V (G) with size λ do
8 if G[Vλ] and G− Vλ are recursively arbitrarily partitionable then
9 Consider the next value of λ;

10 return false;

11 return true;

Algorithm 1: Determining whether a graph G is recursively arbitrarily partitionable.

The correctness of Algorithm 1 should be clear as it is nothing but a straight implementation
of Observation 5.1. At Line 8, it is understood that Algorithm 1 is recursively invoked twice.
Recall that we do not care about the time complexity used by the whole process. Line 3 can
be achieved using O(|V (G)|) space, i.e. by just performing e.g. a breadth-first search algorithm
using an array of booleans in order to memorize the already encountered vertices. All subsets
Vλ mentioned at Line 7 can be generated using an array of |V (G)| booleans, where the ith one
is intended to depict the membership (or not) of the ith vertex of G (following an arbitrary
ordering of V (G)) to Vλ. So at each step of the recursion, the algorithm uses O(|V (G)|) space.
The recursion depth is |V (G)| since the induced subgraphs are obtained by removing at least one
vertex (typically for λ = 1) from G. Dedicating one array of |V (G)| booleans for each specific
level of the recursion, i.e. one array for calls at depth 1, one array for calls at depth 2, etc., we
get that the whole process uses O(|V (G)|2) space. �

5.3 Removing k-cutsets from recursively arbitrarily partitionable
graphs

As suggested by Theorem 2.25, an equivalent to Theorem 2.23 for recursively arbitrarily par-
titionable graphs should be quite different. We herein only focus on the maximum number
of components which may arise after the removal of a k-cutset from a recursively arbitrarily
partitionable graph.

While deleting a k-cutset of an arbitrarily partitionable graph may result in arbitrarily many
components, recall Theorem 2.23, a quick investigation on small recursively arbitrarily partition-
able graphs suggests that this property should not hold for these graphs. From our investigations,
we believe the following should be a reasonable upper bound on the maximum number of such
resulting components.

Conjecture 5.5. Removing a cutset with size k ≥ 1 from a recursively arbitrarily partitionable
graph results in at most 2k + 1 components.

The value 2k + 1 from Conjecture 5.5 is only a pure guess based on investigations on small
values of k, so it is not based on strong formal arguments. It is however worth mentioning that
Conjecture 5.5 is verified for k = 2, recall Theorem 2.25, while the case k = 1 follows as a special
case of upcoming Theorem 5.6 (though verifying it by hand should be an easy exercise).

We herein prove a weaker version of Conjecture 5.5 where 2k + 1 is replaced with 4k − 1.
Although weaker than Conjecture 5.5, this result nevertheless implies that removing a cutset
from a recursively arbitrarily partitionable graph cannot yield arbitrarily many components.

128 5.3. Removing k-cutsets from recursively arbitrarily partitionable graphs

︷ ︸︸ ︷ ︷ ︸︸ ︷
ℓ′ < 4k′ ℓ′′ ≥ 4k′′

︷︸︸︷ ︷︸︸︷

k′ k′′

G[Vλ] G[V|V (G)|−λ]

Figure 5.1: Situation described in the proof of Theorem 5.6. A compound graph
G (in black and grey) with k roots and at least 4k components is bipartitioned
into two connected subgraphs G[Vλ] and G[V|V (G)|−λ] (in black only) each of which
contains root vertices. One of G[Vλ] and G[V|V (G)|−λ] is then a compound graph
with too many components (compared to its number of roots) and hence cannot be
recursively arbitrarily partitionable.

Theorem 5.6. Removing a cutset with size k ≥ 1 from a recursively arbitrarily partitionable
graph results in at most 4k − 1 components.

Proof. We show the claim by induction on k. At each step of the induction, i.e. for a given value
of k, we consider a counterexample G to the claim, i.e. G is recursively arbitrarily partitionable
and has a k-cutset whose removal result in ` ≥ 4k components, and show that G cannot exist. So
that some of our arguments are correct, we further suppose that G is minimal in terms of order.
According to Observation 2.27, we may actually suppose that G is a (k, `)-compound graph
Ck,`(Kn1+k,Kn2+k, ...,Kn`+k) made up of complete graphs since if such a graph contradicts the
claim, then so does G according to the spanning argument. The integers n1, n2, ..., n` refer to
the orders of the ` components resulting from the deletion of the k-cutset of G made up of all
its root vertices.

Consider a value of k whose previous values have already been successively treated (this can
be k = 1). We make use of Observation 5.1 (and its associated terminology) throughout to
deal with the property of being recursively arbitrarily partitionable. Let u1, u2, ..., uk denote
the root vertices of G. For a given value of λ ∈ {1, 2, ..., b |V (G)|

2 c}, note that if both Vλ and
V|V (G)|−λ contain some of the ui’s (this case can only occur when k ≥ 2), then one of G[Vλ] and
G[V|V (G)|−λ] cannot be recursively arbitrarily partitionable according to the induction hypothesis.
Indeed, suppose Vλ contains k′ of the ui’s, and includes non-root vertices from `′ components
constituting G. Denote similarly k′′ and `′′ these integers regarding V|V (G)|−λ. Clearly, we have
k = k′ + k′′ and ` ≤ `′ + `′′. If G[Vλ] is recursively arbitrarily partitionable, then `′ < 4k′

according to the induction hypothesis. We then get that `′′ ≥ 4k′′, and thus that G[V|V (G)|−λ]
cannot be recursively arbitrarily partitionable according to the induction hypothesis, as claimed.
This situation is illustrated in Figure 5.1.

Thus, one of the two parts of the partition, say Vλ, only contains non-root vertices from one
component of G, say Kn1+k, while V|V (G)|−λ includes all the other vertices of G (in particular,
the k roots of G belong to V|V (G)|−λ). Note that Vλ actually has to include all n1 non-root
vertices of Kn1+k since otherwise the remaining graph G[V|V (G)|−λ] would be isomorphic to

Ck,`(Kn1−λ+k,Kn2+k,Kn3+k, ...,Kn`+k),

which cannot be recursively arbitrarily partitionable by the minimality of G.
Since |V (G)| ≥ 5k, we must consider λ up to at least 2k + 1. In particular, consider every

λ ∈ {1, 2, ..., 2k + 1}. Because of the arguments above and ` ≥ 4k, we get that for every such
value of λ, at least one of the ni’s is equal to λ. Thus at least one of the ni’s is equal to 1, at

Chapter 5. On-line and recursively arbitrarily partitionable graphs 129

least one of them is equal to 2, and so on up to 2k+ 1. Our goal is to show, using Theorem 2.24,
that G has no (possibly quasi-) perfect matching. Note that if sufficiently many of the ni’s have
been revealed to be odd, then Theorem 2.24 is directly applicable. Otherwise, note that, because
the revealed ni’s take value among {1, 2, ..., 2k+ 1}, actually |V (G)| is larger than 5k. So we can
actually consider larger values of λ and, by applying the above arguments again, reveal one or
two additional odd ni’s, and then invoke Theorem 2.24 again to show that G is not arbitrarily
partitionable. In any case, because G is not arbitrarily partitionable, it cannot be recursively
arbitrarily partitionable, recall Theorem 2.19, a contradiction. �

5.4 Structural properties of on-line arbitrarily partitionable bal-
loons

This section is dedicated to the study of the second part of Theorem 2.23 in the context of
on-line arbitrarily partitionable graphs having 2-cutsets. Our results are more precisely obtained
by studying the family of on-line arbitrarily partitionable balloons, and are in the line of some
investigations initiated by Baudon, Gilbert and Woźniak in [24].

5.4.1 Number of branches

So that we prove an on-line version of Theorem 2.25, we herein show that an on-line arbitrarily
partitionable balloon cannot have more than five branches. Since a recursively arbitrarily par-
titionable graph is also on-line arbitrarily partitionable, see Theorem 2.19, our result directly
provides a slightly different proof of Theorem 2.25.

Theorem 5.7. An on-line arbitrarily partitionable balloon has at most five branches.

Proof. The proof is by contradiction. Let B be the set of on-line arbitrarily partitionable balloons
with at least six branches, and B denote a k-balloon of B whose order n is minimal (with regards
to all members of B).

Recall that B is on-line arbitrarily partitionable if and only if, for every λ ∈ {1, 2, ..., n− 1},
there is an on-line λ-partition of B. Actually, because of the minimality of B, the subgraph
B[Vn−λ] cannot be a partial k′-balloon with k′ ≥ 6 since otherwise there would exist a balloon of
B with less vertices than B according to Observation 2.27. So B[Vn−λ] can be either an on-line
arbitrarily partitionable 5-balloon (since B[Vλ] has to be connected) or an on-line arbitrarily
partitionable tree (i.e. a tree from Table 2.2.a).

We claim that B has branches with order 1, 2, 3, 4, 5, and 6. Consider successive values of λ
in (1, 2, ..., 6). We show that if B does not have a branch with order λ, then B cannot be on-line
λ-partitioned.

• λ ∈ {1, 2, 3}: for every choice of Vλ inducing a connected subgraph, the subgraph B[Vn−λ]
is either a partial k-balloon having less vertices than B, or a tree with maximum degree at
least 4. In both cases, the subgraph B[Vn−λ] is not on-line arbitrarily partitionable.

• λ = 4: so far, we know that B necessarily has branches with order 1, 2 and 3. Similarly
as in the previous case, observe that for every choice of Vλ inducing a connected subgraph,
the subgraph B[Vn−λ] is either a partial k- or (k + 1)-balloon having less vertices than B,
or a tree with maximum degree at least 3. Hence, the only possibility here is to choose
Vλ in such a way that B[Vn−λ] is a tree with maximum degree 3, but this is only possible
when B = B(1, 1, 1, 2, 3, ...). According to Observation 5.2, such a balloon is not arbitrarily
partitionable and thus cannot be on-line arbitrarily partitionable, recall Theorem 2.19.

130 5.4. Structural properties of on-line arbitrarily partitionable balloons

Figure 5.2: Situation described in the proof of Theorem 5.7. So that a balloon B
(in black and grey) with a large number of branches can be on-line λ-partitioned,
the connected part (in grey only) has to cover one root of B, as well as all vertices
of all but at most three branches so that the remaining part (in black only) is
potentially an on-line arbitrarily partitionable tree.

• λ = 5: by the previous cases, we know that B has branches including 1, 2, 3 and 4 vertices.
For the same reasons as above, the connected part Vλ must be chosen in such a way that
B[Vn−λ] is either a path or an on-line arbitrarily partitionable 3-pode. Hence, because B has
at least six branches, Vλ must contain one root of B and all the vertices of at least three of
its branches, see Figure 5.2. Observe that Vλ can only be chosen in this way when k = 6 and
B = B(1, 1, 1, 2, 3, 4). It follows that B has four branches of odd order, and thus that it is
not arbitrarily partitionable according to Observation 5.2. So it cannot be on-line arbitrarily
partitionable.

• λ = 6: we know that B has branches with 1, 2, 3, 4 and 5 vertices. Moreover, since k ≥ 6,
the balloon B has one additional branch of order bi. If bi ≤ 7, then B is not arbitrarily par-
titionable by Lemma 5.3, and thus is not on-line arbitrarily partitionable. Hence, bi ≥ 8 but,
again, we cannot exhibit a subset Vλ for which B[Vn−λ] is on-line arbitrarily partitionable,
for the same reasons as above. Hence B is not on-line arbitrarily partitionable.

We eventually get that B is isomorphic to B(1, 2, 3, 4, 5, 6, ...) which is not arbitrarily parti-
tionable following Lemma 5.3. It thus cannot be on-line arbitrarily partitionable, a contradic-
tion. �

5.4.2 Some families of 4- or 5-balloons

It is worth mentioning that the upper bound on the number of branches in an on-line arbitrarily
partitionable balloon exhibited in Theorem 5.7 is not only theoretical since there exist on-line
arbitrarily partitionable 4- or 5-balloons. We exhibit such in the following results.

Lemma 5.8. For every k ≥ 1, the partial 4-balloon PB(1, 1, 2, k) is recursively arbitrarily par-
titionable.

Proof. As a base case, note that the claim is true when k = 1, k = 2 and k = 3 since the
corresponding partial balloons are spanned by Cat(2, 5), Cat(3, 5) and Cat(4, 5), respectively.
Suppose now that the claim holds for all values of k up to an i, and now consider the partial
balloon B = PB(1, 1, 2, k) with k = i + 1 and order n. Recall that B is recursively arbitrarily
partitionable if and only if, for every λ ∈ {1, 2, ..., bn2 c}, there is a bipartition of V (B) inducing
two recursively arbitrarily partitionable graphs on λ and n− λ vertices, respectively, see Obser-
vation 5.1. For a given value of λ, we do not explicitly exhibit a bipartition of V (B) but point
out what subgraphs can be induced by a bipartition instead. Given these, the reader can then

Chapter 5. On-line and recursively arbitrarily partitionable graphs 131

easily deduce a correct bipartition. Between parenthesis, we exhibit an argument following which
an obtained subgraph is recursively arbitrarily partitionable (if needed).

• λ = 1: P1 and PB(1, 2, k) (traceable).

• λ = 2: P2 and PB(1, 1, k) (traceable).

• λ ∈ {3, 4}: Pλ and Pn−λ.

• λ = 5: Cat(2, 3) and Pk+1.

• λ = 6: B(1, 1, 2) (traceable) and Pk.

• λ ≥ 7: PB(1, 1, 2, λ− 6) (induction hypothesis) and Pk−λ+6. �

Lemma 5.9. For every k ≥ 1, the partial 4-balloon PB(1, 2, 3, k) is recursively arbitrarily par-
titionable.

Proof. The proof is by induction on k. Note first that PB(1, 2, 3, 1), PB(1, 2, 3, 2) and PB(1, 2,
3, 3) are recursively arbitrarily partitionable since they are spanned by the recursively arbitrarily
partitionable caterpillars Cat(2, 7), Cat(3, 7) and Cat(4, 7), respectively.

Let us now suppose that the lemma holds for all k up to a value of i, and consider the
partial balloon B = PB(1, 2, 3, k) with k = i + 1 and order n. For every possible value of
λ ∈ {1, 2, ..., bn2 c}, as in the proof of Lemma 5.8 we exhibit possible recursive bipartitions of B.

• λ = 1: P1 and PB(2, 3, k) (traceable).

• λ = 2: P2 and PB(1, 3, k) (traceable).

• λ = 3: P3 and PB(1, 2, k) (traceable).

• λ ∈ {4, 5, 6}: Pλ and Pn−λ.

• λ = 7: Cat(3, 4) and Pk+1.

• λ = 8: B(1, 2, 3) (traceable) and Pk.

• λ ≥ 9: PB(1, 2, 3, λ− 8) (induction hypothesis) and Pn−λ+8. �

According to Observation 2.27, Lemmas 5.8 and 5.9 directly imply that there exist infinitely
many recursively arbitrarily partitionable 4-balloons (and, thus, infinitely many on-line arbitrar-
ily partitionable 4-balloons, recall Theorem 2.19).

Corollary 5.10. For every k ≥ 1, the 4-balloons B(1, 1, 2, k) and B(1, 2, 3, k) are on-line and
recursively arbitrarily partitionable.

We now prove that there exist infinitely many recursively arbitrarily partitionable 5-balloons.

Theorem 5.11. For every k ≥ 1, the partial 5-balloon PB(1, 1, 2, 3, 2k) is recursively arbitrarily
partitionable.

Proof. Let B = PB(1, 1, 2, 3, 2k) with k ≥ 1, and set n = |V (B)|. Recall that, according to
Observation 5.1, the partial balloon B is recursively arbitrarily partitionable if and only if we
can partition B into two recursively arbitrarily partitionable subgraphs with order λ and n− λ,
respectively, for every λ ∈ {1, 2, ..., bn2 c}. One can obtain e.g. the following bipartitions for the
first values of λ.

• λ = 1: P1 and B(1, 2, 3, 2k) (Lemma 5.9).

132 5.4. Structural properties of on-line arbitrarily partitionable balloons

• λ = 2: P2 and B(1, 1, 3, 2k) (spanned by Cat(2, 5 + 2k)).

• λ = 3: P3 and B(1, 1, 2, 2k) (Lemma 5.8).

• λ = 4: P4 and Cat(4, 2k + 1).

• λ = 5: Cat(2, 3) and P2k+4.

• λ = 6: P6 and Cat(2, 2k + 1).

• λ = 7: Cat(3, 4) and P2k+2.

By now, it should be clear that the claim holds for every partial balloon PB(1, 1, 2, 3, 2k)
satisfying n ≤ 15 (that is for every k ∈ {1, 2, 3}). Let us suppose, as an induction hypothesis,
that the claim is true for every k ≤ i, and consider the partition of B = PB(1, 1, 2, 3, 2k), with
k = i+ 1, into two recursively arbitrarily partitionable subgraphs for the remaining values of λ,
that is for every λ ∈ {8, 9, ..., bn2 c}. Again, one can consider the following bipartitions.

• λ ≥ 8 even: observe that λ ≤ 2k since λ ≤ bn2 c and we handled the cases where k ≤ 3. We
can thus partition B into Pλ and either B(1, 1, 2, 3) (when k = 4) or PB(1, 1, 2, 3, 2k − λ)
(when k > 4). These graphs are recursively arbitrarily partitionable according to Lemma 5.9
and by the induction hypothesis (since 2k − λ is even), respectively.

• λ = 9: B(1, 1, 2, 3) (spanned by Cat(2, 7)) and P2k.

• λ > 9 odd: PB(1, 1, 2, 3, λ− 9) (induction hypothesis since λ− 9 is even) and Pn−λ+9. �

Again, combining Observation 2.27 and Theorem 5.11 we get that the 5-balloonB(1, 1, 2, 3, 2k)
is recursively arbitrarily partitionable for every k ≥ 1. Since every recursively arbitrarily par-
titionable graph is also on-line arbitrarily partitionable (recall Observation 5.1), we deduce the
following.

Corollary 5.12. For every k ≥ 1, the 5-balloon B(1, 1, 2, 3, 2k) is on-line and recursively arbi-
trarily partitionable.

5.4.3 Order of the smallest branches

As mentioned above, every balloon with at most three branches is traceable and hence on-line
arbitrarily partitionable (no matter how many vertices these branches contain). So that we step
towards an on-line analogue of Theorem 2.23, we now focus on the order of the branches in an
on-line arbitrarily partitionable 4- or 5-balloon. Our main result reads as follows.

Theorem 5.13. Let b1, b2, ..., bk ≥ 1 be k ∈ {4, 5} positive integers satisfying b1 ≤ b2 ≤ ... ≤ bk.
If B(b1, b2, ..., bk) is on-line arbitrarily partitionable, then b1 ≤ 11.

The proof of Theorem 5.13 below is as follows. We consider any 4- or 5-balloon B whose all
branches have at least 12 vertices, and show that B cannot be on-line λ-partitioned for some
λ ∈ {1, 2, ..., |V (B)| − 1}. For this purpose, we first exhibit a family I of partial balloons which
are not on-line arbitrarily partitionable. We then show that when on-line λ-partitioning B, the
on-line part necessarily induces a graph of I or another graph which is not on-line arbitrarily
partitionable (e.g. a disconnected graph or a caterpillar which does not appear in the classification
from Theorem 2.20). The partial balloons of I are depicted in Figure 5.4.

We throughout make use of the following terminology.

Notation 5.14. For a given integer x ≥ 1, by x− (resp. x+) we refer to any positive integer
y ≤ x (resp. y ≥ x).

Chapter 5. On-line and recursively arbitrarily partitionable graphs 133

r1

r2

v11

v12

v21

v22

v31

v32

v33

v41v42v43

v51

Figure 5.3: Illustration of the terminology introduced in Notation 5.15 on the
partial 5-balloon PB(2, 2, 3, 3, 1).

Notation 5.15. We refer to the roots of every (possibly partial) k-balloon B as r1 and r2.
Assuming the branches of B are ordered (e.g. following their length), we refer to bi(B) as the
order of the ith branch of B for every i ∈ {1, 2, ..., k}. In case the ith branch of B is not hanging,
then its vertices are denoted by vi1, v

i
2, ..., v

i
bi(B) in such a way that vi1r1, v

i
bi(B)r2 ∈ E(B) and

vijv
i
j+1 ∈ E(B) for every j ∈ {1, 2, ..., bi(B) − 1}. Otherwise, i.e. the ith branch is hanging, its

vertices are successively denoted by vi1, vi2, ..., vibi(B) in such a way that vi1 is the degree-1 vertex
of the branch.

Refer to Figure 5.3 for an illustration of how the vertices of a partial balloon are denoted
accordingly to Notation 5.15. We start by exhibiting, in Lemmas 5.16 to 5.23 below, the graphs
constituting the above mentioned family I.
Lemma 5.16. For every x, y ≥ 1, the partial 4-balloon PB(12+, 12+, x, y) is not on-line arbi-
trarily partitionable.

Proof. For the sake of simplicity, we here and further denote n the order of every considered
balloon (unless an ambiguity is possible). Besides, the parts of every on-line λ-partition are
denoted Vλ (connected part) and Vn−λ (on-line part). We prove the claim by induction on x+y.
As a base case, consider x = y = 1 and the partial balloon B = PB(12+, 12+, 1, 1). Then B
cannot be on-line 2-partitioned since every possible choice of V2 inducing a connected subgraph
makes B[Vn−2] being either disconnected, a caterpillar Cat(13+, 13+) or Cat(11+, 15+), or a
tree with two degree-3 nodes. Since none of these graphs is on-line arbitrarily partitionable, by
definition B is not on-line arbitrarily partitionable.

To complete the base case, let us now suppose that x + y = 3 and denote by B the partial
balloon PB(12+, 12+, 1, 2). As in the previous base case B is not on-line arbitrarily partitionable
since it cannot be on-line 3-partitioned. In particular, for every correct choice of V3, the graph
B[Vn−3] is not on-line arbitrarily partitionable because it is either disconnected, a non-caterpillar
3-pode different from P3(2, 4, 6), a caterpillar Cat(10+, 16+) or Cat(13+, 13+), or a tree with two
degree-3 nodes.

Consider now that the claim holds for every partial balloon PB(12+, 12+, x, y) satisfying
x + y ≤ k for some k ≥ 3. We now prove that it is also true for every partial balloon B =
PB(12+, 12+, x, y) satisfying x+ y = k + 1. We distinguish the following two cases.

• x > 1 and y > 1: B is not on-line arbitrarily partitionable since it cannot be on-line 1-
partitioned. Indeed, we have to consider either V1 = {v3

1} or V1 = {v4
1} since otherwise

B[Vn−1] would be either disconnected, or isomorphic to a large 3-pode or a tree with two

134 5.4. Structural properties of on-line arbitrarily partitionable balloons

degree-3 nodes. But for each of these two choices of V1, the remaining graph B[Vn−1] is
isomorphic to a partial balloon PB(12+, 12+, x′, y′) with x′ + y′ = x + y − 1 = k, which is
not on-line arbitrarily partitionable by the induction hypothesis.

• x = 1 and y > 2: consider we want to on-line 2-partition B. For the same reasons as above,
we have to consider V2 = {v4

1, v
4
2}. But then B[Vn−2] is isomorphic to PB(12+, 12+, x, y − 2)

which is not on-line arbitrarily partitionable according to the induction hypothesis. Hence
B is not on-line arbitrarily partitionable. These arguments hold analogously when x > 2
and y = 1. �

Lemma 5.17. For every x ≥ 1 and y ≥ 10, the partial 4-balloon PB(12+, 12+, x, y) is not
on-line arbitrarily partitionable.

Proof. Let us prove this claim by induction on x+ y as we did to prove Lemma 5.16. As a base
case, let us consider the graph B = PB(12+, 12+, 1, 10). Then B is not on-line arbitrarily parti-
tionable as it does not admit an on-line 11-partition. Indeed, every possible choice of V11 inducing
a connected subgraph of B makes B[Vn−11] being either disconnected, a caterpillar Cat(11, 15+),
or a tree with maximum degree 4. For similar reasons, observe that neither PB(12+, 12+, 1, 11)
nor PB(12+, 12+, 2, 10) are on-line arbitrarily partitionable since they do not admit an on-line
12- or 11-partition, respectively.

Let us now suppose that this lemma holds whenever x + y ≤ k for some k ≥ 12, and
consider a graph B = PB(12+, 12+, x, y) verifying x + y = k + 1. We claim that there exists a
λ ∈ {1, 2, ..., n − 1} such that B does not admit an on-line λ-partition, and thus that B is not
on-line arbitrarily partitionable:

• x > 1 and y > 10: under these conditions, there does not exist an on-line 1-partition of B.
Indeed, every possible choice for V1 which does not make B[Vn−1] being disconnected makes
this subgraph being isomorphic to either a non-caterpillar 3-pode different from P3(2, 4, 6),
a tree with maximum degree 4, or a graph which is not on-line arbitrarily partitionable
according to the induction hypothesis.

• x = 1 and y > 11: observe that there does not exist an on-line 2-partition of B, since
every coherent choice for V2 makes B[Vn−2] being disconnected or isomorphic to either a
caterpillar Cat(13+, 13+), a tree with maximum degree 4, or a partial balloon which is not
on-line arbitrarily partitionable by the induction hypothesis.

• x > 2 and y = 10: once again B does not admit an on-line 11-partition since every choice
as V11 of eleven vertices inducing a connected subgraph of B makes B[Vn−11] being either
disconnected, a tree with maximum degree 4, a 3-pode which is not on-line arbitrarily par-
titionable, or a partial balloon which is not on-line arbitrarily partitionable according to the
induction hypothesis. �

Lemma 5.18. For every x, y, z ≥ 1, the partial 5-balloon PB(12+, 12+, x, y, z) is not on-line
arbitrarily partitionable.

Proof. We prove the claim by induction on x+y+z. Let us first suppose that x = y = z = 1 and
consider the associated graph B = PB(12+, 12+, 1, 1, 1). Once again B is not on-line arbitrarily
partitionable since there does not exist an on-line 2-partition of B. Indeed, every possible choice
for V2 makes B[Vn−2] being either disconnected, or isomorphic to either a tree with maximum
degree 4 or a tree having two degree-3 nodes.

To complete the base case, observe that PB(12+, 12+, 1, 2, 1) and PB(12+, 12+, 1, 1, 2) are
not on-line arbitrarily partitionable since they do not admit an on-line 3-partition: for every
coherent choice of V3, the subgraph B[Vn−3] is disconnected, or isomorphic to either a tree with

Chapter 5. On-line and recursively arbitrarily partitionable graphs 135

maximum degree 4, a tree having two degree-3 nodes, or a non-caterpillar 3-pode different from
P3(2, 4, 6).

Suppose now that the lemma is true whenever x+ y + z ≤ k for some k ≥ 4, and consider a
balloon B = PB(12+, 12+, x, y, z) where x + y + z = k + 1. Once again, we consider two main
cases:

• z > 1: in this case B is not on-line arbitrarily partitionable since it cannot be on-line 1-
partitioned. Indeed, observe that removing one vertex from B makes the remaining subgraph
being disconnected, isomorphic to a tree with maximum degree 4 or two degree-3 nodes, or
isomorphic to a partial balloon which is not on-line arbitrarily partitionable according to the
induction hypothesis or Lemma 5.16 (typically if x = 1 and we set V1 = {v3

1}).

• z = 1: once again B is not on-line arbitrarily partitionable under this condition since
it cannot be on-line 2-partitioned: for every coherent choice as V2, the remaining graph
B[Vn−2] is indeed either not connected, a tree with maximum degree 4 or two degree-3
nodes, or a partial balloon which is not on-line arbitrarily partitionable according to the
induction hypothesis or previous Lemma 5.16. �

Lemma 5.19. For every x, y ≥ 1, the partial 5-balloon PB(12+, 12+, 12+, x, y) is not on-line
arbitrarily partitionable.

Proof. Once more, let us prove this claim by induction on x+y. Consider first that x = y = 1 and
let B = PB(12+, 12+, 12+, 1, 1). Then B is not on-line arbitrarily partitionable because it cannot
be on-line 2-partitioned. Indeed, every possible choice for V2 makes B[Vn−2] being disconnected,
isomorphic to a tree with maximum degre 4, to a partial balloon which is not on-line arbitrarily
partitionable by Lemma 5.18 (typically if e.g. V2 = {v1

1, v
1
2}), or to a partial 6-balloon (e.g. if

V2 = {v1
2, v

1
3}). In the latter case, such a graph cannot be on-line arbitrarily partitionable since

otherwise we could raise a contradiction to Theorem 5.7 using Observation 2.27.
Additionally, observe that B = PB(12+, 12+, 12+, 1, 2) cannot be on-line 3-partitioned: for

every coherent choice for V3, the subgraph B[Vn−3] is not on-line arbitrarily partitionable for the
same reasons as in the previous case. Hence B is not on-line arbitrarily partitionable.

We now suppose that the claim holds for every x + y ≤ k for some k ≥ 3, and consider a
partial balloon B = PB(12+, 12+, 12+, x, y) verifying x + y = k + 1. Let us take the following
two cases in consideration to show that B is not on-line arbitrarily partitionable.

• x > 1 and y > 1: note that, in this situation, B cannot be on-line 1-partitioned. Indeed,
for similar reasons as the ones we used for the base cases, we have to consider V1 = {v4

1} or
V1 = {v5

1}. But in both cases B[Vn−1] cannot be on-line arbitrarily partitionable according
to the induction hypothesis.

• x = 1 and y > 2: once again, observe that B cannot be on-line 2-partitioned. Indeed,
observe that we must consider V2 = {v5

1, v
5
2} since otherwise there would exist an on-line

arbitrarily partitionable 6-balloon, an on-line arbitrarily partitionable tree having maximum
degre 4, or a graph contradicting Lemma 5.18. But for this choice of V2, we have B[Vn−2] =
PB(12+, 12+, 12+, 1, y − 2) which is not on-line arbitrarily partitionable according to the
induction hypothesis. �

Lemma 5.20. For every x ≥ 1, the partial 4-balloon PB(12+, 12+, 12+, x) is not on-line arbi-
trarily partitionable.

Proof. Once again, this claim is proved by induction on x. Let us first suppose that x = 1 and let
B be the partial balloon PB(12+, 12+, 12+, 1). This time B is not on-line arbitrarily partitionable
since it cannot be on-line 2-partitioned: for every possible choice of V2, the remaining graph

136 5.4. Structural properties of on-line arbitrarily partitionable balloons

B[Vn−2] is not on-line arbitrarily partitionable since it is either disconnected, isomorphic to a
tree with maximum degre 4, to a non-caterpillar 3-pode different from P3(2, 4, 6) or to a partial
balloon which is not on-line arbitrarily partitionable by Lemma 5.16 (e.g. for V2 = {v1

1, v
1
2}),

5.17 (e.g. for V2 = {v1
b1(B)−1, v

1
b1(B)}) or 5.18 (e.g. for V2 = {v1

2, v
1
3}).

Let us now suppose that the claim holds for every x ≤ k for some k ≥ 1. To complete the
proof, observe that the partial balloon B = PB(12+, 12+, 12+, k + 1) is not on-line arbitrarily
partitionable since it cannot be on-line 1-partitioned. Indeed, for every choice of V1, the subgraph
B[Vn−1] is not on-line arbitrarily partitionable according to the induction hypothesis, or because
of one reason used to deal with the base case. �

Lemma 5.21. For every x, y, z ≥ 1, the partial 5-balloon PB(12+, 12+, x, y, z) is not on-line
arbitrarily partitionable.

Proof. We prove this claim by induction on x + y + z. First, let us suppose that x = y =
z = 1 and consider the partial balloon B = PB(12+, 12+, 1, 1, 1). Note that B is not on-line
arbitrarily partitionable since it cannot be on-line 2-partitioned. Indeed, every choice of V2

for which B[V2] is connected implies that B[Vn−2] is either disconnected or isomorphic to a
tree with maximum degree at least 4. Analogously, observe that neither PB(12+, 12+, 1, 1, 2)
nor PB(12+, 12+, 1, 2, 2) are on-line arbitrarily partitionable since they cannot be on-line 3-
partitioned.

Suppose now that the claim holds by induction whenever x+ y + z ≤ k for some k ≥ 5, and
consider a partial balloon B = PB(12+, 12+, x, y, z) where x + y + z = k + 1. We distinguish
the following two main cases depending on x, y and z:

• x > 1, y > 1 and z > 1: suppose we want to on-line 1-partition B. Then, we must consider
V1 = {v3

1}, V1 = {v4
1} or V1 = {v5

1} since, for every other choice of V1, the remaining graph
B[Vn−1] is either disconnected or isomorphic to a tree having maximum degree at least 4.
But for every of these three choices for V1, the subgraph B[Vn−1] is not on-line arbitrarily
partitionable by the induction hypothesis. Thus B is not on-line arbitrarily partitionable.

• x = 1: let α = min({2, 3, 4} \ {y, z}). In this situation B does not admit an on-line α-
partition. Indeed, for every coherent choice of Vα, the remaining graph B[Vn−α] is not
on-line arbitrarily partitionable either according to the induction hypothesis, or because it
is isomorphic to a non-connected graph or a tree with maximum degree at least 4. �

Lemma 5.22. For every x, y ≥ 1, the partial 5-balloon PB(12+, 12+, 12+, x, y) is not on-line
arbitrarily partitionable.

Proof. Once again, we prove this claim by induction on x+y. We first suppose that x = y = 1 and
let B = PB(12+, 12+, 12+, 1, 1). Similarly as in the proofs of the previous lemmas, B is not on-
line arbitrarily partitionable because it cannot be on-line 2-partitioned. Indeed, for every possible
choice of V2 inducing a connected subgraph, the remaining graph B[Vn−2] is either not connected,
a tree with maximum degree 5, a partial balloon which is not on-line arbitrarily partitionable
according to Lemma 5.18 (if e.g. V2 = {v1

1, v
1
2}) or 5.21 (if e.g. V2 = {v1

b1(B)−1, v
1
b1(B)}), or a

partial 6-balloon. For the latter case, recall that a partial 6-balloon cannot be on-line arbitrarily
partitionable since otherwise there would exist a 6-balloon contradicting Theorem 5.7. Similarly,
observe that PB(12+, 12+, 12+, 1, 2) is not on-line arbitrarily partitionable since it cannot be
on-line 3-partitioned.

We finally suppose that the induction hypothesis is true whenever x+ y ≤ k for some k ≥ 3,
and consider a partial balloon B = PB(12+, 12+, 12+, x, y) satisfying x + y = k + 1. We
distinguish two main cases, depending on the values of x and y, to prove that B is not on-line
arbitrarily partitionable.

Chapter 5. On-line and recursively arbitrarily partitionable graphs 137

12+ 12+

1+

1+

(a)
PB(12+, 12+, 1+, 1+).

12+ 12+

1+ 10+

(b)
PB(12+, 12+, 1+, 10+).

12+ 12+

1+ 1+

1+

(c)
PB(12+, 12+, 1+, 1+, 1+).

12+ 12+

1+

1+

12+

(d)
PB(12+, 12+, 12+, 1+, 1+).

12+ 12+

1+

12+

(e)
PB(12+, 12+, 12+, 1+).

12+ 12+

1+ 1+
1+

(f)
PB(12+, 12+, 1+, 1+, 1+).

12+ 12+

1+

12+

1+

(g)
PB(12+, 12+, 12+, 1+, 1+).

1+

12+ 12+12+ 12+

(h)
PB(12+, 12+, 12+, 12+, 1+).

Figure 5.4: All not on-line arbitrarily partitionable partial balloons exhibited in
Lemmas 5.16 to 5.23.

• x > 1 and y > 1: in this situation, B is not on-line arbitrarily partitionable since it cannot
be on-line 1-partitioned. Indeed, for every choice of V1, the remaining graph B[Vn−1] is
not on-line arbitrarily partitionable either for one of the reasons used for the base cases or
according to the induction hypothesis.

• x = 1 and y > 2: the above arguments hold to prove that B cannot be on-line 2-partitioned.
Thus, B is not on-line arbitrarily partitionable. �

Lemma 5.23. For every x ≥ 1, the partial 5-balloon PB(12+, 12+, 12+, 12+, x) is not on-line
arbitrarily partitionable.

Proof. Let us prove this claim by induction on x. We first suppose that x = 1 and consider the on-
line 2-partitioning of B = PB(12+, 12+, 12+, 12+, 1). An on-line 2-partition does not exist, since,
for every choice of V2, the remaining graph B[Vn−2] cannot be on-line arbitrarily partitionable:
indeed, this subgraph is either not connected, a tree with maximum degree at least 4, a partial
balloon which cannot be on-line arbitrarily partitionable according to Lemma 5.19 (if e.g. V2 =
{v1

1, v
1
2}) or 5.22 (if e.g. V2 = {v1

b1(B)−1, v
1
b1(B)}), or a partial 6-balloon.

Suppose now that PB(12+, 12+, 12+, 12+, x) is not on-line arbitrarily partitionable for every
x ≤ k for some k ≥ 1, and set B = PB(12+, 12+, 12+, 12+, k + 1). Once again B cannot be on-
line arbitrarily partitionable since it cannot be on-line 1-partitioned. Indeed, for every possible
choice of V1, the graph B[Vn−1] cannot be on-line arbitrarily partitionable either according to
the induction hypothesis or because of one of the reasons used to handle the base case. �

Using Lemmas 5.16 to 5.23, we can now prove Theorem 5.13.

Proof of Theorem 5.13. Let B = B(12+, 12+, 12+, 12+) be a 4-balloon. Then B is not on-line
arbitrarily partitionable since it cannot be on-line 1-partitioned. Indeed, for every choice of V1,
the graph B[Vn−1] is not on-line arbitrarily partitionable since it is either a tree with maximum
degre 4 or a partial balloon which is not on-line arbitrarily partitionable by Lemma 5.19 (e.g.

138 5.4. Structural properties of on-line arbitrarily partitionable balloons

for V1 = {v1
2}) or 5.20 (e.g. for V1 = {v1

1}). It follows that an on-line arbitrarily partitionable
4-balloon must have a branch of order at most 11.

Now let B = B(12+, 12+, 12+, 12+, 12+) be a 5-balloon. Similarly as above, B is not on-line
arbitrarily partitionable since it does not admit an on-line 1-partition. Indeed, every possible
choice of V1 makes B[Vn−1] being either a tree with maximum degree 5, a partial balloon which
is not on-line arbitrarily partitionable according to Lemma 5.23 (typically for V1 = {v1

1}), or
a partial 6-balloon (e.g. for V1 = {v1

2}). In the latter case, observe that B[Vn−1] cannot be
on-line arbitrarily partitionable since otherwise there would exist, by Observation 2.27, an on-
line arbitrarily partitionable 6-balloon contradicting Theorem 5.7. Hence, a 5-balloon cannot be
on-line arbitrarily partitionable when its smallest branch has order at least 12. �

Since every recursively arbitrarily partitionable graph is also on-line arbitrarily partitionable,
recall Theorem 2.19, Theorem 5.13 directly implies that recursively arbitrarily partitionable 4-
or 5-balloons have their smallest branch of order at most 11 too. However, using the fact that
recursively arbitrarily partitionable caterpillars are generally smaller than on-line arbitrarily
partitionable caterpillars, compare Tables 2.2.a and 2.2.b, one can easily improve Lemmas 5.16
to 5.23 above for recursively arbitrarily partitionable partial balloons to get a better upper bound
on the order of the smallest branch in a recursively arbitrarily partitionable 4- or 5-balloon. The
proof of this statement is omitted here1 since it is very similar to the proof of Theorem 5.13.

Theorem 5.24. Let b1, b2, ..., bk ≥ 1 be k ∈ {4, 5} positive integers satisfying b1 ≤ b2 ≤ ... ≤ bk.
If B(b1, b2, ..., bk) is recursively arbitrarily partitionable, then b1 ≤ 7.

One can also get a similar constant upper bound on the order of the second smallest branch in
a recursively arbitrarily partitionable 4- or 5-balloon, that is that b2 ≤ 39. The main argument in
a proof of Theorem 5.24 is that partial 4-balloons of the form PB(8+, 8+, x, y) are generally not
recursively arbitrarily partitionable. Because of this fact, plenty of other partial balloons cannot
be recursively arbitrarily partitionable too, and the result follows. Such a statement is also true
when considering that b1 ≤ 7 and b2 ≥ 40. Indeed, most of partial balloons PB(7−, 40+, x, y)
cannot be recursively arbitrarily partitionable because they cannot be partitioned into two bal-
anced recursively arbitrarily partitionable subgraphs. The main argument behind this statement
is that, in general, one of the two subgraphs has to be isomorphic to a caterpillar Cat(a, b) with a
and b being greater than the values given by Theorem 2.20. Once again, the proof of the following
claim is omitted here, but it can be obtained by deriving Lemmas 5.16 to 5.23 adequately.

Theorem 5.25. Let b1, b2, ..., bk ≥ 1 be k ∈ {4, 5} positive integers satisfying b1 ≤ b2 ≤ ... ≤ bk.
If B(b1, b2, ..., bk) is recursively arbitrarily partitionable, then b2 ≤ 39.

Something more can be deduced from the previous upper bounds. Observe that if B =
B(b1, b2, ..., bk) is a k-balloon such that k ≥ 4 and b1 ≤ b2 ≤ ... ≤ bk, then

ς(B) = bk + bk−1 + bk−2 + 2.

From previous Theorems 5.13, 5.24 and 5.25, we then deduce the following lower bounds on the
order of the longest paths in an on-line or recursively arbitrarily partitionable balloon.

Corollary 5.26. Let B be a k-balloon.

• If B is on-line arbitrarily partitionable and k = 4, then ς(B) ≥ |V (B)| − 11.

• If B is recursively arbitrarily partitionable and k = 4, then ς(B) ≥ |V (B)| − 7.

• If B is recursively arbitrarily partitionable and k = 5, then ς(B) ≥ |V (B)| − 46.
1A complete proof of Theorem 5.24 can be found in an early version of [15], which is available online at

http://hal.archives-ouvertes.fr/docs/00/67/25/05/PDF/rap-balloons.pdf.

Chapter 5. On-line and recursively arbitrarily partitionable graphs 139

(a) ς(G) = 17. (b) ς(B(5, 5, 5, 6)) = 18.

Figure 5.5: A 2-connected graph G and its underlying balloon B(5, 5, 5, 6) (in
black and grey). The longest path of G (in black only) does not go through
its biggest component, while the longest path of B(5, 5, 5, 6) (in black only) goes
through its biggest branch.

5.4.4 Structural consequences on graphs with 2-cutsets

As mentioned in Section 2.3, properties of on-line or recursively arbitrarily partitionable balloons
can be derived to properties of on-line or recursively arbitrarily partitionable graphs with 2-
cutsets, respectively. In particular, the results we pointed out in Sections 5.4.1, 5.4.2 and 5.4.3
can be derived in the following way.

Corollary 5.27. Let G be a graph with a 2-cutset {u, v}, and b1 ≤ b2 ≤ ... ≤ bk be the orders of
the k ≥ 2 components of G− {u, v}. If G is on-line or recursively arbitrarily partitionable, then
the following properties hold:

• k ≤ 5,

• bk can be arbitrarily large,

• if G is on-line arbitrarily partitionable and k ∈ {4, 5}, then b1 ≤ 11,

• if G is recursively arbitrarily partitionable and k ∈ {4, 5}, then b1 ≤ 7 and b2 ≤ 39.

The first item of Corollary 5.27 follows directly from Theorem 5.7, the second item is derived
from Corollaries 5.10 and 5.12 and the fact that 2- and 3-balloons are traceable, while the third
and fourth items result from Theorems 5.13, 5.24 and 5.25. Since 2- or 3-balloons are always
on-line and recursively arbitrarily partitionable because they are traceable, we can also deduce
that if G−{u, v} has only two or three components, then these components can all be arbitrarily
large.

Note that Corollary 5.26 cannot be extended in a same vein since there is no direct relationship
between the longest paths of a balloon B = B(b1, b2, ..., bk), with b1 ≤ b2 ≤ ... ≤ bk, and the
longest paths of a graph G with a 2-cutset {u, v} whose removal yields k components with orders
b1, b2, ..., bk, respectively. To be convinced of this statement, just imagine that the component
with order bk in G − {u, v} is a (bk − 2)-balloon B(1, 1, ..., 1) whose roots are connected to u
and v in G. Depending on the structure of G, the longest path of G may not pass through its
component with order bk. In comparison, there is always one longest path of B going through
its kth branch (see Figure 5.5).

140 5.5. On the order of the longest paths in a recursively arbitrarily partitionable graph

u1 u2 u3 a1

c1

a2

c2

w1,2

b1 b2

e1 e2 v1v2v3v4v5

d2d1

Figure 5.6: The connected-cycles graph CC2(3, 5) (in black and grey), and its
longest path (in black only).

5.5 On the order of the longest paths in a recursively arbitrarily
partitionable graph

We now focus on the order of the longest paths in recursively arbitrarily partitionable graphs.
Previous works on the topic could suggest that these graphs are “almost” traceable. This intuition
is notably supported by the following results and facts:

• Corollary 5.27,

• we have ς(T) ≥ |V (T)| − 2 for every recursively arbitrarily partitionable tree T , recall
Theorem 2.20,

• we have ς(S) ≥ |V (S)| − 3 for every recursively arbitrarily partitionable sun S, according
to the characterization of Baudon, Gilbert and Woźniak [23],

• it was empirically observed2 that we have ς(B) ≥ |V (B)|−4 for every recursively arbitrarily
partitionable 4- or 5-balloon B with relatively small order.

The main purpose of this section is to show that recursively arbitrarily partitionable graphs
can be arbitrarily not traceable, i.e. ς(G) can be arbitrarily smaller than |V (G)|. For this
purpose, we first prove, in Section 5.5.1, that there is no positive absolute constant c ≥ 1 such
that every recursively arbitrarily partitionable graph G verifies ς(G) ≥ |V (G)| − c. We then
propose, in Section 5.5.2, an upper bound on the maximum value c′, with 0 < c′ < 1, for which
we have ς(G) ≥ c′ · |V (G)| for every recursively arbitrarily partitionable graph G. These two
results are obtained by introducing two new classes of recursively arbitrarily partitionable graphs.

5.5.1 Additive factor

The main result of this section reads as follows.

Theorem 5.28. There does not exist a positive constant c ≥ 1 such that we have ς(G) ≥
|V (G)| − c for every recursively arbitrarily partitionable graph G.

Theorem 5.28 is proved by exhibiting a counterexample for every possible value of c. For this
purpose, we introduce the family of connected-cycles graphs.

Construction 5.29. Let k ≥ 1 and x, y ≥ 0 be three positive integers. The connected-cycles
graph CCk(x, y) is the graph with the following vertices:

• let u1u2...ux and v1v2...vy be paths with order x and y, respectively;
2Using the proof scheme described in Section 5.4.3, Petit implemented a program for com-

puting recursively arbitrarily partitionable 4- or 5-balloons. His program is available online
at http://sourceforge.net/projects/rapbalchecker/, while his conclusions are gathered online at
http://www.labri.fr/perso/jbensmai/students/enguerrand-petit.pdf (in French).

Chapter 5. On-line and recursively arbitrarily partitionable graphs 141

• for every i ∈ {1, 2, ..., k}, let aibieidiciai be a cycle with length 5;

• for every i ∈ {1, 2, ..., k − 1}, let wi,i+1 be a vertex.

These components are linked in CCk(x, y) in the following way: uxa1, vyek ∈ E(CCk(x, y)) and
we have wi,i+1ei, wi,i+1ai+1 ∈ E(CCk(x, y)) for every i ∈ {1, 2, ..., k − 1}.
Example 5.30. The connected-cycles graph CC2(3, 5) is depicted in Figure 5.6.

We throughout use the terminology introduced in Construction 5.29 to deal with the vertices
of every connected-cycles graph we consider. Note that

ς(CCk(1, 1)) = |V (CCk(1, 1))| − k

for every k ≥ 1, see Figure 5.6. So we just have to prove that every graph CCk(1, 1) is recursively
arbitrarily partitionable to prove Theorem 5.28. Before showing this, we first introduce another
graph structure we encounter while partitioning a connected-cycles graph.

Construction 5.31. Let k ≥ 1 and x ≥ 0 be two positive integers. The partial connected-cycles
graph PCCk(x) is the graph obtained by removing the vertex ek from CCk(x, 0).

We now characterize recursively arbitrarily partitionable (partial) connected-cycles graphs.

Lemma 5.32. Let k, x, y ≥ 1 be three positive integers. The graph PCCk(x) is recursively arbi-
trarily partitionable if and only if x 6≡ 2 (mod 3). The graph CCk(x, y) is recursively arbitrarily
partitionable if and only if x 6≡ 2 (mod 3) or y 6≡ 2 (mod 3).

Proof. The necessity follows from the fact that every graph PCCk(x) with x ≡ 2 (mod 3) or
CCk(x, y) with x, y ≡ 2 (mod 3) has order congruent to 0 modulo 3 but does not admit a
(recursive) realization of the sequence (3, 3, ..., 3).

The sufficiency is proved by induction on k. For each value of k ≥ 1, we prove that the result
is true for all possible values of x and (possibly) y which satisfy the claim. For the sake of clarity,
we throughout denote by n the order of every graph considered during the proof.

Case 1. k = 1.
As a base case, note that every graph PCC1(x) is recursively arbitrarily partitionable since

it is spanned by Cat(3, x + 1), which is recursively arbitrarily partitionable according to the
assumption on x (recall Theorem 2.20).

We now prove that every graph C = CC1(x, y) is recursively arbitrarily partitionable when-
ever the conditions of the claim are met. This is proved by induction on x+ y by showing that
there is a partition of V (C) into two parts Vλ and Vn−λ satisfying the conditions of Observa-
tion 5.1 for every λ ∈ {1, 2, ..., bn2 c}. For each such value of λ, we exhibit a satisfying subset Vλ,
and it is understood that Vn−λ = V (C) \Vλ. We further assume x 6≡ 2 (mod 3) since the graphs
CC1(x, y) and CC1(y, x) are isomorphic.

First, when dealing with λ ≥ x+ 5, we can pick up, as Vλ, the λ first vertices of the ordering

(u1, u2, ..., ux, a1, b1, c1, d1, e1, vy, vy−1, ..., v1)

of V (C) to get a partition of C into a traceable graph or CC1(x, λ− (x+ 5)) which is recursively
arbitrarily partitionable by the induction hypothesis, and a path. For λ = x, one can consider
Vλ = {u1, u2, ..., ux} so that the two induced graphs are traceable. Now, if λ = x + 2 or
λ = x + 3, then we can choose {u1, u2, ..., ux, a1, b1} or {u1, u2, ..., ux, a1, c1, d1}, respectively,
as Vλ, so that the two induced subgraphs are paths. Next, consider λ = x + 4. Then Vλ =
{u1, u2, ..., ux, a1, b1, c1, d1} yields a correct partition of C. Indeed, on the one hand, C[Vλ] is a
caterpillar Cat(3, x + 1) which is recursively arbitrarily partitionable since otherwise it would
mean that x ≡ 2 (mod 3), a contradiction. On the other hand, the graph C[Vn−λ] is a path.

142 5.5. On the order of the longest paths in a recursively arbitrarily partitionable graph

Now consider λ = x+1. If Vλ = {u1, u2, ..., ux, a1} does not provide a satisfying partition of C,
then y ≡ 2 (mod 3) since C[Vn−λ] is Cat(3, y+1) and is not recursively arbitrarily partitionable.
Consider then, as Vλ, the λ first vertices of the ordering

(v1, v2, ..., vy, e1, b1, d1, c1, a1, ux, ux−1, ..., u1)

of V (C). If this choice of Vλ does not yield a correct partition of C once again, then it means
that either C[Vλ] is the caterpillar Cat(3, y + 1), or a connected-cycles graph CC1(x′, y) with
x′ ≡ 2 (mod 3). But then we get that either x + 1 = y + 4 or x + 1 = y + 5 + x′, respectively,
which both imply that x ≡ 2 (mod 3), a contradiction.

Finally consider every value λ ∈ {1, 2, ..., x − 1}. On the one hand, if x − λ 6≡ 2 (mod 3),
then choose Vλ = {u1, u2, ..., uλ} so that C[Vλ] and C[Vn−λ] are a path and CC1(x − λ, y),
which is recursively arbitrarily partitionable by the induction hypothesis. On the other hand,
i.e. x − λ ≡ 2 (mod 3), we have λ 6≡ 0 (mod 3) since otherwise we would have x ≡ 2 (mod 3).
We can assume that λ 6∈ {y, y + 2, y + 3}, since otherwise we could deduce a correct partition of
C as in the cases λ ∈ {x, x+ 2, x+ 3}, respectively. Then consider, as Vλ, the λ first vertices of

(v1, v2, ..., vy, e1, b1, d1, c1, a1, ux, ux−1, ..., u1).

If this choice of Vλ does not yield a correct partition of C, then C[Vλ] is either a caterpillar
Cat(3, y+ 1) which is not recursively arbitrarily partitionable, or a graph CC1(x′, y) with x′ ≡ 2
(mod 3). But note then that the first situation cannot occur since λ 6≡ 0 (mod 3). For the
second situation, because λ 6≡ 0 (mod 3), we have y 6≡ 2 (mod 3). Since we have x′, y < x, the
graph CC1(y, x′) is actually recursively arbitrarily partitionable by the induction hypothesis.

Case 2. Arbitrary k.
Let us now suppose that the result is true for every k up to an i, and now assume k = i+ 1.

Consider first C = PCCk(x) for consecutive values of x 6≡ 2 (mod 3). As we did before, to prove
that C is recursively arbitrarily partitionable we show that there exists a partition of V (C)
satisfying the conditions of Observation 5.1 for every possible value of λ. One may choose Vλ as
follows.

• If λ ≡ 1 (mod 3), then one may consider, as Vλ, the first λ vertices of the ordering

(bk, dk, ck, ak, wk−1,k, ek−1, bk−1, dk−1, ck−1, ak−1, ..., w1,2, e1, b1, d1, c1, a1, ux, ux−1, ..., u1)

of V (C). On the one hand, note that C[Vλ] is either a path, or spanned by a recursively
arbitrarily partitionable caterpillar or a partial connected-cycles graph PCCk′(x′) with k′ ≤
k − 1 and x′ ≡ 0 (mod 3), which is recursively arbitrarily partitionable by the induction
hypothesis. On the other hand, observe that C[Vn−λ] is either traceable, or spanned by a
connected-cycles graph CCk′′(x, y) for some k′′ ≤ k−1 and y, which is recursively arbitrarily
partitionable according to the induction hypothesis since x 6≡ 2 (mod 3).

• If λ ≡ 2 (mod 3), then one can obtain similar partitions of C from the ordering

(dk, ck, bk, ak, wk−1,k, ek−1, dk−1, ck−1, bk−1, ak−1, ..., w1,2, e1, d1, c1, b1, a1, ux, ux−1, ..., u1)

of V (C).

• Otherwise, if λ ≡ 0 (mod 3), then one has to consider as Vλ the first λ vertices of the
ordering

(u1, u2, ..., ux, a1, b1, c1, d1, e1, w1,2, ..., ak−1, bk−1, ck−1, dk−1, ek−1, wk−1,k, ak, bk, ck, dk)

Chapter 5. On-line and recursively arbitrarily partitionable graphs 143

CC1(3, 2)P6

(a) Case λ ≡ 0 (mod 3).

CC1(1, 2)CC1(3, 0)

(b) Case λ 6≡ 0 (mod 3) and λ− (y + 1) ≡ 2 (mod 3).

Figure 5.7: Two recursive bipartitions (in black only) of CC2(3, 2) (in black and
grey) obtained in the proof of Lemma 5.32.

of V (C) when x ≡ 1 (mod 3), or of the ordering

(u1, u2, ..., ux, a1, c1, d1, b1, e1, w1,2, ..., ak−1, ck−1, dk−1, bk−1, ek−1, wk−1,k, ak, ck, dk, bk)

otherwise, i.e. when x ≡ 0 (mod 3). The two induced subgraphs C[Vλ] and C[Vn−λ] are then
recursively arbitrarily partitionable. Indeed, on the one hand, C[Vλ] is either isomorphic to
a path or spanned by a connected-cycles graph CCk′(x, y) for k′ ≤ k − 1 and a y. On the
other hand, the subgraph C[Vn−λ] is spanned by a PCCk′′(x′) graph with k′′ ≤ k and x′ 6≡ 2
(mod 3).

To end up proving the claim, we have to show that CCk(x, y) is recursively arbitrarily par-
titionable whenever x 6≡ 2 (mod 3) or y 6≡ 2 (mod 3). As for the base case, we show this by
induction on x+y. Once again, we assume that x 6≡ 2 (mod 3) for a given graph C = CCk(x, y).

For a given λ ∈ {1, 2, ..., y}, one can consider Vλ = {v1, v2, ..., vλ} so that C is partitioned
into a path and CCk(x, y − λ) which is recursively arbitrarily partitionable according to the
induction hypothesis on x+ y. When λ = y + 1, one can choose Vλ = {v1, v2, ..., vy, ek} so that
C is partitioned into a path and PCC1(x), which is recursively arbitrarily partitionable by the
induction hypothesis since x 6≡ 2 (mod 3). For other values of λ, one may choose Vλ as follows.

• If λ ≡ 0 (mod 3), one can consider, as Vλ, the λ first vertices from the ordering

(u1, u2, ..., ux, a1, b1, c1, d1, e1, w1,2, ..., wk−1,k, ak, bk, ck, dk, ek, vy, vy−1, ..., v1)

of V (C) when x ≡ 1 (mod 3), from

(u1, u2, ..., ux, a1, c1, d1, b1, e1, w1,2, ..., wk−1,k, ak, ck, dk, bk, ek, vy, vy−1, ..., v1)

otherwise, i.e. when x ≡ 0 (mod 3). The two induced subgraphs are then recursively
arbitrarily partitionable since they are traceable or isomorphic to connected-cycles graphs
which are recursively arbitrarily partitionable according to the induction hypotheses (each of
the obtained connected-cycles graphs has its “left” hanging path being of order not congruent
to 2 modulo 3), see Figure 5.7.a.

• If λ 6≡ 0 (mod 3) and λ− (y + 1) ≡ 0 (mod 3), then one can consider the λ first vertices of
the ordering

(v1, v2, ..., vy, ek, bk, dk, ck, ak, wk−1,k, ..., e1, b1, d1, c1, a1, ux, ux−1, ..., u1)

144 5.5. On the order of the longest paths in a recursively arbitrarily partitionable graph

of V (C). For each such partition, we get, on the one hand, that C[Vλ] is either a path, a
recursively arbitrarily partitionable caterpillar, or a recursively arbitrarily partitionable (par-
tial) connected-cycles graph. In particular, note that when C[Vλ] is a caterpillar or a partial
connected-cycles graph, then this graph is recursively arbitrarily partitionable since y 6≡ 2
(mod 3) because of the assumptions on λ. On the other hand, the graph C[Vn−λ] is either a
path, or a (partial) connected-cycles graph which is recursively arbitrarily partitionable by
the induction hypothesis since x 6≡ 2 (mod 3).

• If λ 6≡ 0 (mod 3) and λ − (y + 1) ≡ 1 (mod 3), then one may pick up, as Vλ, the λ first
vertices from the ordering given to deal with the previous case. This choice of Vλ makes, on
the one hand, C[Vλ] being spanned by either a path, or CCk′(x′, y) where k′ ≤ k − 1 and
x′ 6≡ 2 (mod 3) which is recursively arbitrarily partitionable by the induction hypothesis.
On the other hand, C[Vn−λ] is a path, or is spanned by a graph CCk′′(x, y′) for k′′ ≤ k − 1
and a y′ which is recursively arbitrarily partitionable, again by the induction hypothesis.

• Otherwise, if λ 6≡ 0 (mod 3) and λ − (y + 1) ≡ 2 (mod 3), then some similar partitions of
C may be obtained from the ordering

(v1, v2, ..., vy, ek, dk, ck, bk, ak, wk−1,k, ..., w1,2, e1, d1, c1, b1, a1, ux, ux−1, ..., u1)

of V (C), see Figure 5.7.b. �

We finally deduce Theorem 5.28 as a corollary of Lemma 5.32.

Proof of Theorem 5.28. For every value c ≥ 1 of the constant mentioned in Theorem 5.28, the
graph CCc+1(1, 1) is recursively arbitrarily partitionable according to Lemma 5.32 and satisfies

ς(CCc+1(1, 1)) = |V (CCc+1(1, 1))| − (c+ 1).

So for every value of c, we have a recursively arbitrarily partitionable graph showing that c does
not contradict the claim. �

Note that every graph CCk(1, 1) + {u1v1} is 2-connected, is still recursively arbitrarily par-
titionable according to Observation 2.27, and satisfies

ς(CCk(1, 1) + {u1v1}) = ς(CCk(1, 1)) + 1.

We thus get the following refinement of Theorem 5.28.

Observation 5.33. Theorem 5.28 remains true when restricted to recursively arbitrarily parti-
tionable 2-connected graphs.

5.5.2 Multiplicative factor

Every connected-cycles graph CCk(1, 1) has order n = 6k+ 1 and satisfies ς(CCk(1, 1)) = n− k
for every k ≥ 1. Thus, even if connected-cycles graphs confirm that the order of the longest
paths in a recursively arbitrarily partitionable graph with order n is not constantly lower than
n up to an additive factor, recall the proof of Theorem 5.28, they do not reject the strong
relationship between the properties of being recursively arbitrarily partitionable and traceable.
We now suggest to catch this relationship by involving a multiplicative factor.

Question 5.34. What is the biggest c′ < 1 such that we have ς(G) ≥ c′ · |V (G)| for every
recursively arbitrarily partitionable graph G?

Regarding connected-cycles graphs, we get that c′ ≤ 5
6 . In this section, we deduce a better

upper bound on c′ by studying the following graph construction.

Chapter 5. On-line and recursively arbitrarily partitionable graphs 145

(a) W (3, 3). (b) W (3, 5).

Figure 5.8: Two urchins (in black and grey), and one of their longest paths (in
black only).

Construction 5.35. Let k, k′ ≥ 1 be two positive integers. The urchin W (k, k′) is the graph
obtained as follows.

• Let A, B, C be three sets of k, k and k′ distinct vertices, respectively.

• Add a perfect matching between the vertices of A and B.

• Add all possible edges between distinct vertices in B ∪ C.

Example 5.36. Figure 5.8 depicts two examples of urchins, namely W (3, 3) and W (3, 5).

Note that every urchinW (k, k) has order 3k and satisfies ς(W (k, k)) = 2k+2, see Figure 5.8.
We then get that

ς(W (k, k))

|V (W (k, k))|
tends to 2

3 as k grows to infinity. In what follows, we show that every urchinW (k, k) is recursively
arbitrarily partitionable, and thus that the following holds regarding Question 5.34.

Theorem 5.37. Regarding Question 5.34, we have c′ ≤ 2
3 .

The following result actually provides a full characterization of recursively arbitrarily parti-
tionable urchins.

Lemma 5.38. Let k ≥ 2 and k′ ≥ 0 be two positive integers. The urchin W (k, k′) is recursively
arbitrarily partitionable if and only if k′ ≥ k − 2.

Proof. We introduce some terminology to deal with the vertices of every urchin W (k, k′). The
partition A ∪ B ∪ C of V (W (k, k′)) corresponds to the one given in Construction 5.35. The
vertices of A are denoted u1, u2, ..., uk, and those of B are denoted v1, v2, ..., vk in such a way
that uivi is an edge for every i ∈ {1, 2, ..., k}. The vertices of C are denoted w1, w2, ..., wk′

arbitrarily. Again, we herein denote by n the order of every urchin we consider.
The sufficient condition is proved by induction on both k and k′. As a base case, note that

every urchin W (2, k′) is traceable, and thus recursively arbitrarily partitionable. Suppose now
thatW (k, k′) is recursively arbitrarily partitionable for every k up to an i and every k′ ≥ k−2. We
now prove that every urchin graphW = W (k, k′) is recursively arbitrarily partitionable whenever
k = i + 1 and k′ ≥ k − 2. For this purpose, we show, for every value of λ ∈ {1, 2, ..., bn2 c}, that
V (W) can be partitioned into two parts Vλ and Vn−λ inducing recursively arbitrarily partitionable
graphs on λ and n− λ vertices, respectively.

We first deal with the easy cases, i.e. λ ∈ {1, 2, 3}. For λ = 1, consider Vλ = {u1} so
that the two induced subgraphs are K1 and W (k − 1, k′ + 1). Since k′ ≥ k − 2, this second
subgraph is recursively arbitrarily partitionable by the induction hypothesis. For λ = 2, let
Vλ = {u1, v1}. The two induced subgraphs then are K2 and W (k − 1, k′), which is recursively
arbitrarily partitionable for the same reason as in the previous case. Now, for λ = 3, choose Vλ =

146 5.6. Conclusion and open questions

{u1, v1, w1}. The two induced subgraphs then are the path P3, and the urchin W (k − 1, k′ − 1)
which is recursively arbitrarily partitionable, again by the induction hypothesis.

We now deal with the remaining values of λ, i.e. λ ≥ 4. The part Vλ is obtained by choosing
two disjoint sets V ′λ and V ′′λ , and then considering their union. On the one hand, in the case
where λ ≡ 1 (mod 3), let x = bλ−4

3 c. Clearly x is an integer. First, let V ′λ = ∅ if x = 0,
or V ′λ =

⋃x
i=1{ui, vi, wi} otherwise. Then set V ′′λ = {vx+1, ux+1, vx+2, ux+2}. The two induced

subgraphs then are a path or W (x + 2, x), and W (k − (x + 2), k′ − x), which are recursively
arbitrarily partitionable by the induction hypothesis since k′ ≥ k − 2.

On the other hand, i.e. λ 6≡ 1 (mod 3), let x = bλ3 c and y = λ (mod 3) (then y ∈ {0, 2}).
Then, let V ′λ =

⋃x
i=1{ui, vi, wi}. The strategy for choosing V ′′λ depends on whether y = 0 or

y = 2.

• y = 0. Choose V ′′λ = ∅. In this situation, the two induced subgraphs are W (x, x) and
W (k − x, k′ − x) which are recursively arbitrarily partitionable by the induction hypothesis
since k′ ≥ k − 2.

• y = 2. Let V ′′λ = {vx+1, ux+1}. The two induced subgraphs then are W (x + 1, x) and
W (k−(x+1), k′−x), which are recursively arbitrarily partitionable according to the induction
hypothesis. This concludes the proof of the sufficient condition.

The necessary condition follows from the fact that every urchin W not respecting the condi-
tions of the claim cannot be partitioned into too many connected subgraphs with order 3. Indeed,
as a set Vλ with size 3 inducing a recursively arbitrarily partitionable subgraph of W , one has to
consider a part of the form {ui, vi, wj} or {wi, wj , w`}. After having successively picked several
subsets of three vertices from W , one necessarily gets an urchin W (k′, 0) with k′ ≥ 3. Such a
graph is clearly not partitionable for λ = 3 once again. �

Theorem 5.37 follows as a corollary of Lemma 5.38. It can further be strengthened as follows.
Let W = W (k, k′) be a recursively arbitrarily partitionable urchin. Observe that by adding the
edges u1u2, u1u3, ..., u1uk to W (following the terminology of Lemma 5.38), we get a 2-connected
graph W2 which is recursively arbitrarily partitionable by Observation 2.27. By then adding the
edges u2u3, u2u4, ..., u2uk to W2, we get another recursively arbitrarily partitionable graph W3

which is 3-connected. By repeating this procedure as many times as wanted, we get a q-connected
recursively arbitrarily partitionable graph Wq for every value of q ≥ 2 assuming k and k′ are big
enough. Note further that we have

ς(Wq) = ς(W) + 2q,

and thus that ς(Wq)
ς(W) tends to 1 as k grows to infinity. Therefore, the statement of Theorem 5.37

is also true when restricted to q-connected recursively arbitrarily partitionable graphs, no matter
what is the value q.

Theorem 5.39. Theorem 5.37 remains true when restricted to recursively arbitrarily partition-
able graphs with arbitrarily large connectivity.

5.6 Conclusion and open questions

Throughout this chapter, we have focused on structural properties of on-line or recursively arbi-
trarily partitionable graphs. Our main inspiration was Theorem 2.23, which we have considered
in the context of on-line or recursively arbitrarily partitionable graphs. In Section 5.3 we have
first showed that removing a cutset from a recursively arbitrarily partitionable graph cannot
result in arbitrarily many components, recall Theorem 5.6. There is still a gap between what we

Chapter 5. On-line and recursively arbitrarily partitionable graphs 147

estimate to be the right maximum number of such components and the upper bound we proved,
compare Conjecture 5.5 and Theorem 5.6, but Theorem 5.6 is already significant anyway since
it again highlights the structural differences between recursively arbitrarily partitionable graphs
and arbitrarily partitionable graphs. But in order for our result to be complete, it would be
interesting to prove whether Conjecture 5.5 is true.

Showing that a structural property cannot occur in a recursively arbitrarily partitionable
graph is obviously easier to show than in an on-line arbitrarily partitionable graph due to the fact
that the recursive property is required for the two subgraphs induced by the vertex bipartition
rather than for just one of these. So getting to a contradiction is easier when dealing with
recursively arbitrarily partitionable graphs than it is for on-line arbitrarily partitionable graphs.
But one direction for future works would be to wonder how many components can result from the
removal of a k-cutset from an on-line arbitrarily partitionable graph. This question makes even
more sense in view of the relationship between arbitrarily partitionable graphs, on-line arbitrarily
partitionable graphs and recursively arbitrarily partitionable graphs, recall Theorem 2.19. Our
intuition is that the number of resulting components should still be upper-bounded by a function
of k independent from every graph parameter, but may be bigger than 2k + 1.

Question 5.40. What is the maximum number of components which may result when removing
a k-cutset from an on-line arbitrarily partitionable graph?

In Section 5.4, we have mainly focused on another aspect of Theorem 2.23 regarding on-
line arbitrarily partitionable graphs, namely on the orders of the components resulting from the
removal of a k-cutset. Pursuing works initiated by Baudon, Gilbert and Woźniak in [24], we
have more precisely focused on the case k = 2 by studying the class of balloon graphs. As a
main result, we have proved that removing a 2-cutset from an on-line or recursively arbitrarily
partitionable graph results in small components whenever at least four such components are
obtained. For the same reasons as above, we have obtained more results regarding recursively
arbitrarily partitionable graphs. So again it would be judicious to study whether such results
apply directly to on-line arbitrarily partitionable graphs (i.e. those which are not also recursively
arbitrarily partitionable) as well. But for this purpose, it would be judicious to come up with a
proof scheme different from the one we have been using throughout Section 5.4, which is based
on nothing but a tedious case distinction.

We have then investigated, in Section 5.5, the order of the longest paths in recursively ar-
bitrarily partitionable graphs, especially Question 5.34. Towards Question 5.34, our best result
so far is Theorem 5.37. An important lack for knowing how much further we can push Theo-
rem 5.37 is a general lower bound on the order of the longest paths of every recursively arbitrarily
partitionable graph. So we address the following counterpart of Question 5.34.

Question 5.41. What is the biggest c′′ < 1 such that the order of the longest path of every
recursively arbitrarily partitionable graph G cannot be smaller than |V (G)| · c′′?

As mentioned earlier, it would be also interesting studying whether out results from Sec-
tion 5.5 can be improved regarding on-line arbitrarily partitionable graphs. So considering our
investigations from Section 5.5 in the context of on-line arbitrarily partitionable graphs could be
a worthy direction for additional works on this topic.

It is worth mentioning that Conjecture 5.5, if true, could have another implication. As for the
previously considered variants of the property of being arbitrarily partitionable, one can wonder
whether an on-line or recursive version of Conjecture 3.46 (and more generally Conjecture 3.44)
holds. We notably considered this question in [29], wherein we addressed the following.

Conjecture 5.42 ([29]). Let ` ≥ 1 be a positive integer. If a graph G is recursively arbitrarily
partitionable, then so is G�P`.

148 5.6. Conclusion and open questions

In [29], we pointed out the hardness to infirm Conjecture 5.42 even for the case ` = 2
due to the traceability of all Cartesian products G�P2 involving a known recursively arbitrarily
partitionable graph G (this remains true for all new classes of recursively arbitrarily partitionable
graphs we have exhibited throughout this chapter). Hence all such Cartesian products are directly
recursively arbitrarily partitionable. So we implicitly raised the following.

Conjecture 5.43 ([29]). For every recursively arbitrarily partitionable graph G, the Cartesian
product G�P2 is traceable.

An intriguing fact is that Ck,`(Kn1+k,Kn2+k, ...,Kn`+k)�P2 is traceable whenever ` ≤ 2k+1,
but not traceable otherwise. This, of course, does not imply the correctness of Conjecture 5.43
as a compound graph made up of complete components has very convenient local Hamiltonian
properties. But it implies that if a graph G has a k-cutset whose removal results in at least
2k + 2 components, then G�P2 cannot be traceable. So there is a strong relationship between
the traceability of a graph and the fact that removing a cutset from it cannot result in too may
components. Conjecture 5.5, if true, would then be a strong support to Conjecture 5.43.

In Section 5.2, we have also pointed out the membership of On-Line Arbitrarily Par-
titionable Graph and Recursively Arbitrarily Partitionable Graph to PSPACE.
Though this result is evident, it would be interesting investigating whether these two problems
are complete in PSPACE. Proving the PSPACE-completeness of these problems would be quite
interesting since we still do not know the hardness status of Arbitrarily Partitionable
Graph, recall our investigations from Chapter 3.

Question 5.44. Are On-Line Arbitrarily Partitionable Graph and Recursively Ar-
bitrarily Partitionable Graph PSPACE-complete?

Conclusion to Part I 149

Chapter 6

Conclusion to Part I

Throughout Part I, we have considered several problems related to the problem of partitioning
a graph into connected subgraphs. Not only we have considered the original problem, asking
whether a graph can be partitioned into a certain number of connected subgraphs whose orders
are specified, but also more elaborated problems asking whether a graph can be partitioned into
arbitrarily many connected subgraphs with arbitrary orders (and possibly additional properties).
Our studies have been made regarding mainly the algorithmic and structural aspects.

We have first confirmed, in Chapter 3 (Section 3.1), the algorithmic hardness of the original
problem. Although some restrictions of Realizable Sequence were already known to be
NP-complete, recall Theorem 2.10, we have exhibited new conditions under which Realizable
Sequence remains NP-complete. These concern both the input sequence π and the input
graph G. Our most meaningful results in this line are perhaps Theorems 3.10 and 3.11, which
establish the hardness of Realizable Sequence when restricted to graphs which sometimes
appeared to be convenient regarding other hard graph problems. We have also established the
NP-completeness of Realizable Sequence when restricted to multipodes (Theorem 3.8) and
balloons (Theorem 3.11), which, although simple, are among the most studied classes of graphs
in the context of arbitrarily partitionable graphs.

Then, we have considered the notion of arbitrarily partitionable graphs in Chapter 3, espe-
cially regarding the algorithmic aspect. Although we did not manage to tell much about the
complexity of Arbitrarily Partitionable Graph, we have exhibited new polynomial ker-
nels of sequences for several families of graphs in Section 3.3. These would rather advocate the
membership of Arbitrarily Partitionable Graph to NP, though nothing is certain as these
kernels concern very restricted families of graphs.

We have finally considered two main variants of the notion of arbitrarily partitionable graphs.
On the one hand, we have considered the notion of preassignable arbitrarily partitionable graphs
in Chapter 4, which are basically arbitrarily partitionable graphs which can be partitioned even
when a fixed number of vertex-membership constraints must be met. Our results regarding this
notion are mainly structural. Namely, we have mainly proved a tight lower bound on the size
of a k-preassignable arbitrarily partitionable graph with order n (regarding both k and n) in
Section 4.3, and have showed in Section 4.4 that, though these graphs need to be dense enough,
preassignable arbitrarily partitionable graphs can be arbitrarily far from being traceable.

On the other hand, we have also considered two recursive notions of arbitrarily partition-
able graphs in Chapter 5, namely on-line and recursively arbitrarily partitionable graphs, which
are, roughly set, arbitrarily partitionable graphs which can be partitioned into partitionable
subgraphs. Our motivation was mainly to step towards a recursive analogue of structural The-
orem 2.23 for these graphs. In this scope, we have confirmed that the structures of arbitrarily
partitionable graphs and recursively arbitrarily partitionable graphs can be quite different, com-
pare Theorems 5.6 and 5.13 to Theorem 2.23. We have notably expressed these differences in
terms of some structural properties of the components resulting from the removal of a cutset in
these graphs.

In the light of all remaining gaps to fill and open questions related to the notion of arbitrarily
partitionable graphs and its variants, perspectives for future works are wide. Our investigations

150 Conclusion to Part I

in particular gave birth to several open questions, refer to concluding Sections 3.6, 4.6, and 5.6.
But many other directions for future works have not been even mentioned in this thesis. Among
the most appealing directions, let us mention the following ones.

Hypotraceable arbitrarily partitionable graphs.
Every traceable graph is obviously arbitrarily partitionable, recall Observation 2.34. Then one

natural question is to wonder about sufficient conditions for a graph which is “nearly traceable”
to be arbitrarily partitionable. In this scope, the case of the following class of graphs seems quite
intriguing.

Definition 6.1. A graph G is hypotraceable if G is not traceable but G − {u} is traceable for
every u ∈ V (G).

Only few works have been dedicated to hypotraceable graphs, regarding mainly extremal
aspects related to these graphs, e.g. given a property P , what is the minimum order of an
hypotraceable graph having property P (if such exist)? We refer the interested reader to works
of Thomassen [116] and Araya and Wiener [10] for examples of such results.

For every hypotraceable graph G, we have ς(G) = |V (G)| − 1 and G has a lot of different
paths with order ς(G). Due to a theorem proved by Ravaux in [105], every |V (G)|-sequence π
satisfying |sp(π)| ≥ 2 is realizable in G. So in order to check that an hypotraceable graph is
arbitrarily partitionable, we can narrow down our concern on sequences with spectrum of size 1.

This observation implies that every hypotraceable graph with prime order is arbitrarily parti-
tionable. Now, for the general case, it does not seem obvious whether every non-trivial sequence
(k, k, ..., k) is always realizable in an hypotraceable graph whose order is a multiple of k. So we
ask the following.

Question 6.2. Is every non-trivial sequence (k, k, ..., k) realizable in an hypotraceable graph
whose order is a multiple of k?

Assume we want to realize a non-trivial sequence π = (k, k, ..., k) in an hypotraceable graph
G. It is easily seen that if P = v1v2...v|V (G)|−1 denotes one Hamiltonian path of G−{u} for some
u ∈ V (G) and there is an edge uvi ∈ E(G) with i 6≡ 0 (mod k), then a realization of π in G can
be deduced (just pick parts along P from left to right, and add u to the part containing vi before
continuing). So the hard case to consider is the case where, for every u ∈ V (G), the connection
between u and P is only made via some kth vertices of P , i.e. vertices among {vk, v2k,, v3k, ...}.
Actually u has to be joined to at least three such vertices since otherwise either G would not be
hypotraceable, or we could deduce a favourable situation by removing a neighbour of u from G.

Although this question does not seem so complicated to handle (G has strong structural prop-
erties, and π is well identified), things are actually hard, due mainly to the following argument.
The fact is that two Hamiltonian paths P and P ′ of G− {u} and G− {u′}, where u, u′ ∈ V (G)
and u 6= u′, can be quite different. Although the majority of their vertices are the same, the
two orderings over these can differ a lot. So even if we cannot deduce a realization from P , the
consequences on P ′ do not seem obvious in general.

Conversely, it has to be kept in mind that practically checking whether a non-trivial sequence
(k, k, ..., k) is realizable in an hypotraceable graph is tedious due to the fact that these graphs
have relatively large order (for the context of arbitrarily partitionable graphs)1. So refuting
Question 6.2 does not appear easier than proving it.

1-tough arbitrarily partitionable graphs.
According to Theorem 2.1, every 2-connected graph is arbitrarily 2-partitionable. So another

natural question is to wonder whether every 2-connected graph can always be partitioned into
three connected subgraphs, or, equivalently, whether Theorem 2.1 could be improved. This

1So far the smallest known hypotraceable graph has order 34 and was exhibited by Thomassen in [116].

Conclusion to Part I 151

Figure 6.1: A 1-tough graph which does not admit any realization of
(11, 11, 11, 11). The vertices in the grey area form a clique.

question could of course be generalized to k-connected graphs for any fixed value of k ≥ 2, but
let us just focus on the following question for now.

Question 6.3. Is every 2-connected graph arbitrarily 3-partitionable?

Question 6.3 can be easily refuted as M2(2, 4) is 2-connected but does not admit any perfect
matching (and hence no realization of (2, 2, 2)). This counterexample can be easily generalized,
but all such counterexamples share a common property based on the following definition.

Definition 6.4. A graph G is 1-tough if, for every integer k ≥ 1, removing a k-cutset from G
results in at most k components.

Note that every 2-connected graph is 1-tough. However the contrary does not have to hold.
In particular, all mentioned above graphs refuting Question 6.3 are not 1-tough. So we ask the
following refined question.

Question 6.5. Is every 1-tough graph arbitrarily 3-partitionable?

Despite many efforts, we did not manage to confirm or reject Question 6.5. However, Ques-
tion 6.5, if true, would be tight in the sense that 1-tough graphs do not have to be arbitrarily
4-partitionable. As an illustration of this statement, consider the graph depicted in Figure 6.1.
The construction of this graph is inspired from a construction given by Bauer, Broersma and
Veldman in [26] for constructing 1-tough graphs. It can be then checked by hand that this graph,
which has order 44, does not admit any realization of (11, 11, 11, 11). So we have the following.

Theorem 6.6. 1-tough graphs are not all arbitrarily 4-partitionable.

Arbitrarily partitionable graphs in terms of forbidden subgraphs.
Sufficient conditions for a graph to have Hamiltonian properties have been sometimes ex-

pressed in terms of forbidden subgraphs. The goal is then to exhibit graphs H1, H2, ...,Hk such
that every {H1, H2, ...,Hk}-free graph has a given Hamiltonian property. Perhaps the most fa-
mous such result is the one of Duffus, Gould and Jacobson stating that every connected claw-
and net-free graph is traceable, and every 2-connected claw- and net-free graph is Hamilto-
nian [53]. So, as explained in introductory Section 2.3, it would be interesting exhibiting similar
such sufficient conditions for a graph to be arbitrarily partitionable.

Since every traceable graph is arbitrarily partitionable, recall Observation 2.34, the result of
Duffus, Gould and Jacobson directly ensures that every claw- and net-free graph is arbitrarily
partitionable. So the next question is about whether we can refine these two forbidden patterns
so that we get a result specific to arbitrarily partitionable graphs. This would formulate e.g. as
follows.

Question 6.7. Are there graphs H1, H2, ...,Hk such that every {H1, H2, ...,Hk}-free graph is
necessarily arbitrarily partitionable but not necessarily traceable (or Hamiltonian)?

152 Conclusion to Part I

Figure 6.2: A 2-connected claw-free graph which is not arbitrarily partitionable.

e1 e2

e3 e4

e5

Figure 6.3: A minimal recursively arbitrarily partitionable graph which is not
minimal arbitrarily partitionable.

Question 6.7 does not seem easy to handle. However, it is worth mentioning that the claw
and the net both seem to be important patterns towards such a sufficient condition for a graph to
be arbitrarily partitionable. Note indeed that e.g. every balloon B(5, 5, ..., 5) with at least four
odd branches is 2-connected and net-free but not arbitrarily partitionable, recall Observation 5.2.
Regarding the claw, note that the graph depicted in Figure 6.2 is 2-connected and claw-free, but
does not admit any realization of (4, 4, ..., 4).

Minimal recursively arbitrarily partitionable graphs.
Similarly as for arbitrarily partitionable graphs, recall our investigations from Section 3.4, it

would be interesting studying what does a minimal recursively arbitrarily partitionable graph
look like, and whether minimal recursively arbitrarily partitionable graphs are quite different
from minimal arbitrarily partitionable graphs. One reason to think that these two families of
graphs could be different is notably the fact that recursively arbitrarily partitionable trees have
a much more restricted structure than arbitrarily partitionable trees, compare Theorems 2.17
and 2.20.

To illustrate this statement, consider the graph G drawn in Figure 6.3. It can be checked
that G is recursively arbitrarily partitionable (and is hence arbitrarily partitionable, recall The-
orem 2.19). Besides, this graph G is minimal recursively arbitrarily partitionable because the
graphs G − {e1} and G − {e3} are trees with two degree-3 nodes, and G − {e5} is a tripode
different from P3(2, 4, 6). However G is not minimal arbitrarily partitionable as G − {e1} is

Conclusion to Part I 153

arbitrarily partitionable. So there are minimal recursively arbitrarily partitionable graphs with
order 9, while the smallest minimal arbitrarily partitionable graphs we know have order 10, re-
call our investigations from Section 3.4.1. Although this difference is not meaningful, we believe
more interesting differences could be pointed out between these graphs, about which still little
is known.

Part II

Distinguishing the neighbours of a
graph via an edge-weighting

Chapter 7. Introduction to Part II 157

Chapter 7

Introduction to Part II

This chapter is dedicated to the introduction of all materials necessary to understand our works
related to vertex-distinguishing edge-colourings of graphs in Chapters 8, 9, 10 and 11. Notions
motivating our investigations are presented in Section 7.1. Definitions, notation and terminology
we use throughout are then given in Section 7.2. We then survey additional notions related to
our investigations in Section 7.3. We finally describe concretely our contributions in Section 7.4.

7.1 Motivations . 157
7.2 Definitions, terminology and notation . 159
7.3 Related work . 160
7.4 Contributions of Part II . 165

7.1 Motivations

Vertex-distinguishing edge-weightings of graphs emerged with several works aiming at defining
what an irregular graph could be. If we want such a notion of irregularity to be an antonym
to regularity rather than just the property of being not regular, then perhaps the most natural
definition for it is the one of total irregularity defined as follows.

Definition 7.1. A graph G is totally irregular if every two vertices of G have distinct degrees.

However, the notion of total irregularity is not suitable for simple graphs as an easy argument
shows that every simple graph with at least two vertices necessarily has two vertices with the
same degree. Assume indeed that G is a simple graph with order n. If G is totally irregular,
then the vertices of G have degree 0, 1, ..., n− 1, respectively. But then the existence of a vertex
with degree n− 1 in G contradicts the existence of a vertex with degree 0.

This argument does not hold in the context of multigraphs as one can easily design totally
irregular multigraphs. Based on that fact, Chartrand, Jacobson, Lehel, Oellermann, Ruiz and
Saba studied how to turn a simple graph G, which cannot be totally irregular, into a totally
irregular multigraph G′ by multiplying every edge e of G a given number ne ≥ 1 of times [42],
i.e. replacing e with ne parallel edges. The main reason for just multiplying the edges of G
(instead of adding new vertices to G or edges joining two non-adjacent vertices of G) to get G′

is that this transformation does not alter the adjacencies, in the sense that every two adjacent
vertices in G′ are also adjacent in G. So the structure of G′ is representative of the structure
of G. The main concern of Chartrand, Jacobson, Lehel, Oellermann, Ruiz and Saba was in
particular to perform this transformation in an optimal way, namely in such a way that the
quantity max{ne : e ∈ E(G)} is minimized. This optimization problem can be formalized with
the notions of weighted degree of a vertex and vertex-sum-distinguishing edge-weighting of a
graph.

Definition 7.2. Let w be an improper k-edge-weighting of a graph G. The weighted degree of
a vertex v of G is defined as

sw(v) =
∑

u∈N(v)

w(vu).

158 7.1. Motivations

1 3 4

1

2

5 6 2

1

1 3

1 2

2

1 1

Figure 7.1: A graph and a 3-edge-weighting of it. Weighted degrees are circled.

We say that w is vertex-sum-distinguishing if sw is injective.

Example 7.3. The 3-edge-weighting w of the graph depicted in Figure 7.1 is not vertex-sum-
distinguishing since two vertices have weighted degree 1, and two vertices have weighted degree 2
by w.

If w is vertex-sum-distinguishing then, by multiplying every edge e of G exactly w(e) times,
we obtain a multigraph G′ which is totally irregular since the weighted degree sw(v) by w of
every vertex v of G directly converts to the degree of v in G′. Regarding the motivation above, we
are hence interested in finding the least number of weights used by a vertex-sum-distinguishing
k-edge-weighting of a graph. We call this parameter the vertex-sum-distinguishing chromatic
index throughout this thesis for the sake of consistency, though this parameter is rather known
under the name of irregularity strength in the literature.

Definition 7.4. The vertex-sum-distinguishing chromatic index of a graph G is the minimum
number of weights of a vertex-sum-distinguishing k-edge-weighting of G (if any).

Irregularity strength of graphs has been receiving great interest in the last decades, and
gave birth to dozens variants obtained by changing the parameters constituting the underlying
problem. Since our goal here is not to give a complete survey of the investigations on the
irregularity strength of graphs, but rather to explain what motivated our own investigations, we
refer the interested reader to surveys of e.g. Gallian [61], Lehel [86], West [119] and Seamone [109]
for more details on this topic.

In particular, one variant of the notion of irregularity strength strongly related to our in-
vestigations is motivated as follows. Since the notion of totally irregularity is not suitable for
simple graphs, one can consider the following weaker local notion of irregularity, which was first
introduced under the name of high irregularity by Alavi, Chartrand, Chung, Erdős, Graham and
Oellermann [5].

Definition 7.5. A graph G is locally irregular if every two adjacent vertices of G have distinct
degrees.

If a graph G is not locally irregular, then, as above, one can turn G into a locally irregular
multigraph by multiplying every edge of G a certain number of times. This can again be regarded
as an edge-weighting problem.

Definition 7.6. Let w be an improper k-edge-weighting of a graph G. We say that w is
neighbour-sum-distinguishing if sw is proper.

Example 7.7. The 3-edge-weighting drawn in Figure 7.1 is neighbour-sum-distinguishing.

Similarly as above, if w is a neighbour-sum-distinguishing edge-weighting of G then, by
multiplying every edge e of G exactly w(e) times, we get a locally irregular multigraph whose
structure is representative of the structure of G. So, again, we are interested in finding the
least number of weights in a neighbour-sum-distinguishing k-edge-weighting of a graph. This
parameter is the neighbour-sum-distinguishing chromatic index.

Chapter 7. Introduction to Part II 159

Definition 7.8. The neighbour-sum-distinguishing chromatic index χ′nsd(G) of a graph G is the
minimum number of weights of a neighbour-sum-distinguishing k-edge-weighting of G (if any).

Neighbour-sum-distinguishing edge-weighting of graphs in turn motivated numerous variants
obtained by modifying (parts of) the definitions. Our investigations throughout Part II are
dedicated to known variants of the notions of vertex-sum-distinguishing and neighbour-sum-
distinguishing edge-weighting of graphs. Inspired by these variants, we also introduce new ways
for distinguishing the vertices of a graph by means of an edge-weighting.

7.2 Definitions, terminology and notation

Every problem asking whether some vertices of a graph G can be distinguished by means of an
improper weighting w of the edges of G can be described by formally defining two parameters:

Parameter 1: which vertices of G must be distinguished,

Parameter 2: according to which parameter related to w two vertices of G to distinguish are
considered distinguished.

Example 7.9. If we want to distinguish all vertices of G (Parameter 1) via the sums of their
incident weights by w (Parameter 2), then we want w to be vertex-sum-distinguishing.

Example 7.10. If we want to distinguish the adjacent vertices of G (Parameter 1) via the sums
of their incident weights by w (Parameter 2), then we want w to be neighbour-sum-distinguishing.

To clarify Parameters 1 and 2 when dealing with a vertex-distinguishing edge-weighting w
of G, and to keep consistency with the terminology and notation introduced in Section 7.1, we
say that w is d-f -distinguishing, where d ∈ N∗ and f is a function associating an object deduced
from w with every vertex of G, if, for every two vertices u and v of G such that dist(u, v) ≤ d,
we have f(u) 6= f(v). We rather refer to an ∞-f -distinguishing edge-weighting as a vertex-
f -distinguishing edge-weighting. Similarly, we refer to a 1-f -distinguishing edge-weighting as
a neighbour-f -distinguishing edge-weighting. For the sake of simplicity, we rather use a term
describing f rather than f itself when the elements associated by f with the vertices of G are
clear from the context. Note that the notions of vertex-sum-distinguishing and neighbour-sum-
distinguishing edge-weighting are consistent with these definitions.

As usual, we need a parameter referring to the minimum number of weights of a d-f -
distinguishing k-edge-weighting of a graph G. We call it the d-f -distinguishing chromatic index
of G, and denote it χ′d,term(G), where the subscript term is generally a term describing f . We
voluntarily make use of the symbol χ′, which is the standard notation for the chromatic index
of graphs, to make clear the fact that we are weighting the edges only. As most of the vertex-
distinguishing edge-weighting notions we consider throughout concern the distinguishing of the
adjacent vertices of graphs (i.e. notions with d = 1), we write χ′term(G) instead of χ′1,term(G) for
the sake of simplicity.

There may be graphs which do not admit a d-f -distinguishing edge-weighting for given d
and f , consider for instance a vertex-sum-distinguishing edge-weighting of K2. For such graphs,
the d-f -distinguishing chromatic index is not finite by definition. We refer to those graphs
as exceptions (for k-f -distinguishing edge-weighting of graphs). Conversely, a weightable (or
colourable in case we are dealing with an edge-colouring notion) graph (for k-f -distinguishing
edge-weighting of graphs) is a graph which is not an exception.

Every notion of d-f -distinguishing edge-weighting of G we consider naturally extends to a
notion of d-f t-distinguishing total-weighting of G, where a d-f t-distinguishing total-weighting
of G is a total-weighting distinguishing the vertices at distance at most d of G and f t(v) is

160 7.3. Related work

computed as f(v) but with additionally taking the value assigned to v by the weighting into
account (i.e. as if the weight on v were the weight assigned to an additional edge incident with
v). Speaking of d-f t-distinguishing total chromatic number then directly makes sense. Assuming
the d-f -distinguishing chromatic index of graphs is denoted χ′d,term, we denote χ′′d,term the d-f t-
distinguishing total chromatic number in view of the relationship between the two underlying
weighting notions.

Regarding list versions of some d-f -distinguishing edge-weighting or d-f t-distinguishing total-
weighting notions, assuming χ′term and χ′′term denote the d-f -distinguishing chromatic index and
d-f t-distinguishing total chromatic number, respectively, we directly denote ch′term and ch′′term
the edge-choosability and total-choosability of the list versions of these problems.

7.3 Related work

We herein survey some of the background associated with the notion of neighbour-sum-distinguishing
edge-weighting of graphs and some of its variants related to our investigations.

1-2-3 Conjecture

The study of neighbour-sum-distinguishing edge-weighting of graphs was initiated by Karoński,
Łuczak and Thomason, who conjectured in [81] that every graph with no component isomorphic
to K2 should admit a neighbour-sum-distinguishing 3-edge-weighting.

1-2-3 Conjecture ([81]). If G is a weightable graph, then χ′nsd(G) ≤ 3.

Weaker versions of the 1-2-3 Conjecture have been successively proved since its introduction.
As a first result, Karoński, Łuczak and Thomason proved that the neighbour-sum-distinguishing
chromatic index of weightable graphs is upper-bounded by 183 [81]. This upper bound was
then decreased to 30 by Addario-Berry, Dalal, McDiarmid, Reed and Thomason [2], to 16 by
Addario-Berry, Dalal and Reed [3], to 13 by Wang and Yu [118], and to 6 by Kalkowski, Karoński
and Pfender in [78]. This last result has been then improved by the same authors in [79] to the
following best result towards the 1-2-3 Conjecture.

Theorem 7.11 ([79]). If G is a weightable graph, then χ′nsd(G) ≤ 5.

Exhibiting constant upper bounds on the neighbour-sum-distinguishing chromatic index of
weightable graphs aside, most of works aimed at verifying the 1-2-3 Conjecture for various
classes of graphs. One strategy for finding a neighbour-sum-distinguishing edge-weighting of
a weightable graph G is to start from a proper vertex-colouring of its vertices, and then weight
every edge of G accordingly to which parts of the vertex-partition its ends belong to. A strong
relationship between the chromatic number and the neighbour-sum-distinguishing chromatic in-
dex of weightable graphs has hence been pointed out in several references of the literature. In
this vein, let us mention the following result by Karoński, Łuczak and Thomason which implies
that weightable graphs which admit a 3-vertex-colouring do not refute the 1-2-3 Conjecture [81].

Theorem 7.12 ([81]). If a weightable graph G is k-colourable with k ≥ 1 odd, then χ′nsd(G) ≤ k.
It is worth mentioning that the 1-2-3 Conjecture, if true, would be tight (consider e.g. C6),

but that if G is a random graph from G(n, p), then asymptotically almost surely χ′nsd(G) ≤ 2
according to a result by Addario-Berry, Dalal and Reed [3]. No easy classification of graphs with
neighbour-sum-distinguishing chromatic index at most 2 is known so far. Actually the existence
of such a classification would imply that P=NP holds, due to the fact that the decision problem
below was shown to be NP-complete in general.

Neighbour-Sum-Distinguishing {a, b}-Edge-Weighting
Instance: a graph G.
Question: does G admit a neighbour-sum-distinguishing {a, b}-edge-weighting?

Chapter 7. Introduction to Part II 161

The complexity of Neighbour-Sum-Distinguishing {a, b}-Edge-Weighting was first
considered by Dudek and Wajc in [52], wherein its NP-completeness is established for two values
of {a, b}.
Theorem 7.13 ([52]). Neighbour-Sum-Distinguishing {a, b}-Edge-Weighting is NP-
complete for {a, b} = {1, 2} and {a, b} = {0, 1}.

Later on, Ahadi, Dehghan and Sadeghi proved that Neighbour-Sum-Distinguishing {1, 2}-
Edge-Weighting remains NP-complete when restricted to cubic graphs [4]. Sufficient condi-
tions for particular classes of graphs to have neighbour-sum-distinguishing chromatic index at
most 2 have consequently been gathered in several research works. Again, we refer the reader to
the survey of Seamone [109] wherein most of these results at the moment are gathered. Perhaps
one of the most intriguing open question in this scope is the case of bipartite graphs.

Problem 7.14. Characterize bipartite graphs with neighbour-sum-distinguishing chromatic index
at most 2.

Two directions then arise regarding Problem 7.14, namely showing that Neighbour-Sum-
Distinguishing {1, 2}-Edge-Weighting is NP-complete when restricted to bipartite graphs,
which would reject the existence of an easy characterization (unless P = NP), or exhibiting such
an easy classification. The prevalent feeling is that an easy characterization should exist, as only
a few bipartite graphs needing the three weights among {1, 2, 3} have been exhibited so far, refer
e.g. to the paper of Davoodi and Omoomi [46] which summarizes these graphs. Towards this
direction, many authors gathered sufficient conditions for specific classes of bipartite graphs to
have neighbour-sum-distinguishing chromatic index at most 2, see e.g. the works of Chang, Lu,
Wu and Yu [41], Davoodi and Omoomi [46], and Khatirinejad, Naserasr, Newman, Seamone and
Stevens [84].

Alternate versions of the 1-2-3 Conjecture

Many notions related to neighbour-sum-distinguishing edge-weighting of graphs have been con-
sidered since the introduction of the 1-2-3 Conjecture. We only survey below those notions
which are related to our investigations, but again we refer the reader to the up-to-date survey
by Seamone [109] for more details on this topic.

Multiset version

One approach considered by Karoński, Łuczak and Thomason to deal with the 1-2-3 Conjecture
is to consider the distinguishing of adjacent vertices by the multisets of their incident colours by
an edge-colouring. This yields to the notion of neighbour-multiset-distinguishing edge-colouring
of graphs.

Definition 7.15. Let c be an improper k-edge-colouring of a graph G. For every vertex v of G,
let mc(v) be the multiset of colours incident with v by c. We say that w is neighbour-multiset-
distinguishing if mc is proper.

As usual, given a graph G the goal is to determine the neighbour-multiset-distinguishing
chromatic index ofG, i.e. the least number of colours used by a neighbour-multiset-distinguishing
k-edge-colouring of G (if any).

Definition 7.16. The neighbour-multiset-distinguishing chromatic index χ′nmd(G) of a graph G
is the minimum number of colours of a neighbour-multiset-distinguishing k-edge-colouring of G
(if any).

Note that there is a strong relationship between neighbour-sum-distinguishing edge-weighting
and neighbour-multiset-distinguishing edge-colouring of graphs.

162 7.3. Related work

u1
3

u2

3

3

2

4

Figure 7.2: A graph and a neighbour-multiset-distinguishing 3-edge-colouring of
it which is not neighbour-sum-distinguishing.

Observation 7.17. Every neighbour-sum-distinguishing edge-weighting of a graph is neighbour-
multiset-distinguishing.

Therefore, we have χ′nmd(G) ≤ χ′nsd(G) for every graph G with no component isomorphic to
K2. It is worth noting that the counterpart of Observation 7.17 does not hold, i.e. a neighbour-
multiset-distinguishing edge-colouring is not necessarily neighbour-sum-distinguishing.

Example 7.18. In Figure 7.2 is drawn a graph and a 3-edge-weighting w of it. It is easily
checked that w is neighbour-multiset-distinguishing (in particular, we have mw(u1) = {3, 3, 3} 6=
{2, 3, 4} = mw(u2)). But w is not neighbour-sum-distinguishing as sw(u1) = 9 = sw(u2).

Not surprisingly in view of this relationship, as for the neighbour-sum-distinguishing chro-
matic index, it was conjectured by Addario-Berry, Aldred, Dalal and Reed that the neighbour-
multiset-distinguishing chromatic index of every colourable graph should be upper-bounded
by 3 [1].

Conjecture 7.19 ([1]). If G is a colourable graph, then χ′nmd(G) ≤ 3.

Concerns regarding Conjecture 7.19 are roughly the same as those for the 1-2-3 Conjecture,
though the 1-2-3 Conjecture has been receiving much more interest since, if true, it would imply
Conjecture 7.19, recall Observation 7.17. Regarding Conjecture 7.19, the best known constant
upper bound on χ′nmd(G) is 4 and is due to Addario-Berry, Aldred, Dalal and Reed [1].

Theorem 7.20 ([1]). If G is a colourable graph, then χ′nmd(G) ≤ 4.

It is worth noting that Theorem 7.11 directly implies that colourable graphs have neighbour-
multiset-distinguishing chromatic index at most 5 according to Observation 7.17, but this upper
bound is not better than the one of Theorem 7.20. Unfortunately, the proof of Theorem 7.20
cannot be adapted to prove that χ′nsd(G) ≤ 4 for every weightable graph G.

Conjecture 7.19 was confirmed for several classes of graphs, namely for colouring graphs with
large enough maximum degree by Addario-Berry, Aldred, Dalal and Reed [1], and some cubic and
bipartite graphs by Havet, Paramaguru and Sampathkumar [68]. Let us in particular mention
the following two results.

Theorem 7.21 ([1]). If G is a colourable graph with ∆(G) ≥ 1000, then χ′nmd(G) ≤ 3.

Theorem 7.22 ([68]). If G is a bipartite graph with δ(G) ≥ 3, then χ′nmd(G) ≤ 2.

We now turn our attention to the algorithmic point of view. Consider the following problem.

Neighbour-Multiset-Distinguishing k-Edge-Colouring
Instance: a graph G.
Question: do we have χ′nmd(G) ≤ k?

Havet, Paramaguru and Sampathkumar established the hardness of Neighbour-Multiset-
Distinguishing 2-Edge-Colouring in [68], relating to P=NP the existence of an easy char-
acterisation of graphs with neighbour-multiset-distinguishing chromatic index at most 2.

Chapter 7. Introduction to Part II 163

3

52

4 6

21

1 3

3

(a) A 3-edge-weighting of C5.

4

53

4 6

21

1 2

2

2

1

11

1

(b) A 2-total-weighting of C5.

Figure 7.3: Optimal neighbour-sum-distinguishing weightings of C5. Weighted
degrees are circled.

Theorem 7.23 ([68]). Neighbour-Multiset-Distinguishing 2-Edge-Colouring is NP-
complete, even when restricted to cubic graphs.

As for the neighbour-sum-distinguishing chromatic index (Problem 7.14), the existence of an
easy classification of bipartite graphs with neighbour-multiset-distinguishing chromatic index at
most 2 is still an open question.

Problem 7.24. Characterize bipartite graphs with neighbour-multiset-distinguishing chromatic
index at most 2.

The same remarks apply to Problem 7.24, namely that the NP-completeness of Neighbour-
Multiset-Distinguishing 2-Edge-Colouring when restricted to bipartite graphs would re-
ject the existence of an easy classification (unless P=NP), but that the small number of known
bipartite graphs for which three colours are necessary tend to confirm the existence of such a
classification (this was notably pointed out by Havet, Paramaguru and Sampathkumar in [68]).

1-2 Conjecture

Note that if a graph G has a neighbour-sum-distinguishing k-edge-weighting w for some k ≥ 1,
then a neighbour-sum-distinguishing k-total-colouring of G can be obtained by considering w
and assigning every vertex of G the same value, say 1. The 1-2-3 Conjecture, if true, would
then imply that χ′′nsd(G) ≤ 3 holds for every graph G admitting a neighbour-sum-distinguishing
3-edge-weighting. Noting that even K2 admits a neighbour-sum-distinguishing 2-total-weighting,
Przybyło and Woźniak raised the following conjecture [102].

1-2 Conjecture ([102]). For every graph G, we have χ′′nsd(G) ≤ 2.

The 1-2-3 Conjecture, if true, would imply that we can obtain a neighbour-sum-distinguishing
edge-weighting of every weightable graph G using the weights among {1, 2, 3} only. The 1-2
Conjecture states that if we drop the weight 3 for the edges but compensate by the use of a
local weight at each vertex, then we should be able to obtain a neighbour-sum-distinguishing
total-weighting of G using the weights among {1, 2} only.
Example 7.25. C5 is an example of graph whose neighbour-sum-distinguishing chromatic index
is exactly 3 (Figure 7.3.a depicts a neighbour-sum-distinguishing 3-edge-weighting of C5). But
C5 admits a neighbour-sum-distinguishing 2-total-weighting, see Figure 7.3.b.

Przybyło and Woźniak verified the 1-2 Conjecture for complete graphs, 3-colourable graphs,
and 4-regular graphs [102]. As a first result towards the 1-2 Conjecture, they also proved that
χ′′nsd(G) ≤ 11 for every graph G. This upper bound was then lowered to 7 in the case of regular
graphs by Przybyło [100], before a breakthrough to 3 in the general case by Kalkowski [77].

164 7.3. Related work

Theorem 7.26 ([77]). For every graph G, we have χ′′nsd(G) ≤ 3.

Since a neighbour-sum-distinguishing k-total-weighting does not imply the existence of a
neighbour-sum-distinguishing k-edge-weighting, Theorem 7.26 does not imply the 1-2-3 Conjec-
ture. It is however worth mentioning that the proof of Theorem 7.11 is actually derived from the
proof of Theorem 7.26, which consists in starting from an initial total-weighting and processing
the vertices of the input graph linearly, and fixing the possible conflicts which may arise between
a vertex and its predecessors by modifying the weighting locally. The proof of Theorem 7.11 was
actually obtained by compensating the weighting of the vertices of the graph by the use of more
edge weights, so that the process introduced by Kalkowski is applicable.

Product versions

One straight variant of most of the notions considered so far consists in considering, at each ver-
tex, the product of incident weights rather than their sum. This yields the following definitions.

Definition 7.27. Let w be an improper k-edge-weighting of a graph G. For every vertex v of
G, let

pw(v) =
∏

u∈N(v)

w(vu)

be the product of weights incident to v by w. We say that w is neighbour-product-distinguishing
if pw is proper. The minimum number of weights of a neighbour-product-distinguishing k-edge-
weighting of G (if any) is the neighbour-product-distinguishing chromatic index of G, denoted
χ′npd(G).

This variant was mainly investigated by Skowronek-Kaziów in [112], wherein neighbour-
product-distinguishing total-colouring of graphs is considered. Regarding this problem, Skowronek-
Kaziów raised the following conjecture derived from the 1-2 Conjecture.

Conjecture 7.28 ([112]). For every graph G, we have χ′′npd(G) ≤ 2.

Conjecture 7.28 is still an open question, but Skowronek-Kaziów proved a weaker version of
it in [112] using a technique similar to the one used to prove Theorem 7.20.

Theorem 7.29 ([112]). For every graph G, we have χ′′npd(G) ≤ 3.

List versions

One usual way of investigation regarding a weighting problem is to wonder how much harder a
list version of the same problem is. We sum up below some such results regarding list versions
of the 1-2-3 and 1-2 Conjectures.

The list version of the 1-2-3 Conjecture was addressed by Bartnicki, Grytczuk and Niwczyk
in [14].

List 1-2-3 Conjecture ([14]). For every weightable graph G, we have ch′nsd(G) ≤ 3.

Most of the results concerning the List 1-2-3 Conjecture have been proved using Alon’s
Combinatorial Nullstellensatz method (see [6]). Bartnicki, Grytczuk and Niwczyk first verified
the List 1-2-3 Conjecture for complete graphs, trees, and complete bipartite graphs [14]. More
results regarding some particular classes of graphs may also be found in works by Seamone [110,
111], as well as the following upper bound on ch′nsd, which is the best known bound related to
the List 1-2-3 Conjecture, though not constant.

Theorem 7.30 ([110], [111]). For every weightable graph G, we have ch′nsd(G) ≤ 2∆(G) + 1.

The list version of the 1-2 Conjecture was raised by Przybyło and Woźniak in [103].

Chapter 7. Introduction to Part II 165

List 1-2 Conjecture ([103]). For every graph G, we have ch′′nsd(G) ≤ 2.

As first results, Przybyło and Woźniak showed in [103] that the List 1-2 Conjecture is verified
for trees, wheels, unicyclic graphs, and complete graphs. No weaker version of the List 1-
2 Conjecture has however been proved so far. An upper bound on ch′′nsd, dependent of the
maximum degree, was again given by Seamone, who showed that ch′′nsd(G) ≤ d2

3∆(G)e+ 1 holds
for every graph G [110, 111].

Directed versions

Vertex-distinguishing problems can also be considered for directed graphs, either by imagining
a distinguishing parameter specific to directed graphs (e.g. function of the indegrees and/or
outdegrees) or by deriving a vertex-distinguishing problem related to undirected graphs for di-
rected graphs. It is worth specifying that, depending on the adopted definitions, there may be
no systematic relationship between a vertex-distinguishing undirected problem and one directed
variant of it.

To our knowledge, the only directed notion related to the 1-2-3 Conjecture which has been
investigated in the literature is the following one.

Definition 7.31. Let w be an improper arc-weighting of a directed graph D. For every vertex
v of D, let

qw(v) = (
∑

u∈N−(v)

w(−→uv))− (
∑

u∈N+(v)

w(−→vu)).

We say that w is neighbour-potential-distinguishing if qw is proper. The minimum number of
weights of a neighbour-potential-distinguishing k-arc-weighting of D is the neighbour-potential-
distinguishing chromatic index of D, denoted χ′nqd(D).

These definitions were considered by Borowiecki, Grytczuk and Pilśniak in [37] and Khatirine-
jad, Naserasr, Newman, Seamone and Stevens in [83], who proved that ch′nqd(D) ≤ 2 holds for
every directed graph D. The proof by Borowiecki, Grytczuk and Pilśniak is a constructive
one, while the one by Khatirinejad, Naserasr, Newman, Seamone and Stevens makes use of the
Combinatorial Nullstellensatz method mentioned earlier.

Theorem 7.32 ([37] and [83], independently). For every directed graph D, we have ch′nqd(D) ≤
2.

7.4 Contributions of Part II

Chapter 8: Complexity of Neighbour-Sum-Distinguishing {a, b}-Edge-
Weighting

In [52], Dudek and Wajc suggested that their proof of Theorem 7.13 could be generalized to
a proof that Neighbour-Sum-Distinguishing {a, b}-Edge-Weighting is NP-complete no
matter what is {a, b}, with a and b being real weights. Chapter 8 is dedicated to the proof of
this statement. To that end, we introduce a reduction framework, and provide three implemen-
tations of it involving different kinds of gadgets (dedicated to three main values of {a, b}) which
eventually stand as a proof that Neighbour-Sum-Distinguishing {a, b}-Edge-Weighting is
indeed NP-complete for every pair {a, b} of real weights.

It is worth mentioning that, quite recently, Ahadi, Dehghan and Sadeghi improved Theo-
rem 7.13 by showing Neighbour-Sum-Distinguishing {1, 2}-Edge-Weighting to remain
NP-complete when restricted to cubic graphs [4]. It is easily seen that, in a cubic graph, we
can easily deduce a neighbour-sum-distinguishing {a′, b′}-edge-weighting from a neighbour-sum-
distinguishing {a, b}-edge-weighting w (just weight a′ all edges weighted a by w, and weight b′ all

166 7.4. Contributions of Part II

(a) A graph G. (b) A decomposition of G into three
locally irregular subgraphs (in solid,
dashed, and dotted edges, respectively).

Figure 7.4: Decomposing a graph into locally irregular subgraphs.

edges weighted b by w), and vice versa. So their proof for cubic graphs is a more straight proof
of the main result we prove in Chapter 8. We however think that our gadgets remain of interest,
in particular for the study of the List 1-2-3 Conjecture or for exhibiting new graphs for which
three edge weights are necessary to obtain a neighbour-sum-distinguishing edge-weighting.

Chapter 9: Locally irregular edge-colouring of graphs

In Chapter 9, we introduce another way for introducing local irregularity in a graph which is not
locally irregular itself. More precisely, if a graph G is not locally irregular, then we would like
to edge-partition G into locally irregular subgraphs.

Definition 7.33. A graph G is decomposable into k locally irregular subgraphs if there is a
partition E1 ∪E2 ∪ ...∪Ek of E(G) such that G[Ei] is locally irregular for every i ∈ {1, 2, ..., k}.

Example 7.34. The graph G depicted in Figure 7.4.a is not locally irregular as it has neigh-
bouring 2-vertices and neighbouring 3-vertices. But G admits an edge-partition into three locally
irregular subgraphs, see Figure 7.4.b.

Actually every decomposition E1 ∪ E2 ∪ ... ∪ Ek of G into k locally irregular subgraphs can
be regarded as an improper k-edge-colouring where each colour class induces a locally irregular
subgraph of G. If we now consider the minimum number of locally irregular subgraphs into which
a graph can be decomposed (assuming it can be decomposed), we get the following additional
definitions.

Definition 7.35. An improper k-edge-colouring c of a graph G is locally irregular if each of
the k colour classes of c induces a locally irregular subgraph of G. The least number of colours
used by a locally irregular edge-colouring of G (if any) is called the irregular chromatic index ,
and is denoted χ′irr(G).

One important source of motivation for studying locally irregular edge-colouring of graphs
is that this kind of edge-colouring is related to the notions of neighbour-sum-distinguishing
edge-weighting and neighbour-multiset-distinguishing edge-colouring of graphs. So finding up-
per bounds on the irregular chromatic index can have consequences on the neighbour-sum-
distinguishing and neighbour-multiset-distinguishing chromatic indices. In particular, the fol-
lowing observation provides another way for dealing with Conjecture 7.19.

Observation 7.36. Every locally irregular edge-colouring of a graph is neighbour-multiset-distin-
guishing.

Indeed, note that if c is a locally irregular edge-colouring of a graph G, then, for every two
adjacent vertices u and v of G, the i-degree of u is different from the i-degree of v assuming
c(uv) = i. Then the element i does not appear the same number of times in mc(u) and mc(v),
making mc(u) and mc(v) being different. Observation 7.36 does not hold the other way around
though, since, if c′ is a neighbour-multiset-distinguishing edge-colouring of G, it might be the
case that c′(uv) = i and mc′(u) and mc′(v) include the same number of i’s (as long as there is a

Chapter 7. Introduction to Part II 167

value j 6= i which does not appear the same number of times in mc′(u) and mc′(v)). In such a
situation, the vertices u and v have the same i-degree and are adjacent in the i-subgraph, so c′

is not locally irregular.
There is no systematic relationship between a locally irregular edge-colouring and a neighbour-

sum-distinguishing edge-weighting. However, in specific situations, a locally irregular edge-
colouring is also a neighbour-sum-distinguishing edge-weighting. This is especially the case
regarding regular graphs and when only two colours are used. Since the status of the 1-2-3
Conjecture regarding regular graphs is still not clear, the following observation is of interest.

Observation 7.37. Every locally irregular 2-edge-colouring of a regular graph is neighbour-sum-
distinguishing, and vice-versa.

As mentioned in Definition 7.35, some graphs cannot be decomposed into locally irregular
subgraphs at all. So our first result, in Section 9.1, is a concrete classification of those graphs
whose irregular chromatic index is not finite. Though the number of such non-colourable graphs
is more substantial than, for instance, the number of graphs which do not admit a neighbour-
sum-distinguishing edge-weighting, these graphs can nevertheless be recognized in polynomial
time.

We then investigate, in Section 9.2, the irregular chromatic index of colourable graphs. Our
experiments on common classes of graphs suggest that 3 should be a reasonable upper bound on
finite irregular chromatic indices, see Conjecture 9.9. Among the classes of graphs we consider,
it is worth mentioning that regular graphs (whose irregular chromatic index is investigated in
Section 9.2.2) are of high interest because of Observation 7.37. Since the status of the 1-2-3
Conjecture is still not clear regarding regular graphs, studying locally irregular decompositions
of regular graphs gains yet more interest.

In Section 9.3, we consider the algorithmic hardness of the problem of determining the irreg-
ular chromatic index of a graph, which can be formally expressed as follows.

Locally Irregular k-Edge-Colouring
Instance: a graph G.
Question: do we have χ′irr(G) ≤ k?

We give both positive and negative results regarding the complexity of Locally Irregular
k-Edge-Colouring. We first propose, in Section 9.3.2, a linear-time algorithm for determining
the irregular chromatic index of every tree, establishing, for every k ≥ 1, the membership of
Locally Irregular k-Edge-Colouring to P when restricted to trees. We however show
that Locally Irregular 2-Edge-Colouring is NP-complete in general, see Section 9.3.3.

Chapter 10: Neighbour-outsum-distinguishing arc-weighting of oriented graphs

As mentioned in Section 7.3, there were only a few attempts to generalize vertex-distinguishing
notions to the context of oriented graphs. One such oriented variant is considered in Chapter 10,
wherein we introduce an oriented version of the 1-2-3 Conjecture based on the following notions of
weighted outdegree of a vertex and neighbour-outsum-distinguishing arc-weighting of an oriented
graph.

Definition 7.38. Let w be an improper arc-weighting of an oriented graph
−→
G . The weighted

outdegree of a vertex v of
−→
G is defined as

s+
w(v) =

∑

u∈N+(v)

w(−→vu).

168 7.4. Contributions of Part II

1 2 1

2 3 4

1 1

1

2 2

12
1 2

Figure 7.5: An oriented graph and a neighbour-outsum-distinguishing 2-arc-
weighting of it. Weighted outdegrees are circled.

We say that w is neighbour-outsum-distinguishing if s+
w is proper. The minimum number of

weights of a neighbour-outsum-distinguishing k-arc-weighting of
−→
G is the neighbour-outsum-

distinguishing chromatic index of
−→
G , denoted χ′nsd(

−→
G).

Example 7.39. Figure 7.5 depicts an oriented graph and a neighbour-outsum-distinguishing
2-arc-weighting of it.

Note that we could have, in Definition 7.38 and in further ones, considered the sum of ingoing
weights instead on the sum of outgoing weights, but the two related problems are equivalent.
Regarding these definitions, we prove an oriented version of the 1-2-3 Conjecture in Section 10.1.
Namely, we prove that every oriented graph admits a neighbour-outsum-distinguishing 3-arc-
weighting. Our proof of this statement is very simple, and also holds notably for a list version
of the same problem. We then focus on those oriented graphs which even admit a neighbour-
outsum-distinguishing 2-arc-weighting. Although we show, in Section 10.2, that several families
of oriented graphs admit such a weighting, we prove in Section 10.3 that an easy classification
of oriented graphs with neighbour-outsum-distinguishing chromatic index at most 2 exists if and
only if P = NP. This is done by showing that the following problem is NP-complete.

Neighbour-Outsum-Distinguishing 2-Arc-Weighting
Instance: an oriented graph

−→
G .

Question: do we have χ′nsd(
−→
G) ≤ 2?

In Section 10.4 is discussed an analogous oriented version of the 1-2 Conjecture, which is
defined very similarly as above. Again, we give a concrete answer to this conjecture. Namely,
we prove it to be false.

Chapter 11: Locally irregular arc-colouring of oriented graphs

The second oriented problem we turn our attention to, in Chapter 11, is about the decomposition
of oriented graphs into locally irregular subraphs, where the notions of totally and locally irregular
oriented graph are again defined with respect to the outdegree parameter only.

Definition 7.40. An oriented graph
−→
G is totally (resp. locally) irregular if every two vertices

(resp. neighbours) of
−→
G have distinct outdegrees.

Observation 7.41. An oriented graph which is not totally or locally irregular may admit orien-
tations which are totally or locally irregular (see Figure 7.6).

The notion of decomposition of an oriented graph into locally irregular subgraphs and of locally
irregular arc-colouring are then defined analogously as in the undirected case.

Definition 7.42. An oriented graph
−→
G is decomposable into k locally irregular subgraphs if

there is a partition A1 ∪ A2 ∪ ... ∪ Ak of A(
−→
G) such that

−→
G [Ai] is locally irregular for every

i ∈ {1, 2, ..., k}. Equivalently, an improper k-arc-colouring c of an oriented graph
−→
G is locally

Chapter 7. Introduction to Part II 169

(a) An undi-
rected graph
which is
not locally
irregular.

(b) An ori-
ented graph
which is locally
irregular.

Figure 7.6: An undirected graph which is not locally irregular, and a locally
irregular orientation of it.

irregular if each of the k colour classes of c induces a locally irregular subgraph of
−→
G . The least

number of colours used by a locally irregular edge-colouring of
−→
G is called the irregular chromatic

index , and is denoted χ′irr(
−→
G).

As for the undirected case, our investigations are somehow justified since an oriented graph
−→
G

is totally irregular if and only if
−→
G is a transitive tournament. Hence totally irregular oriented

graphs have a very restricted structure. But note that contrary to the undirected case, the
irregular chromatic index of every oriented graph is finite since a single arc is locally irregular.

Similarly as for the undirected case, we suspect every oriented graph to be decomposable into
at most three locally irregular subgraphs. This conjecture is the main concern of Chapter 11.
As a support, we show it to hold for several common classes of oriented graphs in Section 11.1.
Towards the conjecture, we then prove, in Section 11.2, that every oriented graph is decomposable
into at most six locally irregular subgraphs. We then focus on the algorithmic point of view in
Section 11.3, and show that even if our guess were true, it would remain difficult to determine
the exact irregular chromatic index of an oriented graph in general (unless P = NP). This is done
by showing that the following problem is NP-complete when k = 2.

Locally Irregular k-Arc-Colouring
Instance: an oriented graph

−→
G .

Question: do we have χ′irr(
−→
G) ≤ k?

Chapter 8. Complexity of Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting 171

Chapter 8

Complexity of Neighbour-Sum-
Distinguishing {a, b}-Edge-Weighting

In this chapter, we complete Theorem 7.13 by proving the following result.

Theorem 8.1. Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting is NP-complete
for every pair {a, b} of distinct real weights.

It is worth recalling that Theorem 8.1 also directly follows from a result proved recently by
Ahadi, Dehghan and Sadeghi in [4], wherein it is shown that Neighbour-Sum-Distinguishing
{1,2}-Edge-Weighting is NP-complete when restricted to cubic graphs. This result implies
Theorem 8.1, as explained in Section 7.4.

Our proof of Theorem 8.1 is much more complicated since it consists in three slightly different
implementations of a same reduction scheme. These three implementations, which are basically
dedicated to distinct particular values of {a, b}, involve different gadgets and are here necessary as
two problems Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting and Neighbour-
Sum-Distinguishing {a′,b′}-Edge-Weighting may actually be quite different. In particu-
lar, gadgets admitting a neighbour-sum-distinguishing {a, b}-edge-weighting may not admit a
neighbour-sum-distinguishing {a′, b′}-edge-weighting. Although our proof of Theorem 8.1 is less
significant due to the simpler proof by Ahadi, Dehghan and Sadeghi, we believe some of the
techniques and gadgets (in particular the notion of replacement gadget) we use remain of interest
and could be of some use for further studies on neighbour-sum-distinguishing edge-weighting of
graphs (especially regarding Problem 7.14 or the List 1-2-3 Conjecture).

This chapter is organized as follows. We first give some notation and preliminary results in
Section 8.1. These are used in Section 8.2 to introduce the reduction framework for showing
that a Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting problem is NP-complete by
reduction from 3-Satisfiability. Three implementations of this framework are then provided
in Sections 8.3, 8.4, and 8.5 for distinct values of {a, b}. These three implementations eventually
perform a proof of Theorem 8.1.

8.1 Notation, terminology and preliminary remarks 172

8.2 The hardness reduction framework . 175

8.2.1 Overview of the framework . 175

8.2.2 The reduction framework into details . 176

8.2.3 Final details . 179

8.3 First implementation: 0 6∈ {a, b} and b 6= −a . 180

8.4 Second implementation: b = 0 . 184

8.5 Third implementation: b = −a . 187

8.6 Conclusion and open questions . 192

The whole content of this chapter is part of an article which was submitted for publication [34].

172 8.1. Notation, terminology and preliminary remarks

G
iG H

iHoG oH

(a) Two graphs G and H with input iG and iH , re-
spectively, and output oG and oH , respectively.

G
iG H

oH

(b) The connection of G and H along
oG and iH .

Figure 8.1: Illustration of the connection operation.

u v

(a) A graph G with an edge uv.

u vr(R)

R

(b) An R-subdivision of uv.

Figure 8.2: Illustration of the R-subdivision operation.

8.1 Notation, terminology and preliminary remarks

We start with some terminology and notation related to a graph construction used in next sections
to describe our reduction framework. Let G be a graph. An input (resp. output) of G is an edge
i = uv (resp. o = vu) such that d(u) = 1. Assuming G has x (resp. y) inputs (resp. outputs)
ordered arbitrarily, we sometimes refer to these inputs (resp. outputs) as i1(G), i2(G), ..., ix(G)
(resp. o1(G), o2(G), ..., oy(G)). Consider now two graphs G and H such that o and i are an
output of G and an input of H, respectively. The connection of G and H along o and i is the
graph obtained by taking the disjoint union of G and H, and then identifying the edges o and
i, i.e. identifying the vertices u1 and v1 and identifying the vertices u2 and v2 assuming u2 and
v1 are the 1-vertices of o = u1u2 and i = v1v2. Assuming we are given an x-tuple (o1, o2, ..., ox)
of x outputs of G and an x-tuple (i1, i2, ..., ix) of x inputs of H, one can similarly define the
connection of G and H along x outputs of G and x inputs of H where the resulting graph is
obtained by identifying oj and ij for every j ∈ {1, 2, ..., x}. In this situation we say that G and
H are connected along (o1, o2, ..., ox) and (i1, i2, ..., ix). The inputs and outputs of any graph
resulting from the connection of G and H are those of G and H which have not been used for
the connection.

Example 8.2. Figure 8.1 illustrates the connection of two graphs G and H along one output oG
of G and one input iH of H. The resulting graph has one input iG, which is the original input
iG of G, and one output oH , which is the original output oH of H.

Denote byG′ the graph obtained by connectingG andH along (o1, o2, ..., ox) and (i1, i2, ..., ix).
Given a W -edge-weighting w of G, an extension of w from G to G′ is a W -edge-weighting w′ of
G′ such that we have w′(e) = w(e) for every edge e which originally belonged to G. Note in par-
ticular that if e is the edge resulting from the identification of oj and ij for some j ∈ {1, 2, ..., x},
then we have w′(e) = w(oj). When no ambiguity is possible, an extension of w from a graph to
another graph is denoted w as well.

Assume uv is an edge of G. Now consider a graph R such that R has two inputs u′′z and
zv′′ where u′′ and v′′ are the degree-1 vertices of these inputs. By R-subdividing uv, we mean
that we “replace” the edge uv with R. More precisely, we first remove the edge uv from G, then
attach a new vertex u′ to u and one new vertex v′ to v (so that d(u′) = d(v′) = 1), and finally
connect G and R along (uu′, vv′) and (u′′z, v′′z).

Chapter 8. Complexity of Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting 173

Figure 8.3: Two possible neighbour-sum-distinguishing {a, b}-edge-weightings of
P4. Thick (resp. thin) edges represent a- (resp. b-) weighted edges.

Example 8.3. An R-subdivision of the edge uv of the graph depicted in Figure 8.2.a is depicted
in Figure 8.2.b.

We now give properties of neighbour-sum-distinguishing {a, b}-edge weighting of graphs.

Observation 8.4. Let P4 denote the path u1u2u3u4 of length 3. If w is a neighbour-sum-
distinguishing {a, b}-edge-weighting of P4, then w(u1u2) 6= w(u3u4).

Proof. Suppose w(u1u2) = a without loss of generality. Then u2u3 can be weighted either a or b.
In the first case, we have w(u3u4) = b since otherwise we would have sw(u2) = sw(u3) = 2a. In
the second case, we have w(u3u4) = b since otherwise we would have sw(u2) = sw(u3) = a+b �

Example 8.5. Two neighbour-sum-distinguishing {a, b}-edge-weightings of P4 = u1u2u3u4 are
depicted in Figure 8.3. As claimed in Observation 8.4, the two endedges have distinct weights.

Suppose we have w(o) = a for an output o of a graph G and a neighbour-sum-distinguishing
{a, b}-edge-weighting w of G. Then, in the graph resulting from the connection of G and
P4 = u1u2u3u4 along o and u1u2 (this operation is similar to performing a P4-subdivision of o),
necessarily for every neighbour-sum-distinguishing extension of w we have w(u3u4) = b by Ob-
servation 8.4. Therefore, P4-subdividing an output is an operation that can be used to “invert”
the weight at an output of a graph by a neighbour-sum-distinguishing {a, b}-edge-weighting.

The next result gives an equivalent condition for two adjacent vertices with the same degree
to have distinct weighted degrees.

Lemma 8.6. Let u and v be two adjacent vertices of a graph G such that d(u) = d(v), and w be
an {a, b}-edge-weighting of G. Then we have sw(u) = sw(v) if and only if mw(u) = mw(v).

Proof. We clearly have sw(u) = sw(v) when mw(u) = mw(v). Now suppose that mw(u) 6=
mw(v). Then, u and v are incident to x and x′ edges weighted a by w, respectively, and y and
y′ edges weighted b, respectively. Besides, we have x 6= x′ and y 6= y′ since mw(u) 6= mw(v) and
d(u) = d(v). Because d(u) = d(v), we have x+ y = x′+ y′. Now, if sw(u) = sw(v), then we have
xa+ yb = x′a+ y′b, and, because x− x′ 6= 0, we get that a = b which is impossible by definition
of an {a, b}-edge-weighting. It then follows that sw(u) 6= sw(v). �

By Lemma 8.6, it follows that if u and v are two adjacent vertices of G such that d(u) = d(v),
then we only have to check whether mw(u) 6= mw(v) while checking, regarding u and v, whether
an edge-weighting w of G is neighbour-sum-distinguishing.

We now introduce the notion of replacement gadget.

Definition 8.7. A replacement gadget R for a pair {a, b} of real weights is a graph with the
following structural and weighting properties:

1. R has two inputs i1(R) = uz and i2(R) = zv (hence d(u) = d(v) = 1), and no output,

2. for every neighbour-sum-distinguishing {a, b}-edge-weighting w of R, we have w(i1(R)) =
w(i2(R)),

3. there are neighbour-sum-distinguishing {a, b}-edge-weightings ofR such that i1(R) is weighted a,

4. there are neighbour-sum-distinguishing {a, b}-edge-weightings ofR such that i1(R) is weighted b,

174 8.1. Notation, terminology and preliminary remarks

5. there is a real number x such that, for every neighbour-sum-distinguishing {a, b}-edge-
weighting w of R, if w(i1(R)) = a, then sw(z) = x,

6. there is a real number y such that, for every neighbour-sum-distinguishing {a, b}-edge-
weighting w of R, if w(i1(R)) = b, then sw(z) = y,

We refer to the vertex z as r(R) for convenience, where r stands for “root”. To make apparent
the possible weighted degrees of r(R) by all neighbour-sum-distinguishing {a, b}-edge-weightings
of R, we call R an (x, y)-replacement gadget.

Replacement gadgets can be used to reduce the number of conflicts by a non-neighbour-sum-
distinguishing {a, b}-edge-weighting w of a graph G. Indeed, suppose that for an edge uv of G
we have w(uv) = a and sw(u) = sw(v). To possibly solve this local conflict, one way to proceed
is to “replace” uv by an (x1, y1)-replacement gadget R for {a, b}, i.e. to R-subdivide uv, and then
try to extend w to the resulting graph, i.e. to the edges of R, in a neighbour-sum-distinguishing
way.

Clearly, the weighted degrees of u and v are not altered by the extension of w to the augmented
graph. Since R admits neighbour-sum-distinguishing {a, b}-edge-weightings where its inputs are
weighted a, the only new possible conflicts which may arise are sw(u) = x1 or sw(v) = x1. If
such a situation occurs, then we reveal what is the weighted degree of one of u and v by w.
By then repeating the procedure above but with an (x2, y2)-replacement gadget for {a, b} such
that x1 6= x2, the possibilities for getting another conflict when extending w in a neighbour-sum-
distinguishing way to the resulting graph are reduced.

Example 8.8. Consider the graph G and the (partial) {a, b}-edge-weighting w of G depicted in
Figure 8.2.a (where thick (resp. thin) edges represent a- (resp. b-) weighted edges). Clearly w is
not neighbour-sum-distinguishing since sw(u) = sw(v). Then uv is replaced with a replacement
gadget R, and w is extended to the resulting graph, see Figure 8.2.b. As u and v are no longer
adjacent, the conflict between u and v is “solved” (unless sw(u) = sw(r(R)) or sw(v) = sw(r(R))).
Besides, since the weighted degrees of u and v are not altered by the modifications, new conflicts
involving two vertices of G cannot arise.

We catch this observation within the next lemma.

Lemma 8.9. Assume w is an {a, b}-edge-weighting of a graph G, and suppose we are given one
(x1, y1)-, one (x2, y2)- and one (x3, y3)-replacement gadget R1, R2 and R3 for {a, b}, respectively,
where the xi’s are distinct and the yi’s are distinct. If sw(u) = sw(v) for an edge uv of G, then
there is an i ∈ {1, 2, 3} for which there is an extension of w to the graph resulting from the
Ri-subdivision of uv such that sw(u) 6= sw(r(Ri)) and sw(v) 6= sw(r(Ri)).

Proof. We may suppose that w(uv) = a. Start by R1-subdividing uv, and then extend w in
a neighbour-sum-distinguishing way to the resulting graph in such a way that w(i1(R1)) =
w(i2(R1)) = a. Such an extension exists by definition. If the claim is not verified, then sw(u) =
sw(r(R1)) = x1 without loss of generality. Start over from the original graph and weighting. Now,
R2-subdivide uv before extending w in a neighbour-sum-distinguishing way to the resulting graph
in such a way that w(i1(R2)) = w(i2(R2)) = a. Clearly we cannot have sw(u) = sw(r(R2)) since
x1 6= x2. Thus, if the claim is still not verified, then sw(v) = x2. In this situation, repeat the
same procedure a third time but with an R3-subdivision of uv. Now the claim has to be true
since other we would have either sw(u) = sw(r(R3)) or sw(v) = sw(r(R3)), which is impossible
since sw(r(R3)) = x3, sw(u) = x1, sw(v) = x2, and x1, x2 and x3 are distinct. �

Hence, assuming we are provided three sufficiently different replacement gadgets for {a, b},
by repeating the procedure used in the proof of Lemma 8.9 for every conflicting edge of G, i.e.
every edge uv such that sw(u) = sw(v), we can deduce a graph which looks like G and which
admits a neighbour-sum-distinguishing {a, b}-edge-weighting which looks like w.

Chapter 8. Complexity of Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting 175

Corollary 8.10. Assume w is an {a, b}-edge-weighting of a graph G, and suppose we are given
one (x1, y1)-, one (x2, y2)-, and one (x3, y3)-replacement gadget R1, R2 and R3 for {a, b}, re-
spectively, where the xi’s are distinct and the yi’s are distinct. Then there is a combination of
subdivisions of the edges of G involving the Ri’s such that the resulting graph admits a neighbour-
sum-distinguishing extension of w.

Proof. Suppose there are x < |V (G)|2 edges e1, e2, ..., ex of G whose ends have the same weighted
degree by w. Consider every such edge ei = uv. Suppose w(ei) = a without loss of generality. By
Lemma 8.9, there is one replacement gadget R among {R1, R2, R3} for which we can R-subdivide
ei and then extend w in a neighbour-sum-distinguishing way to the resulting graph in such a way
that w(i1(R)) = w(i2(R)) = a, sw(u) 6= sw(r(R)) and sw(v) 6= sw(r(R)). Since this operation
does not alter the weighted degrees of u and v, no new pair of adjacent vertices with the same
weighted degree appeared after the modification. Hence, once the procedure has been applied to
each of e1, e2, ..., ex, there cannot be two adjacent vertices of G with the same weighted degree
(by the last extension of w). �

8.2 The hardness reduction framework

8.2.1 Overview of the framework

It should be clear that every Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting prob-
lem is in NP: given an {a, b}-edge-weighting w of a graph G, one can compute the vertex-colouring
sw of G and check whether it is proper. This checking process can clearly be performed in poly-
nomial time no matter what is the value of {a, b}.

The reduction framework we describe here aims at establishing the NP-hardness of every
problem Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting. The reduction is from
3-Satisfiability. Recall that we may assume that all possible literals over the variables of an
instance formula F appear in F (such a restriction remains NP-hard, recall Observation 1.44).
The reduction framework presented here has been frequently used in the literature to prove the
hardness of edge-weighting problems (it was e.g. used by Holyer in [69] to prove the hardness of
determining the chromatic index of a graph). From F , we produce a graph GF such that, given
a pair {a, b} of real weights,

F is satisfiable
⇔

GF admits a neighbour-sum-distinguishing {a, b}-edge-weighting wF .

We use a simple analogy to describe the reduction scheme. The reduced graph GF has to be
thought of as an electrical circuit made up of gadgets, i.e. recurrent subgraphs, connected in a
specific way. These gadgets are interconnected along several inputs and outputs that permit two
signals, the positive and the negative ones, to be propagated along GF . This propagation fulfils
properties which are inspired by the propagation of a neighbour-sum-distinguishing {a, b}-edge-
weighting in a graph, where the positive and negative signals intend to represent the weights a
and b, respectively. The structure of GF is representative of the structure of F in the sense that
the propagation of the positive signal through the gadgets is representative of the consequences
on F of setting such or such variable of F to true. In this way, we get a straight analogy between
spreading the positive signal through GF and satisfying F .

The gadgets of GF are the following. The graph GF is made up of one generator gad-
get GF (S), of m clause gadgets GF (C1) , GF (C2) , ... , GF (Cm), and of 2n literal gadgets
GF (`1), GF (`2), ..., GF (`2n). Every clause Ci in F is associated with the clause gadget GF (Ci),
and similarly for every literal `i of F and the literal gadget GF (`i). The graph GF is obtained
by originally considering GF (S), and then successively connecting gadgets to it. The generator

176 8.2. The hardness reduction framework

gadget is first connected to all of the m clause gadgets, which are each connected to some of
the literal gadgets. In particular, if we denote by `i1 , `i2 , ..., `im(Ci)

the distinct literals in Ci,
then GF (Ci) is connected to GF (`i1), GF (`i2), ..., GF (`im(Ci)

). Every literal gadget GF (`i) of GF
thus has n(`i) inputs. Finally, the outputs of every two literal gadgets GF (`i) and GF (`i) are
connected in a specific way.

Assuming every clause gadget GF (Ci) is supplied with the positive signal by the generator
gadget, the main property of GF (Ci) is that it propagates the positive signal through at least
one of its outputs, i.e. to at least one literal gadget GF (`j) such that `j ∈ Ci. The main property
of a literal gadget GF (`i) is that it outputs a signal if and only if the same signal comes in from
all of its n(`i) inputs. Moreover, if a given signal comes in from the n(`i) inputs of GF (`i), then
GF (`i) outputs the same signal, which must be different from the signal outputted by GF (`i).

Hence, we have an equivalence between satisfying F and propagating the positive signal
through GF from the generator gadget:

• every clause Ci in F must have at least one true literal and GF (Ci) must spread the positive
signal to at least one literal gadget it is connected to,

• every literal `i must have the same truth value in all clauses it appears in and all the inputs
of GF (`i) must spread the same signal in,

• every variable xi and its negation xi must have distinct truth values and the outputs of
GF (xi) and GF (xi) must spread different signals out.

Example 8.11. The electrical circuit GF obtained from the formula F = C1 ∧ C2 with C1 =
(x1 ∨ x1 ∨ x2) and C2 = (x1 ∨ x2 ∨ x2) is depicted in Figure 8.4. The generator gadget GF (S)
spreads the positive signal to both GF (C1) and GF (C2), which in turn propagate it to at least
one of their attached literal gadgets, here to GF (x1) and GF (x2). The propagation is here correct
as GF (x1) and GF (x2) are only supplied with the positive signal, while GF (x1) and GF (x2) are
only supplied with the negative signal.

Now consider the graph theory point of view. The graph GF , which is associated with
the electrical circuit, is obtained by successively connecting graphs to the generator gadget
GF (S). These graphs, i.e. the clause and literal gadgets, must fulfil the structural and weighting
properties summed up above. In particular, assuming weight a (resp. b) of wF is associated with
the positive (resp. negative) signal, the propagation of the positive and negative signals may
be seen as successive neighbour-sum-distinguishing extensions of wF to the graphs successively
obtained after the connections. We then get an analogy between satisfying F and extending wF
along GF in a neighbour-sum-distinguishing way.

8.2.2 The reduction framework into details

In this section, we go into the details of the reduction framework by listing the properties the
gadgets mentioned in Section 8.2.1 must fulfil, and how these gadgets are connected exactly to
form GF . Every implementation of the reduction framework in further sections will thus only
consist in exhibiting gadgets and showing that these have the properties exhibited throughout
this section.

8.2.2.1 Spreading gadget Gf and generator gadget GF (S)

A generator gadget GF (S) for a given pair {a, b} is obtained by connecting several spreading
gadgets Gf. A spreading gadget Gf for {a, b} has one input, two outputs, and the following
weighting property.

Chapter 8. Complexity of Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting 177

GF (S)

GF (C1) GF (C2)

GF (x1) GF (x1) GF (x2) GF (x2)

Figure 8.4: The electrical circuit GF associated with the formula F with two
clauses C1 = (x1 ∨ x1 ∨ x2) and C2 = (x1 ∨ x2 ∨ x2), and a propagation of the
positive and negative signals in GF . Thick (resp. thin) edges represent the positive
(resp. negative) signal.

Property 8.12. If w is a neighbour-sum-distinguishing {a, b}-edge-weighting of Gf, then we
have w(i1(Gf)) = w(o1(Gf)) = w(o2(Gf)).

Remark that by connecting two copies G1 and G2 of Gf along o1(G1) and i1(G2), we obtain
a graph G′ whose input and three outputs all receive the same weight by every neighbour-sum-
distinguishing {a, b}-edge-weighting of G′. Indeed, suppose w is a neighbour-sum-distinguishing
{a, b}-edge-weighting of G′ initiated with G1, and that we have w(i1(G1)) = a without loss of
generality. Then, we have w(o1(G1)) = w(o2(G1)) = a by Property 8.12. Note then that in every
neighbour-sum-distinguishing extension of w from G1 to G′, we have w(i1(G′)) = w(o1(G′)) =
w(o2(G′)) = w(o3(G′)) since G2 satisfies Property 8.12, and o1(G1) and i1(G2) refer to the same
edge of G′.

Note that by repeating this construction several times, one obtains a graph with one input
and arbitrarily many outputs such that all of these input and outputs necessarily receive the same
weight by a neighbour-sum-distinguishing {a, b}-edge-weighting. Now consider P4 = u1u2u3u4,
the path with length 3, let i1(P4) = u1u2 and o1(P4) = u3u4, and suppose w is a neighbour-
sum-distinguishing {a, b}-edge-weighting of Gf. Note then that if G′ is the graph obtained by
connecting Gf and P4 along o1(Gf) and i1(P4) (in other words, the graph G′ results from a
P4-subdivision of o1(Gf)), then, assuming w(i1(Gf)) = w(o1(Gf)) = a, we have w(o1(G′)) = b
in every neighbour-sum-distinguishing extension of w from Gf to G′ by Observation 8.4, where
o1(G′) = u3u4. Consequently, by connecting arbitrarily many copies of Gf and then inverting
some outputs of the resulting graph, we are able to propagate both the weights a and b towards
an arbitrary number of directions assuming the input weight is known.

The generator gadget GF (S) is obtained in this way, i.e. by connecting several copies of

178 8.2. The hardness reduction framework

Gf and then inverting some outputs (so that we get the necessary number of “positive” and
“negative” weights). The number of necessary connections (and hence of spreading gadgets) is
not clarified here, but one can easily check that this number in polynomial in the size of F .

From now on, we suppose that wF is a neighbour-sum-distinguishing {a, b}-edge-weighting
of GF initiated with GF (S), and extended in a neighbour-sum-distinguishing way progressively
as new gadgets are connected in order to form GF . Suppose w(i1(GF (S))) = a without loss
of generality. Then, according to the remarks above, we know which outputs of GF (S) receive
weight a (resp. b) by wF . We say that these outputs are positive (resp. negative).

8.2.2.2 Clause gadget GF (Ci)

The structure of a clause gadget GF (Ci) for {a, b} depends on the value of m(Ci). If m(Ci) = 1,
then a clause gadget is not necessary. In every other situation, i.e. m(Ci) = 2 or m(Ci) = 3, the
gadget GF (Ci) has a constant number of inputs and m(Ci) outputs, and the following weighting
property.

Property 8.13. Assume w is a neighbour-sum-distinguishing {a, b}-edge-weighting of GF (Ci)
such that particular inputs of GF (Ci) are weighted a by w, while its other inputs are weighted b.
Then, up to m(Ci) outputs, but at least one, are weighted a by w.

Now connect GF (S) and every GF (Ci) in such a way that every input of GF (Ci) which is
supposed to be weighted a (resp. b) is identified with one distinct positive (resp. negative)
output of GF (S). Then, by Property 8.13, we know that arbitrarily many, but at least one,
outputs of GF (Ci) can be assigned weight a in a neighbour-sum-distinguishing extension of wF
from GF (S) to G′F , where G

′
F is the graph resulting from the connections.

8.2.2.3 Collecting gadget Gg and literal gadget GF (`i)

The structure of every literal gadget GF (`i) for {a, b} depends on the value of n(`i). Once
again, if n(`i) = 1, then there is no need for a literal gadget. In every other case, i.e. whenever
n(`i) ≥ 2, a literal gadget is obtained by connecting exactly n(`i)− 1 collecting gadgets Gg in a
specific way. A collecting gadget for {a, b} has two “regular” inputs i1(Gg) and i2(Gg), and one
output. It also has some “forcing” inputs which are supposed to be connected with positive or
negative outputs of GF (S) so that the following property is fulfilled.

Property 8.14. Assume w is a neighbour-sum-distinguishing {a, b}-edge-weighting of Gg such
that particular forcing inputs of Gg are weighted a by w, while its other forcing inputs are
weighted b. Then we have w(i1(Gg)) = w(i2(Gg)) = w(o1(Gg)).

Now consider every literal `i of F . For every distinct clause Cj which contains `i, associate
a distinct output of G′F with GF (`i) as follows:

• if `i is forced to true by Cj , then consider a positive output of GF (S),

• if `i is forced to false by Cj , then consider a negative output of GF (S),

• otherwise, consider one output of GF (Cj).

This association has to be done in such a way that every chosen output of G′F is associated
with exactly one literal gadget. The two first items above depict the fact that if a clause includes
three occurrences of `i (resp. `i), then `i is forced to true (resp. false) by this clause. The third
item reflects the fact that the truth value of a clause by a truth assignment of F depends on the
truth values of the literals it contains.

The literal gadget GF (`i) is obtained as follows. First define an arbitrary ordering (o1, o2,
..., on(`i)) over the outputs of G′F chosen above for GF (`i). Now consider n(`i) − 1 copies

Chapter 8. Complexity of Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting 179

G1, G2, ..., Gn(`i)−1 of Gg, and connect these with G′F as follows. Start by connecting G′F
and G1 along (o1, o2) and (i1(G1), i2(G1)). Then connect the resulting graph and G2 along
(o1(G1), o3) and (i1(G2), i2(G2)). Next, connect the obtained graph and G3 along (o1(G2), o4)
and (i1(G3), i2(G3)). And so on. Denote by G′′F the resulting graph.

Note that if any two of the n(`i) outputs chosen above for GF (`i) do not receive the same
weight by wF , then there is no neighbour-sum-distinguishing extension of wF from G′F to G′′F by
Property 8.14. Thus, all the outputs of G′F connected to GF (`i) must receive the same weight
by wF .

8.2.2.4 Connecting the literal gadgets

The reduced graph GF is finally obtained by adding some edges to G′′F . Consider every pair
{`i, `j} of literals of F such that `j = `i. Now consider the respective outputs oi and oj of G′′F of
the literal gadgets GF (`i) and GF (`j). More precisely, if n(`i) = 1 and `i is forced to true (resp.
false) by the only clause of F which contains `i, then oi is a positive (resp. negative) output
of GF (S). If n(`i) = 1 and `i is not forced to some truth value by the only clause Cj which
contains it, then consider one distinct output of GF (Cj). Otherwise, i.e. n(`i) ≥ 2, the output
oi is o1(GF (`i)). Now, if u and v are the vertices with degree 1 of oi and oj , respectively, then
let uv be an edge in GF .

Now suppose any two such outputs oi and oj receive the same weight in an extension of wF
from G′F to G′′F . Then note that wF cannot be extended from G′′F to GF in a neighbour-sum-
distinguishing way since the edges oi, uv and oj induce a path on 4 vertices whose first and last
edges have the same weight (Observation 8.4). On the contrary, if we have wF (oi) 6= wF (oj),
then assigning any weight to uv is correct. This simulates the fact that in a truth assignment of
the variables of F , a variable and its negation are assigned distinct truth values.

8.2.3 Final details

In every implementation of our framework, the extension of wF in a neighbour-sum-distinguishing
way along GF is guaranteed by the different gadgets we use. In particular, if wF is neighbour-
sum-distinguishing at the end of the process, then no conflict involving two adjacent vertices from
a same gadget can occur. But, for the sake of correctness, one would also have to check that,
for specific values of {a, b}, no unexpected conflicts involving adjacent vertices from different
gadgets may arise when two gadgets are connected.

As an illustration, suppose e.g. that uz is an output of a graph G, and z′v is an input of
another graphH. Suppose we are also given neighbour-sum-distinguishing {a, b}-edge-weightings
wG and wH of G and H, respectively, such that wG(uz) = wH(z′v) = a. Now let G′ be the
graph resulting from the connection of G and H along uz and z′v, and consider the neighbour-
sum-distinguishing {a, b}-edge-weighting wG′ of G′ where every edge e which originally belonged
to G is weighted following wG, and following wH otherwise. Clearly the only possible conflict is
swG′ (u) = swG′ (v), which may occur for some particular values of a and b.

According to Lemma 8.9, we actually do not need to deeply study every possible connection
of two gadgets of a given implementation, i.e. for a given value of {a, b}, in order to find out
whether unexpected conflicts may arise when extending an {a, b}-edge-weighting in a neighbour-
sum-distinguishing way. Assuming we are given one (x1, y1)-, one (x2, y2)-, and one (x3, y3)-
replacement gadget for {a, b} such that the xi’s are distinct and the yi’s are distinct, we can
“replace” a conflicting edge by one of these gadgets so that we solve the conflict locally, and this
without altering the weighting properties of GF , i.e. without providing new ways for weighting
GF . In this way, the equivalence between satisfying F and weighting GF is preserved.

Hence, even if we do not know exactly which edges are possibly conflicting in an {a, b}-edge-
weighting of GF for a specific value of {a, b}, we know that another good implementation of

180 8.3. First implementation: 0 6∈ {a, b} and b 6= −a

u1

u2 u3

(a) T0.

u1

u2 u3

(b) T1.

u1

u2 u3

(c) T2.

Figure 8.5: The graphs T0, T1 and T2, and neighbour-sum-distinguishing {a, b}-
edge-weightings of T0, T1 and T2. Thick (resp. thin) edges represent a- (resp. b-)
weighted edges.

our reduction framework can be obtained for {a, b} by simply replacing some edges of GF by
a convenient replacement gadget among a triplet of three replacement gadgets for {a, b}. Each
of our framework implementations is thus provided with a replacement triplet , i.e. a triplet
(R1, R2, R3) where every Ri is an (xi, yi)-replacement gadget for {a, b}, and such that the xi’s
are distinct and the yi’s are distinct.

8.3 First implementation: 0 6∈ {a, b} and b 6= −a

In this section, we give a first implementation of our reduction framework in order to show
that Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting is NP-complete whenever 0 6∈
{a, b} and b 6= −a. For this purpose, we introduce several graphs and notably show that some
of them are spreading, clause, collecting or replacement gadgets for {a, b}.

Auxiliary gadget Tk and replacement triplet for {a, b}
We define the graphs Tk, where k ≥ 0, which are used in other gadgets to “force” the propagation
of a neighbour-sum-distinguishing {a, b}-edge-weighting.
Construction 8.15. For a given value of k ≥ 0, the graph Tk is obtained as follows. First
consider a triangle u1u2u3u1. If k = 0, then we are done. Now, if k ≥ 1, then identify u2 with
one arbitrary vertex of each of k new triangles. Finally, repeat the last step but with u3 instead
of u2. We refer to the vertex u1 as the root of Tk.

Example 8.16. The graphs T0, T1, and T2 are depicted in Figure 8.5.

In the figures of the next sections, every triangle having “Tk” marked in it indicates that a
vertex is identified with the root of a graph Tk. Every graph Tk with k ≥ 0 has the following
weighting properties.

Lemma 8.17. Let k ≥ 0 be fixed. If w is a neighbour-sum-distinguishing {a, b}-edge-weighting of
Tk, then one of u2 and u3 has weighted degree (k+ 1)(a+ b), while the other vertex has weighted
degree (k + 2)a+ kb or ka+ (k + 2)b. Besides, we have {w(u1u2), w(u1u3)} = {a, b}.

Proof. Note that for every triangle v1v2uiv1 different from u1u2u3u1, i.e. i ∈ {2, 3}, we have
w(uiv1) 6= w(uiv2) since otherwise we would have sw(v1) = sw(v2). Therefore, the weighting of
the triangles attached to u2 and u3 provide k(a+ b) in the weighted degrees of u2 and u3. Since
sw(u2) 6= sw(u3), we necessarily have w(u2u1) 6= w(u3u1). Depending on whether w(u2u3) = a
or w(u2u3) = b, one of u2 and u3 has weighted degree (k + 2)a+ kb or ka+ (k + 2)b. The other
vertex has weighted degree (k + 1)(a+ b). �

Lemma 8.18. Let k ≥ 0 be fixed. If 0 6∈ {a, b} and b 6= −a, then there is an {a, b}-edge-weighting
w of Tk which is neighbour-sum-distinguishing unless sw(u1) ∈ {sw(u2), sw(u3)}.

Chapter 8. Complexity of Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting 181

Proof. Recall that for every two adjacent vertices of Tk with the same degree, we only have to
make sure that their multisets of incident weights by w are different according to Lemma 8.6.
Note next that, for every triangle v1v2uiv1 different from u1u2u3u1, i.e. i ∈ {2, 3}, one of v1

and v2 has weighted degree a + b, while the other vertex has weighted degree either 2a or 2b
depending on how v1v2uiv1 is weighted (but we can “choose” this weighted degree by reweighting
locally). Besides, one of u2 and u3 has weighted degree (k + 1)(a + b) by w, while the other
vertex has weighted degree either (k+ 2)a+ kb or ka+ (k+ 2)b according to Lemma 8.17. Once
again, this last weighted degree can be “chosen” freely by reweighting the edge u2u3.

Suppose sw(u2) = (k+ 1)(a+ b), and sw(u3) is either (k+ 2)a+ kb or ka+ (k+ 2)b without
loss of generality. On the one hand, consider u2 and any triangle attached to it. Note first
that if we have sw(u2) = a + b, i.e. (k + 1)(a + b) = a + b, then either k = 0 or b = −a.
Now, observe that we cannot have both sw(u2) = 2a and sw(u2) = 2b, unless a = b which is
impossible. On the other hand, consider u3. Firstly, if we have both (k + 2)a+ kb = a+ b and
ka + (k + 2)b = a + b, then a = b. Secondly, if both sw(u3) = 2a and sw(u3) = 2b hold, then
a = b once again. Hence, the only possible conflict by w under our assumptions on a and b is
sw(u1) = sw(u2) or sw(u1) = sw(u3). �

Now consider the following graphs.

Construction 8.19. Let k ≥ 1 be fixed, and assume P3 = v1v2v3 is the path of length 2. As
T ′k, we refer to the graph obtained by identifying v2 and the root of each of k graphs Tk. The
two inputs of T ′k are i1(T ′k) = v1v2 and i2(T ′k) = v2v3.

We show that T ′k is a replacement gadget for {a, b} under our assumptions on a and b.

Lemma 8.20. Let k ≥ 1 be fixed. If 0 6∈ {a, b} and b 6= −a, then T ′k is a ((k + 2)a + kb, ka +
(k + 2)b)-replacement gadget for {a, b}.

Proof. Assume w is a neighbour-sum-distinguishing {a, b}-edge-weighting of T ′k. Without loss
of generality, we may suppose that w(i1(T ′k)) = a holds. For each of the graphs Tk attached to
v2, one of the two edges incident with v2 is weighted a by w, while the other one is weighted b
according to Lemma 8.17. Hence, the graphs Tk attached to v2 provide k(a+ b) in the weighted
degree of v2. Besides, in every graph Tk there is a vertex neighbouring v2 with weighted de-
gree (k + 1)(a + b), while we may suppose that the other vertex neighbouring v2 has weighted
degree ka+ (k + 2)b.

Note then that if w(v2v3) = b, then we get sw(v2) = (k + 1)(a + b) and v2 has the same
weighted degree as some of its neighbours. Therefore, we have w(v2v3) = a. In this situation we
have sw(v2) = (k+2)a+kb while the vertices neighbouring v2 from the graphs Tk have weighted
degree (k + 1)(a+ b) and ka+ (k + 2)b, respectively. Since v2 and these vertices have the same
degree, these weighted degrees are distinct by Observation 8.4. �

Corollary 8.21. Let i, j, k ≥ 1 be three distinct positive integers. If 0 6∈ {a, b} and b 6= −a, then
(T ′i , T

′
j , T

′
k) is a replacement triplet for {a, b}.

Spreading gadget Gf for {a, b}
Now consider the graph Gf depicted in Figure 8.6, whose input is u1u2, and whose two outputs
are u9u10 and u12u13. We show that Gf is a spreading gadget for {a, b}, i.e. that Gf satisfies
Property 8.12, under our assumptions on a and b.

Proposition 8.22. If 0 6∈ {a, b} and b 6= −a, then Gf satisfies Property 8.12 for {a, b}.

Proof. Assume w is a neighbour-sum-distinguishing {a, b}-edge-weighting w of Gf. Note that
we cannot have w(u3u5) 6= w(u4u6). Indeed, suppose e.g. that w(u3u5) = a and w(u4u6) = b.
Because u5 and u6 are both attached to two graphs T2, which form a graph T ′2, then we have

182 8.3. First implementation: 0 6∈ {a, b} and b 6= −a

T2

T2

T2

T2

T2

u3

u1 u2 u7

u4

u9 u10u8

u11 u13u12

u5

u6

Figure 8.6: The spreading gadget Gf for the main implementation of the reduc-
tion framework, and a neighbour-sum-distinguishing {a, b}-edge-weighting of Gf.
Thick (resp. thin) edges represent a- (resp. b-) weighted edges.

w(u5u7) = a and w(u6u7) = b by Lemma 8.20. Besides, we have sw(u5) = 4a+ 2b and sw(u6) =
2a + 4b. We also know that a neighbour of u7 from the graph T2 attached to it has weighted
degree 3a + 3b, and that this graph T2 provides a + b in the weighted degree of u7 according
to Lemma 8.17. Then the vertex u7 has weighted degree at least 2a + 2b, and the two edges
u7u8 and u7u11 are weighted in such a way that the weighted degree of u7 does not meet a value
among {2a+ 4b, 3a+ 3b, 4a+ 2b}, which is impossible.

On the contrary, if w(u3u5) = w(u4u6) = a without loss of generality, then w can be
neighbour-sum-distinguishing. Because of the arguments above, we have w(u5u7) = w(u6u7) = a
and sw(u5) = sw(u6) = 4a + 2b. Recall that we may assume that the weighting of the graph
T2 attached to u7 is such that the two vertices which are adjacent with u7 have weighted degree
3a + 3b and 4a + 2b. Besides, the weighting of this graph T2 provides a + b in the weighted
degree of u7. Thus, the weighted degree of u7 is at least 3a + b, and the edges u7u8 and u7u11

are weighted in such a way that the weighted degree of u7 is not 3a + 3b or 4a + 2b. The only
possibility is to have w(u7u8) = w(u7u11) = a since, in this situation, we get sw(u7) = 5a+ b.

Now suppose w(u1u2) = a, and consider the edges u2u3 and u2u4. First, if w(u2u3) =
w(u2u4), then note that w cannot be neighbour-sum-distinguishing according to the arguments
above since we would necessarily have w(u3u5) 6= w(u4u6) so that sw(u3) 6= sw(u4). Thus,
w(u2u3) = a and w(u2u4) = b without loss of generality, and sw(u2) = 2a + b. Now note that
if w(u3u4) = a, then we necessarily get that sw(u3) or sw(u4) is equal to sw(u2) since we need
w(u3u5) = w(u4u6). Thus w(u3u4) = b. We then have w(u3u5) = b so that sw(u3) 6= sw(u2),
and also w(u4u6) = b so that sw(u4) 6= sw(u3).

According to the arguments above, we have w(u3u5) = w(u4u6) = b and w(u7u8) = w(u7u11) =
b under the assumption w(u1u2) = a. By Observation 8.4, we have w(u9u10) = w(u12u13) = a =
w(u1u2), as required. �

Clause gadgets GF (Ci) for {a, b}

We distinguish two forms for GF (Ci), depending on whether m(Ci) = 2 or m(Ci) = 3. These
two forms are depicted in Figure 8.7. In the first case, i.e. m(Ci) = 2, the inputs of GF (Ci) are
u3u4, which is supposed to be weighted a, and u1u2, which is supposed to be weighted b, while
the two outputs of GF (Ci) are u4u5 and u4u6. In the second case, i.e. m(Ci) = 3, the three
inputs of GF (Ci) are u1u2, which is supposed to be weighted b, and u3u5 and u4u5 which are
supposed to be weighted a. The three outputs of GF (Ci) are u5u6, u5u7 and u5u8 in this case.

We prove that these two types of gadgets both satisfy Property 8.13 under our assumptions
on a and b.

Proposition 8.23. Assume m(Ci) = 2. If 0 6∈ {a, b} and b 6= −a, then GF (Ci) satisfies
Property 8.13 for {a, b}.

Chapter 8. Complexity of Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting 183

T1

u1

u3

u5 u6

u4

u2

(a) Case m(Ci) = 2.

T2 T2

u1

u3

u6 u7

u5

u8

u4

u2

(b) Case m(Ci) = 3.

Figure 8.7: The two forms of the clause gadget GF (Ci) for the main implemen-
tation of the reduction framework, and neighbour-sum-distinguishing {a, b}-edge-
weightings of GF (Ci). Thick (resp. thin) edges represent a- (resp. b-) weighted
edges.

v4

v2v1

v3

u15

u13

u1 u2 u3 u5 u6 u7

u4 u8

u11

u10u9

u12 u14 u′4u′8u′12u′14

u′6 u′5 u′3 u′2 u′1

u′11

u′13

u′7

u′15

u′10 u′9

Figure 8.8: The collecting gadget Gg for the main implementation of the reduc-
tion framework, and a neighbour-sum-distinguishing {a, b}-edge-weighting of Gg.
Thick (resp. thin) edges represent a- (resp. b-) weighted edges.

Proof. Assume w is a neighbour-sum-distinguishing {a, b}-edge-weighting of GF (Ci) such that
w(u1u2) = b and w(u3u4) = a. By Lemma 8.20, we have w(u2u4) = b, and sw(u2) = a+3b. Note
then that we cannot have w(u4u5) = w(u4u6) = b since otherwise we would get sw(u4) = a+3b =
sw(u2). Hence, we have either {w(u4u5), w(u4u6)} = {a, a} or {w(u4u5), w(u4u6)} = {a, b}. �

Proposition 8.24. Assume m(Ci) = 3. If 0 6∈ {a, b} and b 6= −a, then GF (Ci) satisfies
Property 8.13 for {a, b}.

Proof. Assume similarly that w is a neighbour-sum-distinguishing {a, b}-edge-weighting ofGF (Ci)
such that w(u1u2) = b and w(u3u5) = w(u4u5) = a. Then we have w(u2u5) = b and
sw(u2) = 2a + 4b according to Lemma 8.20 since the two graphs T2 attached to u2 form a
graph T ′2. Now note that if w(u5u6) = w(u5u7) = w(u5u8) = b, then sw(u5) = 2a+ 4b = sw(u2).
Thus, at least one of u5u6, u5u7 and u5u8 has weight a by w. �

Collecting gadget Gg for {a, b}

The collecting gadget Gg for this main implementation is depicted in Figure 8.8. The two regular
inputs of Gg are v1v3 and v2v3, and its output is v3v4. The edges u1u4, u2u4, u5u8, u6u8, u9u11,
u12u15, u13u15, u′3u′4, u′7u′8, u′10u

′
11 and u′14u

′
15 of Gg are forcing inputs which are supposed to

be weighted a. The edges u3u4, u7u8, u10u11, u14u15, u′1u′4, u′2u′4, u′5u′8, u′6u′8, u′9u′11, u′12u
′
15 and

u′13u
′
15 are forcing inputs supposed to be weighted b.

184 8.4. Second implementation: b = 0

u1

u2

u4u3

(a) Y1.

u1

u2

(b) Y2.

u1

u2

(c) Y3.

Figure 8.9: The graphs Y1, Y2 and Y3, and neighbour-sum-distinguishing {a, 0}-
edge-weightings of Y1, Y2 and Y3. Thick (resp. thin) edges represent a- (resp. 0-)
weighted edges.

Under our assumptions on a and b, we prove that Gg is a collecting gadget, i.e. it satisfies
Property 8.14.

Proposition 8.25. If 0 6∈ {a, b} and b 6= −a, then Gg satisfies Property 8.14 for {a, b}.

Proof. Assume w is a neighbour-sum-distinguishing {a, b}-edge-weighting of Gg such that the
forcing inputs of Gg are weighted as mentioned. Consider first the left side of Gg, i.e. the
subgraph of Gg induced by the ui’s. Note first that we have w(u4u11) 6= w(u8u11) so that
sw(u4) 6= sw(u8). Now note that we cannot have w(u4u8) = b, since otherwise we would have
{sw(u4), sw(u8)} = {2a+ 3b, 3a+ 2b}, and we would necessarily get sw(u11) ∈ {sw(u4), sw(u8)}
whatever is w(u11u15). Thus w(u4u8) = a, and {sw(u4), sw(u8)} = {4a+ b, 3a+ 2b}. Note now
that we have w(u11u15) = b since otherwise we would have sw(u11) = 3a + 2b. It follows that
sw(u11) = 2a+3b, and we have w(u15v3) = a since otherwise we would have sw(u15) = 2a+3b =
sw(u11). So sw(u15) = 3a+ 2b.

Due to the symmetric structure of Gg, we can deduce similar facts regarding the right side
of Gg, i.e. the subgraph of Gg induced by the u′i’s. In particular, we have w(v3u

′
15) = b and

sw(u′15) = 2a+3b. Now observe that we cannot have w(v1v3) 6= w(v2v3) since otherwise by having
w(v3v4) = a or w(v3v4) = b we would get sw(v3) = 3a + 2b = sw(u15) or sw(v3) = 2a + 3b =
sw(u′15), respectively. Therefore, we have w(v1v3) = w(v2v3), and also w(v3v4) = w(v1v3) since
otherwise we would get sw(v3) ∈ {sw(u15), sw(u′15)}. �

8.4 Second implementation: b = 0

The second implementation of our reduction framework is dedicated to the case where one of the
two weights from {a, b} is 0. We assume throughout this section that b = 0.

Auxiliary gadget Yk and replacement triplet for {a, 0}

Similarly as for the first implementation, we first give auxiliary graphs which are used in our
gadgets to “force” the propagation of a neighbour-sum-distinguishing {a, 0}-edge-weighting.
Construction 8.26. The graphs Yk with k ≥ 1 are defined inductively. By construction, every
graph Yk has only one vertex u1 with degree 1, called the root of Yk. Start with an edge u1u2.
To build Y1, just identify u2 and one vertex from a triangle. Now for the general case, i.e. k ≥ 2,
start over from the edge u1u2, and identify u2 and the root of each of k− 1 copies of Y1 and one
copy of Yk−1.

Chapter 8. Complexity of Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting 185

Example 8.27. The graphs Y1, Y2, and Y3 are depicted in Figure 8.9.

In the figures of the following sections, every pendant triangle marked “Yk” indicates that a
vertex is identified with the root of a copy of Yk. Every graph Yk has the following weighting
properties.

Lemma 8.28. Let k ≥ 1 be fixed. If w is a neighbour-sum-distinguishing {a, 0}-edge-weighting
of Yk, then w(u1u2) = a and sw(u2) = (k + 1)a.

Proof. We prove this lemma by induction on k. Consider Y1 first, and denote u2u3u4u2 the
triangle attached to u2. Note that if w(u2u3) = w(u3u4), then sw(u3) = sw(u4). Then w(u2u3) =
a and w(u2u4) = 0 without loss of generality, and w(u3u4) = 0 since otherwise we would have
either sw(u2) = sw(u3) or sw(u2) = sw(u4) by setting w(u1u2) = a or w(u1u2) = 0, respectively.
Then {sw(u3), sw(u4)} = {0, a}, and we have w(u1u2) = a since otherwise we would have
sw(u2) = a. In particular, we have sw(u2) = 2a, as claimed.

Now suppose that the claim is true for every k up to an i, and consider k = i + 1. The
graph Yk is made of k − 1 copies of Y1 and one copy of Yk−1 whose roots are identified with u2.
By the induction hypothesis, these copies are weighted by w in such a way that their respective
edge incident with u2 is weighted a, and the vertex from Yk−1 neighbouring u2 has weighted
degree ka. Thus, the weighting of the copies of Y1 and Yk−1 provides ka in the weighted degree
of u2. We hence have w(u1u2) = a so that sw(u2) 6= ka, and we get sw(u2) = (k + 1)a. This
concludes the proof. �

Now consider the following graph construction.

Construction 8.29. Let k ≥ 1 be fixed, and let P3 = v1v2v3 be the path with length 2. As Lk,
we refer to the graph obtained by identifying v2 and the roots of k copies of the graph Yk. The
two inputs of Lk are the edges v1v2 and v2v3.

We show that Lk is a replacement gadget for {a, 0}.
Lemma 8.30. Let k ≥ 1 be fixed. Then Lk is a ((k + 2)a, ka)-replacement gadget for {a, 0}.

Proof. Assume w is a neighbour-sum-distinguishing {a, 0}-edge-weighting of Lk. By Lemma 8.28,
the k copies of Yk attached to v2 provide ka to the weighted degree of v2, and v2 is adjacent
to vertices with weighted degree (k + 1)a. Note then that if {w(v1v2), w(v2v3)} = {a, 0}, then
the weighted degree of v2 is (k + 1)a, and w is hence not neighbour-sum-distinguishing. On the
contrary, if w(v1v2) = w(v2v3) = a or w(v1v2) = w(v2v3) = 0, then the weighted degree of v2 is
(k + 2)a or ka, respectively. �

Corollary 8.31. Let i, j, k ≥ 1 be three distinct positive integers. Then (Li, Lj , Lk) is a replace-
ment triplet for {a, 0}.

Spreading gadget Gf for {a, 0}

Consider, as Gf, the graph depicted in Figure 8.10, whose input is u1u2, and whose two outputs
are u6u7 and u6u8. We show that Gf is a spreading gadget for {a, 0}.
Proposition 8.32. The graph Gf satisfies Property 8.12 for {a, 0}.

Proof. Assume w is a neighbour-sum-distinguishing {a, 0}-edge-weighting of Gf. Recall that
the graphs Y2, Y3 and Y4 attached to u6 provide 3a in the weighted degree of u6, and that u6

is adjacent to vertices with weighted degree 3a, 4a, and 5a according to Lemma 8.28. Then we
cannot have {w(u4u6), w(u5u6)} = {0, 0} since otherwise we would have sw(u6) ∈ {3a, 4a, 5a}
whatever are w(u6u7) and w(u6u8). Observe also that if {w(u4u6), w(u5u6)} = {0, a}, then we
have w(u6u7) = w(u6u8) = a. In this situation, we have sw(u6) = 6a.

186 8.4. Second implementation: b = 0

u4

u2 u3

u7

Y3

Y4

u5

u6

u8

Y1

u1

Y2

Y2

Figure 8.10: The spreading gadget Gf for the second implementation of the
reduction framework, and a neighbour-sum-distinguishing {a, 0}-edge-weighting of
Gf. Thick (resp. thin) edges represent a- (resp. 0-) weighted edges.

u6u5

u1

u2

u4

u3Y1

(a) Case m(Ci) = 2.

u5

u1

u2

u4

u3Y1

u7u6

(b) Case m(Ci) = 3.

Figure 8.11: The two forms of the clause gadget GF (Ci) for the second implemen-
tation of the reduction framework, and neighbour-sum-distinguishing {a, 0}-edge-
weightings of GF (Ci). Thick (resp. thin) edges represent a- (resp. 0-) weighted
edges.

Consider the edge u1u2. By Lemma 8.28, the weighted degree of u2 is at least 2a, and u2 is
adjacent to vertices whose weighted degrees are 2a and 3a. Then we have w(u1u2) = w(u2u3) = a
since otherwise we would have sw(u2) ∈ {2a, 3a}. In particular, we have sw(u2) = 4a. Now note
that we cannot have w(u3u4) = w(u3u5) = 0 since one of u4 or u5 would have weighted degree
sw(u3) = a. Indeed, no matter what is the weight of u4u5, we have {w(u4u6), w(u5u6)} = {0, a}
so that sw(u4) 6= sw(u5). But then, one of u4 or u5 necessarily gets weighted degree a, which is
sw(u3).

Suppose now w(u3u4) = w(u3u5) = a. In this situation, we have sw(u3) = 3a. Note that if
w(u4u5) = a, then we have {w(u4u6), w(u5u6)} = {0, a} so that u4 and u5 have distinct weighted
degrees. But then, one of these two vertices has weighted degree 3a. So w(u4u5) = 0. Once
again, we have {w(u4u6), w(u5u6)} = {0, a} so that u4 and u5 are distinguished. According to
the remarks above, we then have w(u6u7) = w(u6u8) = a, as requested.

Suppose finally that w(u3u4) = a and w(u3u5) = 0 without loss of generality. Then sw(u3) =
2a. Note that we cannot have w(u4u5) = 0 since otherwise we would have w(u4u6) = 0 so that
sw(u4) 6= sw(u3), and w(u5u6) = 0 so that sw(u4) 6= sw(u5). But then {w(u4u6), w(u5u6)} =
{0, 0}, and w is not neighbour-sum-distinguishing according to the early arguments above. Thus,
w(u4u5) = a. Because sw(u4) 6= sw(u3) and sw(u5) 6= sw(u3), we have both w(u4u6) = a
and w(u5u6) = 0. According to the arguments above, we have w(u6u7) = w(u6u8) = a once
again. �

Chapter 8. Complexity of Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting 187

v4

v3

v1 v2

u1 u′1u′2u2

Y1 Y2

Y2

Figure 8.12: The collecting gadget Gg for the second implementation of the
reduction framework, and a neighbour-sum-distinguishing {a, 0}-edge-weighting of
Gg. Thick (resp. thin) edges represent a- (resp. 0-) weighted edges.

Clause gadgets GF (Ci) for {a, 0}
The two forms of GF (Ci) for {a, 0}, i.e. for the cases m(Ci) = 2 and m(Ci) = 3, are depicted
in Figure 8.11. In both cases, the input of GF (Ci) is u1u2 and is supposed to be weighted 0.
The outputs of GF (Ci) are u4u5, u4u6, and also u4u7 when m(Ci) = 3. We show that GF (Ci)
satisfies Property 8.13 in both cases.

Proposition 8.33. The graph GF (Ci) satisfies Property 8.13 for {a, 0} whatever is the value of
m(Ci).

Proof. Assume w is a neighbour-sum-distinguishing {a, 0}-edge-weighting of GF (Ci) such that
w(u1u2) = 0. Recall that the edge of the graph Y1 incident with u3 has weight a, and that the
vertex of the graph Y1 adjacent with u3 has weighted degree 2a (Lemma 8.28). Therefore, we
have w(u3u2) = 0 so that sw(u3) = a 6= 2a, and w(u2u4) = 0 so that sw(u2) 6= sw(u3). In
particular, we get sw(u2) = 0. Then note that at least one of the outputs of GF (Ci) receives
weight a by w since otherwise we would have sw(u4) = 0 = sw(u2). �

Collecting gadget Gg for {a, 0}
Now consider the graph depicted in Figure 8.12 as Gg. The two regular inputs of Gg are v1v3

and v2v3, and its output is v3v4. The forcing inputs of Gg are u1u2 and u′1u′2, which are supposed
to be weighted a. We prove that Gg satisfies Property 8.14 for {a, 0}.
Proposition 8.34. The graph Gg satisfies Property 8.14 for {a, 0}.

Proof. Suppose w is a neighbour-sum-distinguishing {a, 0}-edge-weighting of Gg such that we
have w(u1u2) = w(u′1u

′
2) = a. Then we have w(u2v3) = w(u′2v3) = a according to Lemma 8.30

since the copy of Y1 attached to u2 forms a graph L1, while the two copies of Y2 attached to
u′2 form a graph L2. Plus, we have sw(u2) = 3a and sw(u′2) = 4a. Under these assumptions,
we cannot have w(v1v3) 6= w(v2v3). Indeed, in such a situation, by having w(v3v4) = a or
w(v3v4) = 0, we would get sw(v3) = 4a or sw(v3) = 3a, respectively.

Now suppose w(v1v3) = w(v2v3). On the one hand, if w(v1v3) = w(v2v3) = a, then we
have w(v3v4) = a since otherwise we would get sw(v3) = 4a = sw(u′2). In this situation, we get
sw(v3) = 5a. On the other hand, suppose w(v1v3) = w(v2v3) = 0. Note that if w(v3v4) = a,
then sw(v3) = 3a = sw(u2). On the contrary, we have sw(v3) = 2a when w(v3v4) = 0. �

8.5 Third implementation: b = −a
In this section, we give gadgets for implementing our reduction framework in the case where
{a, b} = {a,−a}.

188 8.5. Third implementation: b = −a

Auxiliary gadget T and replacement triplet for {a,−a}
Once again, we use several gadgets to force the propagation of a neighbour-sum-distinguishing
{a,−a}-edge-weighting in a graph. The first such gadget, denoted T , is just a triangle u1u2u3u1

whose vertex u1 is the root of T . Hence, every triangle marked “T ” in our figures of further
sections refers to the graph T . This graph T has some interesting properties when dealing with
neighbour-sum-distinguishing {a,−a}-edge-weightings.
Lemma 8.35. If w is a neighbour-sum-distinguishing {a,−a}-edge-weighting of T , then one of
u2 and u3 has weighted degree 0, while the other vertex has weighted degree 2a or −2a. Besides,
we have {w(u1u2), w(u1u3)} = {a,−a}.

Proof. The proof is similar to the one of Lemma 8.17 since T is nothing but T0. Because
sw(u2) 6= sw(u3), we have w(u1u2) 6= w(u1u3). Suppose e.g. that w(u1u2) = a and w(u1u3) = −a
without loss of generality. Now, by setting either w(u2u3) = a or w(u2u3) = −a, we get
sw(u3) = 0 or sw(u2) = 0, respectively. Besides, we have sw(u2) = 2a or sw(u3) = −2a,
respectively. �

We now introduce the replacement gadgets for {a,−a}.
Construction 8.36. The first replacement gadget R1 is obtained by identifying the root of T
and v2, where v2 denotes the inner vertex of P3 = v1v2v3, the path with length 2. The two inputs
of R1 then are v1v2 and v2v3.

Lemma 8.37. The graph R1 is a (2a,−2a)-replacement gadget for {a,−a}.

Proof. Assume w is a neighbour-sum-distinguishing {a,−a}-edge-weighting of R1. According to
Lemma 8.35, the weighted degrees of the vertices of T adjacent to v2 are 0, and either 2a or −2a,
where this last weighted degree can be “chosen” by reweighting of T locally. Besides, the weighting
of T provides a + (−a) = 0 to the weighted degree of v2. Note then that if w(v1v2) 6= w(v2v3),
then we have sw(v2) = 0. Hence, we have w(v1v2) = w(v2v3), and sw(v2) = 2a or sw(v2) = −2a
depending on whether w(v1v2) = a or w(v1v2) = −a, respectively. �

The second replacement gadget R2 for {a,−a} is obtained as follows.

Construction 8.38. As for R1, start from the path P3 = v1v2v3 with length 2, and identify v2

and u1, where u1u2u3u4u5u1 is a cycle with length 5. The inputs of R2 are v1v2 and v2v3.

Lemma 8.39. The graph R2 is a (4a,−4a)-replacement gadget for {a,−a}.

Proof. Assume w is a neighbour-sum-distinguishing {a,−a}-edge-weighting of R2. Note first
that w(u1u2) = w(u5u1) according to Observation 8.4. Besides, we have {sw(u2), sw(u5)} =
{0, 2w(u1u2)} and the weighting of the cycle attached to v2 provides 2w(u1u2) to the weighted
degree of v2. Suppose now that w(u1u2) = w(u5u1) = a. Then note that if w(v1v2) = w(v2v3) =
−a or w(v1v2) 6= w(v2v3), then we have sw(v2) = 0 or sw(v2) = 2a, and w cannot be neighbour-
sum-distinguishing. Hence w(v1v2) = w(v2v3) = a and sw(v2) = 4a in this situation. The proof
follows similarly from the assumption w(u1u2) = w(u5u1) = −a. �

The other replacement gadgets for {a,−a} are defined inductively.

Construction 8.40. To obtain the graph Rk for some k ≥ 3, start from the path P3 = v1v2v3

with length 2. Next identify v2 and the root of each of k − 1 copies of the graph T . For every
such ith resulting copy v2u2u3v2 of T , with i ∈ {1, 2, ..., k − 1}, now Ri-subdivide each of the
edges v2u2 and v2u3. This results in a cycle s1s2s3s4s5s1 with length 5 such that s1 = v2, and
the edges s1s2 and s2s3, and s1s5 and s5s4 are the inputs of two replacement gadgets Ri. To
finish the construction of Rk, identify v2 and one vertex of each of k − 1 cycles with length 5.
The inputs of Rk are v1v2 and v2v3.

Chapter 8. Complexity of Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting 189

v1 v2 v3

T

(a) R1.

v1 v2 v3

(b) R2.

v1 v3

R1 R1 R2 R2

v2

(c) R3.

Figure 8.13: The graphs R1, R2 and R3, and neighbour-sum-distinguishing
{a,−a}-edge-weightings of R1, R2 and R3. Thick (resp. thin) edges represent
a- (resp. (−a)-) weighted edges.

Example 8.41. The graphs R1, R2, and R3 are depicted in Figure 8.13.

Lemma 8.42. Let k ≥ 3 be fixed. Then Rk is a (2ka,−2ka)-replacement gadget for {a,−a}.

Proof. Assume the claim is true for every k up to a value of i, and consider k = i + 1. Let
w be a neighbour-sum-distinguishing {a,−a}-edge-weighting of Rk. Consider first every cycle
v2s2s3s4s5v2 with length 5 such that the edges v2s2 and s2s3, and s4s5 and s5v2 are the inputs
of two graphs Rk′ , with k′ < k. Note that we cannot have w(s2s3) = w(s4s5) since otherwise
we would have sw(s3) = sw(s4). Thus we have w(s2s3) = a and w(s4s5) = −a without loss of
generality, and w(v2s2) = a and w(v2s5) = −a according to the induction hypothesis. Besides,
sw(s2) = 2k′a and sw(s5) = −2k′a. Hence, the k − 1 cycles of this form attached to v2 provide
(k− 1)(a+ (−a)) = 0 in the weighted degree of v2, and v2 is adjacent to vertices whose weighted
degrees lie among

{−2(k − 1)a,−2(k − 2)a, ...,−2a, 2a, ..., 2(k − 2)a, 2(k − 1)a}.

Now consider every “regular” cycle v2s2s3s4s5v2 with length 5 attached to v2. For the
same reasons as those given in the proof of Lemma 8.39, we have w(v2s2) = w(v2s5), and
0 ∈ {sw(s2), sw(s5)}. Hence, every regular cycle provides either 2a or −2a in the weighted de-
gree of v2. Is is then easy to check that the only way for w to be neighbour-sum-distinguishing is
to have each of the k−1 regular cycles providing 2a (resp. −2a) to the weighted degree of v2, and
w(v1v2) = w(v2v3) = a (resp. w(v1v2) = w(v2v3) = −a). In this situation, we get sw(v2) = 2ka
(resp. sw(v2) = −2ka). For every other possible weighting, we necessarily get that sw(v2) is
equal to a value among {−2(k − 1)a,−2(k − 2)a, ...,−2a, 0, 2a, ..., 2(k − 2)a, 2(k − 1)a}. �

Corollary 8.43. Let i, j, k ≥ 1 be three distinct positive integers. Then (Ri, Rj , Rk) is a replace-
ment triplet for {a,−a}.

Spreading gadget Gf for {a,−a}
The spreading gadget Gf for {a,−a} is depicted in Figure 8.14. The input of Gf is u1u2, while
its outputs are u9u10 and u12u13. We prove that Gf satisfies the spreading gadget property.

Proposition 8.44. The graph Gf satisfies Property 8.12 for {a,−a}.

Proof. Suppose w is a neighbour-sum-distinguishing {a,−a}-edge-weighting of Gf. Note first
that we cannot have w(u3u5) 6= w(u4u6). Indeed, suppose e.g. that w(u3u5) = a and w(u4u6) =
−a. Then w(u5u7) = a and w(u6u7) = −a according to Lemma 8.37. Besides, sw(u5) = 2a

190 8.5. Third implementation: b = −a

u3

u1 u2 u7

u4

u9 u10u8

u11 u13u12

T

T

T

u5

u6

Figure 8.14: The spreading gadget Gf for the third implementation of the re-
duction framework, and a neighbour-sum-distinguishing {a,−a}-edge-weighting of
Gf. Thick (resp. thin) edges represent a- (resp. (−a)-) weighted edges.

and sw(u6) = −2a. Note further that the weighting of the copy of T attached to u7 provides
a+ (−a) = 0 in the weighted degree of u7, and that u7 has a neighbour with weighted degree 0
(Lemma 8.35). Then note that for every value of {w(u7u8), w(u7u11)}, i.e. {a, a}, {a,−a} or
{−a,−a}, we get that sw(u7) is either 2a, 0 or −2a, respectively. Hence w is not neighbour-
sum-distinguishing under the assumption w(u3u5) 6= w(u4u6).

On the contrary, note that if w(u3u5) = w(u4u6) = −a, then w can be neighbour-sum-
distinguishing. Note first that we have w(u5u7) = w(u6u7) = −a according to Lemma 8.37.
Besides, sw(u5) = sw(u6) = −2a. Recall that u7 has a neighbour with weighted degree 0,
and that the graph T attached to u7 provides 0 to the weighted degree of u7. Now note that if
{w(u7u8), w(u7u11)} is {a, a} or {a,−a}, then we have sw(u7) = 0 or sw(u7) = −2a, respectively.
On the contrary, if w(u7u8) = w(u7u11) = −a, then we get sw(u7) = −4a. Besides, we have
w(u9u10) = w(u12u13) = a according to Observation 8.4.

Now assume w(u1u2) = a. First, note that we cannot have w(u2u3) = w(u2u4). Indeed,
in this situation, we would have w(u3u5) 6= w(u4u6) so that u3 and u4 have distinct weighted
degrees, and this whatever is w(u3u4). But according to the arguments above w cannot be
neighbour-sum-distinguishing under this assumption. Then, w(u2u3) = a and w(u2u4) = −a
without loss of generality. In this situation, sw(u2) = a. On the one hand, if w(u3u4) = a,
then w cannot be neighbour-sum-distinguishing. Indeed, we would have w(u3u5) = a so that
sw(u3) 6= sw(u2), and w(u4u6) = −a so that sw(u4) 6= sw(u2). But then w(u3u5) 6= w(u4u6),
and w is not neighbour-sum-distinguishing, again according to the arguments above. On the
other hand, i.e. w(u3u4) = −a, then we have w(u3u5) = −a so that sw(u2) 6= sw(u3), and
w(u4u6) = −a so that sw(u3) 6= sw(u4). As pointed out above, the weighting propagates along
Gf in such a way that we have w(u9u10) = w(u12u13) = a, as requested. �

Clause gadgets GF (Ci) for {a,−a}

Consider, as GF (Ci), the graphs depicted in Figure 8.15. In the first (resp. second) form, i.e.
for m(Ci) = 2 (resp. m(Ci) = 3), the inputs of GF (Ci) are u1u3 and u2u3 (resp u1u4, u2u4 and
u3u4) and are supposed to be weighted a. The outputs of GF (Ci) are u3u4 and u3u5 (resp. u4u5,
u4u6 and u4u7). We show that the two forms of GF (Ci) are clause gadgets for {a,−a}.
Proposition 8.45. The graph GF (Ci) satisfies Property 8.13 for {a,−a} whatever is the value
of m(Ci).

Proof. Assume w is a neighbour-sum-distinguishing {a,−a}-edge-weighting of GF (Ci) such that
all the inputs of GF (Ci) are weighted a. We show the claim to be true when m(Ci) = 2, but
the proof is similar for the case m(Ci) = 3. Recall that the graph T attached to u3 provides
a + (−a) = 0 to the weighted degree of u3, and that one of its vertices has weighted degree 0

Chapter 8. Complexity of Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting 191

u1 u2

T

u4 u5

u3

(a) Case m(Ci) =
2.

u2u1 u3

T

u5 u6 u7

u4

(b) Case m(Ci) =
3.

Figure 8.15: The two forms of the clause gadget GF (Ci) for the third implemen-
tation of the reduction framework, and neighbour-sum-distinguishing {a,−a}-edge-
weightings of GF (Ci). Thick (resp. thin) edges represent a- (resp. (−a)-) weighted
edges.

v4

v3

v1 v2

u5 u′5

u′2

u′4 u′3

u′1u1 u2

u3 u4

Figure 8.16: The collecting gadget Gg for the third implementation of the re-
duction framework, and a neighbour-sum-distinguishing {a,−a}-edge-weighting of
Gg. Thick (resp. thin) edges represent a- (resp. (−a)-) weighted edges.

(Lemma 8.35). Note then that if w(u3u4) = w(u3u5) = −a, then sw(u3) = 0. Therefore, at least
one output of GF (Ci) receives weight a by w. �

Collecting gadget Gg for {a,−a}

Let Gg be the graph depicted in Figure 8.16. The two regular inputs of Gg are v1v3 and v2v3,
while its output is v3v4. The forcing inputs of Gg are u1u2 and u3u4, which are supposed to be
weighted −a, and u′1u′2 and u′3u′4 which are supposed to be weighted a. We show that Gg is a
collecting gadget for {a,−a}.
Proposition 8.46. The graph Gg satisfies Property 8.14 for {a,−a}.

Proof. Suppose w is a neighbour-sum-distinguishing {a,−a}-edge-weighting of Gg such that
w(u1u2) = w(u3u4) = −a and w(u′1u

′
2) = w(u′3u

′
4) = a. Note that we cannot have w(u2u4) = a.

Indeed, in this situation, we would have w(u2u5) 6= w(u4u5) so that sw(u2) 6= sw(u4). But
then we would get {sw(u2), sw(u4)} = {a,−a} and we would have sw(u5) ∈ {a,−a} no matter
what is w(u5v3). Therefore w(u2u4) = −a. For the same reasons, we have w(u2u5) = a and
w(u4u5) = −a without loss of generality. Then, sw(u2) = −a and sw(u4) = −3a, and we have
w(u5v3) = a since otherwise we would have sw(u5) = −a. Besides, we have sw(u5) = a.

Repeating the same arguments regarding the subgraph induced by {u′1, u′2, u′3, u′4, u′5, v3}, we
get that w(u′5v3) = −a and sw(u′5) = −a. Therefore, the edges u5v3 and u′5v3 provide a+(−a) = 0

192 8.6. Conclusion and open questions

to the weighted degree of v3, and v3 is adjacent to vertices with respective weighted degree a and
−a. Now observe that we cannot have w(v1v3) 6= w(v2v3). Indeed, by then having w(v3v4) = a
or w(v3v4) = −a, we would get sw(v3) = a or sw(v3) = −a, respectively. On the contrary, if
w(v1v3) = w(v2v3) = a (resp. w(v1v3) = w(v2v3) = −a), then we have w(v3v4) = a (resp.
w(v3v4) = −a) since otherwise we would have sw(v3) = a (resp. sw(v3) = −a). In particular, we
get sw(v3) = 3a (resp. sw(v3) = −3a). �

8.6 Conclusion and open questions

In this chapter, we have provided another proof that Neighbour-Sum-Distinguishing {a,b}-
Edge-Weighting remains NP-complete for all values of {a, b} involving real weights. Surely the
most interesting notion we have introduced in this chapter is the notion of replacement gadget,
which we believe could be of some use regarding some of the open questions related to neighbour-
sum-distinguishing {a, b}-edge-weighting of graphs mentioned in Section 7.3. In particular, we
think it could help to exhibit new bipartite graphs with no neighbour-sum-distinguishing {1, 2}-
edge-weighting. This approach could be pertinent in order to deal with Problem 7.14.

Speaking of Problem 7.14, it is not clear whether the existence of a fair characterization of
bipartite graphs admitting a neighbour-sum-distinguishing {1, 2}-edge-weighting would imply the
existence of a fair characterization of bipartite graphs admitting a neighbour-sum-distinguishing
{a, b}-edge-weighting for every {a, b} 6= {1, 2}. So Problem 7.14 can be refined to the following.

Question 8.47. Are there two distinct real numbers a and b such that Neighbour-Sum-
Distinguishing {a,b}-Edge-Weighting remains NP-complete when restricted to bipartite
graphs?

The different gadgets we have had to exhibit throughout this chapter for distinct values of
{a, b} are a good illustration of how much different two problems Neighbour-Sum-Distinguishing
{a,b}-Edge-Weighting and Neighbour-Sum-Distinguishing {a′,b′}-Edge-Weighting can
be, and hence justifies Question 8.47. Regarding this question, we believe {a, b} = {a, 0} and
{a, b} = {a,−a} are two appealing cases. It is however important mentioning that each of our
three implementations involves some gadgets which are not bipartite, and hence which cannot be
used directly for dealing with Question 8.47. So one first important task would be to investigate
whether some bipartite gadgets with similar properties as ours can be designed for specific values
of {a, b}. The existence or the non-existence of such gadgets would be a good hint on the actual
status of Question 8.47.

Chapter 9. Locally irregular edge-colouring of graphs 193

Chapter 9

Locally irregular edge-colouring of graphs

This chapter is devoted to the study of locally irregular edge-colouring of graphs. As many
graphs do not admit any locally irregular edge-colouring, e.g. paths or cycles of odd length,
we start our investigations, in Section 9.1, by clarifying the range of colourable graphs for this
type of edge-colouring. For this purpose, we give a concrete characterization of exceptions in
Section 9.1.1 before eventually showing in Section 9.1.2 that every non-exception graph is indeed
colourable.

In Section 9.2, we raise a conjecture on the maximum number of colours needed to obtain a
locally irregular edge-colouring of every colourable graph. Namely, we believe that all colourable
graphs have irregular chromatic index at most 3. We verify this conjecture for various classes of
graphs in Section 9.2.1, including trees, complete graphs, and Cartesian products of colourable
graphs verifying the conjecture themselves. Using of a probabilistic approach, we also support
our conjecture by showing, in Section 9.2.2, that regular graphs with sufficiently large degree
agree it. This result also has consequences on the 1-2-3 Conjecture, recall Observation 7.37.

Section 9.3 is dedicated to the study of the algorithmic hardness of determining the irregular
chromatic index of a graph. Since the notion of exception is important in this context, we first
show in Section 9.3.1 that recognizing whether a graph is an exception can be done in polynomial
time. We then focus on the complexity of Locally Irregular 2-Edge-Colouring. We
show this problem to be handleable in linear time when restricted to trees (Section 9.3.2), before
showing it to be NP-complete in general (Section 9.3.3).

9.1 Decomposing graphs into locally irregular subgraphs 193
9.1.1 Characterization of exceptions . 194
9.1.2 Non-exception graphs are colourable . 195

9.2 Families with irregular chromatic index at most 3 197
9.2.1 Some common families of graphs . 198
9.2.2 Regular graphs with large degree . 202

9.3 Determining the irregular chromatic index of a graph 207
9.3.1 Recognizing exceptions . 207
9.3.2 Trees . 208
9.3.3 General graphs . 218

9.4 Conclusion and open questions . 223

The proof of Theorem 9.44 was presented as a poster at the EuroComb 2013 Conference [28],
and is, as well as the results from Section 9.3.2, part of a joint work with Baudon and Sopena
submitted for publication [20]. All results from Sections 9.1 and 9.2 were obtained jointly with
Baudon, Przybyło and Woźniak, and have been submitted for publication [17].

9.1 Decomposing graphs into locally irregular subgraphs

We start by characterizing, in Section 9.1.1, those exception graphs which do not admit any
locally irregular edge-colouring. Every other graph is then shown to be colourable in Section 9.1.2.

194 9.1. Decomposing graphs into locally irregular subgraphs

(a) (b)

(c) (d)

Figure 9.1: Some members of T .

9.1.1 Characterization of exceptions

Although locally irregular edge-colouring of graphs was initially inspired by neighbour-sum-
distinguishing edge-weighting of graphs, the range of exceptions is much wider for the first notion
than for the second one. Namely, an exception for the notion of locally irregular edge-colouring
is either a path or cycle with odd length, or a member from the family T described below (while,
for other related problems, only K2 is an exception).

We start by characterizing paths and cycles which are exceptions. An easy proof relies on
the following straightforward observation.

Observation 9.1. The only locally irregular non-trivial path is P3.

Proof. Just note that P2 has its two vertices having degree 1, while Pn has neighbouring vertices
with degree 2 for every n ≥ 4. So these graphs are not locally irregular. On the contrary, P3

is locally irregular since its consecutive vertices have degree 1, 2 and 1, respectively, from one
endvertex to the other one. �

Corollary 9.2. A path or cycle is an exception if and only if it has odd length.

Proof. Recall that a non-trivial path Pn is locally irregular if and only if n = 3 (see Observa-
tion 9.1), and note that no cycle is locally irregular. Therefore, we have to use at least two colours
to produce a locally irregular edge-colouring c of every cycle or path with order at least 4. Since
the only non-trivial subgraphs of every path or cycle are paths, each colour of c induces a forest
of P3. Colourable paths and cycles thus necessarily have even length. In particular, a locally
irregular edge-colouring of every colourable path or cycle can be obtained by colouring every two
consecutive adjacent edges with a new colour, starting from one endedge for a path. �

We now introduce the last family T of exceptions.

Construction 9.3. First, the triangle K3 belongs to T . Another member G′ of T can then be
obtained as follows. On the one hand, let G be a member of T in which at least one vertex, say
u, belongs to a triangle of G and has degree 2. On the other hand, let v be either an endvertex
of a path with even length, or the endvertex of a path with odd length whose other endvertex is
identified with a vertex of a new triangle. We obtain G′ by identifying u and v.

Example 9.4. The construction of successive members of T is depicted in Figure 9.1.

It is worth noting that members of T have odd size, maximum degree at most 3, and circum-
ference 3. Besides, these graphs have a tree-like structure consisting of triangles and pendant
vertices, and paths with specific lengths connecting them. The recognition of these exceptions
can then be done easily, as pointed out in Section 9.3.1.

Chapter 9. Locally irregular edge-colouring of graphs 195

u vu′

w

Figure 9.2: Argument used in the proof of Proposition 9.5. A locally irregular
edge-colouring of a member of T (induced by the black and grey vertices) induces
a locally irregular edge-colouring of a smaller member of T (induced by the black
vertices only). Thick edges represent represent 1-coloured edges. No supposition is
made on the colour of the dashed edges.

Proposition 9.5. Members of T are exceptions.

Proof. Suppose G is a member of T which is a minimal counterexample to the claim in terms of
size, i.e. G is not an exception, but every member of T with fewer edges than G is an exception.
Let c be a locally irregular edge-colouring of G, and consider a triangle uvwu of G. Clearly c(uv),
c(vw) and c(wu) cannot be all equal, say to 1, since otherwise at least two of u, v and w would
be neighbouring vertices with the same degree in the 1-subgraph, a contradiction. One colour
of c is then uniquely used to colour the edges uv, vw and wu. We may assume that c(uv) = 1,
c(vw) 6= 1 and c(wu) 6= 1 without loss of generality. Because K2 is not locally irregular, one of
the vertices incident with uv, say u, is necessarily incident with another edge uu′ coloured 1 by
c, where u′ 6∈ {v, w}.

Denote by Gu′ the component of G−{u} which contains u′, and note that the subgraph G′ of
G induced by V (Gu′)∪{u, v} is either a path with odd length or a member of T . Note then that
even if v is incident with an edge vv′ with v′ 6∈ {u,w}, we cannot have c(vv′) = 1 since otherwise
the 1-subgraph would include two adjacent vertices having the same degree. Then c induces a
locally irregular edge-colouring of G′, contradicting either the minimality of G, or Corollary 9.2,
see Figure 9.2. �

9.1.2 Non-exception graphs are colourable

We now show that every graph which is not one of the exceptions exhibited in Section 9.1.1, i.e.
a path or cycle with odd length, or a member of T , admits a locally irregular edge-colouring.
Our proof relies on the following lemma.

Lemma 9.6. Let G be a connected graph whose edge set can be partitioned into two parts O ∪ I
inducing connected subgraphs of G. If |O| ≥ 2, then there are two adjacent edges e1 and e2 of O
such that G− {e1, e2} is connected.

Proof. We only need to show that we can modify, if necessary, the sets O and I so that they
retain the properties of the claim, but O consists of exactly two edges. For this purpose, we
repeat the following procedure until |O| = 2 holds.

Denote by GO and GI the subgraphs of G induced by O and I, respectively. Since G is
connected, there exists a vertex v of GO which is incident to some edges of I. Let G1, G2, ..., Gk
be the components of GO−{v}, and denote by Hi the subgraph Gi+{v} for every i ∈ {1, 2, ..., k}.
If k ≥ 2 and one Hi contains at least two edges, then we move all the edges of O \ E(Hi) to I.
Otherwise, we choose any edge of O incident with v and move it to I.

Since in each step we decrease the size of O, we eventually get O consisting of only two
adjacent edges. �

Theorem 9.7. Every non-exception connected graph admits a locally irregular edge-colouring.

196 9.1. Decomposing graphs into locally irregular subgraphs

v

e1 e2

H

(a) Case where d(v) = 3 and the
neighbourhood of v is independent,
and G−{v} has a component H with
size at least 2. Two adjacent edges
e1 and e2 (in grey only) of H are re-
moved so that G− {e1, e2} is not an
exception.

v

(b) Case where
d(v) ≥ 4 and all
components of
G − {v} have size
at most 1. Pairs
of adjacent edges
(in grey only) are
removed so that the
remaining graph
is a non-exception
tree.

(c) Case where G is spanned
by a cycle with odd length.
Edges (in grey only) induc-
ing a tree with maximum de-
gree at least 3 are removed
from G so that the remain-
ing graph is a non-exception
path.

Figure 9.3: Situations described in the proof of Theorem 9.7.

Proof. Let G be a graph which is not an exception. We prove the claim by induction on the
size of G. As a base case, one can easily check that G admits a locally irregular edge-colouring
whenever it has small size, e.g. up to 4 edges. Suppose then the claim is true whenever G has
up to to m− 1 edges, and assume G has size m.

Note first that if G has a vertex v such that either d(v) = 3 and N(v) is an independent set,
or d(v) ≥ 4, then we can deduce a locally irregular edge-colouring of G as follows. On the one
hand, if a component H of G− {v} has size at least 2, then we may remove two adjacent edges
e1 and e2 from E(H) so that G′ = G − {e1, e2} remains connected. The existence of these two
edges is guaranteed by Lemma 9.6, basically by initially setting O = E(H) and I = E(G) \ O,
see Figure 9.3.a. Since the neighbourhood of v in G′ retains the properties it had in G, the
graph G′ cannot be an exception and thus admits a locally irregular edge-colouring according
to the induction hypothesis. By then colouring e1 and e2 with a new colour we obtain a locally
irregular edge-colouring of G.

On the other hand, assume every component of G − {v} has size at most 1. A locally
irregular edge-colouring of G is then obtained as follows. For every edge e1 whose two ends are
adjacent with v, let e2 be an edge adjacent to e1 and incident with v, and colour e1 and e2 with
a new colour. Once no more such edges exist, let G′ denote the subgraph of G induced by all
uncoloured edges. Then G′ is a tree different from a path with odd length (this follows from our
assumptions on d(v) and N(v)), and admits a locally irregular edge-colouring according to the
induction hypothesis (see Figure 9.3.b). The coloured pairs of adjacent edges removed from G
and the edge-colouring of G′ then perform a locally irregular edge-colouring of G.

We thus now suppose that ∆(G) ≤ 3 and every degree-3 vertex of G belongs to some triangles.
We may additionally suppose that G has circumference 3. Indeed, assume C is a cycle with length
at least 4 in G. If a component H of G−E(C) is of size at least 2, then, analogously as above,
we may find two adjacent edges e1 and e2 from E(G)\E(C), again by using Lemma 9.6 (with O
being E(H)), so that G′ = G− {e1, e2} is connected. Again, by starting from a locally irregular
edge-colouring of G′, which exists by the induction hypothesis unless G′ = C and C is a cycle
with odd length, and then colouring e1 and e2 with a new colour, we obtain a locally irregular
edge-colouring of G. In the particular case where G′ = C and C is a cycle with odd length, then

Chapter 9. Locally irregular edge-colouring of graphs 197

G consists in one cycle with odd length to which are attached e1 and e2, see Figure 9.3.c. In such
a situation, one can easily colour e1, e2 and some additional edges of C with a same colour α so
that the α-subgraph is a tree with maximum degree 3, and the remaining graph is a path with
even length. According to Corollary 9.2, such a path admits a locally irregular edge-colouring.
Together with the previously coloured edges, this performs a locally irregular edge-colouring of
G. Using the same technique, we can deduce similar decompositions when all components of
G− E(C) are of size at most 1.

ThenG has every of its vertices with degree 3 belonging to exactly one triangle since otherwise
we would either have δ(G) ≥ 4 or a cycle with length at least 4 in G (typically when two triangles
share an edge). Note that the structure of G is actually quite similar to the one of the members
of T , except for the lengths of the maximal paths of G induced by its vertices with degree 2.
Now if δ(G) = 1, then let u be a vertex incident with a pendant vertex v. Let e1 be the edge
uv. If d(u) = 2, then let e2 be the other edge incident with u. Otherwise, let e2 be an edge
incident with u, different from e1, and whose other end has smallest degree among those vertices
in N(u)\{v}. Otherwise, i.e. δ(G) ≥ 2, there must be, in G, a triangle with at least two vertices
v and w of degree 2 (because of the assumption on the circumference of G), so let e1 and e2

be two adjacent edges incident with v and w. In both cases, note that G − {e1, e2} cannot be
an exception since otherwise G would be an exception too. Then we can first consider a locally
irregular edge-colouring of G− {e1, e2}, which exists according to the induction hypothesis, and
colour e1 and e2 with a new colour. This results in a locally irregular edge-colouring of G,
completing the proof. �

Using the term “colourable” to designate a graph which is not an exception (regarding locally
irregular edge-colouring of graphs) hence now makes sense. Since Theorem 9.7 only deals with
the existence of a locally irregular edge-colouring of every colourable graph, the number of colours
used in the proof is clearly not optimal. In particular, every colour of a resulting locally irregular
edge-colouring induces a connected graph, while a locally irregular graph can consist in several
locally irregular vertex-disjoint components. Since the smallest locally irregular connected non-
trivial graph, in terms of size, is P3, the number of colours used by a locally irregular edge-
colouring of a graph G obtained in the proof of Theorem 9.7 is roughly upper-bounded by
b |E(G)|

2 c.
Corollary 9.8. For every colourable graph G, we have χ′irr(G) ≤ b |E(G)|

2 c.

9.2 Families with irregular chromatic index at most 3

The upper bound on the irregular chromatic index of every colourable graph exhibited in Corol-
lary 9.8 is only informative and far from being optimal. Studies on common families of graphs
suggest that an optimal upper bound would rather be a constant integer depending of no graph
parameter. Namely, only three colours seem sufficient to obtain a locally irregular edge-colouring
of every colourable graph at first glance. We thus conjecture the following.

Conjecture 9.9. For every colourable graph G, we have χ′irr(G) ≤ 3.

Throughout this section, we support Conjecture 9.9 by showing it to hold for numerous
classes of colourable graphs. Namely, we verify it, in Section 9.2.1, for paths, cycles, some
bipartite graphs including trees, complete graphs, and Cartesian products of graphs with irregular
chromatic index at most 3. A more significant result in Section 9.2.2 states that Conjecture 9.9
is also true for regular graphs with sufficiently large degree.

198 9.2. Families with irregular chromatic index at most 3

(a) A locally irregular 2-edge-colouring of P7. Solid
and dashed edges represent 1- and 2-coloured edges,
respectively.

(b) A locally irregular 3-edge-
colouring of C6. Solid, dashed,
and dotted edges represent 1-
, 2-, and 3-coloured edges, re-
spectively.

Figure 9.4: Locally irregular edge-colouring paths and cycles.

9.2.1 Some common families of graphs

Paths and cycles

Recall that colourable paths and cycles are those with even length according to Corollary 9.2.
We start by showing that colourable paths have irregular chromatic index at most 2, while cycles
have irregular chromatic index at most 3, this showing that Conjecture 9.9, if true, would be
tight.

Proposition 9.10. We have χ′irr(P3) = 1, and χ′irr(Pn) = 2 for every n ≥ 5 odd.

Proof. The statement for P3 follows from Observation 9.1. Recall that each colour of a locally
irregular edge-colouring of Pn, with n ≥ 5 odd, induces a forest of P3, see Observation 9.1. A
locally irregular 2-edge-colouring of Pn can then be obtained by colouring pairs of subsequent
edges with a same colour starting from one endedge of Pn, using colours 1 and 2 alternatively
(see Figure 9.4.a) �

Proposition 9.11. Let n ≥ 4 even. We have χ′irr(Cn) = 2 if n ≡ 0 (mod 4), or χ′irr(Cn) = 3
otherwise.

Proof. Repeating the colouring procedure from the proof of Proposition 9.10 (except that the
first pair of subsequent edges is chosen arbitrarily) with two colours, we obtain a locally irregular
2-edge-colouring of Cn whenever n ≡ 0 (mod 4). When n ≡ 2 (mod 4), stop the procedure once
only two adjacent edges e1 and e2 remain to colour. At this very moment, these two edges are
adjacent to a pair of consecutive edges coloured 1, and a pair of consecutive edges coloured 2.
In this situation, we then have to colour e1 and e2 with colour 3, see Figure 9.4.b. �

Bipartite graphs

Although dealing with bipartite graphs for other vertex-distinguishing edge-colouring notions
showed up to be easy, things seem to be harder when dealing with locally irregular edge-colouring.
According to Corollary 9.2, we even know that infinitely many bipartite graphs are not colourable,
namely paths with odd length. We here only show Conjecture 9.9 to hold for specific classes
of bipartite graphs, namely complete bipartite graphs, regular bipartite graphs with minimum
degree at least 3, and trees (next Section 9.2.1 is devoted to this specific case).

Proposition 9.12. Let p ≥ 2 and q ≥ 1. We have χ′irr(M2(p, q)) = 1 if p 6= q, or χ′irr(M2(p, p)) =
2 otherwise.

Proof. If p 6= q, then M2(p, q) is locally irregular and thus has irregular chromatic index 1. Now
assume p = q ≥ 2 (if p = q = 1, then M2(p, p) is isomorphic to K2, which is not colourable),

Chapter 9. Locally irregular edge-colouring of graphs 199

r

v−

Tr

v

(a) d(v) ≥ 4.

r

v−

Tr

v

(b) d(v) = 3,
and Tr[v, 1] and
Tr[v, 2] have
length 1.

r

v−

Tr

v

(c) d(v) = 3,
and Tr[v, 1] and
Tr[v, 2] have
length 2.

r

v−

Tr

v

(d) d(v) = 3,
and Tr[v, 1] and
Tr[v, 2] have
length 1 and 2,
respectively.

Figure 9.5: Situations described in the proof of Theorem 9.14. A subtree of Tr
rooted at v is removed so that we can deduce a locally irregular 3-edge-colouring
of the remaining tree. This locally irregular edge-colouring is then extended to the
removed subtree. Solid, dashed, and dotted edges represent 1-, 2-, and 3-coloured
edges.

and let v be an arbitrary vertex of M2(p, p). We produce a locally irregular 2-edge-colouring of
M2(p, p) as follows. Start by colouring 1 all edges of M2(p, p)−{v}. Then colour 2 all remaining
edges, i.e. those incident with v. Then note that the 1- and 2-subgraphs are complete unbalanced
bipartite graphs, and are then locally irregular. �

Recall that a neighbour-multiset-distinguishing 2-edge-colouring of a regular graph is also
locally irregular according to Observations 7.17 and 7.37. Since every bipartite graph with
minimum degree at least 3 admits a neighbour-multiset-distinguishing 2-edge-colouring, recall
Theorem 7.22, we directly get the following.

Corollary 9.13. For every regular bipartite graph G with δ(G) ≥ 3, we have χ′irr(G) ≤ 2.

Trees

We now give a positive answer to Conjecture 9.9 in the context of trees. It is worth mentioning
that a deeper study of the irregular chromatic index of trees can be found in dedicated Sec-
tion 9.3.2, wherein it is shown that the irregular chromatic index of a tree can be determined in
linear time.

Theorem 9.14. For every colourable tree T , we have χ′irr(T) ≤ 3.

Proof. We prove the claim by induction on the number of nodes with degree at least 3 in T . Let
us consider, as base cases, the following two situations. On the one hand, if δ(T) ≤ 2, i.e. T
has no node with degree at least 3, then T is a path with even length and thus has irregular
chromatic index at most 2 according to Proposition 9.10. On the other hand, if T has only one
node r with degree at least 3, then let Tr be the rooted tree obtained by rooting T at r. Since r
is the only node with degree at least 3 in T , note that each of Tr[r, 1], Tr[r, 2], ..., Tr[r, d(r)] is a
path. Then a locally irregular 3-edge-colouring of Tr is obtained as follows. Use colour 1 to colour
every edge incident with r, plus possibly the edge rr+ of each of Tr[r, 1], Tr[r, 2], ..., Tr[r, d(r)] so
that the uncoloured edges form a forest of paths with even length (possibly of length 0). The
1-subgraph is then locally irregular since r has degree at least 3 in this subgraph by assumption,

200 9.2. Families with irregular chromatic index at most 3

(a) K4. (b) K5. (c) K6.

Figure 9.6: Extending a locally irregular 3-edge-colouring of K4 to complete
graphs with larger order. Solid, dashed, and dotted edges represent 1-, 2-, and
3-coloured edges.

and is adjacent to nodes with degree 2 or 1. Besides, every degree-2 node of the 1-subgraph is
adjacent to r and a degree-1 node. Then use colours 2 and 3 (if necessary) to colour the edges
of the remaining forest so that the two induced subgraphs are locally irregular. This is possible
by Proposition 9.10 since this forest only consists in paths with even length. Colours 1, 2 and 3
then form a locally irregular 3-edge-colouring of T .

Suppose now that the claim is true whenever T has up to i− 1 nodes with degree at least 3,
and assume T has i such nodes. Let r be a node of T , and let Tr be the rooted tree obtained
by rooting T at r. Let v 6= r be a node of Tr such that d(v) ≥ 3 and v does not have any node
with degree at least 3 in its descendants. Note that T −V (Tr[v]) is a colourable tree since it has
nodes with degree at least 3 (this remains true if we put back a subgraph of Tr[v] in T). By our
choice of v, note further that each of Tr[v, 1], Tr[v, 2], ..., Tr[v, d(v) − 1] is a path. According to
how a locally irregular edge-colouring is propagated along a path, we may also assume that each
of the Tr[v, i]’s is a path with length 1 or 2.

Note that if d(v) ≥ 4, then Tr[v] is a locally irregular tree. A locally irregular 3-edge-
colouring of T can then be obtained by starting from a locally irregular 3-edge-colouring of
T − V (Tr[v]) + {v}, which exists according to the induction hypothesis, and then colouring all
the remaining edges of T , i.e. those of Tr[v], with a colour different from the one used for v−v
(see Figure 9.5.a).

A locally irregular 3-edge-colouring of T can be obtained in an analogous way when d(v) = 3.
First, when both Tr[v, 1] and Tr[v, 2] have length 1, the strategy used in the case d(v) ≥ 4 provides
a locally irregular 3-edge-colouring of T since two adjacent edges form a locally irregular graph
(see Figure 9.5.b). Now, if Tr[v, 1] and Tr[v, 2] have length 2, then the same strategy can again
be used, except that two colours are necessary to colour the edges of Tr[v], which is a path with
length 4. Assuming v−v is coloured, say, 1, using colour 2 for the edges of Tr[v, 1] and colour 3 for
the edges of Tr[v, 2] provides a locally irregular 3-edge-colouring of T (see Figure 9.5.c). Finally,
if Tr[v, 1] and Tr[v, 2] have length 1 and 2, respectively, without loss of generality, then a locally
irregular 3-edge-colouring of T can be obtained as follows. Consider first a locally irregular
3-edge-colouring of T − V (Tr[v, 2]) + {v}, which exists according to the induction hypothesis,
and colour the two remaining adjacent edges of T , i.e. those of Tr[v, 2], with a colour different
from the one used to colour the edges v−v and vv+ in T − V (Tr[v, 2]) + {v} (these two edges
necessarily have the same colour). The resulting 3-edge-colouring remains locally irregular, as
shown in Figure 9.5.d. This completes the proof. �

Complete graphs

We now prove that every complete graph with order at least 4 admits a locally irregular 3-edge-
colouring.

Theorem 9.15. For every n ≥ 4, we have χ′irr(Kn) ≤ 3.

Chapter 9. Locally irregular edge-colouring of graphs 201

u1

(a) u1 has some 1-
and 2-degree in the 1-
and 2-subgraphs of G
induced by cG.

v1 v2

(b) v1 and v2 are adjacent ver-
tices with distinct 1-degrees of
the 1-subgraph of H induced
by cH .

(u1, v1) (u1, v2)

(c) (u1, v1) and (u1, v2) are adjacent ver-
tices with distinct 1-degrees of the 1-
subgraph of G�H induced by c.

Figure 9.7: Deduction of a locally irregular 2-edge-colouring c of G�H from
locally irregular 2-edge-colourings cG and cH of G and H, respectively. Thick
(resp. thin) edges represent 1- (resp. 2-) coloured edges.

Proof. We prove this statement by induction on n. We actually prove a slightly stronger claim.
Namely, for every n ≥ 4, we prove that there exists a locally irregular 3-edge-colouring of Kn

in which either there is no vertex whose all n − 1 incident edges are coloured 1, or there is no
vertex whose all n− 1 incident edges are coloured 2.

As a base case, note that a locally irregular 3-edge-colouring of K4 satisfying these require-
ments can be obtained by colouring two adjacent edges 1, two adjacent edges 2, and the remaining
two adjacent edges 3, see Figure 9.6.a. Suppose now the claim is true for every n up to an i, and
consider n = i+ 1. By the induction hypothesis, there exists a locally irregular 3-edge-colouring
of any induced Kn−1 subgraph of Kn such that no vertex has its n− 2 incident edges coloured,
say, 1. Then, by just colouring 1 all of the n − 1 uncoloured edges, it should be clear that the
edge-colouring of Kn remains locally irregular. Besides, there is no vertex whose all n − 1 inci-
dent edges are coloured 2, so the additional requirement is met. The stronger statement is thus
also true for n. See Figure 9.6 for an illustration of how this locally irregular 3-edge-colouring is
extended from one complete graph to the next one. �

An interesting fact about the proof of Theorem 9.15 is that colour 3 is only used twice in
every deduced locally irregular 3-edge-colouring of a complete graph Kn, basically to colour two
edges of an induced K4. So using the same colouring procedure, two colours actually suffice to
obtain a locally irregular edge-colouring if we remove one or two edges from Kn.

Theorem 9.16. For every n ≥ 4 and arbitrary edges e and e′ of Kn, we have χ′irr(Kn−{e}) =
χ′irr(Kn − {e, e′}) = 2.

Proof. The proof is analogous to the one of Theorem 9.15. First colour a subgraph of Kn − {e}
or Kn − {e, e′} of order 4 which includes the vertices incident with the removed edges. This
time, only two colours suffice to obtain a locally irregular edge-colouring of this subgraph. Then
colour the remaining edges as in the proof of Theorem 9.15. �

Cartesian products of graphs with irregular chromatic index at most 3

Using the Cartesian product of graphs, we can provide numerous more examples of graphs
supporting Conjecture 9.9. Namely, we show that if two graphs G andH have irregular chromatic
index at most 3, then so has their Cartesian product G�H.

Theorem 9.17. For every two graphs G and H, we have χ′irr(G�H) ≤ max{χ′irr(G), χ′irr(H)}.

Proof. Let cG and cH be locally irregular χ′irr(G)- and χ′irr(H)-edge-colourings of G and H,
respectively. Then denote by c the max{χ′irr(G), χ′irr(H)}-edge-colouring of G�H defined as
follows (see Figure 9.7).

202 9.2. Families with irregular chromatic index at most 3

c((u1, v1)(u2, v2)) =

{
cH(v1v2) if u1 = u2,
cG(u1u2) otherwise.

Given a colour of c, say 1, and a vertex (u1, v1) of G�H, note that dc,1(u1, v1) = dcG,1(u1) +
dcH ,1(v1). Now consider an edge (u1, v1)(u2, v2) of G�H coloured 1 by c. We just need to show
that dc,1(u1, v1) 6= dc,1(u2, v2). Since (u1, v1) and (u2, v2) are adjacent, we may assume that
u1 = u2 without loss of generality. Then dc,1(u1, v1) = dcG,1(u1) + dcH ,1(v1) and dc,1(u2, v2) =
dcG,1(u1) + dcH ,1(v2). Since cH is locally irregular, we have dcH ,1(v1) 6= dcH ,1(v2), implying that
(u1, v1) and (u2, v2) are adjacent vertices in the 1-subgraph induced by c, but have distinct
1-degrees. �

Corollary 9.18. For every two graphs G and H with χ′irr(G), χ′irr(H) ≤ 3, we have χ′irr(G�H) ≤
3

Corollary 9.18 in particular implies that some other bipartite graphs, like e.g. hypercubes and
grids, do not refute Conjecture 9.9. Since these graphs result from the Cartesian product of two
graphs with irregular chromatic index at most 2 (with the exception that, since Q1 ' K2, one
has to check by hand that Q2 and Q3 have irregular chromatic index at most 2), Corollary 9.18
ensures that these graphs even admit a locally irregular 2-edge-colouring.

9.2.2 Regular graphs with large degree

We now prove that regular graphs with sufficiently large degree, i.e. greater than 107, agree with
Conjecture 9.9. This result is significant as regular graphs are, in some sense, the least locally
irregular graphs. We make use of a probabilistic approach to prove it. For this purpose, we need
to introduce the following result by Addario-Berry, Dalal, McDiarmid, Reed and Thomason [2]
on the existence of spanning subgraphs of a graph in which every vertex has a prescribed degree.
Refer e.g. to works of Addario-Berry, Aldred, Kalal and Reed [1] and of Addario-Berry, Kalal
and Reed [3] for other applications of this result.

Theorem 9.19 ([2]). Suppose that, for every vertex v of a graph G, we have chosen two integers
a−v and a+

v with

a−v ∈
{
d(v)

3
− 1,

d(v)

3
, ...,

d(v)

2

}
, a+

v ∈
{
d(v)

2
− 1,

d(v)

2
, ...,

2d(v)

3

}
.

Then there exists a spanning subgraph H of G such that

dH(v) ∈ {a−v , a−v + 1, a+
v , a

+
v + 1}

for every vertex v of G.

Corollary 9.20. Given a graph G, a positive integer λ ≤ δ(G)
6 , and an assignment

t : V → {0, 1, ..., λ− 1},

there exists a spanning subgraph H of G such that dH(v) ∈ {d(v)
3 , d(v)

3 + 1, ..., 2d(v)
3 }, and either

dH(v) ≡ t(v) (mod λ) or dH(v) ≡ t(v) + 1 (mod λ) for every vertex v of G.

Proof. Note that for every vertex v of G, we have
⌊
d(v)

2

⌋
−
⌊
d(v)

3

⌋
+ 1 ≥ d(v)− 1

2
− d(v)

3
+ 1 >

d(v)

6
≥ λ.

Hence, since both sides of the inequality are integers,
⌊
d(v)

2

⌋
−
⌊
d(v)

3

⌋
≥ λ.

Chapter 9. Locally irregular edge-colouring of graphs 203

Analogously, we have
⌊

2d(v)

3

⌋
−
⌊
d(v)

2

⌋
+ 1 ≥ 2d(v)− 2

3
− d(v)

2
+ 1 >

d(v)

6
≥ λ,

implying ⌊
2d(v)

3

⌋
−
⌊
d(v)

2

⌋
≥ λ.

Therefore, the sets of integers
{⌊

d(v)

3

⌋
+ 1,

⌊
d(v)

3

⌋
+ 2, ...,

⌊
d(v)

2

⌋}
and

{⌊
d(v)

2

⌋
,

⌊
d(v)

2

⌋
+ 1, ...,

⌊
2d(v)

3

⌋
− 1

}

both contain all remainders modulo λ. The claim then follows by applying Theorem 9.19 with
the a−v ’s and a+

v ’s belonging to these sets, i.e. with having a−v , a+
v ≡ t(v) (mod λ) for every

vertex v. �

We are now ready to prove the main result of this section.

Theorem 9.21. For every d-regular graph G with d ≥ 107, we have χ′irr(G) ≤ 3.

Proof. We first randomly and independently choose one value c1(v) in {0, 1, ..., dd0.35e − 1} for
every vertex v of G, each with equal probability. We then repeat this drawing for every vertex
v of G, and denote the second obtained value by c2(v). For each vertex v, let us denote

A(v) = {u ∈ NG(v) : c1(u) = c1(v)},

B(v) = {u ∈ NG(v) : c2(u) = c2(v)},
C(v) = {u ∈ NG(v) : c1(u) + c2(u) ≡ c1(v) + c2(v) (mod dd0.35e)},

and note that

D(v) = B(v) ∩ C(v) = {u ∈ NG(v) : c1(u) = c1(v) ∧ c2(u) = c2(v)}.

We first use Theorems 1.28 and 1.29 to prove the following probabilistic claim.

Claim 9.22. With positive probability, we have

|A(v)|, |B(v)|, |C(v)| ≤ 2d0.65 and (9.1)
|D(v)| ≤ 2d0.3 − 1 (9.2)

for every vertex v of G.

Proof. For every vertex v, let Xv, Yv, Zv, and Tv be the random variables of the cardinalities of
the sets A(v), B(v), C(v), and D(v), respectively, and let Av, Bv, Cv, and Dv denote the events
Xv > 2d0.65, Yv > 2d0.65, Zv > 2d0.65, and Tv > 2d0.3 − 1, respectively. Consider any vertex u
neighbouring v. Then, we have

Pr(u ∈ A(v)) =
1

dd0.35e ≤
1

d0.35
and

Pr(u ∈ B(v)) =
1

dd0.35e ≤
1

d0.35
.

Since, for every fixed value of c1(v) and c2(v) (and e.g. c1(u)), the probability that c1(u) +

c2(u) ≡ c1(v) + c2(v) (mod dd0.35e) equals exactly 1
dd0.35e , by the total probability we also get

Pr(u ∈ C(v)) =
1

dd0.35e ≤
1

d0.35
.

204 9.2. Families with irregular chromatic index at most 3

Finally, since the drawings of the c1(v)’s and c2(v)’s are independent, we have

Pr(u ∈ D(v)) =

(
1

dd0.35e

)2

≤ 1

d0.7
.

Consequently, since again all our drawings are independent, by Theorem 1.29 we obtain the
following. To be strict, note that we should have first written the conditional probability with
respect to some fixed values of c1(v), but since all our choices are independent we would have
ended up with the same upper bound no matter what is c1(v). So

Pr (Av) = Pr
(
Xv > 2d0.65

)
≤ Pr

(
BIN

(
d,

1

d0.35

)
> 2d0.65

)

≤ Pr

(∣∣∣∣BIN

(
d,

1

d0.35

)
− d0.65

∣∣∣∣ > d0.65

)

< 2e−
d0.65

3 ≤ 2e−
2
7
d0.3 . (9.3)

Analogously, we have

Pr (Bv) < 2e−
2
7
d0.3 and Pr (Cv) < 2e−

2
7
d0.3 . (9.4)

Finally, again by Theorem 1.29, we obtain

Pr (Dv) = Pr
(
Tv > 2d0.3 − 1

)
≤ Pr

(
BIN

(
d,

1

d0.7

)
> 2d0.3 − 1

)

≤ Pr

(∣∣∣∣BIN

(
d,

1

d0.7

)
− d0.3

∣∣∣∣ > d0.3 − 1

)

< 2e−
(d0.3−1)2

3d0.3 ≤ 2e−

(√
6
7 d

0.3
)2

3d0.3 = 2e−
2
7
d0.3 (9.5)

whenever d ≥
(

1

1−
√

6
7

) 10
3

≈ 5, 831.

Since each of the events Av, Bc, Cv, and Dv only depends on the random drawings for v
and its neighbours, each of these events is mutually independent of all other events Av′ , Bv′ , Cv′
and Dv′ where v′ is a vertex at distance at least 3 from v in G, and hence dependent of at most
3 + 4d2 other events. Moreover, by Inequalities 9.3, 9.4 and 9.5, the probability of each of these
events equals at most 2e−

2
7
d0.3 . So that Theorem 1.28 is applicable, we thus need to prove that

the following holds:
e2e−

2
7
d0.3(4 + 4d2) ≤ 1 (9.6)

For this purpose, we first show that

f(d) > 0, (9.7)

where f(d) = e
1
7
d0.3 − 5d is continuous in R+ for d ≥ 107. Note that

f ′(d) =
0.3

7
d−0.7e

1
7
d0.3 − 5,

f ′′(d) =
0.09

49
d−1.7e

1
7
d0.3
(
d0.3 − 49

3

)
,

then for d ≥ (49
3

)
10
3 ≈ 11, 056, we get f ′′(d) ≥ 0 and thus f ′(d) is increasing. Since, at the same

time, we have f ′(9, 425, 780) ≈ 22 > 0, then f ′(d) > 0 for every d ≥ 9, 425, 780. Besides, since

Chapter 9. Locally irregular edge-colouring of graphs 205

f(9, 425, 780) ≈ 3 > 0, we have f(d) > 0 for d ≥ 107, implying Inequality 9.7 (9, 425, 780 is
actually the smallest integer for which f has a positive value).

Using Inequality 9.7, we then get

e
2
7
d0.3 > 25d2 ≥ 6(4 + 4d2) ≥ e2(4 + 4d2)

for every d2 ≥ 24, implying Inequality 9.6. By Theorem 1.28, we thus obtain

Pr


 ⋂

v∈V (G)

Av ∩Bv ∩ Cv ∩Dv


 > 0,

concluding the proof. �

Suppose then that the assignments c1 and c2 have been chosen in such a way that Inequal-
ities 9.1 and 9.2 are fulfilled for every vertex v of G. Since |D(v)| is an integer, we have
|D(v)| ≤ b2d0.3c − 1 according to Inequality 9.2. Let G′ be the graph obtained from G by
removing it all edges uv such that c1(u) = c1(v). According to Inequality 9.1, we have

δ(G′) ≥ d− 2d0.65 = d0.3(d0.7 − 2d0.35) ≥ d0.3(36d0.35 + 36), (9.8)

where Inequality 9.8, which is equivalent to d0.7−38d0.35−36 ≥ 0, holds for d0.35 ≥ 38+
√

382+4·36
2

,
i.e. for d ≥ 34, 955. By Inequality 9.8, we thus obtain

δ(G′)

6
≥ 6d0.3(d0.35 + 1) ≥ 3b2d0.3cdd0.35e. (9.9)

Using Corollary 9.20, we may thus find a subgraph H1 of G′ such that dH1(v) has either
remainder 3b2d0.3cc1(v) or 3b2d0.3cc1(v) + 1 modulo λ = 3b2d0.3cdd0.35e, that is

dH1(v) ≡ 3b2d0.3cc1(v), 3b2d0.3cc1(v) + 1 (mod 3b2d0.3cdd0.35e), (9.10)

for every vertex v of G, and

∆(H1) ≥ 2∆(G′)

3
≥ 2d

3
. (9.11)

Colour the edges of H1 with colour 1. According to Inequality 9.10, we have dH1(u) 6= dH1(v)
if c1(u) 6= c1(v), what is fulfilled for every edge uv of G′, hence also for every edge of H1 since
H1 is a subgraph of G′. Therefore, the graph H1, and thus the subgraph of G induced by edges
coloured 1, is locally irregular.

Let G1 be the graph obtained by removing from G all edges coloured 1, i.e. the edges of H1.
By Inequality 9.11, we have

δ(G1) ≥ d

3
. (9.12)

LetG′′ be the graph obtained fromG1 by removing from it all edges uv such that c2(u) = c2(v)
or c1(u) + c2(u) ≡ c1(v) + c2(v) (mod dd0.35e). Using Inequalities 9.3 and 9.12, we get

δ(G′′) ≥ d

3
− 4d0.65 =

d0.3

3
(d0.7 − 12d0.35) ≥ d0.3

3
(108d0.35 + 108), (9.13)

where Inequality 9.13, which is equivalent to d0.7 − 120d0.35 − 108 ≥ 0, holds for d0.35 ≥
120+

√
1202+4·108

2 , that is for d ≥ 890, 679. By Inequality 9.13, we thus get

δ(G′′)

6
≥ 6d0.3(d0.35 + 1) ≥ 3b2d0.3cdd0.35e. (9.14)

206 9.2. Families with irregular chromatic index at most 3

Let C be the subgraph induced by these edges uv of G1 for which c1(u)+c2(u) ≡ c1(v)+c2(v)
(mod dd0.35e). Note that C and G′′ are edge-disjoint. Now, for every vertex v of G, let cv be

cv = dC(v) = |C(v) ∩NG1(v)|, (9.15)

that is the number of edges uv incident with v in G1 such that c1(u) + c2(u) ≡ c1(v) + c2(v)
(mod dd0.35e). Consider the subgraph D induced by these edges uv of G1 for which c1(u) = c1(v)
and c2(u) = c2(v). Note that D is a subgraph of C. According to Inequality 9.4, we have

∆(D) ≤ b2d0.3c − 1,

and, hence, we may greedily find a proper vertex-colouring

h : V (D)→ {0, 1, ..., b2d0.3c − 1}

of D, where we set e.g. h(v) = 0 if v is not incident with an edge of D. By Corollary 9.20 and
Inequality 9.14, we may find a subgraph H2 of G′′ such that

dH2(v) ≡ 3b2d0.3cc2(v) + 3h(v)− cv,
3b2d0.3cc2(v) + 3h(v)− cv + 1 (mod 3b2d0.3cdd0.35e) (9.16)

for every vertex v of G. Then we colour the edges of H2 and C with colour 2, while the remaining
edges of G1 are coloured 3. Let H ′2 and H ′3 denote the subgraphs induced by colours 2 and 3,
respectively. Then, since H2 and C are edge-disjoint, by Inequalities 9.15 and 9.16 we have

dH′2(v) ≡ 3b2d0.3cc2(v) + 3h(v),

3b2d0.3cc2(v) + 3h(v) + 1 (mod 3b2d0.3cdd0.35e) (9.17)

for every vertex v of G. Therefore, we have dH′2(u) 6= dH′2(v) if c2(u) 6= c2(v) or h(u) 6= h(v).
The latter of these two conditions is obviously fulfilled for every edge uv of D since h is proper.
Besides, we have c2(u) 6= c2(v) for the remaining edges of H ′2 according to the definitions of C
and G′′. The subgraph of G induced by colour 2 is thus locally irregular.

By Inequalities 9.10 and 9.17, we have

dH1(v) + dH′2(v) ≡ 3b2d0.3c(c1(v) + c2(v)) + 3h(v),

3b2d0.3c(c1(v) + c2(v)) + 3h(v) + 1,

3b2d0.3c(c1(v) + c2(v)) + 3h(v) + 2 (mod 3b2d0.3cdd0.35e) (9.18)

for every vertex v of G. Since G is d-regular, and hence we have dH′3(v) = d− dH1(v) + dH′2(v)
for every vertex v of G, then, according to Inequality 9.18, we have dH′3(u) 6= dH′3(v) if c1(u) +

c2(u) 6≡ c1(v) + c2(v) (mod dd0.35e) or h(u) 6= h(v). However, all edges uv ∈ E(G) \ E(H1)
with c1(u) + c2(u) ≡ c1(v) + c2(v) (mod dd0.35e), i.e. the edges of C, have been coloured 2. The
graph H ′3 is then locally irregular, implying that colour 3 induces a locally irregular subgraph
of G. Colours 1, 2 and 3 then form a locally irregular edge-colouring of G, implying that
χ′irr(G) ≤ 3. �

Regarding the decomposition of regular graphs into only two locally irregular subgraphs,
using Corollary 9.20 we can even deduce the following.

Corollary 9.23. For every d-regular graph G with d ≥ 12χ(G), we have χ′irr(G) ≤ 2

Proof. Let t : V → {0, 2, 4, . . . , 2χ − 2} be a proper vertex-colouring of G, and set λ = 2χ.
Since λ ≤ d

6 , by Corollary 9.20 there exists a spanning subgraph H of G satisfying dH(v) ≡ t(v)
(mod λ) or dH(v) ≡ t(v)+1 (mod λ) for every vertex v ∈ V (G). Then, for every edge uv ∈ E(G),
we have dH(u) 6= dH(v), and hence also d− dH(u) 6= d− dH(v). The graphs H and G− E(H)
thus make up a decomposition of G into two locally irregular subgraphs. �

Chapter 9. Locally irregular edge-colouring of graphs 207

Similarly as done by Addario-Berry, Dalal and Reed in [3], we may in turn derive Corol-
lary 9.23 so that we get a counterpart of Theorem 9.21 for regular graphs with irregular chromatic
index at most 2. This stands as another support for Conjecture 9.9.

Corollary 9.24. There exists an absolute integer constant d0 such that if Gd is a random d-
regular graph (sampled uniformly from the family of all d-regular graphs with order |V (Gd)|) for
a constant d > d0, then asymptotically almost surely we have χ′irr(Gd) ≤ 2.

Proof. By a result of Frieze and Łuczak [60], there exists a constant d′0 such that if d > d′0 is a
constant (and d = o(nθ) for a constant θ < 1

3), then

χ(Gd) ≤
d

2 ln d

(
1 +

32 ln(ln(d))

ln(d)

)
(9.19)

with probability going to 1 as |V (G)| grows to infinity. This means that if d > d′0, then asymptot-
ically almost surely Inequality 9.19 holds. Since for d sufficiently large, i.e. for d > d′′0 where d′′0 is
a (other) constant, Inequality 9.19 implies that χ(Gd) ≤ d

12 , the thesis follows by Corollary 9.23
with d0 = max{d′0, d′′0}. �

Using Observation 7.37, recall that we can directly derive Corollary 9.24 for neighbour-sum-
distinguishing edge-weighting of regular graphs.

9.3 Determining the irregular chromatic index of a graph

Throughout this section, we study the algorithmic complexity of determining the irregular chro-
matic index of a graph. Since the notions of locally irregular edge-colouring and exception graphs
are directly related, we first prove, in Section 9.3.1, that deciding whether a graph is an exception
can be done in polynomial time.

We then focus on the complexity of the Locally Irregular k-Edge-Colouring problem
for fixed values of k. Recall that a graph has irregular chromatic index 1 if and only if it is
locally irregular. Since this property can be checked in quadratic time, the problem Locally
Irregular 1-Edge-Colouring is in P. We cannot tell much about the complexity of every
problem Locally Irregular k-Edge-Colouring with k ≥ 3 since this is highly dependent on
whether Conjecture 9.9 is true or not. In case Conjecture 9.9 turned out to be true, every problem
Locally Irregular k-Edge-Colouring with k ≥ 3 would be equivalent to the problem of
deciding whether a graph is an exception, which we show to be in P (see Section 9.3.1). All
problems Locally Irregular k-Edge-Colouring with k ≥ 3 would thus be in P. On the
contrary, if any problem Locally Irregular k-Edge-Colouring with k ≥ 3 were shown to
be NP-complete, then this result would refute Conjecture 9.9.

We thus mainly consider the complexity of Locally Irregular 2-Edge-Colouring
herein. In particular, we show this problem to be in P when restricted to trees, and NP-complete
in general (see Sections 9.3.2 and 9.3.3, respectively). This result implies that Locally Irreg-
ular k-Edge-Colouring should not be fixed-parameter tractable when parameterized by k,
the number of colours.

9.3.1 Recognizing exceptions

Recall that a graph G is an exception (for the notion of locally irregular edge-colouring) if and
only if G is either a path or cycle with odd length, or a member of the family T introduced in
Construction 9.3. Since the structure of these three kinds of graphs is quite constrained, we can
easily, i.e. in polynomial time, recognize whether G is an exception. We propose Algorithm 2 as
such a naive polynomial-time recognition algorithm, though a refined linear one should be easy
to design.

208 9.3. Determining the irregular chromatic index of a graph

1 if ∆(G) ≥ 4 then
2 return false;

3 else
4 let T1, T2, ..., Tx denote the triangles of G;
5 if two distinct triangles Ti and Tj have common vertices then
6 return false;

7 if G has a degree-3 vertex belonging to none of the Ti’s then
8 return false;

9 if G has a cycle of length at least 4 then
10 return false;

11 let P1, P2, ..., Py denote the maximal paths of G involving vertices of degree at most 2;
12 foreach path Pj with j ∈ {1, 2, ..., y} do
13 if the two endvertices of Pj are pendant and Pj has even length then
14 return false;

15 else if one endvertex of P is pendant and Pj has odd length then
16 return false;

17 else if the endvertices of Pj belong to two of the Ti’s and Pj has even length then
18 return false;

19 return true;

Algorithm 2: Determining whether a graph G is an exception.

Theorem 9.25. Algorithm 2 determines whether a graph G is an exception in time O(|V (G)|6).

Proof. The correctness of Algorithm 2 follows from the description of the set of exceptions which
we gave in Section 9.1.1. We now clarify the running time of Algorithm 2. The list of triangles
mentioned at Line 4 can be computed in time O(|V (G)|3) by considering every triple of vertices
and checking whether they form a triangle. Every three vertices of G can form a triangle, so
x is roughly O(|V (G)|3). Comparing every two triangles at Line 5 can thus be done within
O(|V (G)|6) steps. Line 7 requires time O(|V (G)|4), while Line 9 can be executed within time
O(|V (G)|5). This can be typically done during a depth-first search algorithm by checking whether
every return edge forms a triangle.

The paths P1, P2, ..., Py can be computed again using a depth-first search algorithm. There
are at most |V (G)| of them, so y ≤ |V (G)|. Once these paths are computed, Lines 13, 15 and 17
only consists in comparing the degrees of (some of) their vertices (there are at most |V (G)| of
them), or checking whether they belong to some of the O(|V (G)|3) triangles T1, T2, ..., Tx. The
most costly of these three instructions is Line 17, which can be achieved within time O(|V (G)|4).

The most costly instruction of Algorithm 2 is thus Line 5, which implies that Algorithm 2
has time complexity O(|V (G)|6). �

9.3.2 Trees

Recall that every colourable tree has irregular chromatic index at most 3 according to The-
orem 9.14. In this section, we propose a linear-time algorithm for determining the irregular
chromatic index of a colourable tree. The existence of such an algorithm implies the membership
of Locally Irregular 2-Edge-Colouring to P when restricted to trees. The keystone of
our algorithm is the decomposition of a given tree T into specific trees, which we call shrubs,
and which admit almost locally irregular 2-edge-colourings. These edge-colourings can then be
combined to form a locally irregular edge-colouring of T .

Chapter 9. Locally irregular edge-colouring of graphs 209

r

(a) A locally irregular 2-edge-
colouring of Tr.

r r r

(b) Almost locally irregular 2-edge-
colourings c11,2, c21,2, and c31,2 of Tr[r, 1],
Tr[r, 2], and Tr[r, 3], respectively.

Figure 9.8: Decomposition of a rooted tree Tr into shrubs, and 2-edge-colourings
of these. Thick (resp. thin) edges represent 1- (resp. 2-) coloured edges.

This section is organized as follows. We first introduce the notion of shrubs and almost
locally irregular 2-edge-colouring in Section 9.3.2.1. We then show in Section 9.3.2.2 that every
shrub admits an almost locally irregular 2-edge-colouring. In Section 9.3.2.3, we explain how
independent almost locally irregular 2-edge-colourings of several shrubs can be unified to form
a locally irregular 2-edge-colouring of an overlying tree. The success of this unification process
is not guaranteed, in particular when the overlying tree has irregular chromatic index 3. By
characterizing the situations in which this unification process may fail, we get, in Section 9.3.2.4,
a concrete characterization of trees with irregular chromatic index 3. This emerges in a linear-
time algorithm for determining the irregular chromatic of a tree in Section 9.3.2.5.

9.3.2.1 Preliminary definitions and notation

Let Tr be a rooted tree. In the case where r+ is defined, i.e. the node r has only one child in
Tr, we call Tr a shrub. If u is a node of Tr with children v1, v2, ..., vp, then note that Tr[u, i] is
a shrub with vi = u+ and u = v−i for every i ∈ {1, 2, ..., p}. Besides, by identifying the roots of
the shrubs Tr[r, 1], Tr[r, 2], ..., Tr[r, d(r)] we obtain Tr.

The upcoming notions and notation concern shrubs only. Assume Tr is a shrub, and let c
be a 2-edge colouring of Tr. To make the colour of the edge rr+ by c explicit, we also denote
c by c1,2 when c(rr+) = 1, or c2,1 when c(rr+) = 2. If c1,2 is a 2-edge colouring of Tr using
colours 1 and 2, and 3 and 4 are two distinct colours, then we can obtain a 2-edge colouring
c3,4 of Tr using colours 3 and 4 by swapping {1, 2} and {3, 4}: c3,4(uv) = 3 if c1,2(uv) = 1, or
c3,4(uv) = 4 otherwise. A swapping of c1,2 to c2,1 is called an inversion. Clearly, a node with
1-degree x in Tr by c1,2 has 2-degree x by c2,1. We further say that c1,2 is an almost locally
irregular 2-edge-colouring of Tr if either c1,2 is a locally irregular 2-edge-colouring of Tr, or rr+

is isolated in the 1-subgraph and c1,2 is a locally irregular 2-edge-colouring of Tr[r, 1].

Example 9.26. In Figure 9.8 is shown how a rooted tree Tr (Figure 9.8.a) can be decomposed
into several shrubs (Figure 9.8.b). Almost locally irregular 2-edge-colourings of these shrubs may
directly form a locally irregular 2-edge-colouring of Tr.

9.3.2.2 Constructing almost locally irregular 2-edge-colourings of shrubs

An almost locally irregular 2-edge-colouring c1,2 of every shrub can be obtained inductively
using Algorithm 3. In this algorithm, we denote by p ≥ 0 the number of children of r+. Roughly
speaking, the algorithm first inductively constructs almost locally irregular 2-edge-colourings
c1

1,2, c
2
1,2, ..., c

p
1,2 of Tr[r+, 1], Tr[r

+, 2], ..., Tr[r
+, p], respectively. It then inverts some of the ci1,2’s

so that their union is an almost locally irregular 2-edge-colouring of Tr with rr+ being coloured 1.

210 9.3. Determining the irregular chromatic index of a graph

1 if p = 0 then
2 c1,2(rr+) = 1;

3 else
4 foreach i ∈ {1, 2, ..., p} do
5 compute an almost locally irregular 2-edge-colouring ci1,2 of Tr[r+, i] inductively;

6 c0
1,2(rr+) = 1;

7 for every i ∈ {1, 2, ..., p}, choose ciαi,βi = ci1,2 or ciαi,βi = ci2,1 so that c1,2 = c0
1,2 + c1

α1,β1

+ c2
α2,β2

+ ... + cpαp,βp is an almost locally irregular 2-edge-colouring of Tr;

Algorithm 3: Construction of an almost locally irregular 2-edge-colouring c1,2 of a shrub
Tr, where p ≥ 0 denotes the number of children of r+.

The keystone of Algorithm 3 is Line 7. Let us prove that the claimed almost locally irregular
2-edge-colouring c1,2 of Tr, obtained by inverting some of the ci1,2’s, necessarily exists.

Lemma 9.27. The almost locally irregular 2-edge-colouring c1,2 of Tr claimed at Line 7 neces-
sarily exists.

Proof. If p = 0, then there is nothing to prove. Thus, the node r+ has p ≥ 1 children v1, v2, ..., vp
in Tr. We first consider small values of p, i.e. p ∈ {1, 2, 3}, before generalizing our arguments.
All assumption below are made without loss of generality.

• Suppose p = 1. If c1,2 = c0
1,2 + c1

1,2 is not an almost locally irregular 2-edge-colouring of
Tr, then v1 has 1-degree 2 in Tr[r+, 1] by c1

1,2. Besides, the 2-edge-colouring c1
1,2 of Tr[r+, 1]

is locally irregular. Then c1,2 = c0
1,2 + c1

2,1, obtained by inverting c1
1,2, is an almost locally

irregular 2-edge-colouring of Tr.

• Suppose p = 2. If c1,2 = c0
1,2 +c1

1,2 +c2
1,2 is not an almost locally irregular 2-edge-colouring of

Tr, then v1 has 1-degree 3 in Tr[r+, 1] by c1
1,2, and c1

1,2 is a locally irregular 2-edge-colouring of
Tr[r

+, 1]. Now consider c1,2 = c0
1,2+c1

2,1+c2
1,2. If c1,2 is not an almost locally irregular 2-edge-

colouring of Tr, then the other child v2 of r+ has 1-degree 2 in Tr[r+, 2] by c2
1,2. Moreover,

the 2-edge-colouring c2
1,2 of Tr[r+, 2] is locally irregular. It follows that c1,2 = c0

1,2 +c1
1,2 +c2

2,1

is a (almost) locally irregular 2-edge-colouring of Tr.

• Suppose p = 3. If c1,2 = c0
1,2 + c1

1,2 + c2
1,2 + c3

1,2 is not an almost locally irregular 2-edge-
colouring of Tr, then v1 has 1-degree 4 in Tr[r

+, 1] by c1
1,2, and c1

1,2 is a locally irregular
2-edge-colouring of Tr[r+, 1]. Now, if c0

1,2 + c1
2,1 + c2

1,2 + c3
1,2 is not an almost locally irregular

2-edge-colouring of Tr, then v2 has 1-degree 3 in Tr[r+, 2] by c2
1,2, and c2

1,2 is a locally irregular
2-edge-colouring of Tr[r+, 2]. Again, the 1-degree of the last child v3 of r+ in Tr[r+, 3] by
c3

1,2 is 3 if c0
1,2 + c1

1,2 + c2
2,1 + c3

1,2 is not an almost locally irregular 2-edge-colouring of Tr.
Under all these assumptions, we get that c1,2 = c0

1,2 + c1
1,2 + c2

2,1 + c3
2,1 is a (almost) locally

irregular 2-edge-colouring of Tr.

By following the same scheme whenever p ≥ 4, i.e. inverting none of the ci1,2’s, then one, two,
three, etc., of them, we either find an almost locally irregular 2-edge-colouring c1,2 of Tr or find
out what are all of the 1-degrees of v1, v2, ..., vp in Tr[r

+, 1], Tr[r
+, 2], ..., Tr[r

+, p], respectively,
by c1

1,2, c
2
1,2, ..., c

p
1,2, respectively. More precisely, in this last situation, we get that one of these

1-degrees is equal to p+ 1, two of them are equal to p, three of them are equal to p− 1 (unless
p is not big enough), and so on. Besides, note that, under our assumption on p, the biggest
dp2e values of the resulting 1-degree sequence are strictly greater than dp2e + 1, while its other

Chapter 9. Locally irregular edge-colouring of graphs 211

(a) Initial colouring. (b) First inverting
attempt.

(c) Second inverting at-
tempt.

(d) Third inverting at-
tempt.

(e) Fourth inverting attempt. (f) Final inverting attempt.

Figure 9.9: Colouring scheme used in the proof of Lemma 9.27. Thick (resp. thin)
edges represent 1- (resp. 2-) coloured edges.

values are strictly greater than bp2c. Considering that the 1-degrees of v1, v2, ..., vp are ordered
decreasingly, i.e. v1 has 1-degree p+ 1, v2 has 1-degree p, and so on, the 2-edge-colouring

c1,2 = c0
1,2 + c1

1,2 + ...+ c
d p
2
e

1,2 + c
d p
2
e+1

2,1 + c
d p
2
e+2

2,1 + ...+ cp2,1,

obtained by inverting the last bp2c almost locally irregular 2-edge-colourings, is an almost locally
irregular 2-edge-colouring of Tr since r+ then has 1- and 2-degree dp2e+1 and bp2c, respectively. �

Example 9.28. Figure 9.9 depicts an example of the inversion procedure led in Lemma 9.27
on a shrub Tr whose vertex r+ has three children v1, v2, v3. Almost locally irregular 2-edge-
colourings c1

1,2, c2
1,2 and c3

1,2 of Tr[r+, 1], Tr[r+, 2] and Tr[r+, 3], respectively, are first computed
(Figure 9.9.a). We then combine all these almost locally irregular 2-edge-colourings, and set
c0

1,2(rr+) = 1 (Figure 9.9.b). If this 2-edge-colouring c0
1,2 + c1

1,2 + c2
1,2 + c3

1,2 of Tr is not almost
locally irregular, then we reveal that v1 has 1-degree 4 in Tr[r+, 1] by c1

1,2 (Figure 9.9.c). Now,
if c0

1,2 + c1
2,1 + c2

1,2 + c3
1,2 is not an almost locally irregular 2-edge-colouring of Tr, then we reveal

that v2 has 1-degree 3 in Tr[r
+, 2] by c2

1,2 (Figure 9.9.d). In turn, if c0
1,2 + c1

1,2 + c2
2,1 + c3

1,2 is
not an almost locally irregular 2-edge-colouring of Tr, then we get that v3 has 1-degree 3 in
Tr[r

+, 3] by c3
1,2 (Figure 9.9.e). Now that all the 1-degrees of the vi’s are revealed, it is clear that

c0
1,2 + c1

1,2 + c2
2,1 + c3

2,1 is an almost locally irregular 2-edge-colouring of Tr (Figure 9.9.f).

Using Algorithm 3, and by Lemma 9.27, we get:

Theorem 9.29. Every shrub admits an almost locally irregular 2-edge-colouring.

9.3.2.3 From shrubs to trees

Now consider the following procedure based on Algorithm 3 for possibly computing a locally
irregular 2-edge-colouring of a colourable tree T . In this procedure, the node r of T has degree
p ≥ 1.
Inverting Procedure. Start by decomposing Tr into the p shrubs Tr[r, 1], Tr[r, 2], ..., Tr[r, p]
and, then, compute almost locally irregular 2-edge-colourings c1

1,2, c
2
1,2, ..., c

p
1,2 of Tr[r, 1], Tr[r, 2],

212 9.3. Determining the irregular chromatic index of a graph

..., Tr[r, p], respectively. Finally, invert some of the ci1,2’s so that their union is a locally irregular
2-edge-colouring of Tr.

Recall that the almost locally irregular 2-edge-colourings of the shrubs attached to r exist
according to Theorem 9.29. The success of the Inverting Procedure is not guaranteed since, in
special cases, inverting the ci1,2’s in every possible way does not lead to a locally irregular 2-
edge-colouring of Tr. However, the more children r has, the more possible ways for inverting the
ci1,2’s there are. Hence, the choice of r for rooting T before applying the Inverting Procedure is
crucial. Because the number of possibilities for inverting the ci1,2’s grows exponentially in front of
d(r), the Inverting Procedure actually yields a locally irregular 2-edge-colouring of Tr whenever
d(r) ≥ 5.

Theorem 9.30. Let T be a colourable tree. If ∆(T) ≥ 5, then χ′irr(T) ≤ 2.

Proof. Let r be a node of T with p ≥ 5 neighbours v1, v2, ..., vp. Let further c1
1,2, c

2
1,2, ..., c

p
1,2

be almost locally irregular 2-edge-colourings of Tr[r, 1], Tr[r, 2], ..., Tr[r, p], respectively, which
necessarily exist according to Theorem 9.29. Consider the successive 2-edge-colourings c1,2 of
Tr obtained by inverting none, one, two, and so on, of the ci1,2’s, i.e. we exhaustively apply the
Inverting Procedure. If, at a step, the 2-edge-colouring c1,2 is locally irregular, then the claim is
true for T . Otherwise, at each step, a conflict arises because, for at least one child vi of r, the 1-
(or 2-) degree of r by c1,2 and the 1-degree of vi by ci1,2 are the same.

A careful application of the Inverting Procedure can actually allow us to deduce more refined
information when a conflict occurs. In particular, if the 2-edge-colouring obtained by inverting
none of the ci1,2’s is not a locally irregular 2-edge-colouring of Tr, then we reveal that at least one
of the vi’s has 1-degree p. Similarly, if all of the 2-edge-colourings of Tr obtained by inverting one
of the ci1,2’s are not locally irregular, then we reveal that at least two of the vi’s have 1-degree
p− 1. If all of the 2-edge-colourings of Tr obtained by inverting two of the ci1,2’s are not locally
irregular, then we reveal that at least three of the vi’s have 1-degree p− 2. And so on. New 1-
degrees keep on being revealed because no conflict involving the 2-degrees can arise. We stop the
procedure once all of the 1-degrees have been revealed (unless a locally irregular 2-edge-colouring
of Tr is found at some step).

If no locally irregular 2-edge-colouring has been obtained once the Inverting Procedure has
stopped, we get that the 1-degree sequence is

(p, p− 1, p− 1, p− 2, p− 2, p− 2, ...),

where the value p − k appears exactly k + 1 times, except maybe in the case where p − k is
the last value of the sequence. When p ≥ 5, each of the 1-degrees is strictly greater than bp2c.
Besides the first dp2e greatest 1-degrees are strictly greater than dp2e. Hence, if the 1-degrees of
v1, v2, ..., vp are ordered decreasingly, then the 2-edge-colouring

c1,2 = c1
1,2 + c2

1,2 + ...+ c
d p
2
e

1,2 + c
d p
2
e+1

2,1 + c
d p
2
e+2

2,1 + ...+ cp2,1

of Tr, obtained by inverting the last bp2c ci1,2’s, is locally irregular since the 1- and 2-degrees
of r are then dp2e and b

p
2c, respectively, which are strictly less than the 1- and 2-degrees of its

neighbours in the 1- and 2-subgraphs, respectively. �

The proof of Theorem 9.30 can actually be modified to produce an alternate proof of Theo-
rem 9.14.

Alternate proof of Theorem 9.14. If we have ∆(T) ≤ 2 or ∆(T) ≥ 5, then χ′irr(T) ≤ 2 according
to Proposition 9.10 or Theorem 9.30, respectively. Let us thus suppose that ∆(T) ∈ {3, 4}, and
let r be a node of T with degree p = ∆(T) whose neighbours are denoted by v1, v2, ..., vp. As
in the proof of Theorem 9.30, let c1

1,2, c
2
1,2, ..., c

p
1,2 be almost locally irregular 2-edge-colourings of

Chapter 9. Locally irregular edge-colouring of graphs 213

Tr[r, 1], Tr[r, 2], ..., Tr[r, p] (these exist according to Theorem 9.29), respectively, and try out the
Inverting Procedure. If no locally irregular 2-edge-colouring c1,2 of Tr can be found, then the
revealed 1-degree sequence is necessarily (3, 2, 2) when p = 3, or (4, 3, 3, 2) when p = 4 (up to
permutation). Assuming that the 1-degrees of v1, v2, ..., vp are ordered decreasingly, the 3-edge-
colouring c1,2 = c1

1,2 + c2
2,1 + c3

3,1 of Tr is locally irregular when p = 3 since r thus has 1-, 2- and
3-degree 1 while its neighbours have degree strictly greater than 1 in the 1-, 2- and 3-subgraphs.
When p = 4, a locally irregular 3-edge-colouring of Tr is e.g. c1,2 = c1

1,2 + c2
2,1 + c3

2,1 + c4
3,1 since

r then has 1-, 2- and 3-degree 1, 2, and 1, respectively, while its neighbours have 1-degree 4,
2-degree 3, and 3-degree 2. �

9.3.2.4 Characterization of trees with irregular chromatic index 3

We now focus on trees with maximum degree 3 or 4. In our alternate proof of Theorem 9.14,
we have pointed out that the Inverting Procedure does not always provide a locally irregular
2-edge-colouring of a tree Tr. This namely occurs when inverting the ci1,2’s in every possible
manner never yields a locally irregular 2-edge-colouring. A simple computation shows that such
a situation occurs if and only if the 1-degree sequence of the vi’s in the Tr[r, i]’s by the ci1,2’s is
(1), (2, 1), (3, 2, 2), or (4, 3, 3, 2), when p = d(r) is 1, 2, 3 or 4, respectively. In what follows, we
call these four 1-degree sequences bad.

Definition 9.31. Assume c1
1,2, c

2
1,2, ..., c

p
1,2 are almost locally irregular 2-edge-colourings of Tr[r, 1],

Tr[r, 2], ..., Tr[r, p], respectively, for a rooted tree Tr whose root’s children are denoted v1, v2, ...,
vp (where vi = r+ in Tr[r, i] for every i ∈ {1, 2, ..., p}). The 1-degree sequence

(dc11,2,1(v1), dc21,2,1(v2), ..., dcp1,2,1(vp))

is bad whenever it is either (1), (2, 1), (3, 2, 2), or (4, 3, 3, 2) (up to permutation).

Consequently, if there exist almost locally irregular 2-edge-colourings c1
1,2, c

2
1,2, ..., c

p
1,2 of Tr[r, 1],

Tr[r, 2], ..., Tr[r, p], respectively, leading to a 1-degree sequence which is not bad, then we can
necessarily invert some of the ci1,2’s to get a locally irregular 2-edge-colouring of Tr. We thus now
focus on the structure of those shrubs Tr with maximum degree at most 4 in which r+ has the
same 1-degree by all of the possible almost locally irregular 2-edge-colourings of Tr. This yields
the following definition.

Definition 9.32. Let k ≥ 1. A shrub Tr is k-bad if r+ has 1-degree k by every almost locally
irregular 2-edge-colouring c1,2 of Tr.

Deciding whether a shrub is k-bad can be decided via a bottom-up algorithm in the line of
the strategy used in Algorithm 3. For this purpose, we need to introduce the notion of signature.

Definition 9.33. Let Tr be a shrub whose node r+ has p ≥ 0 children v1, v2, ..., vp (where
vi = (r+)+ in Tr[r

+, i] for every i ∈ {1, 2, ..., p}). For every node vi, we denote by Di the set
of all possible 1-degrees of vi in Tr[r+, i] by an almost locally irregular 2-edge-colouring c1,2 of
Tr[r

+, i]. The signature of Tr is the p-tuple (D1, D2, ..., Dp). Analogously, we denote by D0 the
set of all possible 1-degrees of r+ by an almost locally irregular 2-edge-colouring c1,2 of Tr.

Refer to Figure 9.10 to see to the weighted degrees of which nodes of a shrub Tr the sets D0

and D1, D2, ..., Dd(r+)−1 refer. According to Definition 9.33, note that a shrub Tr is k-bad if and
only if, regarding its signature (D1, D2, ..., Dd(r+)−1), we have D0 = {k}. In such a situation, we
call (D1, D2, ..., Dd(r+)−1) k-bad.

Definition 9.34. Let k ≥ 1. A signature (D1, D2, ..., Dd(r+)−1) of a shrub Tr is k-bad whenever
it causes D0 = {k}.

As mentioned above, the set D0 of a given shrub Tr can easily be computed by applying an
inductive scheme inspired by Algorithm 3. Roughly explained, we first compute inductively the

214 9.3. Determining the irregular chromatic index of a graph

r

r+D0

D1 D2 Dd(r+)−1

Figure 9.10: SetsD0, D1, D2, ..., Dp of a shrub Tr whose node r+ has p = d(r+)−1
children.

D0 = {k} p k-bad signatures

{1} 0 -
1 ({2})

{2}
1 ({1})
2 ({2}, {3})
3 ({3}, {3}, {4})

{3} 2 ({2}, {2})
3 ({2}, {3}, {4})

{4} 3 ({2}, {3}, {3}

Table 9.11: List of all k-bad signatures for a shrub Tr (where p = d(r+)− 1).

set D0 of each of the p shrubs Tr[r+, 1], Tr[r
+, 2], ..., Tr[r

+, d(r+)− 1]. By definition, the set D0

of Tr[r+, i] corresponds to the set Di of Tr. Knowing the signature (D1, D2, ..., Dd(r+)−1) of Tr,
the set D0 of Tr can then be deduced. Using this procedure, we are able to identify, in the next
result, all k-bad signatures with k ∈ {1, 2, 3, 4}.
Theorem 9.35. All k-bad signatures with k ∈ {1, 2, 3, 4} are those given in Table 9.11.

Proof. We consider every possible signature of Tr with regards to p ≤ 3, the number of children
of r+. For the sake of simplicity, we here only detail the proof for the easy cases, i.e. p = 0 and
p = 1, so that the reader gets an idea of the technique we use. The remaining canonical cases,
i.e. for p = 2 and p = 3, are given in Tables 9.12 and 9.13. Signatures in bold are those which are
k-bad for some k. All cases which do not appear in these tables do not concern bad signatures
and can be deduced from the canonical cases by using the following two rules which are easy to
check.

Inclusion Rule: if (D1, D2, ..., Dp) is not a bad signature of Tr, then (D′1, D
′
2, ..., D

′
p) is not a

bad signature whenever Di ⊆ D′i for every i ∈ {1, 2, ..., p}.

Union Rule: if (D1, D2, ..., Di−1, Di, Di+1, ..., Dp) is a k-bad signature and (D1, D2, ..., Di−1,
D′i, Di+1, Di+2, ..., Dp) is a k′-bad signature with k′ 6= k for someD′i 6= Di, then (D1, ..., Di−1, Di∪
D′i, Di+1, Di+2, ..., Dp) is not a bad signature.

If p = 0, then rr+ has to be coloured 1 and r+ thus necessarily has 1-degree 1. Therefore,
the empty signature is a 1-bad signature. Now suppose that p = 1 and denote v1 the child of
r+. If D1 = {1}, then, in every almost locally irregular 2-edge-colouring of Tr[r+, 1], the vertex
v1 has 1-degree 1 and we have to colour rr+ with colour 1. Thus D0 = {2}, and ({1}) is a
2-bad signature. Similarly, if D1 = {2}, then every almost locally irregular 2-edge-colouring of
Tr[r

+, 1] is actually locally irregular and we have to invert it before colouring rr+ with colour 1.
Therefore, ({2}) is a 1-bad signature. If there exists an almost locally irregular 2-edge-colouring

Chapter 9. Locally irregular edge-colouring of graphs 215

Signature (D1, D2) Resulting D0

({1}, {1}) {1, 3}
({1}, {2}) {2, 3}
({1}, {3}) {1, 2}
({1}, {4}) {1, 2, 3}
({2}, {2}) {3}

Signature (D1, D2) Resulting D0

({2}, {3}) {2}
({2}, {4}) {2, 3}
({3}, {3}) {1, 2}
({3}, {4}) {1, 2}
({4}, {4}) {1, 2, 3}

Table 9.12: All possible canonical signatures for a shrub Tr and resulting sets D0

when p = 2 (where p = d(r+)− 1).

Signature (D1, D2, D3) Resulting D0

({1}, {1}, {1}) {1, 2, 4}
({1}, {1}, {2}) {1, 3, 4}
({1}, {1}, {3}) {2, 3, 4}
({1}, {1}, {4}) {1, 2, 3}
({1}, {2}, {2}) {1, 3, 4}
({1}, {2}, {3}) {3, 4}
({1}, {2}, {4}) {1, 3}
({1}, {3}, {3}) {2, 4}
({1}, {3}, {4}) {2, 3}
({1}, {4}, {4}) {1, 2, 3}

Signature (D1, D2, D3) Resulting D0

({2}, {2}, {2}) {1, 3, 4}
({2}, {2}, {3}) {3, 4}
({2}, {2}, {4}) {1, 3}
({2}, {3}, {3}) {4}
({2}, {3}, {4}) {3}
({2}, {4}, {4}) {1, 3}
({3}, {3}, {3}) {2, 4}
({3}, {3}, {4}) {2}
({3}, {4}, {4}) {2, 3}
({4}, {4}, {4}) {1, 2, 3}

Table 9.13: All possible canonical signatures for a shrub Tr and resulting sets D0

when p = 3 (where p = d(r+)− 1).

c1
1,2 of Tr[r+, 1] such that v1 has 1-degree 3 or 4, then we may either colour rr+ with colour 1

directly, or invert c1
1,2 before. In the first situation, the vertex r+ has 1-degree 2, while it has

1-degree 1 in the second situation. Therefore, we have {1, 2} ⊆ D0 whenever 3 or 4 belongs
to D1. Thus, there is no 1-bad signature involving a set containing either 3 or 4. Finally, the
signature ({1, 2}) is not bad since we get {1, 2} ⊆ D0 by the Union Rule. Every other possibility
for D1 leads to a D0 which is not a singleton by the Inclusion and Union Rules. Therefore, ({1})
and ({2}) are the only bad signatures when p = 1. �

Arbitrarily many k-bad shrubs can be constructed from Theorem 9.35 by connecting “bad
pieces” together. First choose a k-bad signature, i.e. let p and D1 = {d1}, D2 = {d2}, ..., Dp =
{dp} be sets such that (D1, D2, ..., Dp) corresponds to one row of Table 9.11. Now consider a
single edge rr+, as well as d1-,d2-, ..., dp-bad shrubs T1, T2, ..., Tp, respectively. Then identify the
roots of T1, T2, ..., Tp with r+. The resulting shrub Tr is clearly k-bad by definition.

Example 9.36. Successive bad shrubs obtained in this way are depicted in Figure 9.14. The
base case is the 1-bad shrub from Figure 9.14.a. According to Theorem 9.35, the only bad shrubs
made up of 1-shrubs only are 2-bad shrubs obtained from two 1-bad shrubs, see Figure 9.14.b.
Now using two such 2-bad shrubs, we construct the 3-bad shrub depicted in Figure 9.14.c. Using
the 2-bad and the 3-bad shrubs we have constructed, we obtain the 2-bad shrub of Figure 9.14.d.
Finally, using the 2-bad shrub from Figure 9.14.b and two copies of the 3-bad shrub from Fig-
ure 9.14.c, we obtain the 4-bad shrub depicted in Figure 9.14.e.

Suppose r has p ≥ 1 neighbours in a colourable tree T . As explained above, if the shrubs
Tr[r, 1], Tr[r, 2], ..., Tr[r, p] are k1-, k2-, ..., kp-bad, respectively, and the sequence (k1, k2, ..., kp)
is one of the bad 1-degree sequences (1), (2, 1), (3, 2, 2) or (4, 3, 3, 2) (up to permutation), then
we cannot deduce a locally irregular 2-edge-colouring of Tr by applying the Inverting Procedure
introduced in Section 9.3.2.3. In this situation, we say that r is bad.

216 9.3. Determining the irregular chromatic index of a graph

(a) A 1-bad shrub. (b) A 2-bad shrub. (c) A 3-bad shrub.

(d) A 2-bad shrub. (e) A 4-bad shrub.

Figure 9.14: Some bad shrubs (whose roots are the top-most nodes), and almost
locally irregular 2-edge-colourings of these. Thick (resp. thin) edges represent 1-
(resp. 2-) coloured edges.

Definition 9.37. A node r from a tree T is said bad whenever the Inverting Procedure fails on
Tr, i.e. does not yield a locally irregular 2-edge-colouring of Tr.

One could think that the choice of r is crucial in the sense that if the Inverting Procedure
fails on Tr, i.e. r is bad, then maybe it can work for Tr′ with r 6= r′. We show below that it
is actually not the case as if r is bad, then so is every other node r′ of T . This implies that
χ′irr(T) = 3 if and only if any node of T is bad.

First remark, by comparing the bad 1-degree sequences and the bad signatures from Ta-
ble 9.11, that the following holds.

Observation 9.38. If ({d1}, {d2}, ..., {dp}) is a d0-bad signature, then (d0, d1, d2, ..., dp) is a bad
1-degree sequence. Conversely, if σ is any permutation of {d0, d1, d2, ..., dp} and (d0, d1, d2, ..., dp)
is a bad 1-degree sequence, then ({σ(d1)}, {σ(d2)}, ..., {σ(dp)}) is a σ(d0)-bad signature.

We are now ready to prove our main result.

Theorem 9.39. If r is a bad node of a tree T , then so is every other node r′ 6= r of T .

Proof. Note that it suffices to show the claim when r and r′ are neighbours in T . Suppose that
p ≥ 1 and p′ ≥ 1 denote the degrees of r and r′, respectively, and r′ (resp. r) is the first child of
r (resp. r′) in Tr (resp. Tr′), i.e. r′ = r+ (resp. r = (r′)+) in Tr[r, 1] (resp. Tr′ [r′, 1]).

Because r is bad, the shrubs Tr[r, 1], Tr[r, 2], ..., Tr[r, p] are k1-, k2-, ..., kp-bad, respec-
tively, and (k1, k2, ..., kp) is a bad 1-degree sequence. According to Theorem 9.35, if Tr[r, 1]
is k1-bad, then Tr[r

′, 1], Tr[r
′, 2], ..., Tr[r

′, p′ − 1] are `1-, `2-, ..., `p′−1-bad, respectively, and
({`1}, {`2}, ..., {`p′−1}) is a k1-bad signature. Now, because r is bad, it means that ({k2},
{k3}, ..., {kp}) is a k1-bad signature again by Observation 9.38 and Tr′ [r′, 1] is a k1-bad shrub.

Chapter 9. Locally irregular edge-colouring of graphs 217

Figure 9.15: A tree with maximum degree 4 and irregular chromatic index 3.

Thus, the shrubs Tr′ [r′, 1], Tr′ [r
′, 2], ..., Tr′ [r

′, p′] are k1-, `1-, `2-, ..., `p′−1-bad, respectively, and
(k1, `1, `2, ..., `p′−1) is a bad 1-degree sequence. It follows that r′ is bad. �

Corollary 9.40. For every tree T , we have χ′irr(T) = 3 if and only if any node of T is bad.

Every tree with irregular chromatic index 3 can hence be constructed as follows. First choose
one of the bad 1-degree sequences (d1, d2, ..., dp), and construct p shrubs T1, T2, ..., Tp which are
d1-, d2-, ..., dp-bad, respectively. Recall that there are infinitely many such shrubs as pointed
out above. Finally identify the roots of T1, T2, ..., Tp. By construction, the node resulting from
the identification is bad, and the obtained tree thus has irregular chromatic index 3 according
to Corollary 9.40.

Example 9.41. In Figure 9.15 is depicted a tree T obtained by identifying the roots of one
4-bad shrub, two 3-bad shrubs, and one 2-bad shrub (exhibited in Figure 9.14). The node r
resulting from the identification is the white one. Since (4, 3, 3, 2) is a bad 1-degree sequence,
the node r is bad, and hence T has irregular chromatic index 3 according to Corollary 9.40.

9.3.2.5 A linear-time algorithm for the irregular chromatic index of trees

We now propose an algorithm that determines, based on our previous results, the irregular
chromatic index of an input tree T .

Theorem 9.42. Algorithm 4 determines the irregular chromatic index of a tree T in time
O(|V (T)|).

Proof. As a first remark, recall that T is an exception if and only if T is an odd length path,
so Line 1 has time complexity O(|V (T)|). Besides, because T is a tree, Line 2 can be achieved
within time O(|V (T)|) by applying a depth-first search algorithm. The correctness of the next
instructions of Algorithm 4, i.e. the determination of whether the irregular chromatic index
is 2 or 3, then follows from the previous results and observations. In particular, the correctness
of Lines 5-6 follows from Theorem 9.30, while the correctness of Lines 11-12 and Lines 15-16
follows from observations raised in Section 9.3.2.4. The correctness of Lines 17-18 follows from
Corollary 9.40. The most costly instruction of Algorithm 4 is Line 10, which is achieved in time
O(|V (T)|) by computing the values of D0 from the leaves to the root r of Tr (where r is chosen

218 9.3. Determining the irregular chromatic index of a graph

1 if T is an exception then
2 χ′irr(T) is undefined;

3 else if T is locally irregular then
4 χ′irr(T) = 1;

5 else if ∆(T) ≤ 2 or ∆(T) ≥ 5 then
6 χ′irr(T) = 2;

7 else
8 choose an arbitrary node r of T with degree p ≥ 1;
9 foreach i ∈ {1, 2, ..., p} do

10 let Di denote the set D0 of Tr[r, i] computed inductively;
11 if Di is not a singleton then
12 χ′irr(T) = 2;
13 exit algorithm;

14 let Di = {di} for every i ∈ {1, 2, ..., p};
15 if (d1, d2, ..., dp) is not a bad 1-degree sequence then
16 χ′irr(T) = 2;

17 else
18 χ′irr(T) = 3;

Algorithm 4: Determining the irregular chromatic index of a tree T .

arbitrarily) for each shrub as in the proof of Theorem 9.35. Every other line of the algorithm
runs in time either O(1) or O(|V (T)|). Therefore, we get that Algorithm 4 has running time
O(|V (T)|). �

Regarding the main concern of this section, as a direct corollary of Theorem 9.42, we get the
following.

Corollary 9.43. Locally Irregular 2-Edge-Colouring is in P when restricted to trees.

9.3.3 General graphs

This section is devoted to the following complexity result.

Theorem 9.44. Locally Irregular 2-Edge-Colouring is NP-complete, even when re-
stricted to planar graphs with maximum degree at most 6.

Proof. Given a 2-edge-colouring c of a graph G, one can check whether the subgraphs of G
induced by the two colours of c are locally irregular. Since checking whether a graph is locally
irregular can be done in quadratic time and c uses a fixed number of colours, checking whether
c is locally irregular can be done in quadratic time. Therefore, the Locally Irregular 2-
Edge-Colouring problem is in NP.

We now prove the NP-hardness of Locally Irregular 2-Edge-Colouring. This is
done by reduction from 1-in-3 Satisfiability. From a formula F in conjunctive normal form
involving 3-clauses, we produce a graph GF such that

F is 1-in-3 satisfiable
⇔

GF admits a locally irregular 2-edge-colouring cF .

The reduction used herein is essentially the same as the one used to prove Theorem 8.1.
We thus refer the reader to Section 8.2 wherein all the details on how the reduction works are

Chapter 9. Locally irregular edge-colouring of graphs 219

HG
u3u2u1

v1 v2 v3

v4 v5 v6

v′1 v′2 v′3

u′1 u′2 u′3

u′4 u′5 u′6

(a) A graph G with input u1u2u3 and two outputs v1v2v3 and v4v5v6, and a graph
H with two inputs u′1u′2u′3 and u′4u′5u′6 and output v′1v′2v′3.

G
u3u2u1

H
v′1 v′2 v′3

(b) The connection of G and H along (v1v2v3, v4v5v6) and
(u′1u

′
2u
′
3, u
′
4u
′
5u
′
6).

Figure 9.16: Illustration of the connection operation.

clarified. Since there is no systematic relationship between a neighbour-sum-distinguishing 2-
edge-weighting and a locally irregular 2-edge-colouring, and the reduction is not performed from
the same problem, some details of the reduction have to be modified though.

To begin with, an input (or output) of a graph G now designates a path uvw with length 2
such that u (resp. w) has degree 1, and v has degree 2. Assuming G has x (resp. y) inputs
(resp. outputs), we denote these by I1(G), I2(G), ..., Ix(G) (resp. O1(G), O2(G), ..., Oy(G)) for
convenience (where, again, the ordering is arbitrary). If c is a locally irregular edge-colouring of
G, then by writing c(Ii(G)) = j or c(Oi(G)) = j we mean that the two edges constituting the ith
input or output, respectively, of G both receive colour j by c. By connecting two graphs along
an output u1v1w1 and an input u2v2w2, we mean that we identify the edges u1v1 and u2v2, and
v1w1 and v2w2. This is similar to identifying u1 and u2, then v1 and v2, and w1 and w2.

Example 9.45. Figure 9.16 illustrates the connection of two graphs G and H along two outputs
v1v2v3 and v4v5v6 of G and two inputs u′1u′2u′3 and u′4u′5u′6 of H. The inputs and outputs of the
resulting graph are the ones of G and H which have not been used for the connection, namely
its input is the input u1u2u3 of G and its output is the outputs v′1v′2v′3 of H.

We now introduce the necessary spreading, clause and collecting gadgets in next sections,
with each time pointing out the possible differences with the reduction from Chapter 8.

Spreading gadget Gf and generator gadget

We start by exhibiting one spreading gadget, where a spreading gadget still designates a graph
whose unique input and two outputs necessarily have the same colour by a locally irregular 2-edge-
colouring. Consider, as Gf, the graph depicted in Figure 9.17, whose input is I1(Gf) = u1u2u3,
and two outputs are O1(Gf) = u10u11u12 and O2(Gf) = u19u20u21. We show that Gf is a
spreading gadget.

Proposition 9.46. If c is a locally irregular 2-edge-colouring of Gf, then we have c(I1(Gf)) =
c(O1(Gf)) = c(O2(Gf)).

Proof. We initiate c by first colouring the input of Gf. Refer to Figure 9.17 so see how c is
propagated along Gf. Let us suppose, without loss of generality, that c(u1u2) = 1. Then we
have c(u2u3) = 1 since otherwise u1 and u2 would be 1-neighbours in the 1-subgraph. We then
have c(u3u4) = c(u3u13) since otherwise u2 and u3 would be 2-neighbours in the 1-subgraph.

Let us first suppose c(u3u4) = c(u3u13) = 1. Clearly, we cannot have c(u4u5) = c(u4u6) since,
in this case, when, colouring u5u6, the vertices u5 and u6 would be neighbouring vertices with

220 9.3. Determining the irregular chromatic index of a graph

u3u1 u2

u13

u14 u15

u18

u17

u16 u19 u20 u21

u4

u5 u6
u8

u9

u7 u10 u11 u12

Figure 9.17: The spreading gadget Gf, and a locally irregular 2-edge colouring
of Gf. Thick (resp. thin) edges represent 1- (resp. 2-) coloured edges.

the same degree in either the 1- or 2-subgraph. Suppose then c(u4u5) = 1 and c(u4u6) = 2. Now
observe that if c(u5u6) = 1, then we must set c(u4u7) = 2 so that u4 and u6 are not neighbouring
vertices with the same degree in the 2-subgraph. But note then that u4 and u5 are 2-neighbours
in the 1-subgraph. Similarly, if c(u5u6) = 2, then we must have c(u4u7) = 1 since otherwise u4

and u6 would be 2-neighbours in the 2-subgraph. But u3 and u4 now are 3-neighbours in the
1-subgraph. Hence, we cannot extend c to Gf if c(u3u4) = c(u3u13) = 1.

Thus, we must have c(u3u4) = c(u3u13) = 2. For the same reasons as above, we have
c(u4u5) = 1 and c(u4u6) = 2 without loss of generality. Now, if c(u5u6) = 2, then we must have
c(u4u7) = 2 too so that u4 and u6 are not neighbouring vertices with the same degree in the
2-subgraph. But then u4 and u5 are 1-neighbours in the 1-subgraph. Therefore, we must set
c(u5u6) = 1. To ensure that u4 and u3 are neighbouring vertices with distinct degrees in the
2-subgraph, we now need c(u4u7) = 2. Similarly as before, we must have c(u9u8) = c(u8u7).
Clearly, if c(u9u8) = c(u8u7) = 2, then we must have c(u7u10) = 2 so that u7 and u8 are
not neighbouring vertices with the same degree in the 2-subgraph; but then u4 and u7 are 3-
neighbours in the 2-subgraph. So c(u9u8) = c(u8u7) = 1, and c(u7u10) = 2 since otherwise u7 and
u8 would be 2-neighbours in the 1-subgraph. Because dc,2(u7) = 2, we must have c(u10u11) = 1.
Besides, so that u10 and u11 are neighbours with distinct degrees in the 1-subgraph, we have to
set c(u11u12) = 1.

The locally irregular 2-edge colouring c is propagated to the remaining edges of Gf in a
symmetric way. We finally get that the input and outputs of Gf have the same colour via c, as
claimed. �

As for the spreading gadgets used for the reduction to Neighbour-Sum-Distinguishing
{a, b}-Edge-Weighting in Chapter 8, note that by connecting several copies of Gf consecu-
tively, the input colour by a locally irregular edge-colouring c of the first copy of Gf is propa-
gated towards an arbitrary number of outputs. Assume now we have e.g. c(O1(Gf)) = 1, and let
P5 = u1u2u3u4u5 be the path with order 5. Now let G′ be the graph obtained by connecting Gf

and u1u2u3u4u5 along O1(Gf) and u1u2u3. Then note that c propagates in a locally irregular
way from Gf to G′ in such a way that c(u3u4u5) = 2. Hence, as for the latter reduction, we
are able to “invert” the colour at some outputs of a spreading gadget. Combining the previous
two observations, we get a generator gadget, i.e. a graph with one input and arbitrarily many
outputs which are deterministically coloured 1 (such are sometimes called positive) or 2 (such are
sometimes called negative) by a locally irregular 2-edge-colouring (assuming the input’s colour
is known, say 1), for our reduction.

Chapter 9. Locally irregular edge-colouring of graphs 221

u1

u2

u3

u4

u5

u6

u9

u8

u7

(a) Case m(Ci) = 2.

v2 v3 v4

v5

v6

v7

v8

v9

v13

v14

v15

v16

v17

v11 v12 v20 v19 v18v10

v22

v23

v24

v25

v21

v1

a3
a5
a7

a2
a4
a6
a8

a1

a9

b1

b2

b3

b4

b9

b7

b8

b5

b6

c10

c2

c6
c8

c4

c1
c3
c5
c7
c9

c11

(b) Case m(Ci) = 3.

Figure 9.18: The two forms of the clause gadget GF (Ci), and locally irregular 2-
edge colourings of GF (Ci). Thick (resp. thin) edges represent 1- (resp. 2-) coloured
edges.

Clause gadgets GF (Ci)

We now introduce the clause gadgets, where a clause gadget is a graph with a fixed number
of already coloured inputs (which actually correspond to outputs of the generator gadget) and
up to three outputs with the property that exactly one output is coloured 1 by every locally
irregular 2-edge-colouring (respecting the constraints on the input colours). This slight difference
with the reduction from Chapter 8 is necessary as we are performing the reduction from 1-in-3
Satisfiability (otherwise the equivalence with F could be not meet).

We distinguish two forms for GF (Ci) depending on whether m(Ci) = 2 or m(Ci) = 3. If
m(Ci) = 2, then consider as GF (Ci) the graph depicted in Figure 9.18.a, whose input is u1u2u3,
which is supposed to be coloured 1, and two outputs are u4u5u6 and u7u8u9. If m(Ci) = 3, then
let GF (Ci) be the graph depicted in Figure 9.18.b, whose inputs are a1a2a9, a3a4a9, a5a6a9,
b7b8b9, c1c2c11, c3c4c11, c5c6c11 and c7c8c11, which are supposed to be coloured 1, and a7a8a9,
b1b2b9, b3b4b9, b5b6b9 and c9c10c11, which are supposed to be coloured 2. Its three outputs are
v7v8v9, v15v16v17, and v23v24v25. We show below that GF (Ci) is a clause gadget whatever is the
value of m(Ci).

Proposition 9.47. Assume c is a locally irregular 2-edge-colouring of GF (Ci) with m(Ci) ∈
{2, 3} such that the inputs of GF (Ci) are coloured as described above. Then exactly one output
of GF (Ci) has colour 1 by c.

Proof. Note that for m(Ci) = 2, the clause gadget GF (Ci) is actually a spreading gadget Gf

whose one output was connected with a path on 5 vertices. For this value of m(Ci), the claim
then follows from Proposition 9.46.

Assume now thatm(Ci) = 3. Since a9 and a8 are adjacent in the 2-subgraph and dc,2(a8) = 2,
we must set c(a9v1) = 1. For the same reason, we have to set c(b9v1) = 2 and c(c11v1) = 1. So we
get dc,1(a9) = dc,2(b9) = 4 and dc,1(c11) = 5. Observe that if no edge, two edges or three edges
among those in {v1v4, v1v12, v1v20} were coloured 1 via c and the other ones were coloured 2,

222 9.3. Determining the irregular chromatic index of a graph

u5

u6 u7 u8

u9

u10

u11

u12

u13

u1

u2 u4

u3

Figure 9.19: The collecting gadget Gg, and a locally irregular 2-edge colouring
of Gg. Thick (resp. thin) edges represent 1- (resp. 2-) coloured edges.

then we would get that v1 is neighbouring and has the same degree as one of a9, b9 and c11 in
either the 1- or 2-subgraph. Therefore, exactly one edge in {v1v4, v1v12, v1v20} is coloured 1 via
c, while the other two are coloured 2.

Let us suppose c(v1v4) = 1 and c(v1v12) = c(v1v20) = 2 without loss of generality. Observe
that we have dc,1(v1) = dc,2(v1) = 3. Once again, the edges v2v3 and v3v4 have to be coloured
with the same colour, but this cannot be 1. Indeed, if c(v2v3) = c(v3v4) = 1, then v3 and v4

would be neighbours in the 1-subgraph, and would both have degree 2 in it so far. We would thus
have to set c(v4v5) = 1 but then we would get that v1 and v4 are 3-neighbours in the 1-subgraph.
So we necessarily have c(v2v3) = c(v3v4) = 2, and c(v4v5) = 1 since otherwise v3 and v4 would
be 2-neighbours in the 2-subgraph. Now, because dc,1(v4) = 2, we need c(v5v6) = c(v6v7) = 2.
Analogously, we have c(v7v8v9) = 1.

Repeating the same arguments towards v17 and v25 knowing that c(v1v12) = c(v1v20) = 2,
we get c(v15v16v17) = 2 and c(v23v24v25) = 2. The important thing to keep in mind is that c is
not unique in the sense that the obtained colouring of the outputs of GF (Ci) mainly depends on
which edge among {v1v4, v1v12, v1v20} is coloured 1. This completes the claim. �

Collecting gadget Gg and literal gadget GF (`i)

As in Chapter 8, a collecting gadget is a graph with two inputs and one output which are
necessarily assigned the same colour by a locally irregular 2-edge-colouring. Consider, as Gg,
the graph depicted in Figure 9.19, whose inputs are u1u2u5 and u3u4u5, and output is u11u12u13.
There are no forcing inputs in Gg, contrary to the collecting gadgets exhibited in Chapter 8.
We show that Gg is a collecting gadget.

Proposition 9.48. If c is a locally irregular 2-edge-colouring of Gg, then we have c(I1(Gg)) =
c(I2(Gg)) = c(O1(Gg)).

Proof. Suppose first that c(u1u2u5) = 1 and c(u3u4u5) = 2 without loss of generality. Observe
then that if c(u5u8) = 1, then u2 and u5 are 2-neighbours in the 1-subgraph. Similarly, if
c(u5u8) = 2, then u4 and u5 are 2-neighbours in the 2-subgraph. So we cannot have c(u1u2u5) 6=
c(u3u4u5).

Let us now suppose that c(u1u2u5) = c(u3u4u5) = 1 without loss of generality. Then, we have
to set c(u5u8) = 1 since otherwise u5 would be adjacent to u2 and u4 in the 1-subgraph, with
all these vertices having the same 1-degree. For the same reasons as previously, we necessarily
have c(u6u7) = c(u7u8). If this colour is 1, then we need c(u8u9) = 1 so that u7 and u8 are

Chapter 9. Locally irregular edge-colouring of graphs 223

not neighbours with the same degree in the 1-subgraph, but then u5 and u8 are 3-neighbours
in the 1-subgraph. So, we set c(u6u7) = c(u7u8) = 2 and we need to set c(u8u9) = 1 since
otherwise the 2-subgraph would have two adjacent vertices with degree 2. Since dc,1(u8) = 2,
the colouring c is propagated alternatively along the path u9u10u11u12u13 in such a way that
c(u9u10) = c(u10u11) = 2 and c(u11u12u13) = 1. �

Every literal gadget GF (`i) is obtained as in Chapter 8 by connecting several copies of Gg.

Connecting the literal gadgets

As in Chapter 8, we have to check whether the outputs of every two literal gadgets GF (`i) and
GF (`i) have distinct colours by cF so that the equivalence is correct. This is done as follows.
For each pair {`i, `i} of negated literals of F , let u and u′ denote the vertices with degree 1 of
O1(GF (`i)) and O1(GF (`i)), respectively, and just identify u and u′.

Recall that if cF (O1(GF (`i))) = j, then the vertex resulting from the identification of u and
u′ is adjacent to a vertex with degree 2 in the j-subgraph, and similarly regarding the colour of
O1(GF (`i)). Therefore, if cF (O1(GF (`i))) = cF (O1(GF (`i))) = j, then the vertex resulting from
the identification of u and u′ has j-degree 2 and is adjacent to two vertices with j-degree 2 in
the j-subgraph, contradicting the fact that cF is locally irregular. For this reason, we must have
cF (O1(GF (`i))) 6= cF (O1(GF (`i))). In such a situation, note that there is no such contradiction.

Concluding remarks

With all the gadgets and modifications exhibited throughout this section, one can implement
the reduction framework described in Section 8.2 for our concern. Since the number of different
gadgets is quite small, one can easily check by hand that no conflict arises when connecting
different gadgets. Because our gadgets have constant order and the number of used gadgets is
polynomial with the size of F , it should be clear that the reduction is performed in polynomial
time. Note further that all our gadgets are planar, and that we may suppose that F is planar,
recall Theorem 1.43, so that we can have no edge crossing involving edges from the clause gadgets
to the collecting gadgets. For these reasons, the reduced graph GF can always be drawn in a
planar way. It further has maximum degree at most 6 as its vertices with the largest degree are
those from clause gadgets GF (Ci) whose associated values m(Ci) are equal to 3.

In the light of these explanations, we get that Locally Irregular 2-Edge-Colouring
is NP-complete, even when restricted to planar graphs with maximum degree at most 6. �

9.4 Conclusion and open questions

In this chapter, we have introduced the notion of locally irregular edge-colouring of graphs
and exhibited very first results on it. One important first task was to separate those graphs
which admit a locally irregular edge-colouring from those which do not. This has been done in
Section 9.1. The set of exceptions for locally irregular edge-colouring has appeared to be less
trivial than e.g. for neighbour-sum-distinguishing edge-weighting of graphs, but can nevertheless
be recognized in polynomial time, recall Theorem 9.25.

We have then raised Conjecture 9.9 and have supported it by showing it to hold for several
common classes of graphs. Regarding particular classes of graphs, we have intriguingly not been
able to prove Conjecture 9.9 in the context of bipartite graphs, while these graphs can be handled
easily when dealing with other related edge-colouring problems.

Problem 9.49. Prove that we have χ′irr(G) ≤ 3 for every colourable bipartite graph G.

224 9.4. Conclusion and open questions

Maybe the most natural idea to tackle Problem 9.49 is to proceed by induction on the size
of bipartite graphs, as it has been often done to prove many edge-colouring results. But two
issues make such a strategy unlikely to work in our context. The first (minor) problem is that a
graph resulting from the removal of an edge uv from a bipartite graph G may not be colourable
anymore. The second (major) problem is that, when extending a locally irregular edge-colouring
c of G to G + {uv}, not only one has to find a colour for uv such that u and v have distinct
c(uv)-degrees by c, but also to make sure that none of u or v has the same c(uv)-degree by c as
one of its other neighbours (there may be a large number of them). Because of these two issues,
applying this extension strategy appears quite tricky in general.

Another way for dealing with Problem 9.49 could be to investigate whether there are a lot
of different bipartite graphs with irregular chromatic index 3. Namely, one could consider the
following refinement of Theorem 9.44.

Question 9.50. Is Locally Irregular 2-Edge-Colouring NP-complete when restricted to
bipartite graphs?

The reduction we gave in Section 9.3.3 does not answer to Question 9.50 as the reduced
graphs are clearly not bipartite (the spreading gadget has triangles, and other cycles with odd
length can also appear in GF depending on the structure of F). To overcome these problems
and answer Question 9.50 in the affirmative using our reduction scheme, one would first have
to design a bipartite spreading gadget. To then get rid of the remaining odd cycles in GF , one
could use the following idea. If we denote by W and B the bipartition of the vertices of GF
(assuming GF is bipartite), an output uvw of the generator gadget would be said even (resp.
odd) if we had u,w ∈ W and v ∈ B (resp. u,w ∈ B and v ∈ W). By designing a generator
gadget with four distinct kinds of outputs, namely positive even, positive odd, negative even and
negative odd, one could force the propagation of a locally irregular 2-edge-colouring along GF as
an usual generator gadget does, but with using the right outputs to avoid creating cycles with
odd length.

Among all classes of graphs we have considered regarding Conjecture 9.9, the class of regular
graphs is the most interesting since these graphs are the least locally irregular of all. Although
we have not been able to prove Conjecture 9.9 to hold for all regular graphs, Theorem 9.21 is
nevertheless significant and holds as a strong support for Conjecture 9.9.

One direction for future work would be to check whether the probabilistic method we used
can be generalized to general graphs with sufficiently large minimum degree. Stated formally,
one could ask the following.

Question 9.51. Is there an absolute integer constant d0 such that we have χ′irr(G) ≤ 3 for every
graph G with δ(G) ≥ d0?

Due to the dropping of the regularity condition, on which our proof of Theorem 9.21 highly
relies, a proof of the existence of the constant d0 mentioned in Question 9.51 would probably be
way more complicated than our proof of Theorem 9.21. Besides, this constant d0 would surely
be larger than 107.

Question 9.51 was recently proved in the affirmative by Przybyło in [101], who proved the
following.

Theorem 9.52 ([101]). For every graph G with δ(G) ≥ 1010, we have χ′irr(G) ≤ 3.

So it would be next interesting trying to improve the constant 1010 from Theorem 9.52 to
a constant in between 108 and 109. The same matter is of course also of interest regarding the
constant 107 from Theorem 9.21.

As Conjecture 9.9 seems out of reach at the moment, it should be more relevant to first try
to prove a weaker version of it.

Chapter 9. Locally irregular edge-colouring of graphs 225

Problem 9.53. Prove that there exists an absolute integer constant d ≥ 3 such that we have
χ′irr(G) ≤ d for every colourable graph G.

Another direction towards Conjecture 9.9 and Problem 9.53 could be to relate the irregu-
lar chromatic index with other graph parameters, e.g. the maximum degree. One discerning
approach could also be to use the following observation.

Observation 9.54. Let G be a graph whose edge set E(G) can be partitioned into k parts
E1 ∪ E2 ∪ ... ∪ Ek such that

χ′irr(G[E1]) ≤ x1, χ
′
irr(G)[E2]) ≤ x2, ..., χ

′
irr(G[Ek]) ≤ xk

for given values of x1, x2, ..., xk. Then χ′irr(G) ≤∑k
i=1 xi.

Proof. Let c1, c2, ..., ck be locally irregular x1-, x2-, ..., xk-edge-colourings ofG[E1], G[E2], ..., G[Ek],
respectively, and denote by c the (

∑k
i=1 xi)-edge-colouring of G defined as

c(e) = (ci(e), i) for every e ∈ E(G) ∩ Ei.

By the partition of E(G), every edge of G receives a colour by c, and c uses
∑k

i=1 xi colours.
Besides, the subgraph of G induced by colour (j, i) of c is nothing but the subgraph of G[Ei]
induced by colour j of ci, which is locally irregular by the definition of ci. All subgraphs of G
induced by c are then locally irregular as required. �

Hence, if we could prove that every colourable graph can be edge-partitioned into a constant
number of subgraphs with small irregular chromatic index (ideally upper-bounded by a constant),
then we would come up with an upper bound on the irregular chromatic index of colourable
graphs. In this scope, maybe one good direction could be to relate the irregular chromatic index
and the arboricity of graphs. Since a colourable forest has irregular chromatic index at most 3,
recall Theorem 9.14, we get that the irregular chromatic index of G should be upper-bounded
by 3a(G) according to Observation 9.54 (except in some situations, see below). This idea would
be especially judicious regarding graphs with small arboricity, e.g. planar graphs which have
arboricity at most 3 (due to Schnyder [108]). Applying this principle, we would roughly get that
every colourable planar graph should have irregular chromatic index at most 9.

Regarding this colouring strategy, we could even expect less colours to be sufficient as the
structure of trees (and hence forests) with irregular chromatic index 3 is quite restricted. As
mentioned in Section 9.3.2.4, trees with irregular chromatic index 3 have a predictable structure
made up of “bad pieces”, i.e. those given in Table 9.11. By carefully studying how these pieces
must be connected, we could find easy sufficient conditions for a tree to have irregular chromatic
index at most 2. Such conditions would mainly concern the location of nodes with degree 3 or 4
and the way they are organized in a tree T . Observe, for example, that no bad signature includes
{1} whenever p ≥ 2. This means that if any node with degree at least 3 of T is connected to
an hanging path with odd length, then T has irregular chromatic index at most 2. Additionally,
note that if the Inverting Procedure from Section 9.3.2.3 fails on Tr, i.e. r is bad, when r has
degree ∆(T) = 4, then r necessarily has a neighbour with degree 4 since one of the Tr[r, i]’s is a
4-bad shrub. Therefore, if T has a node r′ with degree 4 which has no neighbour with degree 4,
then r′ is not bad and T has irregular chromatic index at most 2 by Corollary 9.40.

Although edge-partitioning a graph into forests and then independently decomposing these
forests into locally irregular subgraphs may seem a good idea in theory, it may practically be
unusable as one of the forests may include a path with odd length, and may hence be not
decomposable at all according to Corollary 9.2. It is not clear whether an edge-partition into
forests can always be arranged so that we get rid of odd length path components. Maybe this
problem could be overcome by using more colours to arrange the edge-colouring locally, so we
ask the following.

226 9.4. Conclusion and open questions

Problem 9.55. Prove that, for an absolute integer constant d, we have χ′irr(G) ≤ 3a(G) + d for
every colourable graph G.

Towards Conjecture 9.9 and Problem 9.53, one could also first investigate the impact of
allowing a locally irregular graph to induce components isomorphic to K2. Then we would come
up with the following definition.

Definition 9.56. An improper k-edge-colouring c of a graph G is nearly locally irregular if
each of the k subgraphs of G induced by c is made up of components which are either locally
irregular or isomorphic to K2. The least number of colours used by a nearly locally irregular
edge-colouring of G is denoted χ′nirr(G).

Of course a locally irregular edge-colouring is also nearly locally irregular (so χ′nirr(G) ≤
χ′irr(G) for every graph G), but obviously the contrary does not have to hold. Since a subgraph
induced by a nearly locally irregular edge-colouring can include components isomorphic to K2,
which are a (main) source of trouble when dealing with locally irregular edge-colouring, we believe
that only two colours should be sufficient to obtain a nearly locally irregular edge-colouring of
every graph1.

Conjecture 9.57. For every graph G, we have χ′nirr(G) ≤ 2.

All ideas above apply to nearly locally irregular edge-colouring of graphs. In particular, the
inequality χ′nirr(G) ≤ 3a(G) now directly holds for every graph G, and even χ′nirr(G) ≤ 2a(G)
since it is easily seen that we have χ′nirr(T) ≤ 2 for every tree T (a nearly locally irregular 2-edge-
colouring of T can be obtained by just edge-partitioning T into two forests of stars by applying
a breadth-first search algorithm). But what would be more interesting would be to consider the
status of Problem 9.49 in the context of nearly locally irregular edge-colouring. Though this
refined problem should clearly be easier than Problem 9.49, it does not seem immediate at first
glance. So we raise the following.

Problem 9.58. Prove that we have χ′nirr(G) ≤ 3 for every bipartite graph G.

In this chapter, we have also considered the algorithmic complexity of Locally Irregular
2-Edge-Colouring in Section 9.3, wherein we have showed that this problem is in P when
restricted to trees, recall Corollary 9.43, and NP-complete in general, recall Theorem 9.44. As
the status of the remaining problems Locally Irregular k-Edge-Colouring with k ≥ 3 is
intimately dependent of the status of Conjecture 9.9, we cannot tell much about the complexity
of these problems at the moment.

Regarding our result on trees, it is important to keep in mind that, although we have proved
that determining the irregular chromatic index of a tree T can be done in linear time, we have
not mentioned how hard is it to practically obtain a locally irregular χ′irr(T)-edge-colouring of
T . So we raise the following, which we believe to be true.

Conjecture 9.59. For every colourable tree T , we can obtain a locally irregular χ′irr(T)-edge-
colouring of T in time O(|V (T)|).

Recall that the Inverting Procedure we have introduced uses almost locally irregular 2-edge-
colourings of shrubs of T computed using Algorithm 3. Algorithm 3 basically just computes
some 2-edge-colourings of smaller shrubs inductively, and then invert some of these to get an
almost locally irregular 2-edge-colouring of a shrub. Though such always exists, the number of
necessary inversions to perform before obtaining the almost locally irregular 2-edge-colouring may
be exponential, so this procedure cannot be used to answer Conjecture 9.59 in the affirmative.

1Note that every graph G admits a nearly locally irregular |E(G)|-edge-colouring: assigning one different colour
to each edge of G is nearly locally irregular. So there is no exception for this kind of colouring.

Chapter 9. Locally irregular edge-colouring of graphs 227

However, we believe a linear algorithm for constructing a locally irregular χ′irr(T)-edge-
colouring of T could be obtained by first determining χ′irr(T), which can be done in linear
time, recall Theorem 9.42, and then applying a bottom-up strategy for edge-colouring T with
taking into account the fact that we know whether χ′irr(T) = 2 or χ′irr(T) = 3.

Chapter 10. Neighbour-outsum-distinguishing arc-weighting of oriented graphs 229

Chapter 10

Neighbour-outsum-distinguishing arc-
weighting of oriented graphs

We now study an oriented version of the 1-2-3 Conjecture, where the definitions we adopt are
those given in introductory Section 7.4. Our main result in Section 10.1 states that this oriented
analogue of the 1-2-3 Conjecture is true, namely that every oriented graph admits a neighbour-
outsum-distinguishing 3-arc-weighting, this upper bound being tight since some oriented graphs
have neighbour-outsum-distinguishing chromatic index 3. Our proof of this oriented conjecture
relies on a simple argument which may be easily derived for product or list versions of the same
result.

We then investigate the existence of an easy classification of oriented graphs with neighbour-
outsum-distinguishing chromatic index at most 2. Although we exhibit, in Section 10.2, con-
ditions for particular families of oriented graphs to admit a neighbour-outsum-distinguishing 2-
arc-weighting, we show in Section 10.3 that the classification mentioned above is unlikely to exist
due to the NP-completeness of Neighbour-Outsum-Distinguishing 2-Arc-Weighting.

In Section 10.4 is discussed an oriented version of the 1-2 Conjecture which is defined using
definitions similar to those above. We in particular answer negatively to this conjecture.

10.1 On oriented versions of the 1-2-3 Conjecture . 229
10.2 Families with neighbour-outsum-distinguishing chromatic index at most 2 . . 231
10.3 Neighbour-Outsum-Distinguishing 2-Arc-Weighting is NP-complete . 234
10.4 About an oriented version of the 1-2 Conjecture 239
10.5 Conclusion and open questions . 241

Most of the results of this chapter, namely those from Sections 10.1, 10.2 and 10.3, were
obtained with Baudon and Sopena and are part of an article to be published [21]. The results
from Section 10.4 and the last theorem of Section 10.5 were obtained jointly with Baudon,
Sopena, Stevens and Woźniak.

10.1 On oriented versions of the 1-2-3 Conjecture

We show in Theorem 10.1 below that oriented graphs have neighbour-outsum-distinguishing
chromatic index at most 3, this upper bound being tight since some oriented graphs, such as
the circuit on 3 vertices, do not admit a neighbour-outsum-distinguishing 2-arc-weighting. Note
that, contrary to the undirected case, we do not have to make sure whether an oriented graph
is weightable since all oriented graphs admit neighbour-outsum-distinguishing arc-weightings
(assuming we can use a large number of weights). In particular, components isomorphic to an
oriented K2 are no longer annoying since assigning any weight to their arc does the job.

Our proof of Theorem 10.1 relies on the fact that every oriented graph has a “convenient”
vertex for our purpose, that is a vertex which admits a large number of potential weighted
outdegrees compared to its number of neighbours. The existence of such a vertex allows the
use of an inductive proof scheme which directly yields a polynomial-time algorithm for finding a
neighbour-outsum-distinguishing 3-arc-weighting of every oriented graph.

230 10.1. On oriented versions of the 1-2-3 Conjecture

Theorem 10.1. For every oriented graph
−→
G , we have χ′nsd(

−→
G) ≤ 3.

Proof. The claim is proved by induction on the size of
−→
G . As a base case, the claim is clearly

true when
−→
G has size 0 or 1. Suppose now that the claim is true for every oriented graph with

at most m− 1 arcs, and assume
−→
G has size m ≥ 2.

Note that
−→
G necessarily has a vertex v such that d+(v) > 0 and d+(v) ≥ d−(v) since

otherwise we would have
∑

v∈V (
−→
G)
d−(v) 6= ∑

v∈V (
−→
G)
d+(v). A neighbour-outsum-distinguishing

3-arc-weighting of
−→
G is then obtained as follows. Start by removing the arcs outgoing from v.

According to the induction hypothesis, the remaining oriented graph admits a neighbour-outsum-
distinguishing 3-arc-weighting w. Now put back the arcs outgoing from v to

−→
G , and extend w to

these arcs in such a way that the weighted outdegree of v is different from the weighted outdegrees
of the d−(v)+d+(v) vertices neighbouring v. This is possible since there are 2d+(v)+1 potential
weighted outdegrees for v, namely those among {d+(v), d+(v) + 1, ..., 3d+(v)}, while the number
of forbidden weighted outdegrees is at most d−(v) + d+(v) ≤ 2d+(v) < 2d+(v) + 1. Because
weighting the arcs outgoing from v does not affect the weighted outdegrees by w of the vertices
neighbouring v, this extension of w to

−→
G remains neighbour-outsum-distinguishing. �

Due to its simplicity, our proof of Theorem 10.1 can also be derived to list or product versions
of the same result. We describe how to prove such below.

List version

The proof of Theorem 10.1 mainly relies on the fact that the number of possible weighted
outdegrees by an arc-weighting for a vertex with outdegree d is sufficiently large, i.e. at least
2d + 1, when the weights from {1, 2, 3} are allowed for each arc. By showing this property to
hold for every triple {a, b, c} of weights, we can strengthen Theorem 10.1 to the following.

Lemma 10.2. Let v be a vertex with outdegree d of an oriented graph
−→
G , and {a, b, c} be a set

of three real numbers. Then there are at least 2d + 1 possible weighted outdegrees for v by an
arc-weighting of

−→
G assigning values among {a, b, c} to the arcs outgoing from v.

Proof. We prove this claim by induction on d. If d = 1, then the arc outgoing from v can be
weighted either a, b, or c by an arc-weighting of

−→
G . Since a, b, and c are distinct, there are

exactly three weighted outdegrees for v, namely a, b, and c.

Assume the claim is true for every value of d up to i − 1, and assume d = i. Let
−→
G′ be the

oriented graph obtained by removing exactly one arc −→vu outgoing from v. Then, according to
the induction hypothesis, there are at least 2(d− 1) + 1 possible weighted outdegrees for v by an
arc-weighting of

−→
G′ assigning values among {a, b, c} to the remaining arcs outgoing from v. Let

D′ be the set of these possible weighted outdegrees, and denote by inf and sup the minimum
and maximum elements of D′, respectively, and by w′inf and w′sup two arc-weightings of

−→
G′ such

that s+
w′inf

(v) = inf and s+
w′sup

(v) = sup, respectively.

Assume a < b < c. Note that if the result holds for {a, b, c}, then it also holds for
{−a,−b,−c}. Hence, we only have two cases to consider, namely

1. 0 ≤ a < b < c, and

2. a < 0 ≤ b < c.

In the first case, by extending every arc-weighting of
−→
G′ to

−→
G by weighting the arc −→vu with

weight a, we directly obtain that the set D = {x + a : x ∈ D′} is a set of at least 2(d − 1) + 1
possible weighted outdegrees for v. The two remaining weighted outdegrees for v are obtained

Chapter 10. Neighbour-outsum-distinguishing arc-weighting of oriented graphs 231

by extending w′sup by weighting b or c the arc −→vu. We then obtain that sup+ b and sup+ c are
two other possible weighted outdegrees for v. Since these values do not appear in D (because
a < b < c), there are thus at least 2d+ 1 possible weighted outdegrees for v.

In the second case, by extending every arc-weighting of
−→
G′ to

−→
G by weighting b the arc −→vu,

we get that D = {x + b : x ∈ D′} is a set of at least 2(d − 1) + 1 weighted outdegrees for v.
The two remaining weighted outdegrees for v are obtained by extending w′inf and w′sup to

−→
G by

weighting a and c, respectively, the arc −→vu. From these two extensions, we get that v can also
have weighted outdegree inf + a and sup+ c, which do not appear in D by our assumptions on
a, b and c. This completes the proof. �

As a corollary of Lemma 10.2, we directly get that the proof of Theorem 10.1 is applicable
no matter what are the three weights used to weight the arcs outgoing from every vertex. This
implies the following list version of Theorem 10.1.

Corollary 10.3. For every vertex v of an oriented graph
−→
G , let L(v) be an arbitrary list of

three distinct real weights allowed at v. Then
−→
G admits a neighbour-outsum-distinguishing arc-

weighting such that the arcs outgoing from every vertex v are weighted with values among L(v).

Product version

As for the undirected case, one can also consider a variant of Theorem 10.1 where the weighted
outdegree of a vertex is the product of its outgoing weights rather than their sum. We then come
up with the following usual definitions.

Definition 10.4. Let w be an improper arc-weighting of an oriented graph
−→
G . For every vertex

v of
−→
G , let

p+
w(v) =

∏

u∈N+(v)

w(−→vu).

We say that w is neighbour-outproduct-distinguishing if p+
w is proper. The minimum num-

ber of weights of a neighbour-outproduct-distinguishing k-arc-weighting of
−→
G is the neighbour-

outproduct-distinguishing chromatic index of
−→
G , denoted χ′npd(

−→
G).

Regarding an arc-weighting w of an oriented graph
−→
G , note that the range of possible p+

w(v)’s
for a vertex v is as wide as the range of possible s+

w(v)’s when the weights among {1, 2, 3} are used
(this can be proved in a similar manner as Lemma 10.2). Hence, our proof of Theorem 10.1 is also
a proof that every oriented graph admits a neighbour-outproduct-distinguishing 3-arc-weighting.

Theorem 10.5. For every oriented graph
−→
G , we have χ′npd(

−→
G) ≤ 3.

10.2 Families with neighbour-outsum-distinguishing chromatic in-
dex at most 2

By Theorem 10.1, we know that every oriented graph admits a neighbour-outsum-distinguishing
3-arc-weighting. Throughout this section, we focus on some common families of oriented graphs
and exhibit conditions for their members to admit a neighbour-outsum-distinguishing 2-arc-
weighting. Please keep in mind that easy conditions for an oriented graph to have neighbour-
outsum-distinguishing chromatic index at most 2 should not exist according to upcoming Theo-
rem 10.20 (unless P = NP).

All our results are based on the fact that, for every vertex v with outdegree k of an oriented
graph

−→
G , there are k + 1 possible values as s+

w(v) by a 2-arc-weighting w of
−→
G (namely those

among {k, k + 1, ..., 2k}). But this is also the case regarding p+
w(v) since the range of possible

232 10.2. Families with neighbour-outsum-distinguishing chromatic index at most 2

values is {1, 2, 4, ..., 2k}. Since there are as many possible values for p+
w(v) and s+

w(v), our
results from Section 10.2 also hold directly regarding neighbour-outproduct-distinguishing 2-
arc-weighting of oriented graphs.

Acyclic oriented graphs

We start by showing that every acyclic oriented graph admits a neighbour-outsum-distinguishing
2-arc-weighting.

Theorem 10.6. For every acyclic oriented graph
−→
G , we have χ′nsd(

−→
G) ≤ 2.

Proof. We prove the claim by induction on the order n of
−→
G . As a starting point, note that

the claim is true when n = 1. Suppose now that the claim is true for every n up to i − 1 for
some i ≥ 2, and assume

−→
G is an acyclic oriented graph on n = i vertices.

Since
−→
G is acyclic, there are vertices of

−→
G with indegree 0. Let v be such a vertex, and

consider the graph
−→
G′ obtained by removing v from

−→
G . Clearly

−→
G′ is acyclic and admits a

neighbour-outsum-distinguishing 2-arc-weighting w according to the induction hypothesis. We
now extend w to

−→
G , i.e. we weight the arcs outgoing from v, in such a way that w remains

neighbour-outsum-distinguishing. There are d+(v)+1 possible weighted outdegrees for v, namely
those among {d+(v), d+(v) + 1, ..., 2d+(v)}, while there are at most d+(v) forbidden weighted
outdegrees for v, namely the weighted outdegrees by w of the vertices in N+(v). Since weighting
the arcs outgoing from v does not alter the weighted outdegrees of the vertices neighbouring v, we
can freely choose an available weighted outdegree for v and weight its outgoing arcs consequently.
This completes the proof. �

Oriented graphs whose underlying graph is k-colourable

As already mentioned in Section 7.3, first partitioning a graph into several independent sets
before weighting its edges can be a good method for finding a specific edge-weighting. This is
also (and especially) the case regarding neighbour-outsum-distinguishing arc-weighting, as shown
in the following result.

Theorem 10.7. For every oriented graph
−→
G , we have χ′nsd(

−→
G) ≤ χ(und(

−→
G)).

Proof. Let k = χ(und(
−→
G)), and V0∪V1∪ ...∪Vk−1 be a proper k-vertex-colouring of und(

−→
G). We

obtain a neighbour-outsum-distinguishing k-arc-weighting of
−→
G as follows. Process the vertices

of
−→
G in arbitrary order. If the considered vertex v belongs to the part Vi, then weight the arcs

outgoing from v with weights from {1, 2, ..., k} in such a way that the weighted outdegree of v is
congruent to i modulo k, e.g. by assigning i to one arc outgoing to v (or k if i = 0), and k to all
of its other outgoing arcs. This is possible unless d+(v) = 0 since, in such a situation, the only
possible weighted outdegree for v is 0. Once the process is achieved, two adjacent vertices u and v
cannot have the same weighted outdegrees since otherwise either u and v would belong to a same
part Vi, which is impossible since Vi is an independent set, or we would have d+(u) = d+(v) = 0,
which is impossible since u and v are adjacent. �

As a corollary of Theorem 10.7, we get in particular the following result.

Corollary 10.8. For every oriented graph
−→
G whose underlying graph is bipartite, we have

χ′nsd(
−→
G) ≤ 2

Another way for expressing Theorem 10.7 is e.g. to consider the following variant.

Theorem 10.9. Let
−→
G be an oriented graph whose underlying graph is neither a complete graph

nor an odd length cycle. If δ+(
−→
G) ≥ d∆(und(

−→
G))

2 e, then we have χ′nsd(
−→
G) ≤ 2

Chapter 10. Neighbour-outsum-distinguishing arc-weighting of oriented graphs 233

Proof. Set k = ∆(und(
−→
G)). Under the assumptions on und(

−→
G), by Theorem 1.17 we have

χ(und(
−→
G)) ≤ k, so let c be a proper k-vertex-colouring of und(

−→
G). Now let w be the 2-arc-

weighting of
−→
G obtained as follows: for every vertex v ∈ V (

−→
G), weight the arcs outgoing from

v so that s+
w(v) ≡ c(v) − 1 (mod k). This is possible since δ+(

−→
G) ≥ d∆(und(

−→
G))

2 e. Since c is
a proper k-vertex-colouring of und(

−→
G), it should be clear that s+

w is proper too and is hence
neighbour-outsum-distinguishing. �

Tournaments

Our strategy for weighting the arcs of a tournament
−→
T is based on the following lemma, which

could be also deduced from a result by Landau regarding so-called score sequences (see e.g.
Theorem 29 from the survey [95] by Moon).

Lemma 10.10. For every k ∈ {1, 2, ..., |V (
−→
T)|}, let nk ≥ 0 denote the number of vertices with

outdegree at most k of a tournament
−→
T . Then nk ≤ 2k + 1.

Proof. The claim is true for k = 0 since every two vertices of a tournament are joined by an arc.
Let k be fixed, with 1 ≤ k ≤ |V (

−→
T)|. Denote by X ⊆ V (

−→
T) the set of the nk vertices of

−→
T with

outdegree at most k, and by s the sum of the outdegrees of the vertices in X. Clearly we have
s ≤ nkk. We also have s ≥ nk(nk−1)

2 since X induces a tournament, and there may be arcs of
−→
T whose tails lie in X, and whose heads do not lie in X. We hence get nk(nk−1)

2 ≤ nkk, which
implies that nk ≤ 2k + 1. �

We now give an easy sufficient condition for a tournament to admit a neighbour-outsum-
distinguishing 2-arc-weighting.

Theorem 10.11. For every k ∈ {1, 2, ..., |V (
−→
T)|}, let nk ≥ 0 denote the number of vertices with

outdegree at most k of a tournament
−→
T . If we have nk ≤ k + 1 for every k ∈ {1, 2, ..., |V (

−→
T)|},

then χ′nsd(
−→
T) ≤ 2.

Proof. The proof is based on the following simple weighting scheme for
−→
T . Process the vertices

of
−→
T in increasing order of their outdegrees. For each vertex v, weight the arcs outgoing from v

in such a way that the weighted outdegree of v gets the smallest possible value which does not
appear among the weighted outdegrees of the vertices considered in earlier steps of the process.

It has to be noted that this weighting scheme necessarily produces a neighbour-outsum-
distinguishing arc-weighting of

−→
T when the weights among {1, 2, 3} are used. Suppose indeed

that, at some point of the process, we are dealing with a vertex v but we cannot weight v
satisfyingly. Set k = d+(v). This situation means that we have attributed all the weighted
outdegrees among {k, k + 1, ..., 3k} to the vertices considered before v, i.e. that at least 2k + 1
vertices have been treated before v. Due to how the process is led, these vertices have outdegree
at most k. But then it means that nk > 2k + 1, which is impossible according to Lemma 10.10.

Now assume we are using the weights among {1, 2} only. Since the weighted outdegree of
v can take every value among {k, k + 1, ..., 2k} and at most nk − 1 < k + 1 vertices have been
considered in earlier steps of the process, there is necessarily one non-conflicting value which can
be chosen as the weighted outdegree of v. We then just have to weight the arcs outgoing from v
consequently. �

It is worth mentioning that a tournament
−→
T admits a neighbour-outsum-distinguishing 1-

arc-weighting if and only if the vertices of
−→
T have distinct outdegrees, i.e.

−→
T is transitive. This

observation improves Theorem 10.11 for transitive tournaments.

234 10.3. Neighbour-Outsum-Distinguishing 2-Arc-Weighting is NP-complete

Cartesian products of oriented graphs with neighbour-outsum-distinguishing
chromatic index at most 2

We now show that if two oriented graphs
−→
G and

−→
H both admit a neighbour-outsum-distinguishing

2-arc-weighting, then so does their Cartesian product.

Theorem 10.12. For every two oriented graphs
−→
G and

−→
H , we have χ′nsd(

−→
G �

−→
H) ≤ max{χ′nsd(

−→
G),

χ′nsd(
−→
H)}.

Proof. Let w−→
G
and w−→

H
be neighbour-outsum-distinguishing χ′nsd(

−→
G)- and χ′nsd(

−→
H)-arc-weightings

of
−→
G and

−→
H , respectively. Let w be the max{χ′nsd(

−→
G), χ′nsd(

−→
H)}-arc-weighting of

−→
G �

−→
H defined

as follows:

w(
−−−−−−−−−−→
(u1, v1)(u2, v2)) =

{
w−→
H

(−−→v1v2) if u1 = u2,
w−→
G

(−−→u1u2) otherwise.

Assume
−−−−−−−−−−→
(u1, v1)(u2, v2) is an arc of

−→
G �

−→
H . Then we have s+

w((u1, v1)) = s+
w−→
G

(u1) + s+
w−→
H

(v1)

and s+
w((u2, v2)) = s+

w−→
G

(u2) + s+
w−→
H

(v2). Since (u1, v1) and (u2, v2) are adjacent, we have either
u1 = u2 or v1 = v2 by construction. Assume u1 = u2 without loss of generality. Then s+

w−→
G

(u1) =

s+
w−→
G

(u2). Now, because w−→
H

is neighbour-outsum-distinguishing, we have s+
w−→
H

(v1) 6= s+
w−→
H

(v2). It
then follows that s+

w((u1, v1)) 6= s+
w((u2, v2)). �

An immediate corollary of Theorem 10.12 is the following result.

Corollary 10.13. For every two oriented graphs
−→
G and

−→
H with χ′nsd(

−→
G), χ′nsd(

−→
H) ≤ 2, we have

χ′nsd(
−→
G �

−→
H) ≤ 2.

10.3 Neighbour-Outsum-Distinguishing 2-Arc-Weighting is
NP-complete

In this section, we focus on the complexity of the Neighbour-Outsum-Distinguishing k-
Arc-Weighting problems. Since an oriented graph

−→
G has neighbour-outsum-distinguishing

chromatic index 1 if and only if every two adjacent vertices of
−→
G have distinct outdegrees,

the problem Neighbour-Outsum-Distinguishing 1-Arc-Weighting is in P. According to
Theorem 10.1, every problem Neighbour-Outsum-Distinguishing k-Arc-Weighting with
k ≥ 3 is also in P since every of its instances is positive.

We herein focus on Neighbour-Outsum-Distinguishing 2-Arc-Weighting. We show
this problem to be NP-complete in Theorem 10.20 below (and hence Neighbour-Outsum-
Distinguishing k-Arc-Weighting should not be fixed-parameter tractable when parameter-
ized by k), by reduction from 3-Satisfiability. For this purpose, we first introduce several
gadgets to “force” the propagation of a neighbour-outsum-distinguishing 2-arc-weighting along
an oriented graph.

We first introduce two kinds of forbidding gadgets. A forbidding gadget
−→
F is made up of

one root vertex with outdegree 0 adjacent to forcing vertices. The weighting property of
−→
F

is that its forcing vertices always have the same weighted outdegrees by a neighbour-outsum-
distinguishing 2-arc-weighting of

−→
F . Assume x1, x2, ..., xk denote the respective outdegrees of the

forcing vertices. Then, after having identified the root of
−→
F with a vertex v of an oriented graph−→

G , the vertex v cannot have weighted outdegree among {x1, x2, ..., xk} by a neighbour-outsum-
distinguishing 2-arc-weighting of

−→
G because of the forcing vertices of

−→
F now neighbouring v.

First, we define a (2k − 1, 2k)-forbidding gadget, denoted
−−−−−→
F2k−1,2k, for every integer k ≥ 2.

These gadgets are defined inductively.

Chapter 10. Neighbour-outsum-distinguishing arc-weighting of oriented graphs 235

u1

u2

u4

u5
u6

u7 v1

u3
u′1

u′2

u′4

u′5u′6

u′3

u′7

v3

v2

Figure 10.1: The forbidding gadget
−−→
F3,4, and a neighbour-outsum-distinguishing

2-arc-weighting of it. Thick (resp. thin) arcs represent 1- (resp. 2-) weighted arcs.

Construction 10.14. The (3, 4)-forbidding gadget
−−→
F3,4 is the oriented graph depicted in Fig-

ure 10.1. The root of
−−→
F3,4 is v3, while its forcing vertices are v1 and v2. Now, for every value of

k ≥ 3 such that the oriented graphs
−−−−−−→
F2k′−1,2k′ have been defined for every k′ < k, the (2k−1, 2k)-

forbidding gadget
−−−−−→
F2k−1,2k is constructed as follows. Let vk1 , vk2 and vk3 be three distinct vertices

joined by
−−→
vk1v

k
2 ,
−−→
vk1v

k
3 and

−−→
vk2v

k
3 . Now, for every k′ ∈ {2, 3, ..., k− 1}, identify vk1 and the root of a

copy of
−−−−−−→
F2k′−1,2k′ . Repeat the same procedure but with vk2 instead of vk1 and new copies of the

forbidding gadgets. Finally add an arc from vk1 towards k−2 new vertices with outdegree 0, and
similarly from vk2 towards k − 1 new vertices with outdegree 0. The root of

−−−−−→
F2k−1,2k is vk3 , while

its forcing vertices are vk1 and vk2 .

Lemma 10.15. Let k ≥ 2 be fixed. In every neighbour-outsum-distinguishing 2-arc-weighting of−−−−−→
F2k−1,2k, one of the forcing vertices has weighted outdegree 2k− 1, while the other forcing vertex
has weighted outdegree 2k.

Proof. We prove the claim by induction on k. At each step, let w be a neighbour-outsum-
distinguishing 2-arc-weighting of the considered forbidding gadget. Start with

−−→
F3,4. Since u1

and u2 are adjacent and have outdegree 1, we have {s+
w(u1), s+

w(u2)} = {1, 2}. By the same
argument, we have {s+

w(u4), s+
w(u5)} = {1, 2}. Since u3 and u6 are adjacent, both adjacent to

vertices with weighted outdegree 2, and have outdegree 2, we necessarily have {s+
w(u3), s+

w(u6)}
= {3, 4}. Because u7 is adjacent to u3 and u6 and has outdegree 2, we necessarily get s+

w(u7) = 2.
Repeating the same arguments for the oriented subgraph of

−−→
F3,4 induced by the u′i’s, we also

obtain s+
w(u′7) = 2. Finally, since v1 and v2 are adjacent, both adjacent to a vertex with weighted

outdegree 2, and have outdegree 2, we have {s+
w(v1), s+

w(v2)} = {3, 4} as claimed.

Assume the claim is true for every k up to i−1, and consider the gadget
−−−−−→
F2k−1,2k with k = i.

Because vk1 and vk2 have outdegree k by construction, their weighted outdegrees by w can only
take value among {k, k+1, ..., 2k}. However, since these two vertices are both identified with the
roots of forbidding gadgets

−−→
F3,4,

−−→
F5,6, ...,

−−−−−−−→
F2k−3,2k−2, their weighted outdegrees cannot actually

take value among {3, 4, ..., 2k − 3, 2k − 2} according to the induction hypothesis. Therefore, we
have {s+

w(vk1), s+
w(vk2)} = {2k − 1, 2k} since vk1 and vk2 are adjacent. �

We now define a k-forbidding gadget, denoted
−→
Fk, for every integer k ≥ 3.

Construction 10.16. The k-forbidding gadget
−→
Fk originally consists in an arc

−−→
vk1v

k
2 . We call

vk2 and vk1 the root and the forcing vertex of
−→
Fk, respectively. Next add an arc from vk1 to-

wards k − 1 new vertices with outdegree 0. The end of the construction depends on the
parity of k. If k is even, then identify vk1 and the root of each of the forbidding gadgets−−−−−→
Fk+1,k+2,

−−−−−→
Fk+3,k+4, ...,

−−−−−→
F2k−1,2k. Otherwise, i.e. if k is odd, then identify vk1 and the roots of−−→

Fk+1, and
−−−−−→
Fk+2,k+3,

−−−−−→
Fk+4,k+5, ...,

−−−−−→
F2k−1,2k.

Example 10.17. The 3- and 4-forbidding gadgets
−→
F3 and

−→
F4 are depicted in Figure 10.2.

236 10.3. Neighbour-Outsum-Distinguishing 2-Arc-Weighting is NP-complete

−→
F5,6

−→
F7,8

v41

v42
(a) The gadget

−→
F4.

−→
F5,6

v31

v32

−→
F4

(b) The gadget
−→
F3.

Figure 10.2: Two examples of forbidding gadgets, and neighbour-outsum-
distinguishing 2-arc-weightings of these. A triangle represents a forbidding gadget.
Thick (resp. thin) arcs represent 1- (resp. 2-) weighted arcs.

Every k-forbidding gadget has the following weighting property.

Lemma 10.18. Let k ≥ 3 be fixed. In every neighbour-outsum-distinguishing 2-arc-weighting of−→
Fk, the forcing vertex has weighted outdegree k.

Proof. Let w be a neighbour-outsum-distinguishing 2-arc-weighting of
−→
Fk. Assume k is even.

Since vk1 has outdegree k, its weighted outdegree by w can only take value among {k, k+1, ..., 2k}.
But, because vk1 is the root of forbidding gadgets

−−−−−→
Fk+1,k+2,

−−−−−→
Fk+3,k+4, ...,

−−−−−→
F2k−1,2k, it is adjacent

to vertices with weighted outdegrees k + 1, k + 2, ..., 2k according to Lemma 10.15. Hence, the
only remaining weighted outdegree for vk1 by w is k. The claim follows similarly when k is odd,
the value k+1 being forbidden as the weighted outdegree of vk1 because this vertex was identified
with the root of a forbidding gadget

−−→
Fk+1 with k + 1 being even. �

Using the two kinds of forbidding gadgets introduced above, we can now “force” a vertex of
an oriented graph to have a specific weighted outdegree by a neighbour-outsum-distinguishing
2-arc-weighting.

Construction 10.19. Let v be a vertex of an oriented graph
−→
G , and k ≥ d+(v) be an integer.

Assume we are given a set D ⊆ {k, k + 1, ..., 2k} of “allowed” weighted outdegrees for v by a
neighbour-outsum-distinguishing 2-arc-weighting of

−→
G . Then, by “turning v into a D-vertex ”,

we refer to the following operations:

• first add arcs from v towards k − d+(v) new vertices with outdegree 0 so that v has
outdegree k,

• then identify v and the root of every forbidding gadget
−→
Fi with i ∈ {k, k + 1, ..., 2k} \D.

Clearly, because of the forcing vertices neighbouring a D-vertex v of an oriented graph
−→
G ,

the weighted outdegree of v by every neighbour-outsum-distinguishing 2-arc-colouring of
−→
G nec-

essarily takes value among D.

We are now ready to introduce our hardness result.

Theorem 10.20. Neighbour-Outsum-Distinguishing 2-Arc-Weighting is NP-complete.

Chapter 10. Neighbour-outsum-distinguishing arc-weighting of oriented graphs 237

{f(ℓ1), f(ℓ2), f(ℓ3)}

v1 v2

{t(ℓ3), f(ℓ3)}

v3

{t(ℓ2), f(ℓ2)}{t(ℓ1), f(ℓ1)}

zj

uj1 uj2 uj3

Figure 10.3: Partial resulting clause gadget for a clause Cj = (`1 ∨ `2 ∨ `3) with
m(Cj) = 3. The integer sets represent the allowed weighted outdegrees at each
vertex by a neighbour-outsum-distinguishing 2-arc-weighting of

−→
GF .

Proof. Given a 2-arc-weighting w of
−→
G , one can first compute the vertex-colouring s+

w of
−→
G from

w, and then check whether it is proper. Since this procedure can be achieved in polynomial time,
Neighbour-Outsum-Distinguishing 2-Arc-Weighting is in NP.

We now prove that Neighbour-Outsum-Distinguishing 2-Arc-Weighting is NP-hard
by reduction from 3-Satisfiability. Recall that we may suppose that every possible literal
appears in F (Observation 1.44), and also recall what is a forced literal when dealing with 3-
Satisfiability (Observation 1.46). From a formula F in conjunctive normal form involving
3-clauses, we construct an oriented graph

−→
GF such that

F is satisfiable
⇔−→

GF admits a neighbour-outsum-distinguishing 2-arc-weighting wF .

Let t and f be two injective mappings from {x1, x2, ..., xn} to {2n, 2n + 1, ..., 3n − 1} and
{3n, 3n+1, ..., 4n−1}, respectively. Assuming `j = xi and `j′ = xi, i.e. `j and `j′ are the literals
associated with the variable xi, we set t(`j) = f(`j′) = t(xi) and f(`j) = t(`j′) = f(xi).

First, for every literal `i of F , add a vertex vi in
−→
GF . Now consider every clause Cj of F . We

associate a clause gadget with Cj in
−→
GF , its structure depending on the value of m(Cj). Denote

by `j1 , `j2 , ..., `jm(Cj)
the distinct literals of Cj . Let

−−−→
ujj1vj1 ,

−−−→
ujj2vj2 , ...,

−−−−−−−−−→
ujjm(Cj)

vjm(Cj)
be m(Cj) arcs

of
−→
GF , where u

j
j1
, ujj2 , ..., u

j
jm(Cj)

are new vertices. If m(Cj) = 1, i.e. `j1 is forced to true by Cj ,

then turn ujj1 into a {t(`j1)}-vertex. Otherwise, i.e. m(Cj) ∈ {2, 3}, turn every vertex ujji into a

{t(`ji), f(`ji)}-vertex, add a vertex zj to
−→
GF , add arcs from zj towards ujj1 , u

j
j2
, ..., ujjm(Cj)

, and

turn zj into a {f(`j1), f(`j2), ..., f(`jm(Cj)
)}-vertex. This construction is depicted in Figure 10.3.

Claim 10.21. If Cj is a clause of F with distinct literals `j1 , `j2 , ..., `jm(Cj)
, then at least one of

t(`j1), t(`j2), ..., t(`jm(Cj)
) belongs to {s+

wF
(ujj1), s+

wF
(ujj2), ..., s+

wF
(ujjm(Cj)

)}.

Proof. The claim is true when m(Cj) = 1 since, in this situation, ujj1 is a {t(`j1)}-vertex.
When m(Cj) ∈ {2, 3}, note that we cannot have s+

wF
(ujj1) = f(`j1), s+

wF
(ujj2) = f(`j2), ...,

s+
wF

(ujjm(Cj)
) = f(`jm(Cj)

) since zj is a {f(`j1), f(`j2), ..., f(`jm(Cj)
)}-vertex adjacent to ujj1 , u

j
j2
, ...,

ujjm(Cj)
. On the contrary, note that if there is an i ∈ {1, 2, ...,m(Cj)} such that s+

wF
(ujji) = t(`ji),

then we can weight the arcs outgoing from zj in such a way that the weighted outdegree of zj
by wF is f(`ji). �

Let i ∈ {1, 2, ..., 2n}. Note that, so far, the vertex vi has indegree n(`i). Consider i′ ∈
{1, 2, ..., 2n} such that `i′ = `i. To finish the construction of

−→
GF , add the arc −−→vi′vi, and turn vi

238 10.3. Neighbour-Outsum-Distinguishing 2-Arc-Weighting is NP-complete

{t(ℓi), f(ℓi)}vi {t(ℓi), f(ℓi)}vi′

Figure 10.4: Partial subgraph of
−→
GF for two literals `i and `i′ such that `i′ = `i.

The integer sets represent the allowed weighted outdegrees at each vertex by a
neighbour-outsum-distinguishing 2-arc-weighting of

−→
GF .

and vi′ into {t(`i), f(`i)}-vertices. This step of the construction is illustrated in Figure 10.4.

Claim 10.22. Let i ∈ {1, 2, ..., 2n}, and i1, i2, ..., in(`i) be the indices of the distinct clauses of F

which contain `i. Then s+
wF

(ui1i) = s+
wF

(ui2i) = ... = s+
wF

(u
in(`i)
i).

Proof. Recall that the uiji ’s can only have weighted outdegree t(`i) or f(`i) by wF . Now note that
if one of the uiji ’s has weighted outdegree t(`i) by wF while another such vertex has weighted out-
degree f(`i), then wF cannot be extended to the arcs outgoing from vi since vi is a {t(`i), f(`i)}-
vertex. On the contrary, if all the uiji ’s neighbouring vi have the same weighted outdegree, say
t(`i), then the arcs outgoing from vi can be weighted so that s+

wF
(vi) = f(`i). �

Claim 10.23. Let i, i′ ∈ {1, 2, ..., 2n} be two integers such that `i′ = `i. Then s+
wF

(vi) 6= s+
wF

(vi′).

Proof. The claim follows from the fact that vi and vi′ are adjacent. �

We claim that F has a satisfying truth assignment if and only if
−→
GF admits the neighbour-

outsum-distinguishing 2-arc-weighting wF . Assume Cj = (`j1 ∨ `j2 ∨ `j3) is a clause of F , and
that having s+

wF
(ujji) = t(`ji) (resp. f(`ji)) simulates the assignment of `ji to true (resp. false)

in Cj by a truth assignment of F . Then, by Claim 10.21, every clause gadget of
−→
GF must have

a vertex ujji whose weighted outdegree by wF is t(`ji). This simulates the fact that every clause
of F must have (at least) one true literal by a satisfying truth assignment of F . Claim 10.22
depicts the fact that, by a truth assignment of F , every literal provides the same truth value
to every clause it appears in. Finally, Claim 10.23 represents the fact that two opposite literals
cannot be assigned the same truth value by a truth assignment of F . With these arguments, we
can deduce a satisfying truth assignment of F from wF , and vice-versa. �

The reduction scheme from the proof of Theorem 10.20 can be adapted to prove that it is NP-
complete to decide whether a given oriented graph admits a neighbour-outproduct-distinguishing
2-arc-weighting. The forbidding gadgets can be obtained e.g. as follows, where w is a neighbour-
outproduct-distinguishing 2-edge-weighting of some oriented graphs. Start from the circuit
−−−−−−→u1u2u3u1 on three vertices, and add an arc −−→u1u4 where u4 is a new vertex. This resulting
oriented graph

−→
F4 is a 4-forbidding gadget since u1 necessarily gets p+

w(u1) = 4. The root of−→
F4 is u4. Now consider another oriented graph

−−→
F1,2 with vertices v1, v2, v3 and v4 such that

−−→v1v2, −−→v1v3, −−→v2v3 and −−→v2v4 are arcs, and v1 and v2 are each identified with the root of one copy of−→
F4. Clearly, since v1 and v2 are adjacent vertices with outdegree 2, and they are both identified
with the root of a gadget

−→
F4, we necessarily have {p+

w(v1), p+
w(v2)} = {1, 2}, and hence

−−→
F1,2 is a

(1, 2)-forbidding gadget with root v3. Now to obtain a 2k-forbidding gadget
−→
F2k assuming that

a 2k
′-forbidding gadget has been defined for every k′ < k (with the exception that there is a

(1, 2)-forbidding gadget rather than a 1-forbidding gadget and a 2-forbidding gadget), start from
the arc −−−→w1w2, then add arcs from w1 towards k− 1 new vertices so that w1 has outdegree k, and
finally identify w1 and the roots of all the forbidding gadgets constructed in previous steps. Then
we necessarily have p+

w(w1) = 2k. Thus,
−→
F2k is a 2k-forbidding gadget with root w2. With these

Chapter 10. Neighbour-outsum-distinguishing arc-weighting of oriented graphs 239

2 3 2

4 5 1

1 1

1

1 1

11
1

2 2

1 2 1

1

Figure 10.5: A neighbour-sum-distinguishing 2-total-weighting of an oriented
graph. Weighted degrees are circled.

forbidding gadgets, our reduction scheme can then be directly adapted for the product version
of the problem.

10.4 About an oriented version of the 1-2 Conjecture

Since Theorem 10.1 is an oriented version of the 1-2-3 Conjecture, it seems legitimate to wonder
whether a total version of Theorem 10.1 would hold as an oriented analogue of the 1-2 Conjecture.
We consider this question throughout. For this purpose, to make consistency with the fact that
the weight on a vertex v by a total-weighting cannot be regarded as an “outgoing weight” (hence
using the notation s+

w(v) would not make sense in this context), we first need to refine the original
definition for total-weighting of oriented graphs.

Definition 10.24. Let w be an improper total-weighting of an oriented graph
−→
G . The weighted

degree of a vertex v of
−→
G is defined as

sw(v) = w(v) +
∑

u∈N+(v)

w(−→vu).

We say that w is neighbour-sum-distinguishing if sw is proper. The minimum number of weights
of a neighbour-sum-distinguishing k-total-weighting of

−→
G is the neighbour-sum-distinguishing

total chromatic number of
−→
G , denoted χ′′nsd(

−→
G).

Example 10.25. A neighbour-sum-distinguishing 2-total-weighting of an oriented graph is de-
picted in Figure 10.5.

We start by raising the following easy remark deduced from Theorem 10.1

Observation 10.26. For every x ≥ 1, every oriented graph
−→
G admits a neighbour-sum-distinguishing

(x, 3)-total-weighting.

Proof. The claim actually holds for x = 1, and hence for every x ≥ 2. Let w be a neighbour-
outsum-distinguishing 3-arc-weighting of

−→
G , which necessarily exists according to Theorem 10.1.

Now define a (1, 3)-total-weighting w′ of
−→
G as

{
w′(v) = 1 for every v ∈ V (

−→
G), and

w′(−→uv) = w(−→uv) for every −→uv ∈ A(
−→
G).

Then for every vertex v ∈ V (
−→
G), we have sw′(v) = s+

w(v) + 1. Since the adjacent vertices of
−→
G

are distinguished by s+
w , the distinguishing still holds by sw′ . �

We now consider the existence of neighbour-sum-distinguishing (x, 2)-total-weightings of all
oriented graphs. To begin with, we point out the existence of a neighbour-sum-distinguishing
(∆+(

−→
G) + 1, 2)-total-weighting of every oriented graph

−→
G obtained by compensating the use of

the weight 3 on the arcs with the use of big enough weights on the vertices.

240 10.4. About an oriented version of the 1-2 Conjecture

9 3 1

1 0 2

3 1

2

1 2

13
3

(a) A neighbour-outsum-
distinguishing 3-arc-
weighting of

−→
G .

4 2

2 1 3

2 1

2

1 2

12
2

1 11

4 1 1
10

(b) A neighbour-sum-
distinguishing (∆+(

−→
G) + 1,

2)-total-weighting of
−→
G .

Figure 10.6: Strategy for deducing a neighbour-sum-distinguishing (∆+(
−→
G) + 1,

2)-total-weighting of an oriented graph
−→
G from a neighbour-outsum-distinguishing

3-arc-weighting of it. Weighted outdegrees (a) and weighted degrees (b) are circled.

Observation 10.27. Every oriented graph
−→
G admits a neighbour-sum-distinguishing (∆+(

−→
G)+

1, 2)-total-weighting.

Proof. Let w be a neighbour-outsum-distinguishing 3-arc-weighting of
−→
G . Such exists according

to Theorem 10.1. Now for every vertex v ∈ V (
−→
G), define

x3(v) = |{−→vu ∈ A(
−→
G) : w(−→vu) = 3}|,

the number of arcs outgoing from v weighted 3 by w. Clearly, we have x3(v) ≤ ∆+(
−→
G).

Now consider the (∆+(
−→
G) + 1, 2)-total-weighting w′ of

−→
G defined as

{
w′(v) = x3(v) + 1 for every v ∈ V (

−→
G), and

w′(−→uv) = min{2, w(−→uv)} for every −→uv ∈ A(
−→
G).

By the way w′ is defined, we have sw′(v) = s+
w(v) + 1 for every v ∈ V (

−→
G). Since w is

neighbour-outsum-distinguishing, then w′ is neighbour-sum-distinguishing (see Figure 10.6). �

The next question is of great interest since it is a direct analogue of the 1-2 Conjecture.
Namely, we investigate whether there is a constant positive integer x ≥ 1 such that every
oriented graph admits a neighbour-sum-distinguishing (x, 2)-total-weighting. We show that such
an x does not exist.

Proposition 10.28. There is no x ≥ 1 such that every oriented graph admits a neighbour-sum-
distinguishing (x, 2)-total-weighting.

Proof. Consider the following family of tournaments.

Construction 10.29. Choose an odd integer n ≥ 5, and let
−→
Tn be the tournament on n vertices

defined as follows. Denote 0, 1, ..., n− 1 the vertices of
−→
Tn, and, for every vertex i of

−→
Tn, add the

arcs
−−−→
ii+ 1,

−−−→
ii+ 1, ...,

−−−−−→
ii+ bn2 c, where the indices are taken modulo n.

Example 10.30. The oriented graph
−→
T5 is depicted in Figure 10.7.

From now on, assume x ≥ 1 is fixed. By construction, every vertex v of
−→
Tn has outdegree bn2 c.

For this reason, the possible values of sw(v) by an (x, 2)-total-weighting w of
−→
Tn are those among

the set {
bn

2
c+ 1, bn

2
c+ 2, ..., 2bn

2
c+ x

}
,

Chapter 10. Neighbour-outsum-distinguishing arc-weighting of oriented graphs 241

14

23

0

Figure 10.7: The oriented graph
−→
T5.

which includes bn2 c+ x values. Because
−→
Tn is a tournament, we need to have sw(u) 6= sw(v) for

every two vertices u and v of
−→
Tn so that w is neighbour-sum-distinguishing. Thus we want x to

be big enough so that bn2 c+x ≥ n, and hence x ≥ dn2 e. Because x is fixed, by making n tends to
infinite we get that using the weights among {1, 2, ..., x} for weighting the vertices of

−→
Tn is not

enough. This implies the claim. �

Consequently, as a side result we directly get that the natural oriented version of the 1-2
Conjecture (defined accordingly to our definitions) is not true.

Corollary 10.31. For every oriented graph
−→
G , we do not have χ′′nsd(

−→
G) ≤ 2.

So Observation 10.26 actually provides the tightest constant upper bound on χ′′nsd.

Corollary 10.32. For every oriented graph
−→
G , we have χ′′nsd(

−→
G) ≤ 3.

10.5 Conclusion and open questions

In this chapter, we have first investigated an oriented version of the 1-2-3 Conjecture where the
distinguishing parameter is the sum of weights on the arcs outgoing from the vertices. This
problem has shown up to be way easier than the undirected problem, mainly due to the fact that
weighting an arc only affects the weighted outdegree of one of the two attached vertices. So not
only we have managed to prove Theorem 10.1 as an oriented analogue of the 1-2-3 Conjecture, but
also the proof of this statement is easy and relies on simple arguments which we have generalized
to notably a list version of the same result.

In Sections 10.2 and 10.3, we have considered the existence of an easy classification of oriented
graphs with neighbour-outsum-distinguishing chromatic index at most 2. Though Theorem 10.20
ensures that such an easy classification exists if and only if P = NP, we have proved that, for some
common families of oriented graphs, neighbour-outsum-distinguishing 2-arc-weightings can be
obtained easily. Regarding tournaments, it is important to keep in mind that Theorem 10.11 only
provides a sufficient condition for a tournament

−→
T to admit a neighbour-outsum-distinguishing

2-arc-weighting, which should not be necessary, in particular when the sequence of outdegrees of−→
T includes “large gaps”. So we address the following problem.

Problem 10.33. Exhibit a necessary and sufficient condition for a tournament to admit a
neighbour-outsum-distinguishing 2-arc-weighting.

We believe such a characterization should be dependent of several parameters, in particular
the number of vertices with given outdegree, or the sequence of outdegrees itself. In a more
general context, it would be interesting investigating, in further works, whether we can obtain
similar results for other classes of graphs.

One further direction for extending our results is to consider undirected graphs.

242 10.5. Conclusion and open questions

Question 10.34. What is the least k ∈ {1, 2, 3} such that every undirected graph admits an
orientation which admits a neighbour-outsum-distinguishing k-arc-weighting?

Recall that an oriented graph admits a neighbour-outsum-distinguishing 1-arc-weighting if
and only if every two of its adjacent vertices have distinct outdegrees. According to a result first
proved (to the best of our knowledge) by Borowiecki, Grytczuk and Pilśniak in [37], the answer
to Question 10.34 is 1. We give a reformulated proof of this statement using our terminology.

Lemma 10.35 ([37]). Every undirected graph G admits an orientation in which every two ad-
jacent vertices have distinct outdegrees.

Proof. We prove this result by induction on the order n of G. Since the result is true for n = 1,
we assume the claim is true for every n up to i− 1, and now consider n = i. Let v be a vertex
whose degree is maximum in G. According to the induction hypothesis, the graph G′ = G − v
admits an orientation

−→
G′ in which every two adjacent vertices have distinct outdegrees. Note

that in
−→
G′, the outdegree of every vertex in N(v) is at most d(v) − 1 since v has maximum

degree in G. Now start from
−→
G′, and let

−→
G be the orientation of G obtained by orienting all

edges incident with v from v towards its neighbours. Since the outdegree of v in
−→
G is then d(v),

and the outdegrees of all vertices neighbouring v are not altered, the obtained orientation still
satisfies the claim. �

Corollary 10.36. Every undirected graph admits an orientation which admits a neighbour-
outsum-distinguishing 1-arc-weighting.

In a more general context, it would be interesting investigating how many weights are needed
to distinguish the vertices at distance at most d of every oriented graph via their sums of outgoing
weights by an arc-weighting. This would be formally rephrased as follows.

Question 10.37. Given a d ≥ 1, what is the least k ≥ 1 such that every oriented graph
−→
G

admits a k-arc-weighting w verifying s+
w(u) 6= s+

w(v) for all vertices u and v at distance at most d
in
−→
G?

From Theorem 10.1, we basically get that k = 3 for d = 1. But it would be interesting
investigating how k increases in front of d depending on whether we consider the weak of the
strong notion of oriented distance. It would be in particular interesting first considering whether
there is a constant upper bound on k for every d.

In Section 10.4 we have discussed an oriented version of the 1-2 Conjecture defined accordingly
to the oriented notions we have been considering throughout. Our main result is a reject of this
conjecture, recall Corollary 10.31.

It would be interesting considering new distinguishing parameters for which the associated
analogues of the 1-2 Conjecture would be true. As an illustration, we point out below such a
distinguishing total-weighting notion for which the 1-2 Conjecture-like conjecture is true.

Definition 10.38. Let w be an improper total-weighting of an oriented graph
−→
G . For every

vertex v of
−→
G , let

cw(v) = (w(v),
∑

u∈N+(v)

w(−→vu)).

We say that w is neighbour-couple-distinguishing if cw is proper. The minimum number of weights
of a neighbour-couple-distinguishing k-total-weighting of

−→
G is the neighbour-couple-distinguishing

total chromatic number of
−→
G , denoted χ′′ncd(

−→
G).

As mentioned above, the analogue of the 1-2 Conjecture for neighbour-couple-distinguishing
total-weighting of oriented graphs is true. It reads as follows.

Chapter 10. Neighbour-outsum-distinguishing arc-weighting of oriented graphs 243

Theorem 10.39. For every oriented graph
−→
G , we have χ′′ncd(

−→
G) ≤ 2.

Proof. Let
−→
G be an oriented graph with order n. Consider the following ordering (v1, v2, ..., vn)

over the vertices of
−→
G . Let vn be a vertex of

−→
G satisfying d−−→

G
(vn) ≤ d+

−→
G

(vn). Such a vertex
exists since ∑

v∈V (G)

d−−→
G

(v) =
∑

v∈V (G)

d+
−→
G

(v).

Now consider the oriented graph
−→
G−{vn}, and denote vn−1 one vertex of V (

−→
G)\{vn} satisfying

d−−→
G−{vn}

(vn−1) ≤ d+
−→
G−{vn}

(vn−1). Repeat the same procedure until all vertices of
−→
G are labelled.

Namely, assuming that the vertices vn−i+1, vn−i+2, ..., vn have been defined, we choose vn−i as a
vertex of

−→
G − {vn−i+1, vn−i+2, ..., vn} satisfying

d−−→
G−{vn−i+1,vn−i+2,...,vn}

(vn−i) ≤ d+
−→
G−{vn−i+1,vn−i+2,...,vn}

(vn−i),

which again exists according to the same argument as above.
We construct a neighbour-couple-distinguishing 2-total-weighting w of

−→
G by considering the

vertices v1, v2, ..., vn in increasing order of their indices. Assume v1, v2, ..., vi−1 have already been
correctly treated, i.e. cw(v1), cw(v2), ..., cw(vi−1) are defined (these vertices and their outgoing
arcs have been each assigned a weight) and cw(vj) 6= cw(vj′) for every j, j′ ∈ {1, 2, ..., i− 1} with
j 6= j′ such that vj and vj′ are adjacent. Denote

−→
Gi =

−→
G − {vi+1, vi+2, ..., vn} for the sake of

simplicity. We now assign a weight to vi and its outgoing arcs by w in such a way that no conflict
arises. An important thing to keep in mind is that when weighting an arc −−→vivj , the couple cw(vj)
is not altered. Note further that cw(vi) 6= cw(vj) whenever w(vi) 6= w(vj).

For every α ∈ {1, 2}, let

xα = |{vj ∈ V (
−→
G) ∩N+

−→
Gi

(vi) : j < i and w(vj) = α}|

be the number of already treated adjacent vertices which received weight α. There has to be a
value of α ∈ {1, 2} for which

xα ≤


d+
−→
Gi

(vi) + d−−→
Gi

(vi)

2

 .

Let us assume α = 1 throughout.
Set w(vi) = 1. Then vi is already distinguished from all its already treated adjacent vertices

which received weight 2 by w. Now what remains to do is to weight the arcs outgoing from
vi so that vi is distinguished by its outsum from all its already treated adjacent vertices which
received weight 1 by w. The possible outsums for vi in

−→
G by w are those among

Di = {d+
−→
G

(vi), d
+
−→
G

(vi) + 1, ..., 2d+
−→
G

(vi)},

forming a set with cardinality d+
−→
G

(vi) + 1. But the outsum of vi has to be different from the
outsums of its x1 previously treated adjacent vertices which also received weight 1 by w. By the
ordering of the vertices of

−→
G , we have

d+
−→
Gi

(vi) + d−−→
Gi

(vi) ≤ 2d+
−→
Gi

(vi),

yielding
x1 ≤ d+

−→
Gi

(vi) < |Di|.
There is thus at least one value di among Di which does not appear as the outsum by w of
any vertex vj with j < i neighbouring vi which received weight 1. Then just weight the arcs
outgoing from vi so that the outsum of vi is di. Now vi gets also distinguished from its previously
considered neighbours weighted 1. �

Chapter 11. Locally irregular arc-colouring of oriented graphs 245

Chapter 11

Locally irregular arc-colouring of oriented
graphs

This chapter is dedicated to the study of locally irregular arc-colouring of oriented graphs.
As for the undirected case, recall Conjecture 9.9, investigations on small classes of oriented
graphs suggest that every oriented graph should be decomposable into at most 3 locally irregular
subgraphs. This yields the main conjecture investigated in this chapter.

Conjecture 11.1. For every oriented graph
−→
G , we have χ′irr(

−→
G) ≤ 3.

Conjecture 11.1, if true, would be tight, since e.g. the circuit on 3 vertices has irregular
chromatic index 3. We support Conjecture 11.1 by showing it to hold for several common
classes of oriented graphs in Section 11.1. We then prove, in Section 11.2, a weaker version of
Conjecture 11.1. Namely, we prove that every oriented graph admits a locally irregular 6-arc-
colouring. We finally consider the algorithmic aspect in Section 11.3. In this scope, we prove
that deciding whether an oriented graph has irregular chromatic index at most 2 is NP-complete,
even when restricted to oriented graphs with maximum indegree and outdegree at most 4. So
even if Conjecture 11.1 turned out to be true, a classification of oriented graphs with irregular
chromatic index at most 2 should not exist, unless P = NP.

11.1 Families with irregular chromatic index at most 3 245

11.2 Decomposing oriented graphs into six locally irregular subgraphs 248

11.3 Locally Irregular 2-Arc-Colouring is NP-complete 249

11.4 Conclusion and open questions . 254

The whole content of this chapter is made up of results obtained with Renault, and is part
of an article submitted for publication [35].

11.1 Families with irregular chromatic index at most 3

Throughout this section, we exhibit families of oriented graphs for which Conjecture 11.1 holds.
Namely, we prove Conjecture 11.1 to hold for oriented graphs whose underlying graph has chro-
matic number at most 3, acyclic oriented graphs, and Cartesian products of oriented graphs with
irregular chromatic index at most 3. The most important of these results is the one related to
acyclic oriented graphs, as it plays a crucial role in next Section 11.2.

Oriented graphs whose underlying graph is k-colourable

We show that every oriented graph whose underlying graph is k-colourable admits a locally
irregular k-arc-colouring.

Theorem 11.2. For every oriented graph
−→
G , we have χ′irr(

−→
G) ≤ χ(und(

−→
G)).

246 11.1. Families with irregular chromatic index at most 3

Proof. Without loss of generality, we may assume that
−→
G is connected. Let χ(und(

−→
G)) = k,

and V1∪V2∪ ...∪Vk be a proper k-vertex-colouring of und(
−→
G). Consider the k-arc-colouring c of−→

G obtained by colouring i every arc whose tail lies in Vi for every i ∈ {1, 2, ..., k}. Now consider
two adjacent vertices u and v. By definition of a proper vertex-colouring, we have u ∈ Vi and
v ∈ Vj for i, j ∈ {1, 2, ..., k} with i 6= j. Besides, according to how c was obtained, we have
d+
c,i(u) ≥ 1 (unless u has outdegree 0) and d+

c,j(u) = 0, and d+
c,i(v) = 0 and d+

c,j(v) ≥ 1 (unless
v has outdegree 0), while the arc between u and v is coloured either i or j. As u and v cannot
be adjacent and both have outdegree 0, they cannot have the same outdegree in the c(−→uv)- or
c(−→vu)-subgraph. Repeating the same argument for every pair of adjacent vertices of

−→
G , we get

that c is locally irregular. �

As a special case of Theorem 11.2, we get that every oriented graph whose underlying graph
is a tree, a bipartite graph, or even a 3-colourable graph, agrees with Conjecture 11.1.

Corollary 11.3. For every oriented graph
−→
G whose underlying graph is 3-colourable, we have

χ′irr(
−→
G) ≤ 3.

Acyclic oriented graphs

We herein show that every acyclic oriented graph admits a locally irregular 3-arc-colouring. This
result is crucial for our proof that every oriented graph has irregular chromatic index at most 6,
see Theorem 11.9 in Section 11.2.

Theorem 11.4. For every acyclic oriented graph
−→
G , we have χ′irr(

−→
G) ≤ 3.

Proof. We actually prove a stronger statement, namely that every acyclic oriented graph
−→
G

admits a locally irregular 3-arc-colouring in which at most two colours are used at each vertex,
i.e. the arcs outgoing from every vertex are coloured with at most two colours only. The proof
is by induction on the order n of

−→
G . The claim can be easily verified for small values of n,

e.g. for n ≤ 3. Let us thus assume the thesis holds for every oriented graph with order at most
n− 1. Since

−→
G is acyclic, there has to be a vertex of

−→
G with indegree 0. Let v be such a vertex,

and denote its neighbours by u1, u2, ..., ud, i.e. −→vui is an arc for every i ∈ {1, 2, ..., d}, where
d = d+(v).

Let
−→
H =

−→
G−{v}. Since removing vertices from an acyclic graph does not create new circuits,

the oriented graph
−→
H is still acyclic. Besides, it admits a locally irregular 3-arc-colouring c−→

H
satisfying the restrictions above according to the induction hypothesis. Now put back v and its
adjacent arcs, and try to extend c−→

H
, i.e. colour the arcs outgoing from v, to a locally irregular

3-arc-colouring c−→
G

of
−→
G satisfying the conditions above. We show below that such an extension

from c−→
H

to c−→
G

necessarily exists.
For this purpose, we first show that such an extension necessarily exists whenever d ≤ 3

before generalizing our arguments. If d = 1, then, by our assumptions on c−→
H
, at most two

colours, say 1 and 2, are used at u1. Then by colouring 3 the arc −→vu1, no conflict arises and c−→
G

remains locally irregular. Besides, only one colour is used at v.
Now, if d = 2, then start by colouring 1 all arcs outgoing from v. If c−→

G
is not locally irregular,

then one vertex ui1 has 1-outdegree 2 by c−→
H
. Now colour 2 all arcs outgoing from v. Again,

if c−→
G

is not locally irregular, then it means that one vertex ui2 has 2-outdegree 2 by c−→
H
. Now

colour 3 all arcs outgoing from v. If c−→
G

is not locally irregular again, then one vertex ui3 has
3-outdegree 2. Since d = 2 and there are at most two colours used at each of the ui’s, it means
that we have revealed all the colours used at one of the ui’s. Assume i1 = i2 = 1 without loss
of generality. Then u1 has 1- and 2-outdegree 2, while u2 has 3-outdegree 2. Note then that by
setting c−→

G
(−→vu1) = 1 and c−→

G
(−→vu2) = 3, the arc-colouring c−→

G
is locally irregular. Since d = 2,

note further that at most two colours are used at v, as required.

Chapter 11. Locally irregular arc-colouring of oriented graphs 247

Finally consider d = 3. As previously, start by colouring all arcs outgoing from v with a
same colour. Again, if c−→

G
is not locally irregular for one of these three extensions of c−→

H
, then

we get that a vertex ui1 has 1-outdegree 3, a vertex ui2 has 2-outdegree 3, and one vertex ui3
has 3-outdegree 3. Now fix c−→

G
(−−→vui1) = 1 (there is no conflict in the 1-subgraph since ui1 has

1-outdegree 3) and colour all of the remaining arcs outgoing from v with a same colour different
from 1. Again, if c−→

G
is never locally irregular, then we get that one vertex ui4 has 2-outdegree 2,

and one vertex ui5 has 3-outdegree 2. Similarly, if c−→
G

is not locally irregular when assigning
−−→vui2 colour 2 (again, there is not conflict in the 2-subgraph since ui2 has 2-outdegree 3) and all
of the other arcs outgoing from v colour 1, then we get that one vertex ui6 has 1-outdegree 2.
At this point, all of the coloured outdegrees of the ui’s are revealed. Since it was revealed that
colour 1 is used at ui6 , either colour 2 or 3 is not used at vi6 . Assume this colour is 2 without
loss of generality. Now just assign colour 2 to −−→vui6 , and colour 1 to all of the other arcs outgoing
from v. Then v and ui6 are adjacent in the 2-subgraph but have distinct 2-outdegrees, namely 1
and 0, respectively, while v and its other two neighbours are adjacent in the 1-subgraph and have
distinct 1-outdegrees since v has 1-outdegree 2 and only ui6 was revealed to have 1-outdegree 2.
It then follows that c−→

G
is locally irregular. Note further that at most two colours are used to

colour the arcs outgoing from v at every moment of the procedure.

We now generalize our arguments to every d ≥ 4. The colouring scheme we use below is quite
similar to the one used so far. If, at some step, the resulting arc-colouring c−→

G
is locally irregular,

then we are done. Suppose then this never occurs. We start by colouring with only one colour
all arcs outgoing from v (Step 1). Since c−→

G
is never locally irregular, it means that one vertex

ui1 has 1-outdegree d, one vertex ui2 has 2-outdegree d, and one vertex ui3 has 3-outdegree d.
Next, we try to extend c−→

H
to c−→

G
by colouring with colour α one arc outgoing from v whose head

was shown to have α-outdegree strictly more than 1 during Step 1 (i.e. ui1 , ui2 or ui3), and then
colouring all of the other arcs outgoing from v with a colour different from α (Step 2.a). Again,
if c−→

G
is not locally irregular for every of these attempts, then we reveal that one vertex ui4 has

1-outdegree d−1, one vertex ui5 has 2-outdegree d−1, and one vertex ui6 has 3-outdegree d−1.
Once the vertices ui4 , ui5 and ui6 are revealed, we can reveal additional 1-, 2- and 3-outdegrees
as follows. Since ui4 has 1-outdegree d− 1, it means that a colour different from 1, say 2, is not
used at ui4 . Then colour 2 the arc −−→vui4 , and 1 all of the other arcs outgoing from v. Then we
reveal that a vertex ui7 different from ui1 and ui4 has 1-outdegree d − 1. Repeating the same
strategy with ui5 and ui6 (Step 2.b), we reveal also that two vertices ui8 (different from ui2 and
ui5) and ui9 (different from ui3 and ui6) have 2- and 3-outdegree d− 1, respectively.

Repeat the same strategy as many times as necessary until c−→
G

is locally irregular, or all of the
1-, 2- and 3-outdegrees of the ui’s are revealed. More precisely, for every j = 3, 4, ..., dd2e taken
consecutively, colour with colour α exactly j − 1 of the arcs outgoing from v whose heads were
shown to have α-outdegree strictly more than j − 1 in earlier steps, and colour the remaining
d− j + 1 arcs with a colour β different from α (Step j.a). At Step j.a, we reveal that one vertex
ui3+6(j−2)+1

has 1-outdegree d− j + 1, one vertex ui3+6(j−2)+2
has 2-outdegree d− j + 1, and one

vertex ui3+6(j−2)+3
has 3-outdegree d − j + 1. Repeating Step j.a but with “forcing” ui3+6(j−2)+1

to be one of the j − 1 arcs coloured with a colour not appearing at it, and then similarly for
ui3+6(j−2)+2

and ui3+6(j−2)+3
(Step j.b), we reveal that three other vertices, ui3+6(j−2)+4

, ui3+6(j−2)+5

and ui3+6(j−1)
, have 1-, 2- and 3-outdegree d − j + 1, respectively. We refer to Steps j.a and j.b

as Step j.

Hence, at each Step j, we reveal that two of the ui’s have 1-outdegree d − j + 1, two of the
ui’s have 2-outdegree d− j + 1 and two of the ui’s have 3-outdegree d− j + 1 (except for Step 1
where only one outdegree of each colour is revealed). Since d ≥ 4 and there are only two colours
used at each vertex ui according to the assumption on c−→

H
, and hence at most 2d outdegrees to

be revealed, it should be clear that all of the 1-, 2- and 3-outdegrees of the ui’s are revealed once
j reaches dd2e. Besides, every 1-, 2- or 3-outdegree is revealed to be strictly greater than dd2e
(except when d = 5, see below). One can then obtain the locally irregular 3-arc-colouring c−→

G

248 11.2. Decomposing oriented graphs into six locally irregular subgraphs

by assigning colour 1 to dd2e arcs outgoing from v whose head were shown to have 1-outdegree
strictly more than dd2e, and colour 2 to the remaining arcs (there are bd2c of them). Under this
colouring, the vertex v has 1- and 2-outdegree dd2e and bd2c, respectively, while its neighbours
have 1- and 2-outdegree 0 or strictly greater than these in the 1- and 2-subgraphs, respectively
(when d = 5, one of the ui’s, say u1, is revealed to have 1-outdegree 3 - in this special case,
force −→vu1 to be coloured 2. For every other value of d, it is true that all revealed outdegrees are
strictly greater than dd2e). Besides, only two colours are used at v. This ends up the proof. �

It is worth noting that the stronger statement proved in the proof of Theorem 11.4 is crucial
for our colouring scheme. Indeed, assume e.g. that d = 1, that three colours are allowed at each
vertex, and that u1 has 1-, 2- and 3-outdegree exactly 1 by c−→

H
. In such a situation, we clearly

cannot extend c−→
H

to c−→
G
.

Cartesian products of oriented graphs with irregular chromatic index at most 3

We herein investigate a last family of oriented graphs, namely Cartesian products of oriented
graphs with irregular chromatic index at most 3. Our result below provides numerous more
examples of oriented graphs verifying Conjecture 11.1, assuming that we are provided oriented
graphs agreeing with Conjecture 11.1 themselves.

Theorem 11.5. For every two oriented graphs
−→
G and

−→
H , we have χ′irr(

−→
G �

−→
H) ≤ max{χ′irr(

−→
G),

χ′irr(
−→
H)}.

Proof. Let c−→
G

and c−→
H

be locally irregular χ′irr(
−→
G)- and χ′irr(

−→
H)-arc-colourings of

−→
G and

−→
H ,

respectively. Now let c be the max{χ′irr(
−→
G), χ′irr(

−→
H)}-arc-colouring of

−→
G �

−→
H obtained from c−→

G
and c−→

H
as follows:

c(
−−−−−−−−−−→
(u1, v1)(u2, v2)) =

{
cH(−−→v1v2) if u1 = u2,
cG(−−→u1u2) otherwise.

Note that we have d+
c,i((u1, v1)) = d+

c−→
G
,i(u1) + d+

c−→
H
,i(v1) for every colour i ∈ {1, 2, ...,

max{χ′irr(
−→
G), χ′irr(

−→
H)}}. Assume

−−−−−−−−−−→
(u1, v1)(u2, v2) is an arc of

−→
G �

−→
H with c(

−−−−−−−−−−→
(u1, v1)(u2, v2)) = i.

By definition, we have either u1 = u2 or v1 = v2. Suppose u1 = u2 without loss of general-
ity. Then we have d+

c−→
G
,i(u1) = d+

c−→
G
,i(u2), and, because c−→

H
is locally irregular, also d+

c−→
H
,i(v1) 6=

d+
c−→
H
,i(v2). It then follows that d+

c,i((u1, v1)) 6= d+
c,i((u2, v2)). Repeating the same argument for

every arc of
−→
G �

−→
H , we get that c is locally irregular. �

Regarding Conjecture 11.1, we get the following.

Corollary 11.6. For every two oriented graphs
−→
G and

−→
H with χ′irr(

−→
G), χ′irr(

−→
H) ≤ 3, we have

χ′irr(
−→
G �

−→
H) ≤ 3.

11.2 Decomposing oriented graphs into six locally irregular sub-
graphs

In this section, we show, in Theorem 11.9 below, that every oriented graph has irregular chromatic
index at most 6. For this purpose, we first introduce the following observation stating that if an
oriented graph

−→
G can be decomposed into arc-disjoint subgraphs

−→
G1,
−→
G2, ...,

−→
Gk, then a locally

irregular arc-colouring of
−→
G can be obtained by considering independent locally irregular arc-

colourings of
−→
G1,
−→
G2, ...,

−→
Gk. An undirected version of the same lemma was raised in Section 9.4,

recall Observation 9.54.

Chapter 11. Locally irregular arc-colouring of oriented graphs 249

Observation 11.7. Let
−→
G be an oriented graph whose arc set A(

−→
G) can be partitioned into

k parts A1 ∪A2 ∪ ... ∪Ak such that

χ′irr(
−→
G [A1]) ≤ x1, χ

′
irr(
−→
G [A2]) ≤ x2, ..., χ

′
irr(
−→
G [Ak]) ≤ xk

for given values of x1, x2, ..., xk. Then χ′irr(
−→
G) ≤∑k

i=1 xi.

Proof. Let c1, c2, ..., ck be locally irregular x1-, x2-, ..., xk-arc-colourings of
−→
G [A1],

−→
G [A2], ...,−→

G [Ak], respectively, and denote by c the (
∑k

i=1 xi)-arc-colouring of
−→
G defined as

c(−→a) = (ci(
−→a), i) for every −→a ∈ A(

−→
G) ∩Ai.

By the partition of A(
−→
G), every arc of

−→
G receives a colour by c, and c uses

∑k
i=1 xi colours.

Besides, the subgraph of
−→
G induced by colour (j, i) is nothing but the subgraph of

−→
G [Ai] induced

by colour j of ci, which is locally irregular by the definition of ci. All subgraphs of
−→
G induced

by c are then locally irregular as required. �

Observation 11.7 provides an easy upper bound on the irregular chromatic index of every
oriented graph which can be partitioned into arc-disjoint subgraphs with upper-bounded ir-
regular chromatic index. In particular, by showing below that every oriented graph can be
arc-partitioned into two acyclic oriented graphs (which have irregular chromatic index at most 3,
recall Theorem 11.4), we directly get that every oriented graph has irregular chromatic index at
most 6.

Lemma 11.8. The arc set of every oriented graph
−→
G can be partitioned into two parts A1 ∪A2

such that
−→
G [A1] and

−→
G [A2] are acyclic.

Proof. Let v1, v2, ..., vn denote the vertices of
−→
G following an arbitrary ordering. Now consider

every arc −−→vivj of
−→
G , and

{
add −−→vivj to A1 if i < j,
add −−→vivj to A2 otherwise.

Then observe that if −−−−−−−−−→vi1vi2 ...vikvi1 , with i1 < i2 < ... < ik, were a circuit of
−→
G [A1], then we

would have both i1 < ik and ik < i1, a contradiction. A similar contradiction can be deduced
from any circuit of

−→
G [A2]. �

Theorem 11.9. For every oriented graph
−→
G , we have χ′irr(

−→
G) ≤ 6.

Proof. According to Lemma 11.8, there exists a partition A1 ∪A2 of A(
−→
G) such that

−→
G [A1] and−→

G [A2] are acyclic. Since every acyclic oriented graph has irregular chromatic index at most 3
according to Theorem 11.4, the thesis follows directly from Observation 11.7. �

11.3 Locally Irregular 2-Arc-Colouring is NP-complete

In this section, we deal with the algorithmic complexity of Locally Irregular k-Arc-
Colouring. Since checking whether an oriented graph

−→
G is locally irregular can be done

in quadratic time, the problem Locally Irregular 1-Arc-Colouring is in P. In case Con-
jecture 11.1 turned out to be true, note that every problem Locally Irregular k-Arc-
Colouring with k ≥ 3 would be in P. At the moment, by Theorem 11.9 we get that Locally
Irregular k-Arc-Colouring is in P for every k ≥ 6 only. On the contrary, if Locally
Irregular k-Arc-Colouring were shown to be NP-complete for some k ∈ {3, 4, 5}, then one
would disprove Conjecture 11.1.

250 11.3. Locally Irregular 2-Arc-Colouring is NP-complete

v′1

u1

v1

u2

v′2

v2

u3

v′3

v3

v′x

vx

ux

v′x+1

Figure 11.1: The 2-fiber gadget
−→
F2, and a locally irregular 2-arc-colouring of

−→
F2.

Thick (resp. thin) arcs represent 1- (resp. 2-) coloured arcs.

In the light of the previous explanations, only Locally Irregular 2-Arc-Colouring is
of interest at the moment. We prove this problem to be NP-complete in Theorem 11.15 below.
This result implies that, even if Conjecture 11.1 turned out to be true, no good characterization of
oriented graphs with irregular chromatic index at most 2 can exist, unless P=NP. This result also
implies that Locally Irregular k-Arc-Colouring should not be fixed-parameter tractable
when parameterized by k, the number of colours.

To prove Theorem 11.15, we first need to introduce some forcing gadgets, i.e. some oriented
graphs which will be used in our reduction to “force” the propagation of a locally irregular
2-arc-colouring within an oriented graph.

Construction 11.10. The 2-fiber gadget , denoted
−→
F2, is depicted in Figure 11.1. We refer to

the arcs
−−→
v′1v1,

−−→
v′2v2, ..,

−−→
v′xvx as the outputs of

−→
F2. Every output

−−→
v′ivi with i odd is referred to

as an odd output , or as an even output otherwise. Note that
−→
F2 is actually made of a same

small pattern repeated consecutively from left to right. The dashed section of
−→
F2 means that

this pattern can be repeated an arbitrary number of times, i.e. x can be arbitrarily large, so that−→
F2 has arbitrarily many outputs, which are either even or odd, alternatively.

The 2-fiber gadget has the following colouring property.

Lemma 11.11. In every locally irregular 2-arc-colouring c of
−→
F2, all of the even outputs of

−→
F2

have the same colour, while all of the odd outputs have the second colour. Besides, for every
output

−−→
v′ivi of

−→
F2, the vertex v′i has c(

−−→
v′ivi)-outdegree 2.

Proof. Note that for every i ∈ {1, 2, ..., x}, the vertex ui has α-outdegree 1 by c for an α ∈ {1, 2}
and is adjacent to v′i in the α-subgraph. For this reason, the two arcs

−−→
v′ivi and

−−−→
v′iv
′
i+1 cannot

have distinct colours by c since otherwise v′i would have α-outdegree 1 too.
Hence, all of the arcs outgoing from v′i have the same colour. Suppose e.g. that all of the

arcs outgoing from v′1 are coloured 1. Then v′1 has 1-outdegree 2, and v′1 and v′2 are adjacent
in the 1-subgraph. For these reasons, all of the arcs outgoing from v′2 cannot be coloured 1
since otherwise v′2 would have 1-outdegree 2 too. Then all of the arcs outgoing from v′2 are
coloured 2 by c. Repeating the same argument from the left to the right of

−→
F2, we get that v′i

has 1-outdegree 2 for every odd i, while v′i has 2-outdegree 2 otherwise, i.e. when i is even. Then
every two consecutive outputs of

−→
F2 have distinct colours. �

We now generalize the notion of k-fiber gadget for every k ≥ 3.

Construction 11.12. Consider a value of k ≥ 3 such that the i-fiber gadget has been defined
for every i ∈ {2, 3, ..., k − 1}. To obtain the k-fiber gadget , proceed as follows. Start from a
directed path

−−−−−−−−−→
v′1v
′
2...v

′
xv
′
x+1 for an arbitrary value of x. For every v′i with i ∈ {1, 2, ..., x}, add

arcs from v′i towards k − 1 new vertices with outdegree 0. Call vi one such resulting vertex.
Finally, identify v′i with the heads of one distinct even output and one distinct odd output of

Chapter 11. Locally irregular arc-colouring of oriented graphs 251

v1

v′1

v2

v′2 v′3

v3

v′x

vx

v′x+1

Figure 11.2: The 3-fiber gadget
−→
F3, and a locally irregular 2-arc-colouring of

−→
F3.

Thick (resp. thin) arcs represent 1- (resp. 2-) coloured arcs.

each of
−→
F2,
−→
F3, ...,

−−→
Fk−1. Similarly as for

−→
F2, we refer to the arcs

−−→
v′ivi of

−→
Fk as its outputs, making

again the distinction between even and odd outputs

Example 11.13. Refer to Figure 11.2 for an illustration of the 3-fiber gadget
−→
F3, where the

top-most arcs are outputs of
−→
F2.

The generalized fiber gadgets share the following colouring property (which is similar to the
one we proved in Lemma 11.11 for

−→
F2).

Lemma 11.14. In every locally irregular 2-arc-colouring c of
−→
Fk, all of the even outputs of

−→
Fk

have the same colour, while all of the odd outputs have the second colour. Besides, for every
output

−−→
v′ivi of

−→
Fk, the vertex v′i has c(

−−→
v′ivi)-outdegree k.

Proof. The proof is similar to the one of Lemma 11.11. Consider a vertex v′i of
−→
Fk. Since the heads

of one even output and one odd output of
−→
Fj are identified with v′i for every j ∈ {2, 3, ..., k− 1},

there are two vertices w1 and w2 neighbouring v′i such that:

• w1 and v′i are adjacent in the 1-subgraph induced by c,

• w2 and v′i are adjacent in the 2-subgraph induced by c,

• w1 has 1-outdegree j and w2 has 2-outdegree j.

Since this observation holds for every j ∈ {2, 3, ..., k− 1}, note that all the arcs outgoing from v′i
must have the same colour by c since otherwise v′i would have the same outdegree as one of its
neighbours in either the 1- or 2-subgraph. Assume all of the arcs outgoing from v′1 have colour 1
by c without loss of generality. Then all arcs outgoing from v′2 cannot all be coloured 1 since
otherwise v′1 and v′2 would be adjacent vertices with outdegree k in the 1-subgraph. Then all
arcs outgoing from v′2 have colour 2 by c. Again, by repeating this argument from left to right,
similarly as in the proof of Lemma 11.11, we get that the colours of the outputs of

−→
Fk alternate

between 1 and 2, and that the tail of each output has α-outdegree k, where α is the colour of
this output by c. �

The generalized fiber gadgets described above are actually not all necessary to prove our
main result, but using these we can “generate” vertices with arbitrarily large outdegree in either
the 1- or 2-subgraph induced by a locally irregular 2-arc-colouring of an oriented graph. Used
conveniently (note in particular that if we identify the heads of one even output and one odd
output of, say,

−→
F2, with a vertex v, then v cannot have outdegree 2 in the 1- and 2-subgraphs

by a locally irregular 2-arc-colouring), one can construct arbitrarily many oriented graphs with
various structures and which have irregular chromatic index 3. This should convince the reader
that even if Conjecture 11.1 turned out to be true, oriented graphs with irregular chromatic
index 2 do not have a predictable structure.

We are now ready to prove the main result of this section.

252 11.3. Locally Irregular 2-Arc-Colouring is NP-complete

uj
bj

v1,j v2,j v3,j

Figure 11.3: The clause gadget
−→
GF (Cj), where the top-most arcs are outputs

of the 3- and 4-fiber gadgets
−→
F3 and

−→
F4, and a locally irregular 2-arc-colouring of−→

GF (Cj). Thick (resp. thin) arcs represent 1- (resp. 2-) coloured arcs.

Theorem 11.15. Locally Irregular 2-Arc-Colouring is NP-complete, even when re-
stricted to oriented graphs with maximum indegree and outdegree at most 4.

Proof. Clearly Locally Irregular 2-Arc-Colouring is in NP since, given a 2-arc-colouring
of
−→
G , one can easily check whether the two subgraphs it induces are locally irregular (this

property can be checked in quadratic time).
We now prove that Locally Irregular 2-Arc-Colouring is NP-hard, and thus NP-

complete since it is also in NP, by reduction from Monotone Not-All-Equal 3-Satisfiability.
Recall that every formula F of Monotone Not-All-Equal 3-Satisfiability can be supposed
to have all its clauses having three distinct literals, see Observation 1.53. From F , we construct
an oriented graph

−→
GF such that

F is not-all-equal satisfiable
⇔−→

GF admits a locally irregular 2-arc-colouring cF .

We design
−→
GF in such a way that the propagation of cF along

−→
GF is representative of the con-

straints attached to Monotone Not-All-Equal 3-Satisfiability, i.e. of the consequences
on F of setting such or such variable of F to true. This is typically done by designing gadgets
with specific colouring properties. Throughout this proof, colour 1 of cF must be thought of
as the truth value true, while colour 2 represents the truth value false of a truth assignment
to the variables of F (one could actually switch these two equivalences as we are dealing with
Monotone Not-All-Equal 3-Satisfiability).

The first requirement of Monotone Not-All-Equal 3-Satisfiability we have to “trans-
late” is that a clause of F is considered satisfied if and only if it has at least one true and one
false variable. This is done by “transforming” every clause Cj = (xi1 ∨ xi2 ∨ xi3) into a clause
gadget

−→
GF (Cj) in

−→
GF with three special arcs −→a1, −→a2 and −→a3 representing the variables of Cj ,

and such that all of these three arcs cannot have the same colour by cF . Assuming that, say,
cF (−→a1) = 1 (resp. cF (−→a1) = 2) simulates the fact that xi1 supplies Cj with value true (resp.
false), the requirement above then follows directly from the colouring property of

−→
GF (Cj).

Consider then every clause Cj = (xi1 ∨xi2 ∨xi3), whose some variables (at most two of them,
recall Observation 1.48) may be the same. The clause gadget

−→
GF (Cj), associated with Cj , is

obtained as follows (see Figure 11.3). Add five vertices uj , v1,j , v2,j , v3,j and bj to
−→
GF , as well

as all arcs from uj towards every vertex in {v1,j , v2,j , v3,j , bj}. Now identify uj with the heads
of one even output and one odd output of each of

−→
F3 and

−→
F4, where

−→
F3 and

−→
F4 are the 3- and

Chapter 11. Locally irregular arc-colouring of oriented graphs 253

r

r′

w′
1

w1 w2

Figure 11.4: The collecting gadget
−→
Gg, and a locally irregular 2-arc-colouring of−→

Gg. Thick (resp. thin) arcs represent 1- (resp. 2-) coloured arcs.

4-fiber gadgets. The arcs −→a1, −→a2 and −→a3 mentioned in the explanations above actually refer to
−−−→ujv1,j , −−−→ujv2,j and −−−→ujv3,j . Besides, one has to think of every vertex vi,j as a vertex associated
with the ith variable of Cj . We show that

−→
GF (Cj) cannot have all of its arcs −−−→ujv1,j , −−−→ujv2,j and

−−−→ujv3,j having the same colour by cF , as required.

Claim 11.16. If Cj is a clause of F , then one arc of −−−→ujv1,j, −−−→ujv2,j and −−−→ujv3,j has one colour by
cF , while the other two arcs have the second colour.

Proof. The claim follows from the facts that uj has outdegree 4 and is adjacent to vertices with
outdegree 3 or 4 in the 1- and 2-subgraphs induced by cF , namely the tails of some outputs of−→
F3 and

−→
F4 whose heads were identified with uj . �

The second requirement of Monotone Not-All-Equal 3-Satisfiability we have to
model is that, by a truth assignment to the variables of F , a variable provides the same truth
value to every clause it appears in. At the moment, this requirement is not met as cF may
be locally irregular but with, say, cF (−−−→ujvi,j) = 1 and cF (−−−−→uj′vi′,j′) = 2 with the ith variable of
Cj being identical to the i′th variable of Cj′ , say x`. Following our analogy above, this would
simulates that x` belongs to both of the clauses Cj and Cj′ , but x` provides true to Cj and false
to Cj′ by a truth assignment, which is impossible. Hence, we have to check somehow whether
all the arcs −−−−−→uj1vi1,j1 ,

−−−−−→uj2vi2,j2 , ...,
−−−−−−−−−−−−→ujn(x`)

vin(x`),jn(x`)
, representing the membership of x` to the

clauses Cj1 , Cj2 , ..., Cjn(x`) of F which contain x`, have the same colour by cF .

This is done by using the collecting gadget
−→
Gg depicted in Figure 11.4. The arcs −−→w1r and −−→w2r

are called the inputs of
−→
Gg, while

−−→
r′w′1 is its output . Note that w1, w2 and r′ have outdegree 2.

This gadget
−→
Gg has the following colouring property.

Claim 11.17. Let c be a locally irregular 2-arc-colouring of
−→
Gg such that the two arcs outgoing

from w1 have the same colour, and the two arcs outgoing from w2 have the same colour. Then
c(−−→w1r) = c(−−→w2r) = c(

−−→
r′w′1).

Proof. Assume c(−−→w1r) = 1 and c(−−→w2r) = 2 without loss of generality. In particular, note that w1

and r are adjacent in the 1-subgraph, and that w2 and r are adjacent in the 2-subgraph. Besides,
by assumption w1 has 1-outdegree 2 while w2 has 2-outdegree 2. For these reasons, note that
the two arcs outgoing from r cannot have the same colour since otherwise r would have 1- or
2-outdegree 2, a contradiction. Then one arc outgoing from r has colour 1 by c while the other
arc has colour 2, implying that r has both 1- and 2-outdegree 1. But then we necessarily get a
contradiction while colouring the arc outgoing from the vertex with outdegree 1 attached to r.

254 11.4. Conclusion and open questions

On the contrary, note that if c(−−→w1r) = c(−−→w2r) = 1 without loss of generality, then, so that we
avoid every contradiction mentioned above, we have to colour 2 all arcs outgoing from r. Then
r and r′ are neighbouring vertices in the 2-subgraph, and r has 2-outdegree 2. Since there is a
vertex with outdegree 1 attached to r′, again we cannot colour the two arcs outgoing from r′

with distinct colours. Then we have to colour 1 the two arcs outgoing from r′. �

Roughly speaking, assuming we are given two arcs −→a1 and −→a2 whose tails necessarily have
outdegree 2 in the cF (−→a1)- and cF (−→a2)-subgraphs, respectively, we can “check” whether cF (−→a1) =

cF (−→a2). Namely, take a copy of
−→
Gg and “replace” the arcs −−→w1r and −−→w2r with −→a1 and −→a2, re-

spectively. We refer to this operation as collecting −→a1 and −→a2 (with a copy of
−→
Gg). Accord-

ing to Claim 11.17, the arc-colouring cF cannot then be extended to the collecting gadget if
cF (−→a1) 6= cF (−→a2). Recall further that if cF (−→a1) = cF (−→a2), then all of the arcs outgoing from the
tail of the output of the collecting gadget have colour cF (−→a1), and the tail of the output thus has
cF (−→a1)-outdegree 2. In some sense, this property means that the output of a collecting gadget
“memorizes” the colour used at its two inputs.

To end up the construction of
−→
GF , proceed as follows. Consider every variable xi of F with

i ∈ {1, 2, ..., n}, and let −→o1 ,
−→o2 , ...,

−−−→on(xi) denote the n(xi) arcs of
−→
GF representing the membership

of xi to a clause. More precisely, these arcs are of the form −−−→ujvi′,j , where i′ ∈ {1, 2, 3} and
j ∈ {1, 2, ...,m}, and xi is the i′th variable of Cj . Recall further that if one of these arcs −→o is
coloured, say, 1 by cF , then the tail of −→o has 1-outdegree 2. Then start by collecting −→o1 and −→o2

with a copy
−→
G1 of

−→
Gg. Next collect the output of

−→
G1 and −→o3 with a new copy

−→
G2 of

−→
Gg. Then

collect the output of
−→
G2 and −→o4 with a new copy

−→
G3 of

−→
Gg. And so on. This procedure uses

n(xi)− 1 copies of
−→
Gg.

We claim that we have the desired equivalence between not-all-equal satisfying F and prop-
agating cF in

−→
GF in a locally irregular way. If cF can be propagated in this way, then, for every

clause Cj = (xi1∨xi2∨xi3) of F , one arc of ujv1,j , ujv2,j , ujv3,j has a colour by cF while the other
two arcs have the other colour (Claim 11.16). Besides, this arc-colouring, because of the collect-
ing gadgets, has the property that all arcs corresponding to the membership of a same variable
to some clauses have the same colour (Claim 11.17). Assuming that having cF (−−−→ujvi′,j) = 1 (resp.
cF (−−−→ujvi′,j) = 2) simulates the fact that the i′th variable of Cj is set to true (resp. false), we
can directly deduce a truth assignment not-all-equal satisfying F from cF , and vice-versa. This
completes the proof.

The last part of the statement follows from the fact that
−→
GF necessarily has maximum

indegree and outdegree at most 4. In particular, the fiber gadgets
−→
F2,
−→
F3 and

−→
F4, which are

the only fiber gadgets used for the reduction, have this property. It is then easily checked by
hand that the clause gadgets also have this property, as well as the collecting gadgets. It is
actually worth mentioning that we only designed these collecting gadgets in order to reduce
the indegrees and outdegrees of the vertices of

−→
GF . Our reduction could be performed without

making use of these, but, in doing so, (in particular) the maximum indegree of
−→
GF is generally

not upper-bounded (it would be roughly equal to max{n(xi) : xi ∈ F}). �

11.4 Conclusion and open questions

In this chapter, we have introduced and investigated locally irregular arc-colouring of oriented
graphs, our investigations being guided by Conjecture 11.1 we have raised. Although we have
not managed to prove Conjecture 11.1, which we have verified for several classes of graphs in
Section 11.1, we have however proved a weaker version of Conjecture 11.1, recall Theorem 11.9,
which is not so far from the conjecture. One good point behind Theorem 11.9 is that this result
provides a constant upper bound on the irregular chromatic index of oriented graphs, while

Chapter 11. Locally irregular arc-colouring of oriented graphs 255

such a constant upper bound is still not known in the context of undirected graphs, recall our
investigations from Chapter 9.

Maybe our proof of Theorem 11.9, i.e. first edge-partitioning an oriented graph into k sub-
graphs and then independently decomposing each of these subgraphs into locally irregular sub-
graphs, could be pushed forwards to get a better constant upper bound of the irregular chromatic
index of oriented graphs. It would be e.g. interesting investigating whether every oriented graph
can be edge-partitioned into two subgraphs with irregular chromatic index at most 2 (to basi-
cally get that χ′irr(

−→
G) ≤ 4 for every oriented graph

−→
G). Towards this direction, one judicious

direction would be to study which classes of oriented graphs have irregular chromatic index at
most 2.

Question 11.18. Which classes of oriented graphs have irregular chromatic index at most 2?

In particular, it is worth mentioning that Theorem 11.4 is tight since there are acyclic oriented
graphs with irregular chromatic index exactly 3 (so we cannot improve Theorem 11.9 from 6 to 4
by just improving Theorem 11.4). To be convinced of this statement, one just has to note
that Locally Irregular 2-Arc-Colouring remains NP-complete when restricted to acyclic
oriented graphs as it can be easily checked that the reduction in the proof of Theorem 11.15
actually provides acyclic oriented graphs.

In case this direction shown up to be a wrong track, any improvement of Theorem 11.9 would
be a good step towards Conjecture 11.1 anyway.

Among all classes of oriented graphs we have considered regarding Conjecture 11.1, and
which do not appear in Section 11.1, the case of tournaments is intriguing. Although it is easy
to show that some restricted families of tournaments agree with Conjecture 11.1, e.g. transitive
tournaments (which are locally irregular), we have not been able to find any argument for the
general case. Until a proof of Conjecture 11.1 is exhibited, which would solve the problem, we
address the following weaker problem.

Problem 11.19. Prove that we have χ′irr(
−→
T) ≤ 3 for every tournament

−→
T .

Conclusion to Part II 257

Chapter 12

Conclusion to Part II

In Part II, we have studied several edge- and arc-weighting notions permitting the distinguishing
of the adjacent vertices of an undirected or oriented graph. We have first focused on the case of
undirected graphs in Chapters 8 and 9, before moving to oriented graphs, regarding which still
few such notions have been studied, in Chapters 10 and 11.

In Chapter 8, we have considered the notion of neighbour-sum-distinguishing edge-weighting
of graphs, which is the notion underlying the well-known 1-2-3 Conjecture. Our main result
in this context is algorithmic, and states that Neighbour-Sum-Distinguishing {a,b}-Edge-
Weighting is NP-complete no matter what is {a, b}, recall Theorem 8.1.

Then we have introduced the notion of locally irregular edge-colouring of graphs in Chapter 9,
and have given very first results and properties related to this notion. So that the range of
our investigations is clear, we have first had to formally identify the range of graphs which are
colourable (with regards to locally irregular edge-colouring). This has resulted in Proposition 9.5.
Once done, we have been then able to study the decomposition of colourable graphs into locally
irregular subgraphs. As a guiding thread, we have raised Conjecture 9.9, which we have verified
for various classes of graphs throughout Section 9.2. From all our results, Theorem 9.21 on
regular graphs is surely the most interesting one. We have finally closed Chapter 9 by studying
algorithmic aspects related to locally irregular edge-colouring of graphs. In particular, we have
proved that determining the irregular chromatic index of a colourable graph is NP-complete in
general (Theorem 9.44), but can be done in linear time in the context of trees (Corollary 9.43).

In Chapter 10, we have introduced oriented notions according to which we have studied
analogues of the 1-2-3 and 1-2 Conjectures. The arising problems have then appeared to be
way easier to tackle than the original undirected ones. This has resulted in proofs that every
oriented graph has neighbour-outsum-distinguishing chromatic index at most 3 (Theorem 10.1),
and that not all oriented graphs admit a neighbour-sum-distinguishing 2-total-weighting (Corol-
lary 10.31). We have then focused on the algorithmic aspects related to neighbour-outsum-
distinguishing arc-weighting of oriented graphs. Namely, we have proved that Neighbour-
Outsum-Distinguishing 2-Arc-Weighting is NP-complete, recall Theorem 10.20, rejecting
the existence of an easy classification of oriented graphs with neighbour-outsum-distinguishing
chromatic index at most 2 (unless P = NP).

Finally, we have studied, in Chapter 11, an oriented version of the problem considered in
Chapter 9, about which we have raised a similar conjecture, recall Conjecture 11.1. Again, the
oriented version of this conjecture has shown up to be easier to deal with. Namely, we have
managed to prove a weaker version of Conjecture 11.1 by showing that every oriented graph has
irregular chromatic index at most 6 (Theorem 11.9). This is significant as we did not manage to
prove such a constant upper bound on the irregular chromatic index of undirected graphs. Then,
similarly as in the undirected case, we have proved that, even if Conjecture 11.1 turned out to
be true, it would remain NP-complete to determine the irregular chromatic index of an oriented
graph, recall Theorem 11.15.

Our mentioned above investigations have given rise to new directions for future works, see
concluding Sections 8.6, 9.4, 10.5, and 11.4. It is also worth mentioning that possibilities for

258 Conclusion to Part II

imagining new vertex-distinguishing edge-weighting notions and problems are wide, so many
other perspectives may arise by introducing new such notions by either combining two existing
vertex-distinguishing edge-weighting notions, or introducing new vertex-distinguishing parame-
ters. In particular, continuing studying oriented analogues of undirected vertex-distinguishing
problems seems an appealing direction to us.

Bibliography 259

Bibliography

[1] L. Addario-Berry, R.E.L. Aldred, K. Dalal, and B.A. Reed. Vertex colouring edge
partitions. Journal of Combinatorial Theory, Series B, 94(2):237–244, 2005.

[2] L. Addario-Berry, K. Dalal, C. McDiarmid, B. A. Reed, and A. Thomason. Vertex-
colouring edge-weightings. Combinatorica, 27(1):1–12, 2007.

[3] L. Addario-Berry, K. Dalal, and B.A. Reed. Degree constrained subgraphs. Discrete
Applied Mathematics, 156(7):1168–1174, 2008.

[4] A. Ahadi, A. Dehghan, and M-R. Sadeghi. Algorithmic complexity of proper labeling
problems. Theoretical Computer Science, 495:25–36, 2013.

[5] Y. Alavi, G. Chartrand, F.R.K. Chung, P. Erdős, R.L. Graham, and O.R. Oeller-
mann. How to define an irregular graph. Journal of Graph Theory, 11(2):235–249,
1987.

[6] N. Alon. Combinatorial Nullstellensatz. Combinatorics, Probability and Computing,
8(1-2):7–29, 1999.

[7] N. Alon and J.H. Spencer. The Probabilistic Method, 3rd edition. Wiley-Interscience,
2008.

[8] G.E. Andrews. The Theory of Partitions. Cambridge University Press, 1998.

[9] K. Appel and W. Haken. Solution of the Four Color Map Problem. Scientific Amer-
ican, 237(4):108–121, 1977.

[10] M. Araya and G. Wiener. On Cubic Planar Hypohamiltonian and Hypotraceable
Graphs. Electronic Journal of Combinatorics, 18(1):P85, 2011.

[11] D. Barth, O. Baudon, and J. Puech. Decomposable trees: a polynomial algorithm for
tripodes. Discrete Applied Mathematics, 119(3):205–216, 2002.

[12] D. Barth and H. Fournier. A degree bound on decomposable trees. Discrete Mathe-
matics, 306(5):469–477, 2006.

[13] D. Barth, H. Fournier, and R. Ravaux. On the shape of decomposable trees. Discrete
Mathematics, 309:3882–3887, 2009.

[14] T. Bartnicki, J. Grytczuk, and S. Niwczyk. Weight choosability of graphs. Journal of
Graph Theory, 60(3):242–256, 2009.

[15] O. Baudon, J. Bensmail, F. Foucaud, and M. Pilśniak. Structural properties of re-
cursively partitionable graphs with connectivity. 2012. Preprint available online at
http://hal.archives-ouvertes.fr/hal-00672505.

[16] O. Baudon, J. Bensmail, R. Kalinowski, A. Marczyk, J. Przybyło and M. Woźniak.
On the Cartesian product of an arbitrarily partitionable graph and a traceable graph.
Discrete Mathematics and Theoretical Computer Science, 16(2):225–232, 2014.

260 Bibliography

[17] O. Baudon, J. Bensmail, J. Przybyło and M. Woźniak. On decomposing reg-
ular graphs into locally irregular subgraphs. 2013. Preprint available online at
http://www.ii.uj.edu.pl/documents/12980385/26042491/MD_65.pdf.

[18] O. Baudon, J. Bensmail, J. Przybyło and M. Woźniak. Partitioning powers of trace-
able or Hamiltonian graphs. Theoretical Computer Science, 520:133–137, 2014.

[19] O. Baudon, J. Bensmail and É. Sopena. Partitioning Harary graphs into con-
nected subgraphs containing prescribed vertices. 2012. Preprint available online at
http://hal.archives-ouvertes.fr/hal-00687607.

[20] O. Baudon, J. Bensmail and É. Sopena. On the complexity of determining the irregu-
lar chromatic index of a graph. 2013. Preprint available online at http://hal.archives-
ouvertes.fr/hal-00921849.

[21] O. Baudon, J. Bensmail and É. Sopena. An oriented version of the 1-2-3 Conjecture.
To appear in Discussiones Mathematicae Graph Theory. 2013. Preprint available on-
line at http://hal.archives-ouvertes.fr/hal-00849065.

[22] O. Baudon, F. Foucaud, J. Przybyło, and M. Woźniak. On the structure of arbitrarily
partitionable graphs with given connectivity. Discrete Applied Mathematics, 162:381–
385, 2014.

[23] O. Baudon, F. Gilbert, and M. Woźniak. Recursively arbitrarily vertex-decomposable
suns. Opuscula Mathematica, 31(4):533–547, 2011.

[24] O. Baudon, F. Gilbert, and M. Woźniak. Recursively arbitrarily vertex-decomposable
graphs. Opuscula Mathematica, 32(4):689–706, 2012.

[25] O. Baudon, J. Przybyło, and M. Woźniak. On minimal arbitrarily partitionable
graphs. Information Processing Letters, 112:697–700, 2012.

[26] D. Bauer, H.J. Broersma, and H.J. Veldman. Not every 2-tough graph is Hamiltonian.
Discrete Applied Mathematics, 99:317–321, 2000.

[27] L.W. Beineke and M.D. Plummer. On the 1-factors of a non-separable graph. Journal
of Combinatorial Theory, 2(3):285–289, 1967.

[28] J. Bensmail. Determining the irregular chromatic index of a graph. In Proceedings
European Conference on Combinatorics, Graph Theory and Applications, EuroComb
2013, 2013.

[29] J. Bensmail. Préaffectation de sommets dans les graphes arbitrairement parti-
tionnables. Master’s thesis (in French), Université Bordeaux 1, 2011.

[30] J. Bensmail. On the complexity of partitioning a graph into a few connected sub-
graphs. To appear in Journal of Combinatorial Optimization. 2013. Preprint available
online at http://hal.archives-ouvertes.fr/hal-00762612.

[31] J. Bensmail. On the longest path in a recursively arbitrarily partitionable graph.
Opuscula Mathematica, 33(4):631–640, 2013.

[32] J. Bensmail. On the path cover number of k-assignable arbitrarily partition-
able graphs. 2013. Preprint available online at http://hal.archives-ouvertes.fr/hal-
00881861.

Bibliography 261

[33] J. Bensmail. On three polynomial kernels of sequences for arbitrarily partition-
able graphs. 2013. Preprint available online at http://hal.archives-ouvertes.fr/hal-
00875371.

[34] J. Bensmail. The vertex-colouring {a, b}-edge-weighting problem is NP-complete
for every pair of weights. 2013. Preprint available online at http://hal.archives-
ouvertes.fr/hal-00826346.

[35] J. Bensmail and G. Renault. Decomposing oriented graphs into 6 locally irregular
oriented graphs. 2013. Preprint available online at http://hal.archives-ouvertes.fr/hal-
00869778.

[36] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications. North Holland, 1985.

[37] M. Borowiecki, J. Grytczuk, and M. Pilśniak. Coloring chip configurations on graphs
and digraphs. Information Processing Letters, 112(1-2):1–4, 2012.

[38] S. Brandt. Finding vertex decompositions in dense graphs. In Proceedings 15th Work-
shop on Graph Theory - Colourings, Independence and Dominations (CID), 2013.

[39] H. Broesma, D. Kratsch, and G. Woeginger. Fully decomposable split graphs. Euro-
pean Journal of Combinatorics, 34(3):567–575, 2013.

[40] R.L. Brooks. On colouring the nodes of a network. In Proceedings Cambridge Philo-
sophical Society, Mathematical and Physical Sciences, 37:194–197, 1941.

[41] G.J. Chang, C. Lu, J. Wu, and Q. Yu. Vertex-coloring edge-weightings of graphs.
Taiwanese Journal of Mathematics, 15(4):1807–1813, 2011.

[42] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz, and F. Saba.
Irregular networks. Congressus Numerantium, 64:197–210, 1988.

[43] S. Cichacz, A. Görlich, A. Marczyk, J. Przybyło, and M. Woźniak. Arbitrarily vertex
decomposable caterpillars with four or five leaves. Discussiones Mathematicae Graph
Theory, 26:291–305, 2006.

[44] S. Cook. The complexity of theorem proving procedures. In Proceedings 3rd Annual
ACM Symposium on Theory of Computing, 151–158, 1971.

[45] A. Czumaj and W-B. Strothmann. Bounded degree spanning trees. In Algorithms -
ESA’97, Lecture Notes in Computer Science, 1284:104–117, 1997.

[46] A. Davoodi and B. Omoomi. On the 1-2-3-conjecture. 2012. Preprint available online
at http://arxiv.org/abs/1205.3266.

[47] M. Dell’Amico and S. Martello. Reduction of the Three-Partition Problem. Journal
of Combinatorial Optimization, 3:17–30, 1999.

[48] R. Diestel. Graph Theory, 4th edition. Springer, 2010.

[49] A.A. Diwan. Partitioning 2-connected graphs into connected subgraphs. 2003.
Preprint available online at http://www.cse.iitb.ac.in/∼aad/postscript/4part.ps.

[50] A.A. Diwan and M.P. Kurhekar. Plane triangulations are 6-partitionable. Discrete
Mathematics, 256:91–103, 2002.

[51] R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer, 1999.

262 Bibliography

[52] A. Dudek and D. Wajc. On the complexity of vertex-coloring edge-weightings. Dis-
crete Mathematics Theoretical Computer Science, 13(3):45–50, 2011.

[53] D. Duffus, R.J. Gould, and M.S. Jacobson. Forbidden subgraphs and the Hamiltonian
theme. In Proceedings 4th International Conference on Combinatorics, Graph Theory,
and Computing, 297–315, 1980.

[54] M.E. Dyer and A.M. Frieze. On the complexity of partitioning graphs into connected
subgraphs. Discrete Applied Mathematics, 10:139–153, 1985.

[55] M.E. Dyer and A.M. Frieze. Planar 3DM is NP-complete. Journal of Algorithms,
7:174–184, 1986.

[56] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965.

[57] P. Erdős and A. Rényi. On Random Graphs. I. Publicationes Mathematicae, 6:290–
297, 1959.

[58] P. Festa, P.M. Pardalos, and M.G.C. Resende. Feedback set problems. In Handbook of
combinatorial optimization, Supplement Volume A, Kluwer Academic, 209–258, 1999.

[59] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press,
2009.

[60] A.M. Frieze and T. Łuczak. On the independence and chromatic numbers of random
regular graphs. Journal of Combinatorial Theory, Series B, 54:123–132, 1992.

[61] J.A. Gallian. A dynamic survey of graph labeling. Electronic Journal of Combina-
torics, 6, 1998.

[62] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, 1979.

[63] M.R. Garey, D.S. Johnson, and R.E. Tarjan. The planar Hamiltonian circuit problem
is NP-complete. SIAM Journal on Computing, 5(4):704–714, 1976.

[64] F. Gilbert. Graphes arbitrairement décomposables. Master’s thesis (in French), Uni-
versité Bordeaux 1, 2007.

[65] R.J. Gould. Advances on the Hamiltonian problem - A survey. Graphs and Combi-
natorics, 19:7–52, 2003.

[66] E. Győri. On division of graphs to connected subgraphs. In Proceedings 5th Hungarian
Combinational Colloquium, 485–494, 1978.

[67] E. Győri and C. Palmer. A new type of edge-derived vertex coloring. Discrete Math-
ematics, 309(22):6344–6352, 2009.

[68] F. Havet, N. Paramaguru, and R. Sampathkumar. Detection number of bipartite
graphs and cubic graphs. 2012. Preprint available online at http://hal.inria.fr/hal-
00744365/.

[69] I. Holyer. The NP-Completeness of Edge-Colouring. SIAM Journal on Computing,
10(4):718–720, 1981.

[70] L. Hofer and T. Lambert. Study of the article: “An O(k2n2) algorithm to find
a k-partition in a k-connected graph”. 2014. Technical report available online at
http://www.labri.fr/perso/jbensmai/students/hofer-lambert.pdf

Bibliography 263

[71] M. Horňák, A. Marczyk, I. Schiermeyer, and M. Woźniak. Dense arbitrarily vertex
decomposable graphs. Graphs and Combinatorics, 28:807–821, 2012.

[72] M. Horňák, Zs. Tuza, and M. Woźniak. On-line arbitrarily vertex decomposable trees.
Discrete Applied Mathematics, 155:1420–1429, 2007.

[73] M. Horňák and M. Woźniak. Arbitrarily vertex decomposable trees are of degree at
most 6. Opuscula Mathematica, 23:49–62, 2003.

[74] W. Imrich and S. Klavžar. Product Graphs: Structure and Recognition. Wiley-
Interscience, 2000.

[75] R. Kalinowski, M. Pilśniak, M. Woźniak, and I.A. Zioło. Arbitrarily vertex decom-
posable suns with few rays. Discrete Mathematics, 309:3726–3731, 2009.

[76] R. Kalinowski, M. Pilśniak, M. Woźniak, and I.A. Zioło. On-line arbitrarily vertex
decomposable suns. Discrete Mathematics, 309:6328–6336, 2009.

[77] M. Kalkowski. A note on the 1,2-conjecture. 2009. Private communication.

[78] M. Kalkowski, M. Karoński, and F. Pfender. Vertex colouring edge weightings with
integer weights at most 6. Rostocker Mathematisches Kolloquium, 64:39–43, 2009.

[79] M. Kalkowski, M. Karoński, and F. Pfender. Vertex-coloring edge-weightings: to-
wards the 1-2-3-conjecture. Journal of Combinatorial Theory, Series B, 100(3):347–
349, 2010.

[80] D. Karger, R. Motwani and G.D.S. Ramkumar. On approximating the longest path
in a graph. Algorithmica, 18(1):82–98, 1997.

[81] M. Karoński, T. Łuczak, and A. Thomason. Edge weights and vertex colours. Journal
of Combinatorial Theory, Series B, 91(1):151–157, 2004.

[82] R.M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer
Computations, R.E. Miller and J.W. Thatcher, New York: Plenum. Press, 85–103,
1972.

[83] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone, and B. Stevens. Digraphs
are 2-weight choosable. Electronic Journal of Combinatorics, 18(1): P21, 2011.

[84] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone, and B. Stevens. Vertex-
colouring edge-weightings with two edge weights. Discrete Mathematics Theoretical
Computer Science, 14(1), 2012.

[85] P. Laroche. Planar 1-in-3 satisfiability is NP-complete. In Proceedings ASMICS Work-
shop on Tilings, Deuxième Journée Polyominos et pavages, École Normale Supérieure
de Lyon, 117–126, 1992.

[86] J. Lehel. Facts and quests on degree irregular assignments. In Graph Theory, Com-
binatorics, and Applications, Wiley-Interscience, 765–781, 1991.

[87] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing,
11(2):329–343, 1981.

[88] L. Lovász. Coverings and coloring of hypergraphs. In Proceedings 4th South-eastern
Conference on Combinatorics, Graph Theory, and Computing, 3–12, 1973.

[89] L. Lovász. A homology theory for spanning trees of a graph. Acta Mathematica
Academiae Scientiarum Hungaricae, 30(3-4):241–251, 1977.

264 Bibliography

[90] J. Ma and S.H. Ma. An O(k2n2) algorithm to find a k-partition in a k-connected
graph. Journal of Computer Science and Technology, 9(1):86–91, 1994.

[91] A. Marczyk. An Ore-type condition for arbitrarily vertex decomposable graphs. Dis-
crete Mathematics, 309:3588-3594, 2009.

[92] A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential time. In Proceedings 13th Annual Symposium on
Switching and Automata Theory, 125–129, 1972.

[93] T.H. Miyano, T. Nishizeki, N. Takahashi, and S. Uneo. An algorithm for tripar-
titioning 3-connected graphs. Journal of Information Processing Society of Japan,
31(5):584–592, 1990.

[94] M. Molloy and B. Reed. Graph Colouring and the Probabilistic Method. Springer,
2002.

[95] J. W. Moon. Topics on tournaments. Holt, Rinehart and Winston, 1968.

[96] B.M.E. Moret. Planar NAE3SAT is in P. SIGACT News, 19(2):51–54, 1988.

[97] S-I. Nakano, S. Rahman, and T. Nishizeki. A linear-time algorithm for four-
partitioning four-connected planar graphs. Information Processing Letters, 62(6):315–
322, 1997.

[98] T. Nierhoff. A tight bound on the irregularity strength of graphs. SIAM Journal on
Discrete Mathematics, 13(3):313–323, 2000.

[99] O. Ore. A note on Hamiltonian circuits. American Mathematical Monthly, 67: 55,
1960.

[100] J. Przybyło. A note on a neighbour-distinguishing regular graphs total-weighting.
Electronic Journal of Combinatorics, 15(1): N35, 2008.

[101] J. Przybyło. On decomposing graphs of large minimum degree into locally irregular
subgraphs. 2013. Private communication.

[102] J. Przybyło and M. Woźniak. On a 1,2 conjecture. Discrete Mathematics Theoretical
Computer Science, 12(1):101–108, 2010.

[103] J. Przybyło and M. Woźniak. Total weight choosability of graphs. Electronic Journal
of Combinatorics, 18(1): P112, 2011.

[104] R. Ravaux. Graphes arbitrairement partitionnables : propriétés structurelles et algo-
rithmiques. Ph.D. thesis (in French), Université Versailles Saint-Quentin, 2009.

[105] R. Ravaux. Decomposing trees with large diameter. Theoretical Computer Science,
411:3068-3072, 2010

[106] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings 10th Annual
ACM Symposium on Theory of Computing, 216–226, 1978.

[107] M. Schaefer and C. Umans. Completeness in the Polynomial-Time Hierarchy: A
compendium. SIGACT News, 33(3):32–49, 2002.

[108] W. Schnyder. Embedding planar graphs on the grid. In 1st Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 138–148, 1990.

Bibliography 265

[109] B. Seamone. The 1-2-3 Conjecture and related problems: a survey. 2012. Preprint
available online at http://arxiv.org/abs/1211.5122.

[110] B. Seamone. Derived Colourings of Graphs. Ph.D. thesis, Carleton University, 2012.

[111] B. Seamone. On weight choosability and additive choosability numbers of graphs.
2012. Preprint available online at http://arxiv.org/abs/1210.6944.

[112] J. Skowronek-Kaziów. 1,2 conjecture - the multiplicative version. Information Pro-
cessing Letters, 107(3-4):93–95, 2008.

[113] L.J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3(1):1-22, 1976.

[114] L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time. In Pro-
ceedings 5th Annual ACM Symposium on Theory of Computing, 1–9, 1973.

[115] H. Suzuki, N. Takahashi, and T. Nishizeki. A linear algorithm for bipartition of
biconnected graphs. Information Processing Letters, 33:227–231, 1990.

[116] C. Thomassen. Hypohamiltonian and hypotraceable graphs. Discrete Mathematics,
9(1):91–96, 1974.

[117] W.T. Tutte. The Factorization of Linear Graphs. Journal of the London Mathematical
Society, 22:107–111, 1947.

[118] T. Wang and Q. Yu. On vertex-coloring 13-edge-weighting. Frontiers of Mathematics
in China, 3(4):581–587, 2008.

[119] D. West. Irregularity strength of graphs and digraphs. 2008. Web page available online
at http://math.uiuc.edu/∼west/regs/irreg.html.

[120] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer
Science, 3(1):23-33, 1976.

Index of definitions 267

Index of definitions

∃∀∃∀... Satisfiability, 24
∀∃ 1-in-3 Satisfiability, 27
∀∃∀∃... Satisfiability, 24
1-2 Conjecture, 163
1-2-3 Conjecture, 160
1-in-3, 25
1-in-3 Satisfiability, 25
3-clause, 25
3-Partition, 29
3-Satisfiability, 25

acyclic, 8
adjacent

edges, 3
vertices, 3

antipodal, 15
Arbitrarily Partitionable Graph, 36
arbitrarily

k-partitionable, 36
P -partitionable, 45
partitionable, 34

arboricity, 13
arc, 3

set, 3
arm, 14
assignment, 22

balanced, 17
balloon, 15
base, 51
bipartite, 17
bipartition, 3
branch, 15
breadth-first search algorithms, 9

Cartesian, 14
caterpillar, 14
certificate, 21
checking, 21
child, 10
chromatic

index, 12
number, 12

circuit, 8
circumference, 7
clause, 22

subgraph, 51
claw, 14
clique, 7

number, 7
cograph, 17
colour, 11

class, 11
colourable, 159

coloured
degree, 13
edge, 13
indegree, 13
outdegree, 13
subgraph, 13

colouring, 11
comb, 14
complete

graph, 17
join, 13
problem, 23

completeness, 22
Completing Step, 115
component, 8
compound, 16
conjunctive, 22
connected, 8
connected-cycles graph, 140
connection, 172
connectivity, 9
co-NP, 21
cotree, 17
cubic, 5
cut, 9
cutset, 9
cycle

graph, 15
subgraph, 7

decision, 20
decomposable, 166, 168
degree

of a regular graph, 5
of a vertex, 4

∆p
i , 23

dense, 6
density, 5
depth-first, 9
descendant, 10
diagonal, 15
diameter, 9
dimension, 18
directed

graph, 3
path, 8

direction, 3
disconnected, 8
disjoint, 13
distance, 9
Dynamic Realizable Sequence, 65

edge, 3
multiset, 3

268 Index of definitions

set, 3
edge-

choice number, 13
choosable, 12
colourable, 12
colouring, 11
disjoint, 7
weightable, 12
weighting, 11

end, 3
endedge, 7
endvertex, 7
even

branch, 15
exception, 159
EXPTIME, 21
exponential, 21
extension, 172

father, 10
feedback, 13
Filling Step, 114
first, 7
fixed-parameter, 24
forced, 27
forest, 10
formula, 22
free, 7

girth, 7
graph, 4
grid, 18
Győri-Lovász Theorem, 33

Hamiltonian
cycle, 8
graph, 8
path, 8

Hamiltonian-connected, 8
Hamiltonian Path, 29
hanging

branch, 16
vertex, 5

Harary, 15
hard, 23
head, 3
highly, 158
hypercube, 18
hyperedge, 3

set, 3
hypergraph, 3

identification
of two outputs, 172
of two vertices, 8

incident, 3
indegree, 5
independent

set, 4
vertices, 4

ingoing, 3
inneighbour, 5
inner

vertex of a path, 7
node of a tree, 10

input, 172
inregular, 5
instance, 20
irregular, 166, 169
irregularity, 158
isomorphic, 6
ith, 11

k-
Preassignable Arbitrarily Partition-

able Graph, 95
preassignable arbitrarily partitionable, 45
preassignation, 45

kernel
for a family of graphs, 37
for a graph, 37

ladder, 18
last, 7
layer

of a graph, 19
of a subset, 19
of a vertex, 19

leaf, 10
length

of a cycle, 7
of a path, 7

list, 12
List 1-2 Conjecture, 165
List 1-2-3 Conjecture, 164
literal, 22
locally

irregular arc-colourin, 169
irregular edge-colouring, 166
irregular graph, 158
irregular oriented graph, 168

Locally Irregular
k-Arc-Colouring, 169
k-Edge-Colouring, 167

matching, 13
maximal, 101
maximum

degree, 4
indegree, 5
outdegree, 5

minimal, 37
minimum

degree, 4
indegree, 5
outdegree, 5

monotone, 26
multigraph, 3
multipartite, 17

Index of definitions 269

multipode, 14
multiset, 2

negation, 22
neighbour, 3
neighbour-multiset-distinguishing

chromatic index, 161
edge-colouring, 161

Neighbour-Multiset-Distinguishing k-Edge-
Colouring, 162

neighbour-outsum-distinguishing
arc-weighting, 168
chromatic index, 168

Neighbour-Outsum-Distinguishing 2-Arc-
Weighting, 168

neighbour-sum-distinguishing
chromatic index, 159
edge-weighting, 158
total chromatic number, 163
total-weighting, 163

Neighbour-Sum-Distinguishing {a, b}-Edge-
Weighting, 160

neighbourhood, 4
net, 17
no-checking, 21
node, 10
Not-All-Equal 3-Satisfiability, 26
not-all-equal, 25
NP, 21
NP-complete, 22

odd
branch, 15

on-line
arbitrarily partitionable, 35
partition, 36

On-Line Arbitrarily Partitionable Graph,
46

oracle, 23
order

of a cycle, 7
of a graph, 3
of a path, 7

orientation, 4
oriented

distance, 10
graph, 4

outdegree, 5
outgoing, 3
outneighbour, 5
output, 172
outregular, 5

P, 21
P -realizable, 45
parallel, 3
parameter, 24
parameterized, 24
part, 3

partial
balloon, 16
connected-cycles graph, 141

partition
number, 3
of a sequence, 36
of a set, 3
of an integer, 3
problem, 1

partition-
hierarchy, 64
level, 64

path
augmentation, 54
cover, 13
cover number, 13
graph, 14
subgraph, 7

perfect, 13
PH, 23
Πp
i , 23

planar
formula, 26
graph, 17

plane, 17
polynomial

complexity, 21
hierarchy, 23
kernel, 37

power, 14
preassignation, 45
preassigned

block, 101
vertex, 45

problem, 20
projection, 16
proper, 12
PSPACE, 25

quasi-perfect, 13

ray, 15
realizable

partition-hierarchy, 64
sequence, 34
set of sequences, 37

Realizable Sequence, 36
with Preassignation, 53

Realizable Size-k Sequence, 50
with k′-Preassignation, 54

realization, 34
recursive, 36
recursively

arbitrarily partitionable, 35
realizable, 36

Recursively Arbitrarily Partitionable Graph,
46

reduced, 22
reducible, 22

270 Index of definitions

reduction, 22
regular, 5
return, 9
root, 60, 61

of a balloon, 15
of a compound graph, 16
of a multipode, 14
of a search algorithm, 9
of a star, 14
of a tree, 10

rooted, 10

Satisfiability, 22
satisfiable, 22
search, 9
sequence, 35
series-parallel, 17
Σpi , 23
size

of a graph, 3
of a problem instance, 20
of a sequence, 35

solution, 20
solving, 20
space, 20
spanning, 6
sparse, 6
spectrum, 35
split, 17
star

augmentation, 52
graph, 14

strong, 10
subdivision, 8
subgraph, 6

induced, 6
by a set of edges, 6
by a set of vertices, 6

subtree, 11
sun, 15
supergraph, 6

tail, 3
terminal, 17
time, 20
total, 12
total-

choice number, 13
choosable, 12
colourable, 12
colouring, 11
weightable, 12
weighting, 11

totally
irregular

graph, 157
oriented graph, 168

tournament, 17
traceable, 8

transitive, 17
tree, 10
triangle, 7
triangulated, 17
tripode, 14
trivial

path, 7
sequence, 35
subgraph, 6

unbalanced, 17
underlying, 4
undirected, 3
unicyclic, 7
uniform, 5
universal, 5
urchin, 145

variable, 22
vertex, 3

set, 3
vertex-

choice number, 13
choosable, 12
colourable, 12
colouring, 11
disjoint, 7
weightable, 12
weighting, 11

vertex-sum-distinguishing
chromatic index, 158
edge-weighting, 158

weak, 10
weight, 11

class, 11
weightable, 159
weighted

degree, 157
outdegree, 167

weighting, 11

yes-checking, 21

List of notation 271

List of notation

<...> Problem instance with given inputs, page 20
• Representation of a vertex in a cotree, page 17
A(D) Arc set of D, page 3
a(G) Arboricity of G, page 13
B(...) Balloon with branches of given orders, page 16
bi(B) Order of the ith branch of B, page 133
BIN(n, p) Binomial distribution with parameters n and p, page 19
ca,b(Tr) {a, b}-edge-colouring of Tr verifying c(rr+) = a, page 209
Cn Cycle with order n, page 15
Cat(a, b) Caterpillar isomorphic to P3(1, a− 1, b− 1), page 14
Ck,`(n) Set of (k, `)-compound graphs with order n, page 74
Ck,`(...) Compound graph with k roots and ` given components, page 16
CCk(x, y) Connected-cycles graph with parameters k, x and y, page 140
ch(G) List analogue of χ(G), page 13
ch′(G) List analogue of χ′(G), page 13
ch′′(G) List analogue of χ′′(G), page 13
ch′term(G) List analogue of χ′term(G), page 160
ch′′term(G) List analogue of χ′′term(G), page 160
χ′irr(

−→
G) Irregular chromatic index of

−→
G (oriented), page 169

χ′irr(G) Irregular chromatic index of G (undirected), page 166
χ′npd(

−→
G) Neighbour-outproduct-distinguishing chromatic index of

−→
G (oriented), page 231

χ′nsd(
−→
G) Neighbour-outsum-distinguishing chromatic index of

−→
G (oriented), page 168

χ′nsd(G) Neighbour-sum-distinguishing chromatic index of G (undirected), page 159
χ′′nsd(

−→
G) Neighbour-sum-distinguishing total chromatic number of

−→
G (oriented),

page 239
χ′term(G) Chromatic index related to a distinguishing edge-weighting notion, page 159
χ′′term(G) Total analogue of χ′term(G), page 160
χ(G) Chromatic number of G, page 12
χ′(G) Chromatic index of G, page 12
χ′′(G) Total chromatic number of G, page 12
D0 Set of possible 1-degrees of a shrub’s root’s child, page 213
(D1, ..., Dd(r+)−1) Signature of a shrub with root r, page 213
d(v) Degree of v, page 4
dG(v) Degree of v in G, page 4
dc,a(v) Degree of v in the a-subgraph induced by c, page 13
d+(v) Outdegree of v, page 5
d+
D(v) Outdegree of v in D, page 5
d+
c,a(v) Outdegree of v in the a-subgraph induced by c, page 13
d−(v) Indegree of v, page 5
d−D(v) Indegree of v in D, page 5
d−c,a(v) Indegree of v in the a-subgraph induced by c, page 13
∆(G) Maximum degree of G, page 4
∆+(D) Maximum outdegree of D, page 5
∆−(D) Maximum indegree of D, page 5
δ(G) Minimum degree of G, page 4

272 List of notation

δ+(D) Minimum outdegree of D, page 5
δ−(D) Minimum indegree of D, page 5
dist(u, v) Distance from u to v, page 9
E(G) Edge set of G, page 3
G�H Cartesian product of G and H, page 14
G+H Disjoint union of G and H, page 8
G×H Complete join of G and H, page 13
G ' H G and H are isomorphic, page 6
G+ S Addition of S to G, page 8
G− S Removal of S from G, page 8
G[S] Subgraph of G induced by S, page 6
G(n, p) Erdős-Rényi random graph model with parameters n and p, page 19
Ga,b Grid with a rows and b columns, page 18
Gi ith layer of G in G�P`, page 19
Gk kth power of G, page 14
Hk,n k-connected Harary graph with order n, page 15
ij(G) jth input of G, page 172
Ij(G) jth input of G, page 219
κ(G) Connectivity of G, page 9
KCk,`(n) Set of sequences for Ck,`(n), page 74
KMk

(n) Set of sequences forMk(n), page 66
Kν(...) Graph with ν universal vertices and given components, page 112
KS(n) Polynomial kernel for S(n), page 39
KT (n) Polynomial kernel for T (n), page 39
K ′T (n) Polynomial kernel for T (n), page 39
Kn Complete graph with order n, page 17
KUk(n) Set of sequences for Uk(n), page 70
mc(v) Multiset of colours incident to v by c, page 161
m(Cj) Number of distinct literals in Cj , page 27
Mk(n) Set of complete k-partite graphs with order n, page 66
Mk(...) Complete k-partite graph with parts of given orders, page 17
µ(G) Path cover number of G, page 13
n(`i) Number of distinct clauses which contain `i, page 27
N(v) Neighbourhood of v, page 4
NG(v) Neighbourhood of v in G, page 4
N+(v) Set of outneighbours of v, page 5
N+
D (v) Set of outneighbours of v in D, page 5

N−(v) Set of inneighbours of v, page 5
N−D (v) Set of inneighbours of v in D, page 5
O Big-O notation of Landau, page 20
o Little-o notation of Landau, page 20
oj(G) jth output of G, page 172
Oj(G) jth output of G, page 219
ω(G) Clique number of G, page 7
pw(v) Product of weights incident to v by w, page 164
p+
w(v) Product of outgoing weights incident to v by w, page 231
PB(...) Partial balloon with (possibly hanging) branches of given orders, page 16
PCCk(x) Partial connected-cycles graph with parameters k and x, page 141
Π ≤ Π′ Π is reducible to Π′, page 22
Π ≤p Π′ Π is reducible to Π′ in polynomial time, page 22
|π| Size of π, page 35
‖π‖ Sum of the elements of π, page 35

List of notation 273

Pk(...) k-pode with arms of given orders, page 14
Pn Path with order n, page 14
Pr(Ai) Probability of Ai to occur, page 19
Qn Hypercube of dimension n, page 18
r1 Root of a (possibly partial) balloon, page 133
r2 Root of a (possibly partial) balloon, page 133
S(n) Set of split graphs with order n, page 38
sw(v) Sum of weights incident to v by w, page 158
s+
w(v) Sum of outgoing weights incident to v by w, page 168
Si ith layer of S in G�P`, page 19
ς(G) Order of the longest paths of G, page 8
Sn Star with order n, page 14
sp(π) Spectrum of π, page 35
T (n) Set of tripodes with order n, page 39
T Family of exceptions for locally irregular edge-colouring, page 194
Tr[u] Subtree of Tr rooted at u, page 11
Tr[u, i] ith subtree of Tr rooted at u, page 11
Tr Rooted tree with root r and underlying tree T , page 10
u+ Successor of u, page 96
u+ Unique child of u, page 10
u− Father of u, page 10
u− Predecessor of u, page 96
uGv Subgraph G[{u, u+, (u+)+, ..., v−, v}] of G, page 96
ui ith layer of u in G�P`, page 19
uj Projection to the jth component of the root u, page 16
Uk(n) Set of graphs with k universal vertices and order n, page 70
und(

−→
G) Undirected graph underlying

−→
G , page 4

uv Edge between u and v, page 3
−→uv Arc directed from u to v, page 3
vji ith vertex of the jth branch of a balloon, page 133
V (G) Vertex set of G, page 3
v1v2...vk Undirected path with consecutive vertices v1, v2, ..., vk, page 7
−−−−−→v1v2...vk Directed path with consecutive vertices v1, v2, ..., vk, page 8
|v1v2...vk| Order of v1v2...vk, page 7
‖v1v2...vk‖ Length of v1v2...vk, page 7
v1v2...vkv1 Undirected cycle with consecutive vertices v1, v2, ..., vk, v1, page 7
−−−−−−−→v1v2...vkv1 Circuit with consecutive vertices v1, v2, ..., vk, v1, page 8
|v1v2...vkv1| Order of v1v2...vkv1, page 7
‖v1v2...vkv1‖ Length of v1v2...vkv1, page 7
x+ Any positive integer greater than x, page 132
x− Any positive integer smaller than x, page 132

Partitions et décompositions de graphes

Résumé :
Cette thèse est dédiée à l’étude de deux familles de problèmes de partition de graphe.

Nous considérons tout d’abord le problème de sommet-partitionner un graphe en sous-graphes
connexes. Plus précisément, étant donnés p entiers positifs n1, n2, ..., np dont la somme vaut
l’ordre d’un graphe G, peut-on partitionner V (G) en p parts V1, V2, ..., Vp de sorte que chaque Vi
induise un sous-graphe connexe d’ordre ni ? Nous nous intéressons ensuite à des questions plus
fortes. Que peut-on dire si l’on souhaite que G soit partitionnable de cette manière quels que
soient p et n1, n2, ..., np ? Si l’on souhaite que des sommets particuliers de G appartiennent à des
sous-graphes particuliers de la partition ? Et si l’on souhaite que les sous-graphes induits soient
plus que connexes ? Nous considérons toutes ces questions à la fois du point de vue structurel
(sous quelles conditions structurelles une partition particulière existe-t-elle nécessairement ?) et
algorithmique (est-il difficile de trouver une partition particulière ?).

Nous nous intéressons ensuite à la 1-2-3 Conjecture, qui demande si tout graphe G admet
une 3-pondération voisin-somme-distinguante de ses arêtes, i.e. une 3-pondération par laquelle
chaque sommet de G peut être distingué de ses voisins en comparant uniquement leur somme
de poids incidents. Afin d’étudier la 1-2-3 Conjecture, nous introduisons notamment la notion
de coloration localement irrégulière d’arêtes, qui est une coloration d’arêtes dont chaque classe
de couleur induit un sous-graphe dans lequel les sommets adjacents sont de degrés différents.
L’intérêt principal de cette coloration est que, dans certaines situations, une pondération d’arêtes
voisin-somme-distinguante peut être déduite d’une coloration d’arêtes localement irrégulière. Nos
préoccupations dans ce contexte sont principalement algorithmiques (est-il facile de trouver une
pondération d’arêtes voisin-somme-distinguante ou une coloration d’arêtes localement irrégulière
utilisant le plus petit nombre possible de poids ou couleurs ?) et structurelles (quel est le plus
petit nombre de couleurs d’une coloration d’arêtes localement irrégulière ?). Nous considérons
également ces questions dans le contexte des graphes orientés.

Mots-clefs :
partition en sous-graphes connexes, graphe (récursivement) arbitrairement partitionnable (k-

préassignable, à la volée), coloration voisin-distinguante d’arêtes ou d’arcs, coloration localement
irrégulière d’arêtes ou d’arcs

Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux

351, cours de la Libération
33405 Talence Cedex, France

	Introduction
	Context of the thesis
	Definitions, notation, terminology, and related results
	General mathematics
	Graph theory
	Probabilistic tools
	Computational complexity theory

	List of decision problems
	Satisfiability-like problems
	Graph problems
	Partition problems

	I Partitioning graphs into connected subgraphs
	Introduction to Part I
	Motivations
	Definitions, terminology and notation
	Related work
	Contributions of Part I

	Arbitrarily partitionable graphs
	On the NP-completeness of Realizable Sequence
	Restrictions on the sequence
	Restrictions on the graph
	On the tightness of Gyori-Lovász Theorem

	Relationship between 2p and partition problems
	Three polynomial kernels of sequences
	Complete multipartite graphs
	Graphs with about a half universal vertices
	Graphs made up of partitionable components

	Minimal arbitrarily partitionable graphs
	Minimum order
	Maximum degree

	Cartesian products
	Conclusion and open questions

	Preassignable arbitrarily partitionable graphs
	Preliminary remarks and properties
	Powers of graphs with Hamiltonian properties
	Powers of traceable graphs
	Powers of Hamiltonian graphs

	Minimum size
	Harary graphs with odd connectivity at least 5
	On 2-preassignable arbitrarily partitionable graphs with minimum size

	On the order of the longest paths
	Cartesian products
	Conclusion and open questions

	On-line and recursively arbitrarily partitionable graphs
	Preliminary remarks and observations
	Algorithmic remarks
	Removing k-cutsets from recursively arbitrarily partitionable graphs
	Structural properties of on-line arbitrarily partitionable balloons
	Number of branches
	Some families of 4- or 5-balloons
	Order of the smallest branches
	Structural consequences on graphs with 2-cutsets

	On the order of the longest paths in a recursively arbitrarily partitionable graph
	Additive factor
	Multiplicative factor

	Conclusion and open questions

	Conclusion to Part I

	II Distinguishing the neighbours of a graph via an edge-weighting
	Introduction to Part II
	Motivations
	Definitions, terminology and notation
	Related work
	Contributions of Part II

	Complexity of Neighbour-Sum-Distinguishing {a,b}-Edge-Weighting
	Notation, terminology and preliminary remarks
	The hardness reduction framework
	Overview of the framework
	The reduction framework into details
	Final details

	First implementation: 0 {a,b} and b =-a
	Second implementation: b=0
	Third implementation: b=-a
	Conclusion and open questions

	Locally irregular edge-colouring of graphs
	Decomposing graphs into locally irregular subgraphs
	Characterization of exceptions
	Non-exception graphs are colourable

	Families with irregular chromatic index at most 3
	Some common families of graphs
	Regular graphs with large degree

	Determining the irregular chromatic index of a graph
	Recognizing exceptions
	Trees
	General graphs

	Conclusion and open questions

	Neighbour-outsum-distinguishing arc-weighting of oriented graphs
	On oriented versions of the 1-2-3 Conjecture
	Families with neighbour-outsum-distinguishing chromatic index at most 2
	Neighbour-Outsum-Distinguishing 2-Arc-Weighting is NP-complete
	About an oriented version of the 1-2 Conjecture
	Conclusion and open questions

	Locally irregular arc-colouring of oriented graphs
	Families with irregular chromatic index at most 3
	Decomposing oriented graphs into six locally irregular subgraphs
	Locally Irregular 2-Arc-Colouring is NP-complete
	Conclusion and open questions

	Conclusion to Part II
	Bibliography
	Index of definitions
	List of notation

