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Extended Abstract

The marking game is a 2-player game played on a graph, that was introduced in 1999 by
Zhu [3].The players, called Alice and Bob, alternate turns marking a yet unmarked vertex.
When a vertex is marked, we de�ne its score as one plus the number of its marked neighbors.
The score of the whole game is the maximum of the scores of the vertices of the graph,
independently of who marked the vertex. We say Alice has a strategy with score k if Alice
has a strategy that ensures all vertices get score at most k. We say Bob has a strategy with
score k if Bob has a strategy to ensure at least one vertex gets score more than k.

In the following, we call A-marking game the game where Alice starts, and B-marking
game when Bob starts. In order to be able to consider games under progress, we denote G|M
the game played on G where the set of vertices M is considered already marked (and we
ignore their score). The A-marking number (resp. B-marking number) denoted colA(G|M)
(resp. colB(G|M)) is the minimum k such that Alice has a strategy with score k on the graph
G|M in the A-marking game (resp. the B-marking game).

In the following, we study how the A- and B-marking numbers change when canonical
operations are applied to the graph. We �rst prove that the A- and B-marking numbers of a
graph di�er by at most one. We then give some bounds on the marking game numbers of a
graph under three operations: vertex removal, edge removal, and edge contraction.

1 Marking numbers

In this section we study and compare the A-marking number and the B one. The results on
this section also involve some work by El»bieta Sidorowicz [4].

For a graph G = (V,E) and an integer s, we let As(G) = {v ∈ V |d(v) ≥ s} and Bs(G) =
V \As(G).

Proposition 1 ([4]) Let G = (V,E) be a graph, s an integer, and M ⊆ V a set of marked
vertices in G. We then have:

• if |As \M | > |Bs \M |, colA(G|M) > s

• if |As \M | ≥ |Bs \M |, colB(G|M) > s.

A strategy for Bob to ensure the previous proposition is to play only vertices in |Bs \M |.
Then the last vertex to be marked is necessarily in As and thus the score is at least s+ 1.

We improve this result by showing that in general, Alice has no advantage playing on Bs

if she wants to ensure a score s. This is similar to saying it is never useful for Alice to let
Bob play �rst.

Lemma 2 Let G(V,E) be a graph and M a set of marked vertices. We have :

colA(G|M) ≤ colB(G|M) ≤ colA(G|M) + 1.

Proof: We �rst prove that colA(G|M) ≤ colB(G|M) by using the imagination strategy
argument (see [1]). Consider a strategy for Alice to ensure a score at most s in the B-
marking game. Alice adapts that same strategy to play the A-marking game. Before her �rst
move, she imagines Bob played on any vertex x ∈ Bs \M , then she plays the vertex y she
would have played as answer in the B-marking game. As the game goes on, she plays as if x



was marked, and she follows her strategy step by step to the answers of Bob. If Bob happens
to mark the vertex x, then she imagines Bob played any other unplayed vertex x′ ∈ Bs \M
and continues as in the imagined game.

Each time a vertex is marked in the A-marking game, it has no more marked neighbors
than in the imagined B-marking game, since Alice uses the same strategy. Moreover, the
imagined vertex that is played at the end of the game belongs to Bs so it has less than s
marked neighbors. Hence the maximum score is at most s. (This statement requires some
induction that is omitted here.)

We now prove that colB(G|M) ≤ colA(G|M) + 1. Assume Alice has a strategy in the
A-marking game with score s. Playing the B-marking game, Alice uses the same imagination
strategy. Bob starts playing some vertex x and Alice plays as if Bob did not play that move.
If at some point she is supposed to mark the vertex x marked by Bob, Alice marks any vertex
in As and imagines she played the vertex x (since that vertex would be played later on, it
has no more than s − 1 marked neighbors in the imagined game. If there is no vertex left
in As, there are only vertices of Bs unmarked, and we can immediately conclude the proof).
At each step there is one more vertex marked in the A-marking game than in the imagined
B-marking game. Thus when a vertex is marked, it has at most s marked neighbors. So the
maximum score is at most s+ 1.

Both bounds are tight. We consider the graphs Kn ∨Sm, where Kn denotes the complete
graph on n vertices, Sm the edgeless graph onm vertices, andG∨H the joint of two graphs (see
Fig. 1 for examples). For any integers n > m, we have that colA(Kn∨Sm) = colB(Kn∨Sm) =
n+m. Indeed, playing only the vertices of Sm, Bob enforces that the last vertex of Kn played
has all its n +m − 1 neighbors marked. This tighten the lower bound. On the other hand,
for n = m, colA(Kn ∨Sm) = n+m− 1 while colB(Kn ∨Sm) = n+m. Optimal strategies for
Alice and Bob are respectively to mark vertices from Kn and from Sm. �

Figure 1: Graphs K4 ∨ S4 and K3 ∨ S4 that show tightness

2 Basic operations

In this section, we describe the possible e�ect of deleting a vertex, deleting an edge or con-
tracting an edge on the marking number of a graph. We �rst propose the following result:

Theorem 3 (Vertex deletion) Let v be a vertex of V \M (and V \M 6= {v}). Then we
have:

colA(G|M)− 2 ≤ colA(G− {v}|M) ≤ colA(G|M),
colB(G|M)− 2 ≤ colB(G− {v}|M) ≤ colB(G|M),

and these bounds are tight.

The proof is omitted here, but it is also based on some imagination argument. We observed
earlier that colA(Kn ∨ Sn) = 2n − 1 while colA(Kn−1 ∨ Sn) = 2n − 3, tightening the lower
bound. For the B-marking game, we have colB(Kn∨Sn) = 2n while colA(Kn−1∨Sn) = 2n−2.
Removing a vertex of Sm in Kn ∨ Sm where m ≥ n + 2 does not change any of its marking
numbers, tightening the upper bound.



Theorem 4 (Edge deletion) Let e be an edge of G. Then we have:

colA(G|M)− 1 ≤ colA(G \ {e}|M) ≤ colA(G|M),
colB(G|M)− 1 ≤ colB(G \ {e}|M) ≤ colB(G|M),

and these bounds are tight.

The tightness is obtained by taking G = (Sn ∨Kn) minus a perfect matching. We have
then : colA(G) = 2n− 1 and colB(G) = 2n− 1. When an edge in Kn is removed we obtain :
colA(G \ {e} = colB(G \ {e}) = 2n− 2.

As a corollary of Theorems 3 and 4, we get:

Theorem 5 For H a subgraph of G, we have:

colA(H) ≤ colA(G),
colB(H) ≤ colB(G).

This is a nice behavior of the marking game for subgraphs. We could expect that the
parameter behave less nicely with the edge contraction. Indeed, we prove the following result.

Theorem 6 (Edge contraction) Denote by G/e the graph G where the edge e has been
contracted. Then we have:

colA(G|M)− 2 ≤ colA(G/e|M) ≤ colA(G|M) + 2.

Both bounds are tight, as show the following examples. First consider the family of
graphs Gn obtained as follows. Remove from Kn ∨ Sn a perfect matching. Duplicate one of
the vertices of Kn, changing a vertex w into two adjacent twins u and v. Then add a vertex
adjacent to all the vertices of Kn (including u and v). We can check that colA(Gn) = 2n+1,
but if we contract the edge uv, then colA(Gn/uv) = 2n − 1. This tighten the lower bound.
Similarly, for G obtained from Cn ∨ Sn minus a matching, we have colA(G) = n + 2 but if
we split a vertex of the cycle in two (distributing evenly the neighbors), we get a A-marking
number of n.
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