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Extended Abstract

In this paper, we introduce and study the list version of incidence colourings. All the
graphs we consider in this paper are simple and loopless undirected graphs. We denote by
V (G) and E(G) the set of vertices and the set of edges of a graph G, respectively, and by
∆(G) the maximum degree of G.

Recall that a graph G is k-list colourable (or k-choosable) if, whenever each vertex v of
G is given a list L(v) of k colours, G admits a proper colouring in which each vertex receives
a colour from its own list. The list chromatic number of G is then defined as the smallest
integer k such that G is k-choosable. This type of colouring was independently introduced
by Vizing [9] and Erdös, Rubin and Taylor [3] (see the surveys by Alon [1] and Tuza [8]).

An incidence of a graph G is a pair (v, e) where v is a vertex of G and e is an edge of G
incident with v. We denote by Inc(G) the set of incidences of G. Two incidences (v, e) and
(w, f) of Inc(G) are adjacent whenever (i) v = w, or (ii) e = f , or (iii) vw = e or f . An
incidence k-colouring of G is a mapping from Inc(G) to the set of colours {1, . . . , k} such that
every two adjacent incidences receive distinct colours. The smallest k for which G admits
an incidence k-colouring is the incidence chromatic number of G, denoted χi(G). Incidence
colourings were first introduced and studied by Brualdi and Massey [2]. This problem has
attracted much interest in recent years, see for instance [6, 5, 10, 11].

The list version of incidence colouring is defined in a way similar to the case of ordinary
proper vertex colourings. We thus say that a graphG is k-list incidence colourable if, whenever
each incidence (v, e) of G is given a list L(v, e) of k colours, G admits an incidence colouring in
which each incidence receives a colour from its own list. The list incidence chromatic number
of G, denoted χ`

i(G), is then the smallest integer k such that G is k-list incidence colourable.
We clearly have χ`

i(G) ≥ χi(G) and χi(G) ≥ ∆(G)+1 for every graph G. Moreover, since
every incidence (v, e) in a graph G has at most 3∆(G)− 2 adjacent incidences, we get:

Proposition 1 For any graph G, ∆(G) + 1 ≤ χi(G) ≤ χ`
i(G) ≤ 3∆(G)− 1.

Observe also that an incidence k-colouring of a graphG can be viewed as a proper colouring
of the square of its line graph. Since the line graph of an n-cycle is an n-cycle, by a result of
Erdös, Rubin and Taylor [3], we get:

Proposition 2 For every cycle G, χ`
i(G) = χi(G).

Recall that a graph G is d-degenerated if every subgraph of G contains a vertex of degree
at most d. In [5], Hosseini Dolama and Sopena proved the following:

Theorem 3 (Hosseini Dolama and Sopena [5]) For every d-degenerated graph G, χi(G) ≤
∆(G) + 2d− 1.

We prove that the same result holds for the list incidence chromatic number:

Theorem 4 For every d-degenerated graph G, χ`
i(G) ≤ ∆(G) + 2d− 1.

Since every tree is 1-degenerated, every K4-minor free graph (and thus every outerpla-
nar graph) is 2-degenerated, and every planar graph is 5-degenerated, Theorem 4 gives the
following:



Corollary 5 For every graph G,

1. if G is a tree then χ`
i(G) = ∆(G) + 1,

2. if G is a K4−minor free graphs (and thus, if G is an outerplanar graph) then χ`
i(G) ≤

∆(G) + 3,

3. if G is a planar graph then χ`
i(G) ≤ ∆(G) + 9.

The square grid G(m,n) is the graph defined as the Cartesian product of two paths, that
is, G(m,n) = Pm �Pn, where Pn denotes the path on n vertices. Since every square grid is
2-degenerated, we get χ`

i(G(m,n)) ≤ ∆(G(m,n)) + 3 ≤ 7 for every square grid G(m,n) by
Theorem 4. We can decrease this bound to 6:

Theorem 6 For every integers m,n ≥ 1, χ`
i(G(m,n)) ≤ 6.

A Halin graph is a planar graph obtained from a tree with no vertex of degree 2 by adding
a cycle connecting all its leaves. Wang, Chen and Pang proved that χi(G) = ∆(G) + 1 for
every Halin graph G with ∆(G) ≥ 5 [10] and Meng, Guo and Su that χi(G) ≤ ∆(G) + 2 for
every Halin graph G with ∆(G) = 4 [7] (it is known, by a result of Maydanskiy [6], that if G
is subcubic, then χi(G) ≤ ∆(G) + 2).

For this class of graph, we prove the following results:

Lemma 7 If G is a Halin graph then χ`
i(G) ≤ max{∆(G) + 1, 7}.

Lemma 8 If G is a Halin graph then χ`
i(G) ≤ max{∆(G) + 2, 6}.

By Lemmas 7 and 8, we thus get:

Theorem 9 If G is a Halin graph then χ`
i(G) ≤ 6, if ∆(G) ∈ {3, 4},
χ`
i(G) ≤ 7, if ∆(G) = 5,
χ`
i(G) = ∆(G) + 1, otherwise.

A cactus is a (planar) graph such that every vertex belongs to at most one cycle. We
prove the following:

Theorem 10 If G is a cactus then χ`
i(G) ≤ max{∆(G) + 1, 8}. Moreover, if ∆(G) ∈ {3, 4}

then χ`
i(G) ≤ ∆(G) + 2.

Apart from improving, if possible, some of the above given bounds, we propose the fol-
lowing open questions:

1. What is the best upper bound on the list incidence chromatic number of subcubic
graphs? (By Theorem 4, we know that this bound is at most 8.)

2. What is the value of χ`
i(Kn)? (By Proposition 1, we know that this value is at most

3n− 4.)

3. Which classes of graphs satisfy the incidence version of the list colouring conjecture, that
is, for which graphs G do we have χ`

i(G) = χi(G)? (By Proposition 1 and Theorem 4,
we know that this equality holds for every tree.)
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