Strong Rainbow Connection in Digraphs

<u>Elzbieta Sidorowicz</u>¹, and Éric Sopena 2,3

¹ Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Poland
² Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence, France

³ CNRS, LaBRI, UMR5800, F-33400 Talence, France

EXTENDED ABSTRACT

In an edge-coloured graph G, a path is said to be rainbow if it does not use two edges with the same colour. Then the graph G is said to be rainbow-connected if any two vertices are connected by a rainbow path. This concept of rainbow connection in graphs was introduced by Chartrand et al. in [1]. Since then the rainbow connection number of various graph classes has been determined. Also, different other parameters similar to rainbow connection were introduced, such as strong rainbow connectivity, rainbow k-connectivity, k-rainbow index and rainbow vertex connection. See [7] for a survey about these different parameters.

The notions of rainbow connection and strong rainbow connection readily extend to digraphs, using arc-colouring instead of edge-colourings and directed paths instead of paths. The study of rainbow connection in oriented graphs was initiated by Dorbec et al. in [6] and then studied by Alva-Samos and Montellano-Ballesteros in [2, 3, 4]. Rainbow connectivity in digraphs was considered by Ananth, Nasre and Sarpatwar in [5] from the computational point of view.

A digraph G is strongly connected (strong for short) if there exists a uv-path in G for every two vertices u and v. The digraph G is minimally strongly connected if G is strong and, for every arc xy in G, the digraph G - xy (obtained from G by removing the arc xy) is not strong.

Let G be a digraph. A k-arc-colouring of G, $k \ge 1$, is a mapping $\varphi : A(G) \to \{1, \ldots, k\}$. Note that adjacent arcs may receive the same colour. An arc-coloured digraph is then a pair (G, φ) where G is a digraph and φ an arc-colouring of G. A path P in (G, φ) is rainbow if no two arcs of P are coloured with the same colour. An arc-coloured digraph (G, φ) is rainbow if no connected (or, equivalently, φ is a rainbow arc-colouring of G) if any two vertices in G are connected by a rainbow path.

For any two vertices u, v of G, a rainbow uv-geodesic is a rainbow uv-path of length $dist_G(u, v)$. An arc-coloured digraph (G, φ) is strongly rainbow connected (or, equivalently, φ is a strong rainbow arc-colouring of G) if there exists a rainbow uv-geodesic for any two vertices u and v in G.

Note that in order to admit a rainbow arc-colouring, or a strong rainbow arc-colouring, a digraph must be strong. The rainbow connection number of a strong digraph G, denoted by $\vec{rc}(G)$, is the smallest number k such that G admits a rainbow k-arc-colouring. The strong rainbow connection number of a strong digraph G, denoted $\vec{src}(G)$, is the smallest number k such that G admits a strong rainbow k-arc-colouring. Observe that for any strong digraph G we have $\vec{rc}(G) \leq \vec{src}(G)$.

Another easy observation is that $s\vec{r}c(G) \leq n$ for every digraph G of order n. Let $V(G) = \{x_1, \ldots, x_n\}$. We define an n-arc-colouring φ of G by setting $\varphi(x_ix_j) = j$ for every arc x_ix_j in A(G). Obviously, every elementary path in G is rainbow and, therefore, φ is a strong rainbow arc-colouring of G, which gives $s\vec{r}c(G) \leq n$.

Moreover, we clearly have $\operatorname{diam}(G) \leq r \vec{c}(G)$, since any rainbow uv-path such that (u, v) is an antipodal pair of vertices must use at least $\operatorname{diam}(G)$ colours. We thus have the following proposition.

Proposition 1 If G is a strong digraph of order n with diameter d, then $d \leq \vec{rc}(G) \leq s\vec{rc}(G) \leq n$.

We prove that the value of $\vec{src}(G) - \vec{rc}(G)$ can be arbitrarily large:

Theorem 2 For every integer k there exists a strong digraph G_k with $\vec{src}(G) - \vec{rc}(G) = k$.

It follows from the definitions that if H is a strong spanning subdigraph of G (that is, V(H) = V(G)), then $\vec{rc}(G) \leq \vec{rc}(H)$. However, such an equality does not hold for the strong rainbow connection number of digraphs. Alva-Samos and Montellano-Ballesteros [2] showed that there exists digraphs G and H, such that H is a spanning subdigraph of G and $\vec{src}(G) > \vec{src}(H)$. The digraph G constructed in [2] contains pairs of opposite arcs. We can prove that this property also holds for oriented graphs:

Proposition 3 There exist strong oriented graphs G and H, such that H is a spanning subdigraph of G and $s\vec{r}c(G) > s\vec{r}c(H)$.

The upper bound in Proposition 1 is tight since $\vec{rc}(C_n) = \vec{src}(C_n) = n$ for the cycle C_n on *n* vertices. Moreover, we prove the following theorem.

Theorem 4 Let G be a minimally strongly connected digraph of order n. Then $s\vec{r}c(G) = n$ if and only if G is a cycle.

Since $\vec{rc}(G) \leq \vec{rc}(H)$ whenever H is a spanning subdigraph of an oriented graph G, it follows from Theorem 4 that $\vec{rc}(G) \leq n-1$ for every non-Hamiltonian oriented graph G of order n (this was already observed in [6]). Although the inequality $\vec{rc}(G) \leq \vec{rc}(H)$ does not hold in general for digraphs (see Proposition 3), we can prove a similar result for non-Hamiltonian digraphs, with an additional assumption on the diameter. However, we conjecture that this diameter condition can be dropped.

Theorem 5 Let G be a strong digraph of order n. If G is non-Hamiltonian and diam(G) = n - 1, then $s\vec{r}c(G) \leq n - 1$.

Conjecture 6 Let G be a strong digraph of order n. If G is non-Hamiltonian then $src(G) \le n-1$.

Furthermore, we study the strong rainbow connection number of strong tournaments. We first prove the following result.

Theorem 7 Let T be a strong tournament of order $n \ge 4$. Then $3 \le s\vec{r}c(T) \le n-1$.

Both bounds in Theorem 7 are tight and, moreover, $\vec{src}(T)$ can take any value between 3 and n-1, as shown by the following result.

Theorem 8 For every two integers n and k, $3 \le k \le n-1$, there exists a strong tournament $T_{n,k}$ of order n with $s\vec{r}c(T_{n,k}) = k$.

In [6], it has been proved that the rainbow connection number of every tournament is bounded by a function of its diameter, namely $\vec{rc}(T) \leq \text{diam}(T) + 2$. However, such a result does not hold for the strong rainbow connection number, as shown by the next theorem.

Theorem 9 For every two integers d and k, $3 \le d \le k$, there exists a strong tournament $F_{d,k}$ with diam $(F_{d,k}) = d$ and $s\vec{r}c(F_{d,k}) = k$.

Theorem 9 says that the strong rainbow connection number of a tournament with diameter at least 3 can be arbitrarily large. We believe that this is no longer true for tournaments with diameter 2 and thus propose the following:

Conjecture 10 There exists a constant t such that for every strong digraph G with $\operatorname{diam}(G) = 2$, $\operatorname{src}(G) \leq t$.

References

- G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang. Rainbow connection in graphs. In Math. Bohem. 133:85–98, 2008.
- [2] J. Alva-Samos and J. J. Montellano-Ballesteros. Rainbow connection in some digraphs. To appear in **Graphs Combin.** preprint available at http://arxiv.org/abs/1504.01721.
- [3] J. Alva-Samos and J. J. Montellano-Ballesteros. A Note on the Rainbow Connectivity of Tournaments. Preprint (2015), available at http://arxiv.org/abs/1504.07140.
- [4] J. Alva-Samos and J. J. Montellano-Ballesteros. Rainbow Connectivity of Cacti and of Some Infinity Digraphs. Preprint (2015).
- [5] P. Ananth, M. Nasre and K. K. Sarpatwar. Rainbow Connectivity: Hardness and Tractability. In **31st Int'l Conference on Foundations of Software Technology** and Theoretical Computer Science (FSTTCS 2011), *Leibniz International Proceed*ings in Informatics, 241–251.
- [6] P. Dorbec, I. Schiermeyer, E. Sidorowicz and E. Sopena. Rainbow Connection in Oriented Graphs. In Discrete Appl. Math. 179:69–78, 2014.
- [7] X. Li, Y. Shi and Y. Sun. Rainbow Connections of Graphs: A survey. In Graphs Combin. 29:1–38, 2013.