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1. Introduction

A bound for the (n,m)-mixed chromatic number in terms of the chromatic number of the square of the under-

lying undirected graph is obtained. A similar bound holds when the chromatic number of the square is

replaced by the injective chromatic number. When restricted to  and  (that is, oriented graphs)

this provides a new bound for the oriented chromatic number. In this case, a slightly improved bound is

obtained if the chromatic number of the square is replaced the 2-dipath chromatic number (defined in

Section 4). In all cases, the method of proof generalizes an argument that has been used to obtain Brooks-type

theorems for injective oriented colorings [1]–[8]. Similar, although not identical, arguments have appeared in

the work of Sopena [9], and Ne‰etril and Raspaud [10][11].

Colorings of mixed graphs were first studied by Ne‰etril and Raspaud [11]. They gave a bound on the

(n,m)-mixed chromatic number in terms of the acyclic chromatic number of the underlying undirected graph.

Bounds for the (0, 2)-mixed chromatic number of planar graphs and other graph families have been obtained

[12]. Some of these have been extended to arbitrary n and m [13].

2. Definitions

For basic definitions in graph theory, see the text by Bondy and Murty [14].

Definition 2.1: A (n,m)-colored mixed graph is an -tuple

,

where:

(1) V is a set of vertices;

(2) for , Ai is a set of ordered pairs of distinct vertices of G

called the arcs of color i;

(3) for , Ej is a set of unordered pairs of distinct vertices of G

called the edges of color j; and

(4) the underlying undirected graph , with vertex set  and

an edge joining x to y for every i for which the ordered pair  

and for every j for which the unordered pair , is simple. j

Observe that a (0,1)-colored mixed graph is a simple graph, and a (1,0)-colored mixed graph is an oriented

graph.

Homomorphisms between (n,m)-colored mixed graphs are defined in the natural way. For (n,m)-colored

mixed graphs G and H, a homomorphism of G to H is a function  such that for ,
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 whenever , and for ,  whenever . For more

on homomorphisms, see [15].

Observe that homomorphisms of (n,m)-colored mixed graphs compose. That is, if F, G, and H are

(n,m)-colored mixed graphs, f is a homomorphism of F to G, and g is a homomorphism of G to H, then 

is a homomorphism of F to H.

By analogy with the corresponding definitions for other coloring concepts for oriented graphs, a k-coloring of

a (n,m)-colored mixed graph is defined to be a homomorphism to a (n,m)-colored mixed graph on k vertices.

The smallest k for which there is a k-coloring of a (n,m)-colored graph G is called the (n,m)-mixed chromatic

number of G and is denoted by .

Informally, a k-coloring of an (n,m)-colored mixed graph is a partition of the vertices of G into k independent

sets (sets containing no edges or arcs of any color), , such that, for any two independent sets Xp

and Xq, there is only one type of adjacency; that is, only arcs of the same color and orientation; or only edges

of the same color, between vertices in Xp and Xq.

Example 1: Consider a path on four vertices  with arcs  and  of color 1 and an edge

 of color 1. Call this (1, 1)-colored mixed graph G. Then ; color v1 and v4 with color 1,

v2 with color 2, and v3 with color 3.

Example 2: Consider a path on five vertices  with arcs  and  of color 1, an edge

 of color 1, and an edge  of color 2. Call this (1,2)-colored mixed graph G. Then ;

color v1 and v4 with color 1, v2 with color 2, v3 with color 3, and v5 with color 4.

We next define a (n,m)-colored mixed graph, Let . For , let Ik be the set of all sequences

of length t in which the kth element is “·” and every other entry is a “+i” or “–i” ( ), or “~j”

( ).

Definition 2.2: The graph  is the (n,m)-colored mixed graph with vertex set

 and

(1) an arc of color i joining sequence  to sequence  if and only if

the lth entry of  is +i and the kth entry of  is –i, and

(2) an edge of color j joining sequence  to sequence  if and only if

the lth entry of  and the kth entry of  are both ~j. j

In the next section, we bound the (n,m)-mixed chromatic number of .

3. Main Result

The graph  is used to prove bounds for injective oriented colorings [1]–[5]. Young proved that an

oriented graph can be properly t-colored so that any two vertices joined by a directed path of length two get

different colors if and only if it has an homomorphism to  [8] (Min and Wang [16] call this a 2-dipath

k-coloring.) Our bound on the (n,m)-mixed chromatic number of a (n,m)-mixed colored graph G will be

obtained by coloring the square of the underlying graph of G with t colors, and then refining this coloring to

obtain a homomorphism of G to .

Lemma 3.1 (The Refinement Lemma):

Proof: Let . We describe a (n,m)-mixed B-coloring

of . For ,  partition the independent set Ik  into  subsets ,

, such that all sequences in  agree in the first k places. The total number of sets 

is B.
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By definition of these sets, if  then:

(1) all arcs joining vertices in  and  are of color i and

(a) are oriented toward  if the pth symbol of all sequences in  is +i and 

the rth symbol in all sequences in  is –i;

(b) oriented towards  if the pth symbol of all sequences in  is –i and 

the rth symbol in all sequences in  is +i;

(2) all edges joining vertices in  and  are of color j if the pth symbol of all sequences in  

and the rth symbol of all sequences in  are both ~j.

Hence, by identifying all vertices in each set , , , a homomorphism

of  onto the (n, m)-colored mixed graph  on B  vertices is obtained. Therefore,

. j

Lemma 3.1 is dubbed the Refinement Lemma because the independent sets Ik are refined to obtain the homo-

morphism to .

Let G be an (n,m)-colored mixed graph. Define  to be square of the underlying undirected graph of G.

That is,  has the same vertex set as G and  if and only if .

Lemma 3.2: Let G be an (n,m)-colored mixed graph. If  is t-colorable, then there is a

homomorphism from G to .

Proof: Let  be a t-coloring of . Let . Define the sets

, , and

.

These are, respectively, the sets of (vertex) colors to which x sends an arc of color i in D, from which x

receives an arc of color i in D, or to which x is joined by an edge of color j in D. Since Ck is an independent

set,  for any i, , and j. By construction of , for all i, , and j the intersection

between any two of , , and  is empty.

Thus, each vertex in Ck can be associated with a sequence with kth entry “·” and in which the lth entry is “+i”

if , is “–i” if , is “~j” if , and is “~t” otherwise. This is a homomorphism of G to

. j

Corollary 3.3: Let G be an (n,m)-colored mixed graph. If  is t-colorable, then

j

An injective k-coloring of a graph G is an assignment of k colors to the vertices of G so that vertices at distance

two are assigned different colors. Adjacent vertices may be assigned the same color. The injective chromatic

number of G is the least k for which there exists an injective k-coloring of G. The injective chromatic number

is bounded above by the chromatic number of  (see, for example, [17]).

The previous arguments work essentially as given with a small modification to take into account the fact that

vertices of the same color may be adjacent. The graph  is redefined by replacing replace each “·” by

one of “+i”, “–i”, or “~j”. This increases both the number of vertices of  and the bound on its

(n,m)-mixed chromatic number by a factor of . Thus, one obtains:
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Corollary 3.4: Let G be an (n,m)-colored mixed graph. If G has an injective t-coloring,

then

j

4. Oriented Colorings

When  and  we have an oriented graph, and the (n,m)-mixed chromatic number is equal to the

oriented chromatic number. Hence, the above results imply bounds for the oriented chromatic number. In par-

ticular, if  has a t-coloring, then .

An important property of a coloring of , or an injective t-coloring of G, used in the above arguments is

that vertices joined by a directed path of length two must be assigned different colors. The 2-dipath chromatic

number of G is the smallest k for which there is a 2-dipath k-coloring of G. The 2-dipath chromatic number

is at most the chromatic number of the square [16].

The argument in Section 3 goes through unchanged for oriented graphs if a k-coloring of  is replaced by

a 2-dipath k-coloring of G. This is the same as replacing  by the square of G as a directed graph (two ver-

tices are adjacent if they are joined by a directed path of length at most two) in the argument. Doing so, one

obtains the following bound:

Corollary 4.1: Let G be an oriented graph. If G has an 2-dipath t-coloring, then

. j

Finally, if the 2-dipath t-coloring need not assign different colors to adjacent vertices, then proceeding as dis-

cussed at the end of the previous section one obtains  (see also [7]).
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