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1. Introduction

A bound for the (n,m)-mixed chromatic number in terms of the chromatic number of the square of the under-
lying undirected graph is obtained. A similar bound holds when the chromatic number of the square is
replaced by the injective chromatic number. When restrictedto n = 1 and m = 0 (that is, oriented graphs)
this provides a new bound for the oriented chromatic number. In this case, a slightly improved bound is
obtained if the chromatic number of the square is replaced the 2-dipath chromatic number (defined in
Section 4). In all cases, the method of proof generalizes an argument that has been used to obtain Brooks-type
theorems for injective oriented colorings [1]-[8]. Similar, although not identical, arguments have appeared in
the work of Sopena [9], and NeSetril and Raspaud [10][11].

Colorings of mixed graphs were first studied by NeSetril and Raspaud [11]. They gave a bound on the
(n,m)-mixed chromatic number in terms of the acyclic chromatic number of the underlying undirected graph.
Bounds for the (0, 2)-mixed chromatic number of planar graphs and other graph families have been obtained
[12]. Some of these have been extended to arbitrary n and m [13].

2. Definitions
For basic definitions in graph theory, see the text by Bondy and Murty [14].

Definition 2.1: A (n,m)-colored mixed graph is an (m + n + 1) -tuple
G=V,A,4, .., 4, E,E,, ....E,),

where:
(1) Vis a set of vertices;
(2) fori =1,2,...,n,A;is aset of ordered pairs of distinct vertices of G

called the arcs of color i;

@3) forj=1,2,...,m ,Ej is a set of unordered pairs of distinct vertices of G
called the edges of color j; and
(4) the underlying undirected graph U[G], with vertex set V(U[G]) = V(G) and
an edge joining x to y for every i for which the ordered pair xy € 4;
and for every j for which the unordered pair xy € £ s is simple. |

Observe that a (0,1)-colored mixed graph is a simple graph, and a (1,0)-colored mixed graph is an oriented
graph.

Homomorphisms between (n,m)-colored mixed graphs are defined in the natural way. For (n,m)-colored
mixed graphs G and H, a homomorphism of G to H is a function f:V(G) — V(H) such that for 1 <i<n,



W.F. Klostermeyer, G. MacGillivray, A. Raspaud, and E. Sopena: Bounds for chromatic number 11

fx)f(y) € A(H) whenever xy € A(G) ,and for 1 <j<m, fX)y) € Ej(H) whenever xy € Ej(G) . For more
on homomorphisms, see [15].

Observe that homomorphisms of (n,m)-colored mixed graphs compose. That is, if F, G, and H are
(n,m)-colored mixed graphs, f'is a homomorphism of F to G, and g is a homomorphism of G to H, then gof’
is a homomorphism of F to H.

By analogy with the corresponding definitions for other coloring concepts for oriented graphs, a k-coloring of
a (n,m)-colored mixed graph is defined to be a homomorphism to a (n,m)-colored mixed graph on k vertices.
The smallest k for which there is a k-coloring of a (n,m)-colored graph G is called the (n,m)-mixed chromatic
number of G and is denoted by X(n, m)(G) .

Informally, a k-coloring of an (n,m)-colored mixed graph is a partition of the vertices of G into k independent
sets (sets containing no edges or arcs of any color), X, X,, ..., X} , such that, for any two independent sets X,
and X, there is only one type of adjacency; that is, only arcs of the same color and orientation; or only edges
of the same color, between vertices in Xp and Xq.

Example 1: Consider a path on four vertices v, v,, v3, v, with arcs v,v, and v,v; of color 1 and an edge
v3v, of color 1. Call this (1, 1)-colored mixed graph G. Then X(n m)(G) = 3; color vy and v, with color 1,
v, with color 2, and v with color 3.

Example 2: Consider a path on five vertices v, v,, v3, v4, v with arcs v;v, and v,v; of color 1, an edge
v3v, of color 1, and an edge v,vs of color 2. Call this (1,2)-colored mixed graph G. Then X(n m)(G) = 4;
color vy and v4 with color 1, v, with color 2, v3 with color 3, and v5 with color 4.

We next define a (n,m)-colored mixed graph, Let r =3 .For k = 1, 2, ..., ¢, let I; be the set of all sequences
of length 7 in which the k™ element is “-” and every other entry is a “+7or“=" (1<i<n),or “~"
(1<j<m).

Definition 2.2: The graph H ( n, m) is the (n,m)-colored mixed graph with vertex set
V(H(f )_Iulu u[ and
(1) an arc of color i joining sequence o € I, tosequence B € /; if and only if
the /™ entry of o is +; and the k™ entry of B is —;, and
(2) an edge of color j joining sequence o € /; to sequence B € 1, if and only if
the /™ entry of o and the k™ entry of B are both ~; [ |

In the next section, we bound the (n,m)-mixed chromatic number of an m) -

3. Main Result

The graph H(’ 1,0) is used to prove bounds for injective oriented colorings [1]-[5]. Young proved that an
oriented graph can be properly 7-colored so that any two vertices joined by a directed path of length two get
different colors if and only if it has an homomorphism to H f 1,0) [8] (Min and Wang [16] call this a 2-dipath
k-coloring.) Our bound on the (n,m)-mixed chromatic number of a (n,m)-mixed colored graph G will be
obtained by coloring the square of the underlying graph of G with ¢ colors, and then refining this coloring to

obtain a homomorphism of G to H. ( nm) -

Lemma 3.1 (The Refinement Lemma):

Xim,myHly ) ST+ 20+ m) + (20 + m2+...+Q2n+m) -1

t ifn=0and m =1
t
{(—21'1——”—')—:—1 otherwise.
2n+m-—1
Proof: Let B = 1+ 2n+m)+(2n+m)?+ ...+ (2n+m)'~1. We describe a (n,m)-mixed B-coloring

of H( m For £ = 1,2,...,t, partition the independent set [; into (2n+m)k=1 subsets Ik e
1< (2n +m)k=1 such that all sequences in 7, k1 agree in the first k places. The total number of sets I
is B.
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By definition of these sets, if p <r then:
(1) all arcs joining vertices in /,, , and /. ¢ are of color i and
(a) are oriented toward I if the p* ’symbol of all sequences in /, _ is +; and
the symbol in all sequehces in/,  is—; ’
(b) oriented towards 7, _ if the pth éymbol of all sequences in /,  is —; and
the symbol in all seciuences in/,  is+; ’
(2) all edges joining vertices in / and I, , are of color j if the pn symbol of all sequences in /.
and the symbol of all seque’nces in 11;, g are both ~;. ’

Hence, by identifying all vertices in each set [} ;, 1<k<¢, 1</<(2n+ m)k=1 a homomorphism
of an m) onto the (n,m)-colored mixed graph O(n my ON B vertices is obtained. Therefore,

X(n,m)(th’m))SB. |

Lemma 3.1 is dubbed the Refinement Lemma because the independent sets [; are refined to obtain the homo-
morphism to O(n m)
Let G be an (n,m)-colored mixed graph. Define S(G) to be square of the underlying undirected graph of G.
That is, S(G) has the same vertex set as G and xy € E(S(G)) if and only if 1 < distG(x, y)<2.

Lemma 3.2: Let G be an (n,m)-colored mixed graph. If S(G) is t-colorable, then there is a

homomorphism from G to H{, ,,, -

Proof: Let C|, C,, ..., C, be a t-coloring of S(G) . Let x € C; . Define the sets

{p : xy € A(G) for some y € Cp} , Rx’i = {p:yxe A(G) for some y € Cp} ,and

X, 1

Tx’j {p:xye Ej(G) for some y € Cp} .

These are, respectively, the sets of (vertex) colors to which x sends an arc of color i in D, from which x
receives an arc of color i in D, or to which x is joined by an edge of color j in D. Since Cy, is an independent
set, xg S, ;UR. ,UT, j for any i, i’, and j. By construction of S(G) , for all i, i, and j the intersection

between any two of Sx’ i Rx’ i.and T y,j 1s empty.

Thus, each vertex in Cj, can be associated with a sequence with K entry “” [t

ifkeS_ .,is“"ifkeR

X, 1°

and in which the ["" entry is “+;”

o 18 “~J~” itke T, IB and is “~;” otherwise. This is a homomorphism of G to

H(fn, m) - |
Corollary 3.3: Let G be an (n,m)-colored mixed graph. If S(G) is t-colorable, then
Xn,my(G) S 1+ (2n+m) +(2n + m2+ ... +Q2n+m)-!

t ifn=0andm =1
) {(—2—4—)'——"—1—)1:—1 otherwise
2n+m-1 ’
|

An injective k-coloring of a graph G is an assignment of k colors to the vertices of G so that vertices at distance
two are assigned different colors. Adjacent vertices may be assigned the same color. The injective chromatic
number of G is the least k for which there exists an injective k-coloring of G. The injective chromatic number
is bounded above by the chromatic number of S(G) (see, for example, [17]).

The previous arguments work essentially as given with a small modification to take into account the fact that
vertices of the same color may be adjacent. The graph H (t n, m) is redefined by replacing replace each “-” by
one of “+;”, “~”, or “~;”. This increases both the number of vertices of H{ and the bound on its

(n, m)
(n,m)-mixed chromatic number by a factor of (2#n + m) . Thus, one obtains:

13
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Corollary 3.4: Let G be an (n,m)-colored mixed graph. If G has an injective t-coloring,
then

X, my(G) S Q2n+m)+2n+m)? + ...+ (2n+m)!
{t ifn=0andm=1

t— .
2n+ m)—————————————(zn tm) =1 otherwise.
2n+m—1

4. Oriented Colorings

When n = 1 and m = 0 we have an oriented graph, and the (n,m)-mixed chromatic number is equal to the
oriented chromatic number. Hence, the above results imply bounds for the oriented chromatic number. In par-
ticular, if S(G) has a t-coloring, then y (G) <2'—1.

An important property of a coloring of S(G) , or an injective z-coloring of G, used in the above arguments is
that vertices joined by a directed path of length two must be assigned different colors. The 2-dipath chromatic
number of G is the smallest k for which there is a 2-dipath k-coloring of G. The 2-dipath chromatic number
is at most the chromatic number of the square [16].

The argument in Section 3 goes through unchanged for oriented graphs if a k-coloring of S(G) is replaced by
a 2-dipath k-coloring of G. This is the same as replacing S(G) by the square of G as a directed graph (two ver-
tices are adjacent if they are joined by a directed path of length at most two) in the argument. Doing so, one
obtains the following bound:

Corollary 4.1: Let G be an oriented graph. If G has an 2-dipath 7-coloring, then
X, (G) = x(l,o)(G)ST—l. |

Finally, if the 2-dipath #-coloring need not assign different colors to adjacent vertices, then proceeding as dis-
cussed at the end of the previous section one obtains ¥ (G) = Xa 0)(G) <2t+1_ 1 (see also [7]).
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