
Def in i t ions and Comparisons of Local
C o m p u t a t i o n s on Graphs

(extended abstract)

Igor Litovsky* Yves M6tivier* Eric Sopena*

Laboratoire Bordelais de Recherche en Informatique

Unit~ associ6e C.N.R.S. 1304

351, cours de la Lib6ration

F-33405 TALENCE

A b s t r a c t . We are interested in models to encode and to prove decentralized and
distributed computations on graphs or networks. In this paper, we define and
compare six models of graph rewriting systems. These systems do not change the
underlying structure of the graph on which they work, but only the labelling of its
components (edges or vertices). Each rewriting step is fully determinated by the
knowledge of a fixed size subgraph, the local context of the rewritten occurrence.
The studied families are based on the rewriting of paztial or induced subgraphs
and we use two kinds of mechanisms to locally control the applicability of rules :
a priority relation on the set of rules or a set of forbidden contexts associated with
each rule. We show that these two basic (i.e. without local control) families of
graph rewriting systems are distinct, but whenever we consider the local controls
of the rewriting, the four so-obtained families are equivalent.

1 Introduction
We are interested in models to encode and to prove decentralized and distributed
computat ions on graphs or networks. The presented models are graph rewriting
systems satisfying the following constraints which seem to be natural when describing
distr ibuted computat ions with a decentralized control:

(C1) they do not change the underlying graph (i.e. the network) but only the
labelling of its components (edges and/or vertices), the final labelling being
the result of the computat ion,

(C2) they are local, tha t is, each rewriting step changes only the labelling of a fixed
size connected subgraph of the underlying graph,

*With the support of the PRC Math6matiques et Informatique and the European Basic Research
Action ESPRIT No 3166 ASMICS.

365

(C3) they are locally generated, that is, the application condition of the rewriting
only depends on the local context of the rewritten subgraph.

For such systems, the distributed aspect comes from the fact that several rewrit-
ing steps can be performed simultaneously on "far enough" subgraphs.

In this paper, we define and compare six types of graph rewriting systems. Any
such system, say R, is defined by a finite set of rewriting rules (and thus uses a
finite set of labels) and may be equipped with a mechanism which locally controls
the rewriting rules application. A rewriting rule r consists in the relabelling of a
fixed connected subgraph Gr, and is given as r : (Gr, ~) ~ (Gr, ~').

We say that a labelled graph (G, l) is rewritten by R in (G, l') if there exists
a finite sequence of allowed applications (in a sense precised below) of relabellings
in R leading from (G, l) to (G, l'). Given a graph rewriting system R, we are
interested in the function Irredn which, with each graph (G, ~), associates the set
of irreducible graphs (i.e. where no allowed application of rule is possible) obtained
from (G, ~). We say that two graph rewriting systems R and R ' are equivalent when
Irredn = Irredn,. A family F1 of graph rewriting systems is less powerfull than a
family 9r2 if every graph rewriting system in 5rl is equivalent to a graph rewriting
system in ~r2. The families ~'1 and . ~ are equivalent if each one is less powerfull
than the other one.

We now present the six various types of graph rewriting systems we will consider
in this paper. For each of them we have to specify the notion of allowed application
of a rule r in a graph (G, l). The first criterium characterizing the applicability of a
rule is given by the definition of the occurrence of the left-hand side (Gr, ~) in (G, l).
Such an occurrence may be :

�9 a partial subgraph of (G, l) isomorphic to (Gr, ~),

�9 an induced subgraph of (G, l) isomorphic to (Gr, ~).

Hence, we respectively obtain the families ofpGRS's and iGRS's. We prove that
the family of pGRS's is strictly less powerfull than the family of iGRS's.

On the other hand, to increase the computational power of these basic graph
rewriting systems, we use two kinds of local control on the applicability of rules :

�9 The first one has been introduced in [2] and consists in adding a partial order
relation, called priority, on the set of rewriting rules. In such systems, the
application of a rule r is allowed on an occurrence 0 of (Gr, A) if no rule with a
greater priority has an occurrence overlapping 0. Note that the effect of these
priorities is strictly local (constraint (C3) is respected).

�9 The second one, inspired from [3], consists in adding to each rewriting rule
r a set of forbidden contexts, where a context is a graph having (Gr, A) as a
subgraph. For such systems, an application of r is allowed on an occurrence 0
of (Gr, ~) if 0 is not a subgraph of a forbidden context in (G, l).

These rewriting systems are respectively called PxGRS's and FCzGRS's (for
z E {p, i}). The so-defined families are strictly more powerfull than the previous
ones. It is easy to see that the family of FCzGRS's is more powerfull than the family

366

of PxGRS's (for x E {p, i}). The main part of this paper is devoted to proving the
equivalence of the FCpGRS's and the PpGRS's. This result is not immediate : for
example, it is easy to give a one-rule FCpGRS recognizing the class of complete
graphs, but no "simple" PpGRS can do it. We also prove that with such a local
control Y (Priority or Forbidden Contexts), the YpGRS's and the YiGRS's are
equivalent. Hence, we have :

pGRS ~ iGRS ~ {PpGRS= FCpGRS= PiGRS= FCiGRS}

When proving that every FCpGRS is equivalent with a PpGRS, the main dif-
ficulty comes from the fact that a FCpGRS forbids the application of a rewriting
rule by only considering the forbidden contexts associated with this rule, since a
PpGRS only forbids such an application when another rule (with a greater priority)
is applicable on an overlapping occurrence. Assuming first that one works on graphs
having a distinguished vertex, depth-first traversals can be sequentially processed
by using a PpGRS [2]. In this case, every FCpGRS can be simulated by a PpGRS
in the following way : each depth-first traversal looks for applying a fc-rule ; when
it founds one or more such rules, it "chooses" one of them and applies it ; when no
fc-rule is applicable, the PpGRS stops (see 7~tocsim in Section 3.3). But it is known
that the problem of distinguishing one vertex (known as the electwn problem) is not
solvable for any type of graph (see [1]). Hence, the main idea of this paper is to
construct, using a PpGRS, a partition of the graph into subgraphs (called coun-
tries) of k-bounded diameter, each country having an elected vertex (the capital).
This "k-election" mechanism, used together with the PpGRS 7r enables us to
simulate every FCpGRS by a PpGRS (Proposition 3.4).

By using techniques inspired from [1L power and limitations of such local com-
putations on graphs are studied in [7].

Complete proofs of the results presented here can be found in [6].

2 D e f i n i t i o n s a n d N o t a t i o n

2 .1 G r a p h s

A simple, loopless, undirected graph G is defined as a pair (v(G), e(G)) where v(G)
is a finite set of vertices and e(G) a set of edges, an edge being a set of two distinct
vertices in v(G). A labelled graph is a pair (G, A) where G is a graph and A is a
mapping from v(G) t.l e(G) into a finite set of labels/:. Let (G, A) and (G', ~') be
two labelled graphs. The labelled graph (G', ~') is a (partial) subgraph of (G, A) if:

v(a') c v(a)
e(a') c e(a)
Ala' = A'

where A[G, denotes the mapping induced from
A by v(G') t.J e(G').

The pair ((v(G)\ v(G'), e(G)\ e(G')), A) is called the contezt of (G', A') in (G, A).
It is denoted by (G, A) \ (G', A'). A mapping ~o from v(G) into v(G') is an homo-

367

morphism from (G, h) into (G', h') if for any x, y in v(G), we have:

y} e e

y)) =

Let ~ be an homomorphism from (G, h) into (G', h'), we will denote by ~(G)
the graph (~(v(G)), g) where {~(x), ~(y)} 6 s iff (x, y} E e(G). So (~(G), h') is a
subgraph of (G', h'). Whenever ~ is injective, ~0 is said to be an occurrence of (G, h)
in (G', A'). If moreover ~ is bijective, (G, h) and (G', h') are said to be isomorphic.

Let (G', h') be a subgraph of (G, h). We say that (G', A') is an induced subgraph
of (G, h) iff for all x, y in v(G'), {x, y} 6 e(G) ~ {x, y} 6 e(G'). An occurrence O
of (G", h") in (e , h) is said to be an induced occurrence if (O(G"), h") is an induced
subgraph of (G, h).

Let r be an integer and x be a vertex in v(G) ; the ball subgraph B(x, r) is the
induced subgraph of (G, h) whose vertices are all the vertices in v(G) whose distance
to vertex x is at most r.

From now on, as we will only deal with connected labelled graphs, we will simply
say graph for connected labelled graphs.

2.2 R e w r i t i n g on Part ia l or Induced Subgraphs

A partial-graph rewriting rule is a pair r = ((Gr, At), (Gr, h ')) , denoted (Gr, hr, h'r)
for short. (Gr, h.) (resp. (Gr, h ')) is called the left-hand side (resp. right-hand side)
of the rule r. The rewriting relation ~ is defined by : (G, h) --~ (G, h') if there
exists an occurrence 0 of (Gr, h.) in (G, h) such that 0 is an occurrence of (G~, h'~)
in (G, h') and the contexts of 0(Gr) in (G, h) and in (G, h') are identical. We say
that 0 is the rewritten occurrence.

A partial-Graph Rewriting System (pGRS) is a finite set ~ of rewriting rules.
The rewriting relation - ~ is defined by : (G, h) - ~ (G, h') if and only if there
exists a rule r 6 T~ such that (G, h) ~ (G, h').

A partial-Graph Rewriting System with Priorities (PpGRS) is a finite set 7Z of
rewriting rules equipped with a partial ordering relation > called priority which
works as follows : let 0 be an occurrence of a rule r 6 7~. The rule r is applicable on
0 if there is no occurrence 0' of a rule r' > r such that v(O(G,))n v(O'(Gr,)) ~ 0. If
two or more rules are simultaneously applicable on (G, h), one of them (randomly
chosen) is applied. We note (G, h) - ~ (G, h') if there exists a rule r 6 /~ such that
(G, h) ~ (G, h') and r was applicable in (G, h) on the rewritten occurrence.

A partial-graph rewriting rule with forbidden contexts (re-rule for short) is a
pair (r,7/) where r is a rewriting rule (Gr, hr, h ') and 7/ is a finite family of pairs
{((Gi, hi), 0i)}ieIr where (Gi, hi) is a labelled graph and 0i is an occurrence of (Gr, A)
in (Gi, hi). The contexts (Gi \ O~(Gt)) are the forbidden contexts of the fc-rule and
are used as follows : let 0 be an occurrence of Gr ; the fc-rute (r, 7/) is applicable on

if for no i, there exists an occurrence ~ of (Gi, hi) in (G, h) such that ~o0i = 0.
A partial-Graph Rewriting System with Forbidden Context (FCpGRS) is a finite

set R of fc-rules. We note (G, h) - ~ (G, h') if there exists a rule r 6 R such that
(G, h) ~ (G, h') and r was applicable in (G, h) on the rewritten occurrence.

368

C A B A

i ~
A A

(a) The graph (G~, ,~) (b) The graph (G~, ,V~)

B

A
v

(c) The

A
A
w I

A

graph (G1,)u)

C B B C

i-
B C

(d) The graph (Gs, As) (e) The graph (G~,,Vs)

C A C

\
.4

A C B

I /
B B

(f) The graph (G, ,~)

A

C

Figure 1: Applicability of rewriting rules.

The same notions can be defined by using induced subgraphs instead of partial
ones, leading respectively to i-, Pi- and FCiGRS.

E x a m p l e 2.1 Consider the graph (G, ~) of Figure l(f) and the graph rewriting rules
r = (Gr, ~r, ~) , s = (Gs, ~s, ~'8), where (G~, ~r), (Gr, A~), (Gs, A,) and (Gs,A~) are
given by Figure l(a,b,d,e) respectively.

�9 As rule of a pGRS, r can be applied on the four corners of graph (G, A) (vertices
marked as o).

�9 As rule of a iGRS, r can be applied on each corner of graph (G,)~) except on
the upper-right one, since there is a forbidden edge linking two vertices of the
occurrence.

�9 As rule of a FCpGRS, with graph (G1, A1) of Figure l(c) as forbidden context,
r can only be applied on the two upper corners of graph (G, A).

�9 As rule of a FCiGRS, r can be applied on the upper-left corner of (G,)~) and
on its bottom-right corner, since the forbidden context of r does not appear
as an induced subgraph.

�9 As rule of a PpGIES, with s > r, rule r can only be applied on the two upper
corners of (G, A).

�9 As rule of a PiGRS, with s > r, rule r can be applied on the upper left corner,
and the bottom-right corner of (G,),) (since s cannot be applied on occurrences
overlapping these corners).

369

2.3 R e w r i t i n g S y s t e m B e h a v i o u r

In this paper, we will only consider noetherian graph rewriting systems, which means
that from any graph, there exists no infinite rewriting chain.

Given a graph rewriting system 7r we consider the reflexive transitive closure
- -~ of - ~ . A graph (G, A') is sa~d to be irreducible with respect to 7~ if there is
no applicable rule of 7~ on (G, A'). For every graph (G, A), we note IrredT~((G, A))
the set {(G, A') /(G, A) - -~ (G, A')and no rule o f ~ is applicable on (G, A')}. Let 7~
and 7~' be two rewriting systems. The systems ~ and 7U are said to be equivalent if
for any graph (G, A), we have Irredn((G, A)) = Irredn, ((G, A)). We will say that
a family 9vl of graph rewriting systems is less powerfull than a family ~2, if every
graph rewriting system in ~-1 is equivalent to a graph rewriting system in ~c2. The
families ~'1 and ~'~ are equivalent if each one is less powerfutl than the other one.

3 Preliminary Results

3.1 T h e k - e l e c t i o n P r o b l e m

Let k be a given integer. The k-election problem on a graph can be intuitively
introduced as follows. Each vertex of the graph stands for a town, each edge for a
road segment joining to distinct towns. Initially, each town has a neutral status. We
want to organize the graph by delimiting countries, each country having one capital.
In each country, the minimal distance between any town and the capital must be at
most k. Moreover, the distance between two any capitals in the graph must be not
less than k + 1. Each capital (resp. each town) has also to know the towns (resp.
the capital) of its country.

The PpGRS which solves this problem will fill two additionnal requirements :
the towns in all the countries will be classified according to their minimal distance
to the capital and any town will belong to one of the countries whose capital is the
neaxiest. This will be done by constructing a spanning forest of the initial graph,
each tree (standing for a country) being rooted at a capital.

To solve this problem, we consider the PpGRS 7~-elec = <C, P>, with the set
of labels C = {N, C, T, T1, ..., Tk, x} where N stands for Neutral, C for Capital, T for
a town belonging to a country (but not yet classified), 7~ (1 < i < k) for a classified
town, and • for marked edges (i.e. edges belonging to the spanning forest).

The set of rules P is given in Figure 2. Labels Li stand for any vertex label.
Except when it is explicitly specified (rules R4(i)), any edge can be marked or
unmarked, and is preserved in the right-hand side of any rule.

The priorities are given as :

R1 < R4(k) < R4(k 1) < -.. < R4(1) < R~(i) ~<i<~k 1<i<~

Rule R1 says that any neutral town can spontaneously become a capital, except
if there already exists a capital in its k-neighbourhood (rules R2(i) prevent rule R~
to be applied).

Rules R2(i) are intended to mark any town in the k-neighbourhood of a capital
as a town belonging to a country (label T). The classification of these towns will be

370

N C
R1 : �9 ~ �9

X. X

C L1 L~-I N C L1 L~_~. T
R 2 (i) : H - . . M * N . - . H for 1 < i < k

xo xi x i - i xi xo xi x~-i xi

C L1 Li-1 N C L1 Li-1 C
R3(i) : H - . - N P- H . . - H f o r k < i < 2 k

X0 21 X i - 1 2 i Z0 Xl X i - 1 ~gi

C L1 Li-1 T C L1 L~-I
/z{4(i) : H . . . H ~ H -. . o---x--o for 1 < i < k

~g0 ~1 X i - 1 Xi ;g0 Xl X i - 1 Xi

Figure 2: The PGRS T~k-elec-

done later, by using rules R4(i).
Rules Ra(i) have been essentially introduced for technical purposes. Thanks

to them, a capital will only begin to classify its towns when the capitals of its
neighbouring countries are elected. This will ensure a good classification of the
towns in a country. Figure 3 shows what kind of problem would arise if we don't
use such rules : let k = 2 and suppose vertex x0 becomes capital. But for rules
R3(i), it can mark vertices xl and x2 as classified towns (see figure 3(a)). Then the
system terminates by electing, say z3, as a capital and x4 remains a neutral town.
Figure 3(b) shows a good terminal configuration, obtained by using rules R3(/).

Rules R4(f) implement the classification of the towns. Their priority ordonnance-
ment ensures that each town will be labelled according to its distance to one of the
nearest capital (a T/-label means that this town is at distance i from one of the
nearest capital).

The following result states that the PpGRS T~k-elec solves the k-election prob-
lem.

c T1 T2 N C T1 TI C

N T2
X4 X4

(a) A bad intermediate configuration (b) A good terminal configuration

Figure 3: The classification problem.

371

T h e o r e m 3.1 The PpG RS T~ k-eler is noetherian. Moreover, let (G , ~t) be a connec-
ted graph whith all vertices N-labelled, then, for any graph (G, ~') in Irred((G,)~)),
the subgraph induced by the marked edges is a spanning forest of (G,)r with all
vertices labelled C, T1, . . . , Tk-1 or T~ and such that :

* Every tree has only one C-labelled vertex,

�9 The distance between two C-labelled vertices is at least k + 1,

�9 Every -labetled veaex x satis es a(x, a ' - l (c)) = i.

3 . 2 T h e k - e n u m e r a t i o n P r o b l e m

Let G be a graph and k, r be two integers. We can construct a PpGRS which enables
us to enumerate all the ordered k-tuples of vertices in a subgraph of G with radius
r (more precisely in a ball S(z , r) for a given vertex x in G). This PpGRS will act
on a spanning tree T(x) of the graph G, rooted at vertex x.

Let us intuitively describe the behaviour of such a PpGRS : vertex x will be
the controler of the computation. It first looks for a vertex, say vl, which can be
chosen as the first component of a new k-tuple. When such a vertex is found, it
looks for a second one and so one. When for i given vertices Vl , . . . , vi the system
has enumerated all the k-tuples having these vertices as first (ordered) components,
vertex vi is marked as having been the i th component of all such k-tuples and a new
i th component is looked for.

All these steps will be handled by alternating depth-first traversals : vertex x
initiates a traversal which looks for a given vertex ; when the control returns to it,
it initiates a new traversal for the next search. This computation terminates when
all the vertices in the graph are marked as having been the first component of all
possible k-tuples. Then, we obtain :

P r o p o s i t i o n 3.2 Let k and r be two integers. There exists a PpGRS which, given
a graph (G,)t) and any vertex x E v(G), enumerates all k-tuples of the ball B(x, r)
in (G,

3 . 3 L o c a l S i m u l a t i o n o f a F C p G R S b y a P p G R S

Let T~ be a FCpGRS. We can construct a PpGRS 7~toc, im which, on a given country
with capital c and rooted spanning tree T(c) (see 3.1) realizes a random application
on T(c) of one applicable fc-rule of ~ when such a rule exists. The main idea is the
following: given a fc-rule ((Gr, ~r, A~r), 7/), we can traverse any vertex x in T(c) and,
by enumerating the ad-hoc k-tuples in the ad-hoc sized balls B(x, d), say whether
the rule r is applicable or not on an occurrence O(Gr) containing vertex x, and then
apply it or not (the system will ensure that whenever there are applicable rules, one
of them is applied). Then we get :

Proposition 3.3 Let 7~ be a FCpGRS. There exists a PpGRS TQo~,i,n which, from
any given rooted tree T(c) included in a given graph (G, ~), can test whether a fc-rule
r E T~ is applicable in (G,)~) on an occurence e of Gr such that 8(Gr) f3 T(c) ~ O,
or not. Furthermore, a random application of such an applicable fc-rule (when it
exists} is done.

372

3 . 4 S i m u l a t i n g t h e A c t i v i t y o f a F C p G R S b y U s i n g a P p G R S

To achieve the simulation of a given FCpGRS T~ by a PpGRS, we need a PpGRS
T~a~i,~ which supervises the activity of capitals. A capital x is said to be active if
a previous PpGRS T~o~i,~ is looking for applying a fc-rule in the country of the
capital x. When such a PpGRS is acting, it works on balls centered at vertices of
its country. But such balls may also contain vertices of near countries. Hence, we
have to ensure that two near capitals will never be simustaneously active.

Let k be the greatest diameter of a left-hand side graph in the definition of 7~.
Given a graph (G, A), we consider the graph Cap(G) whose vertices are the capitals
obtained via a k-election in (G, ~), and whose edges are linking two capitals when
these two capitals are near (i.e. whose distance is at most 3k). We can construct a
PpGRS T~ap which simulates, in Cap(G), the activity on (G, ~) of every execution
of the given FCpGRS T~. More precisely, let us assume that we have a graph (G, ~)
where a k-election has been made. An execution of T~ on G is defin.ed by the sequence
of rewritten occurences ~1, . . . , 0n in G. Each occurence 0i intersects one or more
countries with capitals Ci,1,..., Ci,j~ respectively. The goal of the PpGRS Tt~ap is to
ensure that first, one of the capitals C1,1,. . . , CI,j~ is active (step1), next one of the
capitals C2,1, . . . , C2j2 is active (step2),. . . , next one of the capitals Cn,1, . . . , Cn,j~
(step,,) is active, and finally every capital must be unactive. Thus, at each stepi
(1 < i < n), a PpGRS TQo~sim may simulate the rewriting of 7~ on ~i (1 < i < n).
To obtain a PpGRS no longer working on Cap(G), but on the whole graph (G, ~),
it is sufficient to consider that the edges are in fact paths of length at most 3k.

Proposition 3.4 Let T~ be a FCpGRS. There exists a PpGRS which, for any
given graph (G,)i), can simulate on Cap(G) the activity of any execution of the
given FCpGRS 7~.

4 Comparisons Between the Classes of Rewriting
Systems

We are now going to show that PpGRS's and FCpGRSrs are in fact equivalent. For
any FCpGRS 7~, we can construct a PpGRS T~' which can simulate the behaviour
of 7~. The intuitive idea is the following : let k (resp. k r) be the greatest diameter
(resp. cardinality) of a left-hand side graph in the definition of T~; we first construct
a covering of the graph by means of countries and capitals (two capitals being at
distance at least k + 1 from each other). Then, any capital can test whether a fc-rule
tan be applied on an occurrence overlapping its country or not, by enumerating the
k'-tuples in its neighbourhood, and apply one of these rules when possible. The
whole activity of the capitals is managed by the PpGRS seen in previous section.

Conversely, for any PpGRS T~, one can easily construct a FCpGRS T~' which
simulates the behaviour of T~. For any rule r in ~ , one can characterize the contexts
which have to prevent the application of r : it suffices to take into account all the
rules r ' in T~ which are more prioritary than r and which can overlap an occurrence
of Gr.

Hence, we obtain the main result :

373

T h e o r e m 4.1 The PpGRS's and the FCpGRS's are equivalent.

Finally, we can prove (see [6]) the following relationships between the different
classes of rewriting systems.

T h e o r e m 4.2 The class of pGRS's is less powerfull than the class of iGRS's.
The class of iGRS's is less powerfull than the class of FCpGRS's. The classes
of PpGRS's, FCpGRS 's, PiGRS's and FCiGRS's are equivalent.

References

[1] D. Angluin, Local and global properties in networks of processors, Proceedings
of the 12 ~h Symposium on Theory of Computing (1980), 82-93.

[2] M. Billaud, P. Lafon, Y. M~tivier and E. Sopena, Graph Rewriting Systems with
Priorities, Lecture Notes in Computer Science 411 (1989), 94-106.

[3] B. Courcelle, Recognizable sets of unrooted trees in Definability and Recogniz-
ability of sets of trees, Elsevier, to appear (1991).

[4] I. Litovsky and Y. M~tivier, Computing with Graph Rewriting Systems with
Priorities, Fourth International Worshop on Graph Grammars and their Appli-
cations to Computer Science, Bremen. Lecture Notes in Computer Science 532
(1991), 549-563.

[5] I. Litovsky and Y. M~tivier, Computing trees with graph rewriting systems with
priorities, in Definability and Recognizability of sets of trees, Elsevier, to appear
(1991).

[6] I. Litovsky, Y. M~tivier, E. Sopena, Definitions and comparisons of local com-
putations on graphs, Internal Report No 91-43, LaBRI, Universit~ Bordeaux I
(1991).

[7] I. Litovsky, Y. M~tivier and W. Zielonka The power and limitations o/local
computations on graphs and networks, Internal Report No 91-31, LaBRI, Uni-
versit~ Bordeaux I, submitted to publication (1991).

