
Def in i t ions  and Comparisons  of  Local 
C o m p u t a t i o n s  on Graphs 

(extended abstract)  

Igor Litovsky* Yves M6tivier* Eric Sopena* 

Laboratoire Bordelais de Recherche en Informatique 

Unit~ associ6e C.N.R.S. 1304 

351, cours de la Lib6ration 

F-33405 TALENCE 

A b s t r a c t .  We are interested in models to encode and to prove decentralized and 
distributed computations on graphs or networks. In this paper, we define and 
compare six models of graph rewriting systems. These systems do not change the 
underlying structure of the graph on which they work, but only the labelling of its 
components (edges or vertices). Each rewriting step is fully determinated by the 
knowledge of a fixed size subgraph, the local context of the rewritten occurrence. 
The studied families are based on the rewriting of paztial or induced subgraphs 
and we use two kinds of mechanisms to locally control the applicability of rules : 
a priority relation on the set of rules or a set of forbidden contexts associated with 
each rule. We show that these two basic (i.e. without local control) families of 
graph rewriting systems are distinct, but whenever we consider the local controls 
of the rewriting, the four so-obtained families are equivalent. 

1 Introduction 
We are interested in models to encode and to prove decentralized and distributed 
computat ions  on graphs or networks. The presented models are graph rewriting 
systems satisfying the following constraints which seem to be natural  when describing 
distr ibuted computat ions  with a decentralized control: 

(C1) they do not change the underlying graph (i.e. the network) but only the 
labelling of its components (edges and/or  vertices), the final labelling being 
the result of the computat ion,  

(C2) they are local, tha t  is, each rewriting step changes only the labelling of a fixed 
size connected subgraph of the underlying graph, 
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(C3) they are locally generated, that is, the application condition of the rewriting 
only depends on the local context of the rewritten subgraph. 

For such systems, the distributed aspect comes from the fact that several rewrit- 
ing steps can be performed simultaneously on "far enough" subgraphs. 

In this paper, we define and compare six types of graph rewriting systems. Any 
such system, say R,  is defined by a finite set of rewriting rules (and thus uses a 
finite set of labels) and may be equipped with a mechanism which locally controls 
the rewriting rules application. A rewriting rule r consists in the relabelling of a 
fixed connected subgraph Gr, and is given as r :  (Gr, ~) ~ (Gr, ~'). 

We say that a labelled graph (G, l) is rewritten by R in (G, l') if there exists 
a finite sequence of allowed applications (in a sense precised below) of relabellings 
in R leading from (G, l) to (G, l'). Given a graph rewriting system R, we are 
interested in the function Irredn which, with each graph (G, ~), associates the set 
of irreducible graphs (i.e. where no allowed application of rule is possible) obtained 
from (G, ~). We say that two graph rewriting systems R and R '  are equivalent when 
Irredn = Irredn,. A family F1 of graph rewriting systems is less powerfull than a 
family 9r2 if every graph rewriting system in 5rl is equivalent to a graph rewriting 
system in ~r2. The families ~'1 and . ~  are equivalent if each one is less powerfull 
than the other one. 

We now present the six various types of graph rewriting systems we will consider 
in this paper. For each of them we have to specify the notion of allowed application 
of a rule r in a graph (G, l). The first criterium characterizing the applicability of a 
rule is given by the definition of the occurrence of the left-hand side (Gr, ~) in (G, l). 
Such an occurrence may be : 

�9 a partial subgraph of (G, l) isomorphic to (Gr, ~), 

�9 an induced subgraph of (G, l) isomorphic to (Gr, ~). 

Hence, we respectively obtain the families ofpGRS's and iGRS's. We prove that 
the family of pGRS's is strictly less powerfull than the family of iGRS's. 

On the other hand, to increase the computational power of these basic graph 
rewriting systems, we use two kinds of local control on the applicability of rules : 

�9 The first one has been introduced in [2] and consists in adding a partial order 
relation, called priority, on the set of rewriting rules. In such systems, the 
application of a rule r is allowed on an occurrence 0 of (Gr, A) if no rule with a 
greater priority has an occurrence overlapping 0. Note that the effect of these 
priorities is strictly local (constraint (C3) is respected). 

�9 The second one, inspired from [3], consists in adding to each rewriting rule 
r a set of forbidden contexts, where a context is a graph having (Gr, A) as a 
subgraph. For such systems, an application of r is allowed on an occurrence 0 
of (Gr, ~) if 0 is not a subgraph of a forbidden context in (G, l). 

These rewriting systems are respectively called PxGRS's  and FCzGRS's  (for 
z E {p, i}). The so-defined families are strictly more powerfull than the previous 
ones. It is easy to see that the family of FCzGRS's  is more powerfull than the family 
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of PxGRS's (for x E {p, i}). The main part of this paper is devoted to proving the 
equivalence of the FCpGRS's and the PpGRS's. This result is not immediate : for 
example, it is easy to give a one-rule FCpGRS recognizing the class of complete 
graphs, but no "simple" PpGRS can do it. We also prove that with such a local 
control Y (Priority or Forbidden Contexts), the YpGRS's and the YiGRS's are 
equivalent. Hence, we have : 

pGRS ~ iGRS ~ {PpGRS= FCpGRS= PiGRS= FCiGRS} 

When proving that every FCpGRS is equivalent with a PpGRS, the main dif- 
ficulty comes from the fact that a FCpGRS forbids the application of a rewriting 
rule by only considering the forbidden contexts associated with this rule, since a 
PpGRS only forbids such an application when another rule (with a greater priority) 
is applicable on an overlapping occurrence. Assuming first that one works on graphs 
having a distinguished vertex, depth-first traversals can be sequentially processed 
by using a PpGRS [2]. In this case, every FCpGRS can be simulated by a PpGRS 
in the following way : each depth-first traversal looks for applying a fc-rule ; when 
it founds one or more such rules, it "chooses" one of them and applies it ; when no 
fc-rule is applicable, the PpGRS stops (see 7~tocsim in Section 3.3). But it is known 
that the problem of distinguishing one vertex (known as the electwn problem) is not 
solvable for any type of graph (see [1]). Hence, the main idea of this paper is to 
construct, using a PpGRS, a partition of the graph into subgraphs (called coun- 
tries) of k-bounded diameter, each country having an elected vertex (the capital). 
This "k-election" mechanism, used together with the PpGRS 7r enables us to 
simulate every FCpGRS by a PpGRS (Proposition 3.4). 

By using techniques inspired from [1L power and limitations of such local com- 
putations on graphs are studied in [7]. 

Complete proofs of the results presented here can be found in [6]. 

2 D e f i n i t i o n s  a n d  N o t a t i o n  

2 .1  G r a p h s  

A simple, loopless, undirected graph G is defined as a pair (v(G), e(G)) where v(G) 
is a finite set of vertices and e(G) a set of edges, an edge being a set of two distinct 
vertices in v(G). A labelled graph is a pair (G, A) where G is a graph and A is a 
mapping from v(G) t.l e(G) into a finite set of labels/:. Let (G, A) and (G', ~') be 
two labelled graphs. The labelled graph (G', ~') is a (partial) subgraph of (G, A) if: 

v(a') c v(a) 
e(a') c e(a) 
Ala' = A' 

where A[G, denotes the mapping induced from 
A by v(G') t.J e(G'). 

The pair ((v(G)\ v(G'), e(G)\ e(G')), A) is called the contezt of (G', A') in (G, A). 
It is denoted by (G, A) \ (G', A'). A mapping ~o from v(G) into v(G') is an homo- 
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morphism from (G, h) into (G', h') if for any x, y in v(G), we have: 

y} e e 

y)) = 

Let ~ be an homomorphism from (G, h) into (G', h'), we will denote by ~(G) 
the graph (~(v(G)), g) where {~(x), ~(y)} 6 s iff (x, y} E e(G). So (~(G), h') is a 
subgraph of (G', h'). Whenever ~ is injective, ~0 is said to be an occurrence of (G, h) 
in (G', A'). If moreover ~ is bijective, (G, h) and (G', h') are said to be isomorphic. 

Let (G', h') be a subgraph of (G, h). We say that (G', A') is an induced subgraph 
of (G, h) iff for all x, y in v(G'), {x, y} 6 e(G) ~ {x, y} 6 e(G'). An occurrence O 
of (G", h") in (e ,  h) is said to be an induced occurrence if (O(G"), h") is an induced 
subgraph of (G, h). 

Let r be an integer and x be a vertex in v(G) ; the ball subgraph B(x, r) is the 
induced subgraph of (G, h) whose vertices are all the vertices in v(G) whose distance 
to vertex x is at most r. 

From now on, as we will only deal with connected labelled graphs, we will simply 
say graph for connected labelled graphs. 

2.2 R e w r i t i n g  on Part ia l  or Induced Subgraphs 

A partial-graph rewriting rule is a pair r = ((Gr, At), (Gr, h ')) ,  denoted (Gr, hr, h'r) 
for short. (Gr, h.) (resp. (Gr, h '))  is called the left-hand side (resp. right-hand side) 
of the rule r. The rewriting relation ~ is defined by :  (G, h) --~ (G, h') if there 
exists an occurrence 0 of (Gr, h.) in (G, h) such that 0 is an occurrence of (G~, h'~) 
in (G, h') and the contexts of 0(Gr) in (G, h) and in (G, h') are identical. We say 
that 0 is the rewritten occurrence. 

A partial-Graph Rewriting System (pGRS) is a finite set ~ of rewriting rules. 
The rewriting relation - ~  is defined by : (G, h) - ~  (G, h') if and only if there 
exists a rule r 6 T~ such that (G, h) ~ (G, h'). 

A partial-Graph Rewriting System with Priorities (PpGRS) is a finite set 7Z of 
rewriting rules equipped with a partial ordering relation > called priority which 
works as follows : let 0 be an occurrence of a rule r 6 7~. The rule r is applicable on 
0 if there is no occurrence 0' of a rule r' > r such that v(O(G,))n v(O'(Gr,)) ~ 0. If 
two or more rules are simultaneously applicable on (G, h), one of them (randomly 
chosen) is applied. We note (G, h) - ~  (G, h') if there exists a rule r 6 /~  such that 
(G, h) ~ (G, h') and r was applicable in (G, h) on the rewritten occurrence. 

A partial-graph rewriting rule with forbidden contexts (re-rule for short) is a 
pair (r,7/) where r is a rewriting rule (Gr, hr, h ' )  and 7/ is  a finite family of pairs 
{((Gi, hi), 0i)}ieIr where (Gi, hi) is a labelled graph and 0i is an occurrence of (Gr, A) 
in (Gi, hi). The contexts (Gi \ O~(Gt)) are the forbidden contexts of the fc-rule and 
are used as follows : let 0 be an occurrence of Gr ; the fc-rute (r, 7/) is applicable on 

if for no i, there exists an occurrence ~ of (Gi, hi) in (G, h) such that ~o0i = 0. 
A partial-Graph Rewriting System with Forbidden Context (FCpGRS) is a finite 

set R of fc-rules. We note (G, h) - ~  (G, h') if there exists a rule r 6 R such that 
(G, h) ~ (G, h') and r was applicable in (G, h) on the rewritten occurrence. 
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Figure 1: Applicability of rewriting rules. 

The same notions can be defined by using induced subgraphs instead of partial 
ones, leading respectively to i-, Pi- and FCiGRS. 

E x a m p l e  2.1 Consider the graph (G, ~) of Figure l(f) and the graph rewriting rules 
r =  (Gr, ~r, ~ ) ,  s = (Gs, ~s, ~'8), where (G~, ~r), (Gr, A~), (Gs, A,) and (Gs,A~) are 
given by Figure l(a,b,d,e) respectively. 

�9 As rule of a pGRS, r can be applied on the four corners of graph (G, A) (vertices 
marked as o). 

�9 As rule of a iGRS, r can be applied on each corner of graph (G,)~) except on 
the upper-right one, since there is a forbidden edge linking two vertices of the 
occurrence. 

�9 As rule of a FCpGRS,  with graph (G1, A1) of Figure l(c) as forbidden context, 
r can only be applied on the two upper corners of graph (G, A). 

�9 As rule of a FCiGRS,  r can be applied on the upper-left corner of (G,)~) and 
on its bottom-right corner, since the forbidden context of r does not appear 
as an induced subgraph. 

�9 As rule of a PpGIES, with s > r, rule r can only be applied on the two upper 
corners of (G, A). 

�9 As rule of a PiGRS,  with s > r, rule r can be applied on the upper left corner, 
and the bottom-right corner of (G,),) (since s cannot be applied on occurrences 
overlapping these corners). 



369 

2.3  R e w r i t i n g  S y s t e m  B e h a v i o u r  

In this paper, we will only consider noetherian graph rewriting systems, which means 
that from any graph, there exists no infinite rewriting chain. 

Given a graph rewriting system 7r we consider the reflexive transitive closure 
- -~  of - ~ .  A graph (G, A') is sa~d to be irreducible with respect to 7~ if there is 
no applicable rule of 7~ on (G, A'). For every graph (G, A), we note IrredT~((G, A)) 
the set {(G, A') /(G, A) - -~  (G, A')and no rule o f ~  is applicable on (G, A')}. Let 7~ 
and 7~' be two rewriting systems. The systems ~ and 7U are said to be equivalent if 
for any graph (G, A), we have Irredn((G, A)) = Irredn, ((G, A)). We will say that 
a family 9vl of graph rewriting systems is less powerfull than a family ~2, if every 
graph rewriting system in ~-1 is equivalent to a graph rewriting system in ~c2. The 
families ~'1 and ~'~ are equivalent if each one is less powerfutl than the other one. 

3 Preliminary Results 

3.1  T h e  k - e l e c t i o n  P r o b l e m  

Let k be a given integer. The k-election problem on a graph can be intuitively 
introduced as follows. Each vertex of the graph stands for a town, each edge for a 
road segment joining to distinct towns. Initially, each town has a neutral status. We 
want to organize the graph by delimiting countries, each country having one capital. 
In each country, the minimal distance between any town and the capital must be at 
most k. Moreover, the distance between two any capitals in the graph must be not 
less than k + 1. Each capital (resp. each town) has also to know the towns (resp. 
the capital) of its country. 

The PpGRS which solves this problem will fill two additionnal requirements : 
the towns in all the countries will be classified according to their minimal distance 
to the capital and any town will belong to one of the countries whose capital is the 
neaxiest. This will be done by constructing a spanning forest of the initial graph, 
each tree (standing for a country) being rooted at a capital. 

To solve this problem, we consider the PpGRS 7~-elec = <C, P>, with the set 
of labels C = {N, C, T, T1, ..., Tk, x} where N stands for Neutral, C for Capital, T for 
a town belonging to a country (but not yet classified), 7~ (1 < i < k) for a classified 
town, and • for marked edges (i.e. edges belonging to the spanning forest). 

The set of rules P is given in Figure 2. Labels Li stand for any vertex label. 
Except when it is explicitly specified (rules R4(i)), any edge can be marked or 
unmarked, and is preserved in the right-hand side of any rule. 

The priorities are given as : 

R1 < R4(k) < R4(k 1) < -.. < R4(1) < R~(i) ~<i<~k 1<i<~ 

Rule R1 says that any neutral town can spontaneously become a capital, except 
if there already exists a capital in its k-neighbourhood (rules R2(i) prevent rule R~ 
to be applied). 

Rules R2(i) are intended to mark any town in the k-neighbourhood of a capital 
as a town belonging to a country (label T). The classification of these towns will be 
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N C 
R1 : �9 ~ �9 

X. X 

C L1 L~-I N C L1 L~_~. T 
R 2 ( i  ) : H - . .  M * N . - .  H for 1 < i < k 

xo xi x i - i  xi xo xi x~-i xi 

C L1 Li-1 N C L1 Li-1 C 
R3(i) : H - . -  N P- H . . -  H f o r k < i < 2 k  

X0 21 X i - 1  2 i  Z0 Xl  X i - 1  ~gi 

C L1 Li-1 T C L1 L~-I 
/z{4(i ) : H . . .  H ~ H -. .  o---x--o for 1 < i < k 

~g0 ~1 X i - 1  Xi ;g0 Xl  X i - 1  Xi 

Figure 2: The PGRS T~k-elec- 

done later, by using rules R4(i). 
Rules Ra(i) have been essentially introduced for technical purposes. Thanks 

to them, a capital will only begin to classify its towns when the capitals of its 
neighbouring countries are elected. This will ensure a good classification of the 
towns in a country. Figure 3 shows what kind of problem would arise if we don't 
use such rules : let k = 2 and suppose vertex x0 becomes capital. But for rules 
R3(i), it can mark vertices xl and x2 as classified towns (see figure 3(a)). Then the 
system terminates by electing, say z3, as a capital and x4 remains a neutral town. 
Figure 3(b) shows a good terminal configuration, obtained by using rules R3(/). 

Rules R4(f) implement the classification of the towns. Their priority ordonnance- 
ment ensures that  each town will be labelled according to its distance to one of the 
nearest capital (a T/-label means that  this town is at distance i from one of the 
nearest capital). 

The following result states that  the PpGRS T~k-elec solves the k-election prob- 
lem. 

c T1 T2 N C T1 TI C 

N T2 
X4 X4 

(a) A bad intermediate configuration (b) A good terminal configuration 

Figure 3: The classification problem. 
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T h e o r e m  3.1 The PpG RS T~ k-eler is noetherian. Moreover, let ( G , ~t ) be a connec- 
ted graph whith all vertices N-labelled, then, for any graph (G, ~') in Irred((G, )~)), 
the subgraph induced by the marked edges is a spanning forest of (G,)r with all 
vertices labelled C, T1, . . . ,  Tk-1 or T~ and such that : 

* Every tree has only one C-labelled vertex, 

�9 The distance between two C-labelled vertices is at least k + 1, 

�9 Every  -labetled veaex x satis es a(x, a ' - l ( c ) )  = i. 

3 . 2  T h e  k - e n u m e r a t i o n  P r o b l e m  

Let G be a graph and k, r be two integers. We can construct a PpGRS which enables 
us to enumerate all the ordered k-tuples of vertices in a subgraph of G with radius 
r (more precisely in a ball S(z ,  r) for a given vertex x in G). This PpGRS will act 
on a spanning tree T(x) of the graph G, rooted at vertex x. 

Let us intuitively describe the behaviour of such a PpGRS : vertex x will be 
the controler of the computation. It first looks for a vertex, say vl, which can be 
chosen as the first component of a new k-tuple. When such a vertex is found, it 
looks for a second one and so one. When for i given vertices Vl , . . . ,  vi the system 
has enumerated all the k-tuples having these vertices as first (ordered) components, 
vertex vi is marked as having been the i th component of all such k-tuples and a new 
i th component is looked for. 

All these steps will be handled by alternating depth-first traversals : vertex x 
initiates a traversal which looks for a given vertex ; when the control returns to it, 
it initiates a new traversal for the next search. This computation terminates when 
all the vertices in the graph are marked as having been the first component of all 
possible k-tuples. Then, we obtain : 

P r o p o s i t i o n  3.2 Let k and r be two integers. There exists a PpGRS which, given 
a graph (G,)t) and any vertex x E v(G), enumerates all k-tuples of the ball B(x, r) 
in (G, 

3 . 3  L o c a l  S i m u l a t i o n  o f  a F C p G R S  b y  a P p G R S  

Let T~ be a FCpGRS. We can construct a PpGRS 7~toc, im which, on a given country 
with capital c and rooted spanning tree T(c) (see 3.1) realizes a random application 
on T(c) of one applicable fc-rule of ~ when such a rule exists. The main idea is the 
following: given a fc-rule ((Gr, ~r, A~r), 7/), we can traverse any vertex x in T(c) and, 
by enumerating the ad-hoc k-tuples in the ad-hoc sized balls B(x, d), say whether 
the rule r is applicable or not on an occurrence O(Gr) containing vertex x, and then 
apply it or not (the system will ensure that  whenever there are applicable rules, one 
of them is applied). Then we get : 

Proposition 3.3 Let 7~ be a FCpGRS.  There exists a PpGRS TQo~,i,n which, from 
any given rooted tree T(c) included in a given graph (G, ~), can test whether a fc-rule 
r E T~ is applicable in (G,)~) on an occurence e of Gr such that 8(Gr) f3 T(c) ~ O, 
or not. Furthermore, a random application of such an applicable fc-rule (when it 
exists} is done. 
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3 . 4  S i m u l a t i n g  t h e  A c t i v i t y  o f  a F C p G R S  b y  U s i n g  a P p G R S  

To achieve the simulation of a given FCpGRS T~ by a PpGRS, we need a PpGRS 
T~a~i,~ which supervises the activity of capitals. A capital x is said to be active if 
a previous PpGRS T~o~i,~ is looking for applying a fc-rule in the country of the 
capital x. When such a PpGRS is acting, it works on balls centered at vertices of 
its country. But such balls may also contain vertices of near countries. Hence, we 
have to ensure that  two near capitals will never be simustaneously active. 

Let k be the greatest diameter of a left-hand side graph in the definition of 7~. 
Given a graph (G, A), we consider the graph Cap(G) whose vertices are the capitals 
obtained via a k-election in (G, ~), and whose edges are linking two capitals when 
these two capitals are near (i.e. whose distance is at most 3k). We can construct a 
PpGRS T~ap which simulates, in Cap(G), the activity on (G, ~) of every execution 
of the given FCpGRS T~. More precisely, let us assume that  we have a graph (G, ~) 
where a k-election has been made. An execution of T~ on G is defin.ed by the sequence 
of rewritten occurences ~1, . . . ,  0n in G. Each occurence 0i intersects one or more 
countries with capitals Ci,1,..., Ci,j~ respectively. The goal of the PpGRS Tt~ap is to 
ensure that  first, one of the capitals C1,1,. . . ,  CI,j~ is active (step1), next one of the 
capitals C2,1, . . . ,  C2j2 is active (step2),. . . ,  next one of the capitals Cn,1, . . . ,  Cn,j~ 
(step,,) is active, and finally every capital must be unactive. Thus, at each stepi 
(1 < i < n), a PpGRS TQo~sim may simulate the rewriting of 7~ on ~i (1 < i < n). 
To obtain a PpGRS no longer working on Cap(G), but on the whole graph (G, ~), 
it is sufficient to consider that  the edges are in fact paths of length at most 3k. 

Proposition 3.4 Let T~ be a FCpGRS. There exists a PpGRS which, for any 
given graph (G,)i), can simulate on Cap(G) the activity of any execution of the 
given FCpGRS 7~. 

4 Comparisons Between the Classes of Rewriting 
Systems 

We are now going to show that  PpGRS's and FCpGRSrs are in fact equivalent. For 
any FCpGRS 7~, we can construct a PpGRS T~' which can simulate the behaviour 
of 7~. The intuitive idea is the following : let k (resp. k r) be the greatest diameter 
(resp. cardinality) of a left-hand side graph in the definition of T~; we first construct 
a covering of the graph by means of countries and capitals (two capitals being at 
distance at least k + 1 from each other). Then, any capital can test whether a fc-rule 
tan  be applied on an occurrence overlapping its country or not, by enumerating the 
k'-tuples in its neighbourhood, and apply one of these rules when possible. The 
whole activity of the capitals is managed by the PpGRS seen in previous section. 

Conversely, for any PpGRS T~, one can easily construct a FCpGRS T~' which 
simulates the behaviour of T~. For any rule r in ~ ,  one can characterize the contexts 
which have to prevent the application of r : it suffices to take into account all the 
rules r '  in T~ which are more prioritary than r and which can overlap an occurrence 
of Gr. 

Hence, we obtain the main result : 
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T h e o r e m  4.1 The PpGRS's and the FCpGRS's are equivalent. 

Finally, we can prove (see [6]) the following relationships between the different 
classes of rewriting systems. 

T h e o r e m  4.2 The class of pGRS's is less powerfull than the class of iGRS's. 
The class of iGRS's is less powerfull than the class of FCpGRS's. The classes 
of PpGRS's, FCpGRS 's, PiGRS's and FCiGRS's are equivalent. 
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