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Abstract

A signed graph (G,Σ) is a graph G together with an assignment of signs + and − to
all the edges of G where Σ is the set of negative edges. Furthermore (G,Σ1) and (G,Σ2)
are considered to be equivalent if the symmetric difference of Σ1 and Σ2 is an edge cut
of G. Naturally arising from matroid theory, several notions of graph theory, such as the
theory of minors and the theory of nowhere zero flows, have been already extended to signed
graphs. In an unpublished manuscript, B. Guenin introduced the notion of signed graph
homomorphisms where he showed how some well-known conjectures can be captured using
this notion. A signed graph (G,Σ) is said to map to (H,Σ1) if there is an equivalent signed
graph (G,Σ′) of (G,Σ) and a mapping ϕ : V (G) → V (H) such that (i) if xy ∈ E(G) then
ϕ(x)ϕ(y) ∈ E(H) and (ii) xy ∈ Σ′ if and only if ϕ(x)ϕ(y) ∈ Σ1. The chromatic number of
a signed graph (G,Σ) can then be defined as the smallest order of a homomorphic image of
(G,Σ).

Capturing the notion of graph homomorphism order, signed graph homomorphisms pro-
vide room for extensions and strengthenings of most homomorphism and coloring theories on
graphs. Thus this paper is the first general study of signed graph homomorphisms. In this
work our focus would be on the relation of homomorphisms of signed graphs with minors.
After a thorough introduction to the concept we show that the notion of signed graph homo-
morphism on the set of signed graphs whose underlying graph is bipartite already captures
the standard notion of graph homomorphism. We prove that the largest planar signed clique
is of order 8. For the maximum chromatic number of planar signed graphs we give the lower
bound of 10 and the upper bound of 48. We determine this maximum for some other fam-
ilies such as outerplanar signed graphs. Finally, reformulating Hadwiger’s conjecture in the
language of homomorphism of signed graphs whose underlying graph is bipartite, we show
that while some stronger form of the conjecture holds for small chromatic number, such
strengthening of the conjecture would not hold for large chromatic numbers. This could
be regarded as a first indication that perhaps Hadwiger’s conjecture only holds for small
chromatic numbers.

keywords. Signed graph; Coloring; Homomorphism; Minor; Hadwiger’s conjecture.
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1 Motivation

The Four-Color Theorem has been one of the most motivational problems in developing the
theory of graphs and it continues to do so especially because none of its known proofs is verified
without the aid of a computer. It simply states that every map, or equivalently every simple
planar graph, can be colored properly using at most four colors. Thus to understand it better,
one must understand what makes a graph planar and what are the obstacles in coloring a given
graph with a few number of colors. The former has given birth to the theory of graph minors.
The latter has been developed to the theory of graph coloring and graph homomorphisms.
Two examples of central theorems in the theory of graph coloring are Brook’s Theorem and
the Four-Color Theorem. Many extensions of the Four-Color Theorem have been proposed as
conjectures, among which is Hadwiger’s conjecture, one of the most well-known conjectures in
nowadays graph theory:

Conjecture 1.1 (Hadwiger) If G has no Kn as a minor then G is (n− 1)-colorable.

One of the important characteristics of Brook’s theorem, the Four-Color theorem and Had-
wiger’s conjecture if it is proved, is that they provide good upper bounds on the chromatic
number, which is an NP-hard parameter to compute, in terms of parameters or properties of
graphs that are polynomial time to compute or verify. However none of these theorems and con-
jecture (if proven) provides a fixed upper bound on the chromatic number of bipartite graphs
(note that it is easy to verify if a graph is bipartite). To formulate such theorems, that bound the
chromatic number of say planar graphs some of whose edges are replaced by complete bipartite
graphs, the theory of signed graphs and odd-minors have been introduced.

Beside the theory of minors, some other theories such as the theory of nowhere-zero flows on
graphs have been extended to signed graphs. Coloring problems have also been considered for
special families of signed graphs. The notion of homomorphism of signed graphs, which is the
main subject of this work, was introduced by B. Guenin for its relation with an edge-coloring
problem we mention below.

In [T1880] P. G. Tait proposed a (now classic) restatement of the Four-Color Theorem which
claims that every bridgeless cubic planar multigraph is 3-edge colorable. Note that if a k-regular
multigraph G is k-edge colorable, then for each subset X of vertices of G with |X| being odd,
there must be at least k edges that connect vertices in X to vertices not in X. If, in a k-regular
multigraph G, for each subset X of odd size there are at least k edges joining vertices of X to
vertices not in X, then G is called a k-graph. It is easily observed that if a k-regular graph
is k-edge-colorable, then it is a k-graph. The Petersen graph is an example showing that not
every k-graph is k-edge-colorable. Motivated by this restatement of the Four-Color Theorem, P.
Seymour [S75] proposed the following conjecture in generalization of the Four-Color Theorem:

Conjecture 1.2 Every planar k-graph is k-edge-colorable.

We note that, for this conjecture, the fact that G is a multigraph is quite essential otherwise
there is no planar k-regular graph for k ≥ 6. For k = 3, Conjecture 1.2 is equivalent to the
Four-Color Theorem. Conjecture 1.2 has been proved for k = 4, 5 by Guenin [G12], for k = 6
by Dvořák, Kawarabayashi and Král’ [DKK], for k = 7 by Edwards and Kawarabayashi [EK11]
and, very recently, for k = 8 by Chudnovsky, Edwards and Seymour [CES12].

In [N07], the first author introduced a generalization of the Four-Color Theorem and proved
it to be equivalent to Conjecture 1.2 for odd values of k. B. Guenin [G05], after introducing the
notion of homomorphism of signed graphs, provided a homomorphism analog for even values of
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k in some stronger form. In [NRS12] we show that for k = 2g, Conjecture 1.2 is equivalent to
the first claim of Conjecture 10.2 for 2g.

The aim of this paper is to study colorings and homomorphisms of signed graphs with special
attention to their connection with signed minors. It has come to our attention that the notion
of homomorphisms of signed graphs is a special case of color switching homomorphisms of edge-
colored graphs studied by Brewster and Graves in [BG09]. However it is the relation with
signed minors and the possibility of extending coloring and homomorphism theories to planar
and minor-closed families that makes our project special. Generally speaking, this paper is the
first in developing this vast theory. It is therefore natural that we have many more questions
than we have answers for. However, we do provide some exciting answers too.

The paper is organized as follows. First we settle our notation, after which we give definitions
of new concepts together with examples. Then, in separate sections, we consider the possibilities
of extending concepts from graph homomorphisms and graph coloring to signed graphs.

2 Notation

We use standard terminology of graph theory where a graph is considered to be simple, finite
and loopless. Sometimes we allow the presence of multi-edges in which case we rather use the
term multigraph. Less standard notions that we use are recalled in this section.

Given two graphs G and H, a homomorphism of G to H is a mapping φ : V (G) → V (H)
such that if xy ∈ E(G) then φ(x)φ(y) ∈ E(H). We will write G → H whenever there exists
a homomorphism of G to H. The homomorphic image of G under φ, denoted φ(G), is the
subgraph of H given by V (φ(G)) = φ(V (G)) and xy ∈ E(φ(G)) if and only if there exists an
edge uv ∈ E(G) such that φ(u) = x and φ(v) = y. A core of a graph G is a minimal subgraph
of G to which G admits a homomorphism (see [HN04] for a proof that this is well-defined, and
for more on graph homomorphisms). A core is a graph which is its own core. The relation
G → H induces a quasi-order on the class of graphs which is a poset on the class of cores. In
this order, many classical results can be restated in the language of mainstream mathematics.
For example, the Four-Color Theorem is to say that the class of planar cores admits a maximum
in the homomorphism order. Hadwiger’s conjecture is also restated as follows:

Conjecture 2.1 (Hadwiger’s conjecture reformulated [NN06]) Every minor-closed fam-
ily of graphs has a maximum with respect to the homomorphism order.

The chromatic number of a graph G, denoted χ(G), is the smallest number of vertices of
a homomorphic image of G. It is easily observed that χ(G) is the smallest number of colors
one can assign to the vertices of G in such a way that adjacent vertices are assigned distinct
colors (proper coloring). A graph is k-colorable if χ(G) ≤ k. A bipartite graph (k-partite graph,
respectively) is a graph with at least two (k, respectively) vertices that is 2-colorable (k-colorable,
respectively).

An acyclic coloring of a graph is a proper coloring in which every 2-colored subgraph is a
forest. The acyclic chromatic number of a graph G is the minimum number of colors one needs
for an acyclic coloring of G.

An embedding of a graph G on a plane is to associate distinct points of the plane to vertices
of G and to associate a continuous closed curve with each edge uv which would have u and v as
its endpoints and contains no other point of V (G). A planar graph is a graph which admits an
embedding on the plane such that edges intersect only at their endpoints. A plane graph is a
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planar graph together with an embedding on the plane. An outerplanar graph is a planar graph
which admits an embedding such that every vertex is on the outer face.

We use Kn, Cn and Pn to denote, repectively, the complete graph, the cycle and the path on
n vertices. A clique is any complete graph. A clique of G is a complete graph that is a subgraph
of G. The clique number of G, denoted ω(G), is the largest number of vertices of a clique of G.

A graph G is connected if for each pair x and y of vertices there is a path in G connecting x
and y. The connectivity of a connected graph G is the minimum number of vertices of G whose
removal either disconnects the remaining vertices or leaves only one vertex.

3 Definitions

3.1 Signed graphs

A signified graph is a graph G with an assignment of signs + and − to its edges. If Σ is the set
of negative edges then we denote the signified graph by (G,Σ). A resigning of a signified graph
at a vertex v is to change the sign of each edge incident to v. We say (G,Σ2) is a resigning
of (G,Σ1) if it is obtained from (G,Σ1) by a sequence of resignings. Resigning then defines an
equivalence relation on the set of all signified graphs over G. Each such class will be called a
signed graph and could be denoted by any member of its class. Each member of this class is a
representation of the signed graph. Given a signed graph (G,Σ), Σ is called the signature of G.
Given a signed graph (G,Σ), we say (H,Σ1) is a subgraph of (G,Σ) if there is a representation
(G,Σ′) of (G,Σ) such that (i) V (H) ⊆ V (G), (ii) E(H) ⊆ E(G) and (iii) Σ1 ⊆ Σ′.

For a graph G on n vertices and m edges it is easy to check that if G has c connected
components, then each equivalence class has 2n−c elements and, therefore:

Proposition 3.1 If G has m edges, n vertices and c components, then there are 2(m−n+c)

distinct signed graphs on G.

In particular, we get the following:

Corollary 3.2 There is only one signed graph on every forest.

An unbalanced cycle of (G,Σ) is a cycle of G that has an odd number of negative edges. It is
easily verified that this definition is independent of the choice of the signature of G. We denote
by UCk the signed graph (Ck,Σ) where Σ has an odd number of edges and we may refer to it
as the unbalanced k-cycle.

One of the first theorems in the theory of signed graphs is that the set of unbalanced cycles
uniquely determines the class of signed graphs to which a signified graph belongs. More precisely:

Theorem 3.3 (Zaslavsky [Z82]) Two signified graphs (G,Σ1) and (G,Σ2) represent the same
signed graph if and only if they have the same set of unbalanced cycles.

In other words if (G,Σ1) and (G,Σ2) have the same set of unbalanced cycles, then the
symmetric difference of Σ1 and Σ2 is an edge cut.

Given a signed graph (G,Σ) and k signed subgraphs (G1,Σ1), . . . , (Gk,Σk) of (G,Σ) where
Σi ⊆ Σ, we define their (mod 2)-sum, denoted (G1 ⊕ . . . ⊕ Gk,Σ′), to be the signed subgraph
of (G,Σ) induced by the set of edges that are in an odd number of the sets E(G1), . . . , E(Gk).
We have the following classic and easy to prove lemma on the signature of a (mod 2)-sum of
subgraphs of a signed graph.

4



Lemma 3.4 Given signed subgraphs (G1,Σ1), . . . , (Gk,Σk) of (G,Σ), if their (mod 2)-sum is
isomorphic to the disjoint union of cycles C1, . . . , C`, then the number of unbalanced cycles
among C1, . . . , C` is congruent to |Σ1|+ · · ·+ |Σl| (mod 2).

3.2 Signed minors

A signed minor of a signed graph (G,Σ) is a signed graph (H,Σ′) obtained from (G,Σ) by a
sequence of deleting vertices, deleting edges and contracting positive edges, in any order. We
note that at any step of this process we can replace a signed graph with one of its equivalent
forms or, equivalently, we may add a fourth operation in producing a minor that is “resigning”.
Furthermore, it is important to note that though originally we are not allowed to resign a
negative edge, we can do so after a resigning at (only) one end of it. Though, ordinarily, in the
study of signed minors we allow existence of parallel edges, one of each sign, in this paper we do
not allow parallel edges at all. Therefore, each contraction of an edge which generates parallel
edges is associated with the deletion of all but one of these edges. In particular, contracting an
edge uv such that there exists a 2-path uwv having one positive and one negative edge allows
to keep either a positive or a negative edge from the new vertex to w.

The following lemma indicates the importance of signed minors from an algebraic point of
view:

Lemma 3.5 If (H,Σ′) is a signed minor of (G,Σ) which is obtained only by contracting edges
(i.e., nothing is deleted), then the image of an unbalanced cycle of (G,Σ) is an unbalanced cycle
in (H,Σ′).

Corollary 3.6 If (H,Σ1) is a signed minor of (G, ∅) then (H,Σ1) = (H, ∅).

3.3 Homomorphisms of signed graphs

Given two signed graphs (G,Σ1) and (H,Σ2), we say there is a homomorphism of (G,Σ1) to
(H,Σ2) if there is a presentation (G,Σ′1) of (G,Σ1) and a presentation (H,Σ′2) of (H,Σ2) together
with a mapping φ : V (G) → V (H) such that every edge of (G,Σ′1) is mapped to an edge of
(H,Σ′2) of the same sign. We will write (G,Σ1)→ (H,Σ2) whenever there is a homomorphism of
(G,Σ1) to (H,Σ2). An automorphism of a signed graph (G,Σ) is a homomorphism of (G,Σ) to
itself that is both surjective and one-to-one, when considered as a function from V (G) to V (G),
and such that the induced function on the edge set is surjective. A signed graph (G,Σ) is called
vertex-transitive if for each pair x and y of vertices there is an automorphism ρ of (G,Σ) such
that ρ(x) = y. Similarly, (G,Σ) is called edge-transitive if for each pair e1 = xy and e2 = uv
of edges there is an automorphism ρ of (G,Σ) such that {ρ(x), ρ(y)} = {u, v}. The unbalanced
cycle UCk is an example of a signed graph which is both vertex-transitive and edge-transitive.
We say a signed graph (G,Σ) is isomorphic to (H,Σ′) if there is a homomorphism of (G,Σ) to
(H,Σ′) which is one-to-one and onto both as a vertex function and an edge function.

Suppose φ : V (G) → V (H) is a homomorphism of (G,Σ1) to (H,Σ2) using the represen-
tations (G,Σ′1) and (H,Σ′2) of (G,Σ1) and (H,Σ2) respectively. Let S be the set of vertices
one must resign at to get (H,Σ′2) from (H,Σ2). Let (G,Σ′′1) be the resigning of (G,Σ′1) at all
vertices of φ−1(S). Then we can easily check that φ is also a homomorphism with respect to
representations (G,Σ′′1) and (H,Σ2). Therefore, when checking for the existence of a homomor-
phism between two signed graphs, the choice of equivalent signatures is not important for the
image. However, as shown by the easy example of Figure 1, the choice of signature is important
for the domain graph.
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Figure 1: Resigning at the domain can be necessary for mapping

We define a core and core of a signed graph analogously to their graph counterpart. A signed
core is a signed graph that admits no homomorphism to a proper signed subgraph of itself. In
other words, (G,Σ) is a core if every homomorphism of (G,Σ) to (G,Σ) is an automorphism.
A core of a signed graph (G,Σ) is a minimal subgraph of (G,Σ) to which (G,Σ) admits a
homomorphism. The first theorem on the notion of cores, which is proved in Section 5, is to
show that the concept of a core is well defined (see Theorem 5.1).

The fact that the choice of the signature in the target graph is free allows us to show, easily,
that the binary relation of existence of a homomorphism on signed graphs is associative. Thus,
homomorphisms of signed graphs define a quasi-order on the class of all signed graphs which
is a poset when restricted to the class of all signed cores. This order will be called the signed
homomorphism order. Hence we may interchange our notions freely and say (H,Σ2) bounds
(G,Σ1) or that (G,Σ1) is smaller than (H,Σ2) for indicating that there is a homomorphism of
(G,Σ1) to (H,Σ2). Furthermore, if C is a class of signed graphs, we say that a signed graph
(H,Σ2) bounds C if (H,Σ2) bounds every member of C.

By taking all signed graphs with empty signature or by taking all signed graphs of the form
(G,E(G)) we observe that the signed homomorphism order of signed graphs indeed contains the
homomorphism order of graphs and, therefore, contains an isomorphic copy of every finite or
countable poset (see [PT80]). This work is a first step in extending results from this usual order
to the new order we introduce here. As we will see in Section 6, the class of signed graphs whose
underlying graph is bipartite is also of special importance. In particular the sub-order induced
on this set of signed graphs contains a natural isomorphic copy of the homomorphism order
of graphs. A signed graph whose underlying graph is bipartite will be called a signed bipartite
graph.

3.4 Signed graph coloring and signed chromatic number

One of the first natural questions to ask in the poset we have just introduced is: given a signed
graph (G,Σ) what is the smallest order of a signed graph which bounds (G,Σ)? The answer
to this question in the usual homomorphism order is called the chromatic number of the graph.
Thus we define the signed chromatic number of a signed graph, denoted χ(G,Σ), to be the
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answer to this question. Analogously one can define signed graph coloring and, therefore, the
signed chromatic number of a signed graph as follows: a proper coloring of a signed graph (G,Σ)
is an assignment of colors to the vertices of G such that adjacent vertices receive distinct colors
and there is a representation (G,Σ′) of (G,Σ) such that whenever the two colors associated with
the vertices of an edge e1 are the same as those of another edge e2, the two edges e1 and e2
have same signs. The signed chromatic number of (G,Σ) is then the minimum number of colors
needed for a proper coloring of (G,Σ).

The signed chromatic number provides a first test for the possibility of the existence of
a homomorphism of (G,Σ1) to (H,Σ2). These kinds of tests are called “no homomorphism
lemmas”. More precisely, by the associativity of the homomorphism order we have:

Lemma 3.7 If (G,Σ1)→ (H,Σ2), then χ(G,Σ1) ≤ χ(H,Σ2).

3.5 Signed cliques and signed clique numbers

Using the terminology of signed chromatic number we define a signed clique as follows: a signed
graph (G,Σ) is called a signed clique, or simply an S-clique, if its signed chromatic number is
equal to the number of its vertices. In other words, an S-clique is a signed graph (G,Σ) whose
homomorphic images are all isomorphic to itself. The following lemma shows how to check
whether a signed graph is a signed clique or not:

Lemma 3.8 A signed graph (G,Σ) is an S-clique if and only if for each pair u and v of vertices
either uv ∈ E(G) or u and v are vertices of an unbalanced cycle of length 4.

Proof. Clearly, if every non-adjacent pair of vertices of (G,Σ) belongs to an unbalanced 4-cycle,
then no pair of vertices can be identified in a homomorphic image of (G,Σ).

For the other direction, let x and y be a pair of non-adjacent vertices in G. If dG(x, y) ≥ 3
then, by identifing x and y, we get a simple graph G′. The graph G′ together with the signature
induced by Σ is a signed graph of order n − 1 which is a homomorphic image of (G,Σ), a
contradiction. Therefore dG(x, y) = 2. Let u be a vertex adjacent to both x and y. We can
assume xu and yu are both of the same sign, as otherwise we may resign at x. If in the current
signature, for every other vertex v adjacent to both x and y both edges xv and yv are of the
same sign, then we get a contradiction just as before by identifying x and y and deleting the
multiple edges. Finally, if there is a vertex v which is adjacent to x and y with two edges of
different signs, then the cycle induced by x, u, y and v is an unbalanced 4-cycle, just as claimed.

�

The signed clique number (S-clique number) of a signed graph could be defined in two natural
ways. The absolute S-clique number of (G,Σ), denoted ωsa(G,Σ), is the order of the largest
subgraph (H,Σ1) of (G,Σ) such that (H,Σ1) itself is an S-clique. The relative S-clique number
of (G,Σ), denoted ωsr(G,Σ), is the number of vertices of a largest subgraph (H,Σ1) of (G,Σ)
such that in every homomorphic image φ(G,Σ) of (G,Σ), we have |φ(H)| = |V (H)|. It is easy
to verify that these definitions are independent of resigning.

We note that the difference between the absolute S-clique number and the relative S-clique
number can be arbitrarily large. For example, take a set of n independent vertices and, for
each pair x, y of them, add a new pair of vertices uxy, vxy and form an unbalanced 4-cycle on
x, y, uxy, vxy such that xy is not an edge. Let (G,Σ) be the graph obtained in this way. Then
ωsa(G,Σ) = 4 while ωsr(G,Σ) = n.

It is again easy to check that each of these two terms provides another no homomorphism
lemma:
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Lemma 3.9 If (G,Σ1)→ (H,Σ2), then ωsa(G,Σ1) ≤ ωsa(H,Σ2) and ωsr(G,Σ1) ≤ ωsr(H,Σ2).

These two parameters and the signed chromatic number are related by the following theorem
whose proof directly follows from the definitions.

Theorem 3.10 For every signed graph (G,Σ), ωsa(G,Σ) ≤ ωsr(G,Σ) ≤ χ(G,Σ).

We should also note that the problem of computing S-clique number(s) and the signed
chromatic number of a general signed graph includes, in particular, the problem of finding the
clique number and the chromatic number for graphs by setting Σ = ∅. Thus each of these
parameters is NP-hard to compute.

4 Homomorphisms versus minors

The concepts of homomorphisms and minors can be regarded as dual concepts: in producing a
minor of a (signed) graph we identify pairs of adjacent vertices, one pair at a time, whereas in
producing a homomorphic image of a (signed) graph we identify pairs of non-adjacent vertices,
again one pair at a time.

Hadwiger’s conjecture is to claim that the largest clique one can produce from a graph G by
minor operations is at least as big as the smallest homomorphic image one can produce from G.
Besides Hadwiger’s conjecture there are many other challenging questions, some in direct exten-
sion of the Four-Color Theorem, that are about relations between minors and homomorphisms.
For example what can be said about an optimal Q-bound for a subclass C of a minor-closed
family of graphs, each having some homomorphism property P, where the Q-bound has some
homomorphism property Q?

For an example of these kind of questions and results we have the following theorem of
J. Nešetřil and P. Ossona De Mendez. For any set X of graphs, let Forbh(X ) denote the set
of graphs that admit no homomorphism of a member of X , and Forbm(X ) denote the set of
graphs that admit no member of X as a minor. Then we have:

Theorem 4.1 (Nešetřil and Ossona De Mendez [NO08]) For every set of graphs M and
every set of connected graphs H, the class Forbm(M) ∩ Forbh(H) is bounded by a graph in
Forbh(H).

Finding a bound as in Theorem 4.1 with smallest possible number of vertices proves to
be a very difficult question in general. For the simplest case of M = H = {Kn} finding the
smallest bound in terms of number of vertices will, in particular, solve Hadwiger’s conjecture.
For the case M = {K5,K3,3} and H = {C2k−1} it is conjectured by the first author [N07] that
the projective cube of dimension 2k is the optimal solution (we refer to [N12] and [NRS12] for
definitions and details).

The following is a more general related question that is introduced in [N12]. The question
surprisingly captures or relates to many theories on planar graphs such as the theory of edge-
coloring, fractional coloring, circular coloring and, furthermore, it gives ideas to develop further
interesting theories.

Problem 4.2 What is the smallest graph of odd-girth 2k + 1 which bounds the class of planar
graphs of odd-girth at least 2r + 1 (r ≥ k)?
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The main goal of this paper is to investigate relations between signed minors and homomor-
phisms of signed graphs. For this reason we will mainly focus on minor or signed minor-closed
families such as planar and outerplanar graphs. While in this paper we mainly extend results
from graphs to signed graphs, we hope that in the future the more algebraic notion and structure
of signed graphs will help to settle some of these difficult questions in relation with minors and
homomorphisms. Using the terminology of signed graphs we can extend Problem 4.2 for even
values (see Problem 10.3 and [NRS12]). It is also natural to consider families of signed graphs
to which Theorem 4.1 can be extended. For suggestions of such extensions see Problem 10.1.

5 Examples and basic results

At first we prove, as promised, that the notion of the core of a signed graph is well defined.

Theorem 5.1 Given a signed graph (G,Σ), the core of (G,Σ) is unique up to isomorphism (of
signed graphs).

Proof. Assume (H1,Σ1) and (H2,Σ2) are two cores of (G,Σ). Since (H1,Σ1) is a subgraph of
(G,Σ) we have (H1,Σ1) → (H2,Σ2). Let ϕ be such a homomorphism. We show that ϕ is a
one-to-one and onto mapping of both V (H1) and E(H1) to V (H2) and E(H2) (respectively).

The fact that ϕ is onto follows from the composition of (G,Σ) → (H1,Σ1) → (H2,Σ2) and
the fact that (H2,Σ2) is a core. Similarly any homomorphism of (H2,Σ2) to (H1,Σ1) must
be onto. To see that ϕ is one-to-one as a vertex mapping suppose, by contradiction, that
two vertices x and y of H1 are mapped to a same vertex of H2. Then in the composition
(H2,Σ2)→ (H1,Σ1)→ (H2,Σ2) the nonempty preimages of x and y in (H2,Σ2) are mapped to
a same vertex of (H2,Σ2). This implies that a proper subgraph of (H2,Σ2) is a homomorphic
image of (G,Σ), this is in contradiction with (H2,Σ2) being a core of (G,Σ). �

As a consequence, we get for instance that every S-clique is a core and, since there is only
one signed graph on a given tree T , that the core of any signed tree (T,Σ) is (K2, ∅). Therefore,
we have:

Corollary 5.2 If G is a tree (forest) then ωsa(G,Σ) = ωsr(G,Σ) = χ(G,Σ) = 2.

Furthermore we can easily classify the set of all 2-colorable signed graphs:

Theorem 5.3 A signed graph (G,Σ) is 2-colorable if and only if (i) G is bipartite and (ii) there
is no unbalanced cycle in G (in other words, (G,Σ) can be presented by (G, ∅)).

For a given k the problem k-coloring-signed-graphs is the following:
k-coloring-signed-graphs
Input: A signed graph (G,Σ).
Question: Is χ(G,Σ) ≤ k?

By Theorem 5.3 and since the problem k-coloring-signed-graphs contains, in particular,
the problem k-coloring-graphs, we have the following dichotomy.

Corollary 5.4 The problem k-coloring-signed-graphs is polynomial-time for k = 1, 2 and
NP-complete for k ≥ 3.

9
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Figure 2: Signed complete graphs on 4 vertices

A signed complete graph is a complete graph with a signature. Thus every signed complete
graph is an S-clique but the converse is not true. There are 2n−1 elements in each class of a

signed complete graph and, therefore, there are 2(n2)−n+1 signed complete graphs on n labeled
vertices, however many of them are isomorphic. We do not know the exact number of non-
isomorphic signed complete graphs. There are three such graphs on four vertices. This can be
seen by considering a presentation with minimum number of negative edges. Hence there is one
with no negative edge, one with exactly one negative edge and the third has two negative edges
that are not adjacent. They are depicted in Figure 2. In all the figures, blue edges are positive
and red edges are negative.

The class C = {(G,Σ) | G has no K4−minor} of signed graphs is, therefore, exactly the class
of signed graphs which have none of the three signed complete graphs of Figure 2 as a signed
minor. Similarly the class of planar signed graphs can be characterized by means of signed
minors: a signed graph (G,Σ) is planar if it has no (K5,Σ) or (K3,3,Σ

′) as a signed minor (for
any choice of Σ or Σ′). There are exactly seven non-isomorphic such signed graphs on K5 and
three on K3,3.

It follows from the definitions that the underlying graph of every S-clique must be at least
2-connected:

Lemma 5.5 An S-clique cannot have a cut-vertex.

Proof. By contradiction, assume that u is a cut-vertex. Thus there should be non-adjacent
vertices x and y connected only through u but, in a signed clique, every pair of non-adjacent
vertices belongs to an unbalanced 4-cycle. �

This lemma implies, in particular, that an S-clique of order at least 3 cannot have a vertex of
degree 1. However an S-clique (of large order) may have a vertex of degree 2. Hence an S-clique
is not necessarily 3-connected. An example of such an S-clique is built as follows: for a fixed
n ≥ 2 consider the signed graph (Kn, ∅) with x and y being two different vertices. Add a new
vertex v and join v to x and to y with a negative and a positive edge, respectively. The new
signed graph is still an S-clique with v being a vertex of degree 2.

Example 5.6 Let Kn,n be the complete bipartite graph on vertices X = {x1, . . . , xn} and
Y = {y1, . . . , yn}. Let M be the matching {x1y1, . . . , xnyn}. The signed graph (K2,2,M) is
isomorphic to the balanced C4 and thus admits (K2, ∅) as a core. We prove below that for n ≥ 3
the signed graph (Kn,n,M) is a signed clique and therefore a core.

Proposition 5.7 For n ≥ 3 the signed graph (Kn,n,M) is an S-clique.

Proof. Since every xi is adjacent to every yj , all we need to prove is that every pair {xi, xj},
i 6= j, lies in an unbalanced 4-cycle (a similar argument will then work for pairs of the form

10
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Figure 3: The Fano plane and the signed graph Fano

{yi, yj}). Since n ≥ 3, there is an index ` /∈ {i, j}. The cycle induced by {xi, xj , yi, y`} is a
4-cycle with xiyi as the only negative edge. �

It is also not hard to check that (Kn,n,M) is vertex-transitive, however this graph is not
edge-transitive for n ≥ 3. This can be seen by counting the number of unbalanced 4-cycles an
edge belongs to.

Corollary 5.8 For every graph G and every signature Σ of G, χ(G,Σ) ≥ χ(G). The difference
χ(G,Σ)− χ(G) can be arbitrarily large.

Proof. The inequality follows from the definition. From Proposition 5.7, we get for every n ≥ 3
that χ(Kn,n,M)− χ(Kn,n) = 2n− 2. �

In a similar way we can prove that the following signed bipartite graphs are cores.

Example 5.9 Let X be a set of size k and Y be a set of size 2k−1 whose elements are labeled
with distinct unordered pairs of the form {A, Ā} where A is any subset of X and Ā is the
complement of A in X. Let Kk,2k−1 be the complete bipartite graph on X ∪ Y .

Let CBk = (Kk,2k−1 ,Σ) be the signed bipartite graph where x{A, Ā} ∈ Σ if and only if
x ∈ A. Similarly to the signed bipartite graph of Example 5.6 one can show that this signed
bipartite graph is an S-clique. We will use it later to define the bipartite chromatic number of
signed bipartite graphs. This signed graph is well defined because we can resign at {A, Ā}.

Example 5.10 The Fano plane is a finite geometry composed of seven points and seven lines
arranged as depicted in the left side of Figure 3. The Fano signed graph, denoted Fano, is the
signed graph (K7,7,Σ), where Σ is defined as follows: first we label the vertices of K7,7 by points
and lines of the Fano plane. We use the seven points for one part and the seven lines for the
other part. Then, for any line L and any point x we have xL ∈ Σ if and only if x ∈ L. This
signed graph is depicted in the right side of Figure 3.

We then have:

Proposition 5.11 The signed graph Fano is an S-clique.

Proof. Since each pair of vertices from different parts are adjacent, and by Lemma 3.8, it
is enough to show that each pair of vertices in a same part lies in an unbalanced 4-cycle.

11



Considering the symmetries between lines and points and the symmetries between pairs of
points in the Fano plane, it is enough to check this only for one pair say {1, 2}, of non-adjacent
vertices of Fano. Observe that together with lines 156 and 345, this pair induces an unbalanced
4-cycle in Fano. �

The Fano signed graph is also vertex-transitive but it is not edge-transitive.
By Proposition 3.1 there are exactly two signed graphs on a cycle Ck. The balanced cycle,

which can be represented as (Ck, ∅), and the unbalanced cycle UCk which can be represented
by a signature with one negative edge only. The next lemma is about the existence of a homo-
morphism between two unbalanced cycles. Even though it is easy to prove, it is quite essential.

Lemma 5.12 There is a homomorphism of UCk to UC` if and only if k ≥ ` and k = ` (mod 2).

Thus we have another “no homomorphism lemma”:

Corollary 5.13 If (G,Σ1) → (H,Σ2), then the shortest unbalanced cycle of odd length (even
length, respectively) in (G,Σ1) is at least as large as the shortest unbalanced cycle of odd length
(even length, respectively) in (H,Σ2).

The shortest length of an unbalanced cycle of (G,Σ) will be called the unbalanced girth of
(G,Σ). In fact this corollary proposes two separate terminology of shortest unbalanced girth of
odd and even length, but we will not use them in this paper.

Example 5.14 Given a prime power q = 1 (mod 4), let Fq be a finite field of order q. The
signed Paley graph of order q, denoted SPalq, is the signed complete graph with vertex set Fq,
with the edge xy being positive if and only if x − y is a square in Fq. This is, of course, a
particular representation of the signed Payley graph but because of its importance we will call
this representation the signified Paley graph of order q. We will then use SPalq to denote both
the signed Payley graph and the signified Payley graph of order q. The important property of
the signified SPalq for q large enough is that, given a small but arbitrary set {v1, . . . , vk} of
vertices and almost any sequence A := a1, . . . , ak of signs, there is a vertex x for which the sign
of the edge xvi is ai (with a possibility of resigning at x only). This will be called property
Propk.

For example, the signified Paley graph SPal5 depicted in Figure 4 has property Prop2. That
means that for every pair {u, v} of vertices, if a1 and a2 are not both of the same sign as the sign
of the edge uv, then there is a vertex x where xu and xv have the signs a1 and a2 respectively.

This property of SPalq will help us to prove the existence of a homomorphism to SPalq from
signed graphs on partial k-trees. In particular we use this idea to prove, in Section 8, that for
every K4-minor-free graph G and any signature Σ, the signed graph (G,Σ) has signed chromatic
number at most 5. It can be checked that SPal13 and SPal17 both have property Prop3 and
that SPal29 has property Prop4.

Our last examples in this section are signed projective cubes. Using projective cubes some of
the most outstanding problem in Combinatorics can be translated or related to homomorphism
of signed graphs, see Problem 10.2 and [G05, NRS12].

Example 5.15 The projective cube of dimension d, denoted PCd, is the graph with Zd2 as
vertices where vertices u and v are adjacent if u − v ∈ {e1, e2, . . . ed} ∪ {J}. Here ei’s are
standard basis and J is the all 1 vector. This graph can be built from hypercubes in two
different ways: either by identifying antipodal vertices of hypercube of dimension d + 1 or by

12
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Figure 4: Signed Payley graph of order 5

adding an edge between pairs of antipodal vertices in hypercube of dimension d. The signed
projective cube of dimension d, SPCd, is the signed graph (PCd,Σ) where Σ is the set of edges
corresponding to J .

The signed graph SPCd is of unbalanced girth d + 1. If d is even, then SPCd is equivalent
to (PCd, E(PCd)). For even values of d the graph PCd is bipartite. For proofs, the importance
of these graphs and for more details we refer to [NRS12].

6 Two important subclasses

Lemma 5.12 is an indication of the importance of studying the homomorphism order restricted
to two subfamilies of signed graphs: signed graphs in which all the unbalanced cycles are odd
and signed graphs in which all the unbalanced cycles are even. For similar reasons, it is also
natural to consider classes of graphs in which all balanced cycles have the same parity. However
if a graph is well connected, then in the symmetric difference of two balanced cycles there will
be a cycle which is both balanced and of even length. Thus we consider the following two cases:

I. Signed graphs (G,Σ) for which every balanced cycle is even and every unbalanced cycle is odd.

Then the set of odd cycles of G is the set of all unbalanced cycles of (G,Σ) and, therefore,
by Theorem 3.3, (G,Σ) can be represented by (G,E(G)). Thus this is the class of signed graphs
in which all the edges are negative. Such a signed graph will be called an odd signed graph. The
problem of the existence of a homomorphism of (G,Σ1) to (H,Σ2) in the class of odd signed
graphs is reduced to the existence of a homomorphism of G to H. Thus the homomorphism
order induced on this set of signed graphs is trivially isomorphic to the homomorphism order
of graphs. However it is the difference between the concept of minor and signed minor that
allows to establish or conjecture stronger results in the class of odd signed graphs. The most
outstanding such example is the following extension of Hadwiger’s conjecture, known as odd
Hadwiger’s conjecture, proposed by B. Gerard and P. Seymour [JT95].

Conjecture 6.1 (Odd Hadwiger’s conjecture) If (G,E(G)) does not have (Kn, E(Kn)) as
a signed minor, then χ(G) = χ(G,E(G)) ≤ n− 1.

To see the strength of this conjecture let us examine the case n = 3. The class of K3-minor-
free graphs is exactly the class of forests and Hadwiger’s conjecture is easily true: every forest

13



is 2-colorable. The class of (K3, E(K3))-signed minor-free odd signed graphs is exactly the class
of signed graphs (G,E(G)) where G is bipartite. Thus the conjecture is again true, but where
the original Hadwiger’s conjecture is bounding the chromatic number of forests, odd Hawiger’s
conjecture gives the same bound of 2 for the class of all bipartite graphs. The conjecture was
proposed base on a proof by P. A. Catlin [C79] for n = 4. For n = 5 a proof was presented by
B. Guenin in 2005 but we do not know of a reference for this proof.

II. Signed graphs (G,Σ) for which every balanced cycle is even and every unbalanced cycle is
also even.

This will be the case if and only if G is bipartite. Thus such a signed graph is called a signed
bipartite graph but, in contrast to the previous case, we may equivalently use the term even
signed graph for members of this class.

We show, by means of a simple construction, that most homomorphism problems for the class
of odd signed graphs, and, therefore, homomorphism problems for graphs rather than signed
graphs, are captured by the homomorphism problems for the class of even signed graphs. This
is an indication that this class deserves special attention.

We first define the following construction. Let G be a graph; the signed graph S(G) = (G∗,Σ)
is obtained by replacing each edge uv of G by an unbalanced 4-cycle on four vertices uxuvvyuv,
where xuv and yuv are new and distinct vertices. See Figure 5 for an example.

The following theorem shows how to define χ(G) in the homomorphism order induced on
the set of signed bipartite graphs (the signed graph (Kk,k,M) has been defined in Example 5.6).

Theorem 6.2 For every k ≥ 3 and every graph G, χ(G) ≤ k if and only if S(G)→ (Kk,k,M).

Proof. It would be enough to prove the theorem for connected graphs. Let ϕ : G → Kk

be a k-coloring of G. Label vertices in one part of Kk,k with vertices of Kk (or equivalently
with k colors). We can then regard ϕ as a partial mapping of S(G) to (Kk,k,M). We extend
this mapping to the remaining vertices of S(G) as follows: for each pair u and v of adjacent
vertices of G, ϕ is extended to xuv and yuv in such a way that the image of the unbalanced cycle
uxuvvyuv is an unbalanced 4-cycle in (Kk,k,M). This is possible simply because k ≥ 3. It is
then straightforward to check that this extension is a homomorphism of S(G) to (Kk,k,M).

For the converse, assume there is a homomorphism φ of S(G) = (G∗,Σ) to (Kk,k,M). Then
φ is, in particular, a homomorphism of the bipartite graph G∗ to the complete bipartite graph
Kk,k. In the bipartition of G∗, one part is formed by V (G) and the other part is the set of new
vertices. Thus, the restriction of φ on V (G) is a mapping of V (G) to k vertices of one side of
Kk,k. Furthermore, if uv is an edge of G, then u and v must be mapped to distinct vertices
because of the unbalanced 4-cycle uxuvvyuv. Hence this restriction of φ is a k-coloring of G. �

In a similar way we show below that the problem of the existence of a homomorphism of a
graph G into a graph H is captured by the notion of homomorphism between signed bipartite
graphs.

Theorem 6.3 For every two graphs G and H, G→ H if and only if S(G)→ S(H).

Proof. Any homomorphism of G to H can easily be extended to a homomorphism of S(G) to
S(H).

For the converse, suppose that φ is a homomorphism of S(G) to S(H). If G has no edge,
then there is nothing to prove. If G is bipartite with at least one edge, then H must also have
at least one edge for φ to exist and, therefore, G maps to H. Thus we may assume G has at

14
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S(C5)

Figure 5: S(C5)→ (K3,3,M) and S(C5)→ S(C3)

least one odd cycle. Furthermore, we may assume that both G and H are connected as we can
easily compose homomorphisms on connected components.

We claim that in the mapping φ from V (S(G)) to V (S(H)) the set V (G) must be mapped
into V (H). Since V (G) is a part in the bipartition of S(G), and V (H) is a part in the bipartition
of V (S(H)), and since G and H are both connected, φ either maps all vertices in V (G) to vertices
in V (H) or none of them. Let C2r+1 be an odd cycle of G and let w1, . . . , w2k+1 be its vertices,
connected in this cyclic order. To complete the proof of our claim we show that vertices of C2k+1

must be mapped into V (H). By contradiction suppose that a vertex wi of C2k+1 is mapped
to a vertex of the form xuv in S(H). Then, because of the unbalanced 4-cycle associated to
the edge wiwi+1 (addition of the index is taken mod 2k + 1) in S(G), wi+1 is mapped to the
vertex yuv. Continuing this process we obtain a 2-coloring of C2k+1 using xuv and yuv which is
a contradiction.

Thus φ maps V (G) to V (H). To show that the restriction of φ on these two sets is a
homomorphism of G to H, let uv be an edge in G and let UC ′ be the unbalanced 4-cycle
associated with this edge in S(G). The image of UC ′ under φ then must be another unbalanced
4-cycle containing φ(u), φ(v) and the other two vertices must be vertices not from V (H). This
means we have constructed an unbalanced 4-cycle on φ(u) and φ(v), but the condition for having
such a cycle is to have an edge between φ(u) and φ(v) in H. Hence φ induces a homomorphism
of G to H. �

Since the homomorphism order on signed bipartite graphs captures the homomorphism order
on graphs, it is natural to look for extensions of many known coloring and homomorphism results
on graphs to signed bipartite graphs. In particular we will consider some possible extensions of
Hadwiger’s conjecture in Section 9.

7 S-clique numbers of planar signed graphs

In this section we consider the problem of determining the S-clique number of a planar signed
graph. We show that the largest planar S-clique one can build is of order 8, which gives the
maximum of the absolute S-clique number of planar signed graphs. We do not know the maxi-
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a

b

y1 y2 y3
x2 x3x1

Figure 6: A planar S-clique on 8 vertices

mum of the relative S-clique number of planar signed graphs, though we obtain an upper bound
through the bounds for the signed chromatic number of planar graphs in Section 8.

Theorem 7.1 The maximum order of a planar S-clique is 8.

Proof. An example of a planar S-clique on eight vertices is given in Figure 6. To see that this
signed graph is an S-clique, it is enough to observe that every pair of non-adjacent vertices lies
on an unbalanced 4-cycle.

Assume now that (G,Σ) is an S-clique of order 9 or more. Furthermore, we may assume
without loss of generality that G is a triangulation. Recall first that, by Lemma 3.8, each pair of
non-adjacent vertices of G lies on an unbalanced 4-cycle. This will be a key tool for our proof.
We prove, through several claims, that K2,3 cannot be a subgraph of G. Using this we will get
a contradiction at the end.

When referring to K2,i, we use a and b to denote the vertices from the part with two vertices
and x1, . . . , xi to denote the vertices from the other part, ordered from left to right with respect
to a given embedding of G in the plane. By K+

2,i we denote the graph obtained from K2,i by
adding the edge ab. Furthermore when we speak of faces of these subgraphs we refer to their
planar embedding induced by the planar embedding of G.

Claim 1 K2,7 cannot be a subgraph of a planar S-clique of order at least 9.

Suppose K2,7 ⊆ G. Consider a cyclic ordering of x1, x2, . . . , x7. With respect to Σ, each path
axib is either positive or negative. Hence four of these seven paths are of the same sign. Suppose
axi1b, axi2b, axi3b, axi4b are of the same sign. Then, in the cyclic order of x1, x2, . . ., x7, at
least two of xi1 , xi2 , xi3 and xi4 , say xi1 and xi2 , are at distance 3. To see this, we build a graph
on x1, x2, . . ., x7 by joining vertices at distance 3 in the above cyclic order. The graph built is
isomorphic to C7 whose independence number is 3, thus if we choose a set of four vertices, two
of them will be adjacent. Finally we note that there is no possibility for the non-adjacent pair
xi1 and xi2 of vertices of (G,Σ) to be in an unbalanced 4-cycle. Together with Lemma 3.8 this
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proves Claim 1.

We note that this claim holds generally, i.e., if (G,Σ) is a planar S-clique then K2,7 6⊆ G.
But the next claims are only true because we have assumed that G has nine or more vertices.

Claim 2 K2,5 cannot be a subgraph of a planar S-clique of order at least 9.

By contradiction suppose K2,5 ⊆ G and consider the cyclic order on x1, x2, . . . , x5. Further-
more, sums in the indices are taken modulo 5. Let u be a vertex of G which is not in K2,5.
Suppose u is in the face axibxi+1 of K2,5. Then xi+3 is not adjacent to u. For these two vertices
to be in a common unbalanced 4-cycle, u must be adjacent to both a and b. Since u was an
arbitrary vertex, every vertex not in K2,5 must be joined to both a and b. Because we assume
G has at least 9 vertices, this would imply that K2,7 ⊆ G which contradicts Claim 1.

Claim 3 K+
2,4 cannot be a subgraph of a planar S-clique of order at least 9.

Let x1, x2, x3 and x4 be the four vertices of the part of size 4. By considering an imaginary
vertex x5 on the edge ab we could repeat the same argument as in the previous case to get a
contradiction.

Claim 4 K2,4 cannot be a subgraph of a planar S-clique of order at least 9.

Assume K2,4 ⊆ G. Suppose, by symmetry, that there is a vertex u in the outer face of
K2,4. By Claim 2, u is adjacent to at most one of a and b. Suppose u is not adjacent to b. By
Lemma 3.8, there could be no other vertex in the face ax2bx3. Since u is not adjacent to x2 and
x3, by Lemma 3.8, x2 and u (and similarly x3 and u) must be in a common 4-cycle. The only
way for this to happen is that u is adjacent to x1, a and x4.

In similar way each vertex in the outer face of K2,4 must be adjacent to either x1, a and x4
or to x1, b and x4. However, by planarity of G, for each of these triples there can be at most one
vertex in the outer face of K2,4 joined to all three of them. First we consider the case when there
are two such vertices and let v be the vertex joined to x1, b and x4. In this case we prove that
there is no vertex of G on the faces ax1bx2 and ax3bx4 of K2,4. For a contradiction, suppose t
is a vertex on the face ax1bx2 of K2,4. Then, to be in a 4-cycle with u, t must be adjacent to a
and, to be in a 4-cycle with v, t must be adjacent to b. Thus, G contains a K2,5 as a subgraph
which contradicts Claim 2. This leaves us with at most 8 vertices which contradicts the order
of G. Hence we may assume there is at most one vertex in each of the faces of of K2,4 and that
u is one such vertex in the outer face. Thus, there is no vertex in the face ax2bx3 of K2,4. To
complete the proof of the claim we show that faces ax1bx2 and ax3bx4 of K2,4 cannot contain
vertices at the same time. That is simply true because such vertices must both be connected to
a and b in order to be in a same 4-cycle.

Claim 5 K+
2,3 cannot be a subgraph of a planar S-clique of order at least 9.

Assume K+
2,3 ⊆ G. Suppose that, in the planar embedding of G, the subgraph K+

2,3 is

embedded as in Figure 7. We first show that the faces f1 and f2 of K+
2,3 are also faces of G. For

a contradiction suppose there is a vertex t on the face abx3 of K+
2,3. Then for the non-adjacent
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Figure 7: K+
2,3 subgraph of a planar S-clique

pair t and x2 of vertices of G to be in a 4-cycle, t must be connected to both a and b. Hence
K2,4 is a subgraph of G which contradicts Claim 4. The proof for the abx2-cycle is similar.

Let now z be a vertex in the outer face of K+
2,3. Then, by Claim 4, z cannot be adjacent to

both a and b. Suppose, by symmetry, that z is not adjacent to b. Since z is not adjacent to x2,
by Lemma 3.8, they must be in a common 4-cycle. For this to be possible x2 must be adjacent
to x1. Furthermore, z also must be adjacent to both a and x1. Similarly, any other vertex of G
is either adjacent to both a and x1 or adjacent to both b and x1. Since there are at least four
vertices in G which are not in the K+

2,3, there are at least two vertices, say u and v, adjacent to
the same pair, say a and x1 without loss of generality. Then u, v, x2 and b together with a and
x1 form a K+

2,4 subgraph of G which contradicts Claim 3.

Claim 6 If K−4 is a subgraph of G, then the two triangles of this subgraph are faces of G.

Let a, x, b and y be the four vertices of K−4 with ab being the missing edge (this edge might
exist in G). Let t be a vertex in the triangle axy separated from b. Thus t and b are not
adjacent and, therefore, by Lemma 3.8, they are in a common 4-cycle. By symmetry of a and
b, we consider two cases: either t is adjacent to both x and y, in which case {x, y} and {a, t, b}
induce a K+

2,3; or t is adjacent to both a and x, in which case {a, x} and {b, y, t} induce a K+
2,3.

In both cases we have a contradiction with Claim 5.

Claim 7 The graph H of Figure 8 admits no signature with respect to which it would be an
S-clique.

By Lemma 3.8, all we need is to prove that there is no signature on H such that each pair of
nonadjacent vertices is contained in an unbalanced 4-cycle. To this end we note that each of the
following nine pairs are in a unique 4-cycle of H: (i) p and s in the cycle C1 = ptsr, (ii) y and p
in the cycle C2 = yxpa, (iii) y and t in the cycle C3 = yatz, (iv) y and s in the cycle C4 = yzsb,
(v) y and r in the cycle C5 = ybrx, (vi) p and z in the cycle C6 = pazt, (vii) p and b in the cycle
C7 = pxbr, (viii) s and a in the cycle C8 = szat, (ix) s and x in the cycle C9 = sbxr. Thus each
of the cycles C1, . . . , C9 is an unbalanced 4-cycle. Therefore, by Lemma 3.4, the cycle patzsbrx,
which is the (mod 2)-sum (C2 ⊕ C3)⊕ (C4 ⊕ C5), is balanced.
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Figure 8: Graph H, a candidate on 9 vertices for being a signed clique

Since the triangles pat and tzs are two connected components of the (mod 2)-sum C6 ⊕C8,
they are of the same balance by Lemma 3.4. Similarly, considering (mod 2)-sum C7 ⊕ C9 we
conclude that the triangles sbr and rxp are of the same balance. Therefore, by Lemma 3.4, the
(mod 2)-sum pat ⊕ tzs ⊕ sbr ⊕ rxp ⊕ patzsbrx is balanced. However this (mod 2)-sum is C1

which is supposed to be unbalanced, a contradiction.

Claim 8 K2,3 cannot be a subgraph of a planar S-clique of order at least 9.

Towards a contradiction, let K2,3 be a subgraph of G. Suppose K2,3 is a plane subgraph of
G as depicted in the left side of Figure 9. As the first step we show that at least one of the
three pairs x1x2, x1x3, x2x3 should be an edge of G. By contradiction, suppose none of them
is an edge of G. Then, since G is a triangulation, and because of Claim 5, there should be a
vertex in each face of K2,3. Let t be a vertex on the outer face of K2,3. Then t is not adjacent
to x2, so they must be in a common 4-cycle, but to this end either t is adjacent to both a and
b, which contradicts Claim 4, or x2 is adjacent to one of x1 or x3 as we wanted. Without loss of
generality we now assume that x1x2 ∈ E(G), as depicted in the right side of Figure 9.

We show as the next step that either x1x3 ∈ E(G) or x2x3 ∈ E(G). Assume neither x1x3
nor x2x3 is an edge of G. So, just as in the previous step, we assume t is a vertex on the outer
face of K2,3. Furthermore let t′ be a vertex on the face ax2bx3 of K2,3. Since t and t′ are not
adjacent, they must be in a common unbalanced 4-cycle. By Claim 4 neither of t and t′ can
be adjacent to both a and b. Hence they both are adjacent either to a and x3 or to b and x3.
By symmetry of a and b, we assume t and t′ both are adjacent to a and x3. By Claim 6, any
other vertex must be either inside at′x3bx2 or outside of atx3bx1. Let u be such a vertex and,
by symmetry of these two cycles, we assume it is inside at′x3bx2. Thus u is not adjacent to t
and therefore it should be in common 4-cycle with t. To this end it should be adjacent to a and
x3. This would induce a K+

2,3 on {a, x3}∪{t, t′, u}, contradicting Claim 5. Hence, for every K2,3

subgraph of G, there must be at least two edges induced by vertices of the part of size 3.
Finally, to complete the proof of this claim, we show that if K2,3 ⊆ G, then G is isomorphic

to the graph of Figure 8. By the previous step, and by symmetry, we may assume x1x2 ∈ E(G)
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Figure 9: Possible situations for K2,3 in G
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Figure 10: Partial extension of K2,3 subgraph

and x2x3 ∈ E(G). First we note that by Claim 6 any other vertex of G must be in the outside
of ax3bx1 (see Figure 10).

Let t be any such vertex. Since t is not adjacent to x2, in order for t and x2 to be in a
common 4-cycle, t should be adjacent to at least two neighbors of x2. However it cannot be
adjacent to both a and b as otherwise we would have K2,4 ⊆ G which contradicts Claim 4.
Similarly t cannot be adjacent to both x1 and x3. Thus it must be adjacent to both ends of
an edge of the ax3bx1-cycle. Furthermore for each edge of this cycle there can be at most one
vertex, other than x2, adjacent to both ends. Because if there were two such vertices, together
with x2, they would produce a K+

2,3 subgraph of G, contradicting Claim 5. Since G has at least
nine vertices, this implies that G has exactly nine vertices and we have the graph of Figure 10 as
a subgraph of G. We note that connecting a to b would produce K+

2,3 and connecting a to r or
s would produce K2,4 both of which were proved to be forbidden subgraphs of G. Hence, in the
graph of Figure 10, the vertex a is already adjacent to all its neighbors in G. The same holds for
b, x1 and x3. Thus to form a triangulation of the graph of Figure 10, and by the symmetry of
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t, p, r and s, we must have a graph isomorphic to the graph of Figure 8. However, by Claim 7,
this graph admits no signature under which it would form an S-clique.

Claim 9 δ(G) ≥ 5 (and thus δ(G) = 5).

Since G is a triangulation with more than 3 vertices, it has no vertex of degree 2 or less. If
x is a vertex of degree 3, then, together with its neighbors, it will induce a K4 and by Claim 6
all the faces of K4 are also faces of G; hence G has only 4 vertices. If x is a vertex of degree 4,
then, since G is a triangulation, together with its neighbors it will create a K2,3 subgraph which
contradicts Claim 8.

We now complete the proof of the theorem. Let v be a vertex of degree 5. Since G is a
triangulation, its neighbors form a 5-cycle C5. Each vertex not adjacent to v must be joined
to two vertices of this C5, but no two of them can be adjacent to a same pair as otherwise we
contradict Claim 8. Therefore, by planarity of G, there can be at most seven such vertices. On
the other hand, by Claim 9 and by the Euler formula, either G has twelve vertices all of degree
5 or thirteen vertices which all but one are of degree 5 and the last one is of degree 6. It follows
from the degree conditions for the vertices of the C5 induced by N(v) that there are at most
eleven edges connecting neighbors of v to non-neighbors of v, but each such non-neighbor is
joined to at least two neighbors of v. Hence there are a total of at most five non-neighbors of v
and hence G has at most eleven vertices, which is a contradiction. �

Corollary 7.2 The absolute S-clique number of a planar signed graph is at most 8. This bound
is tight.

Some bounds on the relative S-clique number of planar signed graphs follow from bounding
their signed chromatic number, but we do not know the optimal bound for the relative S-clique
number of planar signed graphs.

8 The signed chromatic number of minor closed families of signed
graphs

Towards generalization of the Four-Color Theorem (or the Five-Color Conjecture at that time),
K. Wagner [W64] proved that the chromatic number of any proper minor-closed family is
bounded by a constant. Hadwiger’s conjecture is to find the best such constant for certain
minor-closed families of graphs. We note that such a general result is not true for signed graphs.
For example, the class C of all signed graphs not containing (K3, E(K3)) as a signed minor
contains all the signed graphs (G, ∅) and, therefore, admits no bound on its signed chromatic
number. In this section we show that some stronger minor condition would imply a constant
bound on the signed chromatic number. We start with signed graphs (G,Σ) where G is K4-
minor-free, in which case we give the best possible bound. Recall that SPal5 is the graph of
Figure 4.

Theorem 8.1 Let (G,Σ) be a signed graph where G is a K4-minor-free graph. Then (G,Σ)→
SPal5. Therefore χ(G,Σ) ≤ 5 and, moreover, this bound is tight.

Proof. Without loss of generality we may assume that G is an edge-maximal K4-minor-free
graph. A classical decomposition theorem for edge-maximal K4-minor-free graphs states that

21



���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
�������
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

v

w

xy

z

u

Figure 11: A 5-chromatic planar signed graph

such a graph is built from a sequence of triangles, starting by one triangle and pasting each new
triangle to the graph previously built along an edge. Let T1, . . . , T` denote the corresponding
sequence of triangles. Consider the first triangle T1. If all the edges are of the same sign, then
we resign at a vertex. Now T1 has at least one negative and at least one positive edge. So it
can easily be homomorphically mapped to SPal5. Inductively, assume that (Gi,Σi), defined as
the signed subgraph induced by T1, . . . , Ti, i < `, is mapped to SPal5. Consider Ti+1. If all the
edges are of the same sign, then resign at the vertex of Ti+1 which is not in Gi. Now, since Ti+1

is a triangle of possible form in SPal5 and by the main property of SPal5 (see Example 5.14),
we can extend the homomorphism of Gi to SPal5 to a homomorphism of Gi+1 to SPal5. We
note that resigning happens only when a vertex is added to the previously built part of the
graph, so the process is well defined.

We thus have χ(G,Σ) ≤ 5. Let us show that this bound is tight. For that, consider the
planar signed graph of Figure 11. By contradiction, suppose f is a 4-coloring of this graph. Since
uvwx is an unbalanced 4-cycle, we may assume f(u) = 1, f(v) = 2, f(w) = 3 and f(x) = 4.
Since uxyz is also an unbalanced 4-cycle, y and z must be colored 2 and 3. But then the
balanced triangle uvw and the unbalanced triangle uyz receive the same set of colors, which is
a contradiction. �

Since every outerplanar graph is K4-minor-free and since the example of Figure 11 is outer-
planar, we get:

Corollary 8.2 The signed chromatic number of every outerplanar signed graph is at most 5
and this bound is tight.

For the class of planar signed graphs we do not know the maximum possible value of the
signed chromatic number, but using the bound on the acyclic chromatic number of planar
graphs and techniques similar to that of [RS94] and [AM98], we obtain an upper bound of 48.
In [AM98], Alon and Marshall proved that every m-edge-colored graph whose underlying graph
has acyclic chromatic number at most k admits a homomorphism to an m-edge-colored graph
of order at most kmk−1. This result has been generalized to colored mixed graphs by Nešetřil
and Raspaud [NR00] (see also Montejano et al. [MOPRS10]). In case of signed graphs, thanks
to resigning, we obtain an improved bound as follows.
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Theorem 8.3 If G is acyclically k-colorable and Σ is any signature on G, then χs(G,Σ) ≤
dk2e2

k−1.

Proof. The result is immediate when k ≤ 2. Hence that we assume k ≥ 3. Let ϕ : V (G) −→
{0, . . . , k − 1} be an acyclic k-coloring of G. For any two colors i and j, 0 ≤ i < j ≤ k − 1, let
Fi,j denote the forest induced by vertices of color i or j.

Let now (G,Σ) be any signed graph with underlying graph G. We first resign the bk/2c
vertex-disjoint forests {F2p,2p+1, 0 ≤ p ≤ bk/2c − 1} in such a way that all their edges become
positive (this can be done according to Corollary 3.2). We denote by (G,Σ′) the so-obtained
signed graph.

Let (Hk,Θk) be the signed graph defined as follows. The vertices of Hk are the (k+1)-tuples
[α; a0, . . . , ak−1] where α is one of the k colors of the acyclic coloring of G and ai ∈ {∗, 0, 1}, for
every i, 0 ≤ i ≤ k − 1, satisfying the following rules:

1. α ∈ {0, . . . , k − 1},

2. aα = ∗,

3. if α is even and α < k − 1 then aα+1 = ∗,

4. if α is odd then aα−1 = ∗,

5. ai ∈ {0, 1} otherwise.

Note that the number of vertices of Hk is precisely k2k−2 if k is even, and (k + 1)2k−2 if k is
odd.

There is an edge in Hk linking vertices [α; a0, . . . , ak−1] and [β; b0, . . . , bk−1] if and only if α 6=
β. The set of negative edges Θk of Hk is then the set of pairs {[α; a0, . . . , ak−1], [β; b0, . . . , bk−1], }
such that either α 6= β and bα/2c = bβ/2c, or bα/2c 6= bβ/2c and aβ = bα. It is not difficult to
observe that (Hk,Θk) is indeed an S-clique.

We claim that (G,Σ′) admits a homomorphism to (Hk,Θk) which will prove the Theorem.
Let Fi,j be any forest not belonging to the set {F2p,2p+1, 0 ≤ p ≤ bk/2c− 1}. We claim that

there exists a mapping λi,j : V (Fi,j) −→ {0, 1} such that for every edge uv in Fi,j , uv ∈ Σ′ if and
only if λi,j(u) = λi,j(v). Such a mapping can be inductively constructed as follows. Take any
connected component Ti,j of Fi,j , any arbitrary vertex u0 of Ti,j , and set λi,j(u0) = 0. Assume
that the mapping λi,j has been defined for all vertices {u0, . . . , ui−1} of a connected subtree of
Ti,j and let ui be any vertex of Ti,j linked by an edge to some (unique) uj ∈ {u0, . . . , ui−1}. We
then set λi,j(ui) = λi,j(uj) if uiuj ∈ Σ′ and λi,j(ui) = 1 − λi,j(uj) otherwise. Repeating this
procedure for every connected component of Fi,j , we clearly obtain the desired mapping.

For every i, 0 ≤ i ≤ k− 1, let λi,i be the mapping defined by λi,i(u) = ∗ for every u ∈ V (G).
Similarly, for every i, 0 ≤ i ≤ k − 1, i odd (resp. i even and i < k − 1) let λi,i−1 (resp. λi,i+1)
be the mapping defined by λi,i−1(u) = ∗ (resp. λi,i+1(u) = ∗) for every u ∈ V (G).

For convenience, we let λj,i = λi,j for every i and j, 0 ≤ i, j ≤ k − 1.
We now claim that the mapping h : V (G) −→ V (Hk) defined by

h(u) = [ϕ(u);λ0,ϕ(u)(u), . . . , λk−1,ϕ(u)(u)]

is a homomorphism of (G,Σ′) to (Hk,Θk). Note first that, thanks to the definition of the
mappings λi,j , h(u) ∈ V (Hk) for every u ∈ V (G). Moreover, since ϕ is an acyclic coloring, and
thus a proper coloring, every edge uv of G is mapped to an edge of H (the first components of
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h(u) and h(v) are distinct and, therefore, h(u) and h(v) are linked by an edge in Hk). It remains
to show that an edge uv of G belongs to Σ′ if and only if its image h(u)h(v) belongs to Θk.

If uv ∈ E(Fi,j) for some Fi,j ∈ {F2p,2p+1, 0 ≤ p ≤ bk/2c−1} then uv /∈ Σ′ and, by definition
of λϕ(u),ϕ(v), h(u)h(v) /∈ Θk.

Otherwise, thanks to the property of λϕ(u),ϕ(v), we have uv ∈ Σ′ if and only if h(u)h(v) ∈ Θk,
which concludes the proof. �

A k-tree is a graph obtained from the complete graph Kk by adding a sequence v1, v2, . . . vr
of vertices where each vi is joined to a set of k vertices that form a k − clique in the subgraph
induced by vertices of the original Kk and v1, v2, . . . vi−1. A subgraph of a k-tree is a partial
k-tree. In particular, K4-minor free graphs are exactly partial 2-trees. Since every k-tree is
obviously acyclically (k + 1)-colorable, we have:

Corollary 8.4 If G is a partial k-tree and Σ any subset of E(G), then χ(G,Σ) ≤ dk+1
2 e2

k.

This, in particular, gives an upper bound of 8 (respectively 16) for the signed chromatic
number of (G,Σ) where G is a K4-minor-free graph (respectively a partial 3-tree). The former
was improved in Theorem 8.1 using SPal5 and the latter can be improved to 13 with SPal13
as the target with the same method as in the proof of Theorem 8.1, using stronger properties
of SPal13.

Using the bounds on the acyclic chromatic number of planar graphs we also have the follow-
ing:

Theorem 8.5 If (G,Σ) is a planar signed graph, then χ(G,Σ) ≤ 48. There is a planar S-clique
of order 8 and there is a planar signed graph with signed chromatic number 10.

Proof. The upper bound of 48 follows from Theorem 8.3 and the fact that every planar graph
is acyclically 5-colorable [B79]. An example of a 10-chromatic planar signed graph is given in
Figure 12. Note that this signed graph is built from the S-clique of Figure 6 by adding two pairs
of vertices, one on the right and one on the left. It is then not difficult to check that for each
pair we need at least one more new color and that the pair on the right needs distinct colors
than that on the left. �

We further note that if the maximum signed chromatic number of planar signed graphs is
say k, then there exists a signed graph of order k to which every planar signed graph admits a
signed homomorphism. Perhaps it would be possible to prove, directly, that every planar signed
graph admits a homomorphism to a fixed signed Paley graph.

9 Hadwiger’s conjecture for signed bipartite graphs

We saw that odd Hadwiger’s conjecture proposes a possible strengthening of Hadwiger’s con-
jecture for the class of odd signed graphs. In this section we examine possibilities of such a
strengthening for the class of even signed graphs. i.e., signed bipartite graphs. Recall that for
every graph G, the signed graph S(G) is obtained from G by replacing each edge uv of G by an
unbalanced 4-cycle uxuvvyuv, where xuv and yuv are new and distinct vertices.

We first prove the following minor relation between graphs and signed bipartite graphs:

Theorem 9.1 For every integer n and every graph G, G has a Kn-minor if and only if S(G)
has a (Kn,Σ)-minor for some Σ (equivalently for any Σ).
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Figure 12: A 10-chromatic planar signed graph on 12 vertices

Proof.
First assume (Kn,Σ) is a signed minor of S(G) for some Σ. We would like to prove that Kn

is a minor of G. This is clear for n = 1, 2. So we assume n ≥ 3. Thus, in producing (Kn,Σ) as a
signed minor of S(G) each vertex of degree 2 in S(G) is either deleted or identified with one of
its neighbours as a result of contracting an incident edge. We define a minor of G as follows: For
each edge uv of G, if the corresponding unbalanced 4-cycle is deleted in the process of producing
(Kn,Σ) as a signed minor of S(G), then delete uv. If u and v are identified through contraction
of edges in producing (Kn,Σ) as a signed minor of S(G), then contract the edge uv. Otherwise
uv remains an edge. The resulting minor then must be Kn.

For the opposite direction, suppose Kn is a minor of G. Let uv be an edge of G. If the edge
uv is deleted in producing Kn-minor from G, then delete all the four edges of corresponding
unbalanced 4-cycle. If uv is contracted, then contract two positive edges of the corresponding
unbalanced 4-cycle in S(G) in such a way that u and v are identified after these contractions
and delete the other two edges of the unbalanced 4-cycle. Otherwise contract two positive edges
of the corresponding unbalanced 4-cycle in such a way that there are two new parallel edges
between u and v, one positive and one negative. Finally delete all isolated vertices. By allowing
multiple edges at the end of this process we get a signed minor of S(G) which has n vertices
and for each pair x and y of vertices two xy edges, one positive and one negative. For each such
pair we delete the negative edge unless xy ∈ Σ in which case we delete the positive edge. The
result is (Kn,Σ) obtained as a signed minor of G. �

By Theorem 6.2, Hadwiger’s conjecture can be restated as follows:

Conjecture 9.2 (Hadwiger’s conjecture restated) Given n ≥ 4, the class C = {S(G) | G is Kn-minor-free}
of signed bipartite graphs is bounded by (Kn−1,n−1,M) in the signed graph homomorphism order.

If the conjecture holds, then the next question would be: what is a natural superclass of C
which is still bounded by (Kn−1,n−1,M)?
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Hadwiger’s conjecture is known to be true for n ≤ 6, thus Conjecture 9.2 is also true for
n ≤ 6. For n = 4 we have the following generalization.

Theorem 9.3 If G is a bipartite graph with no K4-minor and Σ is any signature on G, then
(G,Σ)→ (K3,3,M).

Proof. By adding more edges, if needed, we may assume that G is edge maximal with respect
to being bipartite and having no K4-minor. Obviously it is enough to prove the theorem for
such edge maximal graphs.

As mentioned before, a classical decomposition theorem for edge-maximal K4-minor-free
graphs states that every such graph is built from a sequence of triangles starting by one triangle
and pasting each new triangle to the graph previously built along an edge. To use the decompo-
sition theorem we add new edges to G, of green color, until we reach a maximal K4-minor-free
graph G′, which obviously is not bipartite anymore. Let G′′ be the edge-colored graph obtained
from G′ by coloring original positive edges of (G,Σ) in blue, original negative edges of (G,Σ) in
red and keeping the green color for edges not in G.

We claim that there is no triangle in G′′ with exactly two green edges. To see this, suppose
that v1v2 and v1v3 are both green and that v2v3 is an edge of G. Since G is bipartite v2 and v3
are in two different parts and thus v1 is in a different part with respect to one of them. Without
loss of generality assume v1 and v2 are in different parts. Consider the graph G + {v1v2}. By
the choice of v2 this graph is bipartite and since it is a subgraph of G′, it has also no K4-minor
but this contradicts the edge maximality of G.

We now build a new edge-colored graph F from (K3,3,M). The blue and red edges of F
are defined as before and we add green edges between every pair of vertices non adjacent in
(K3,3,M). The edge-colored graph F has three types of triangles: (i) triangles with three green
edges, (ii) triangles with one green edge and two blue edges, and (iii) triangles with no two
edges of the same color. Furthermore it is not hard to verify that each red edge only belongs
to triangles of type (iii), each blue edge belongs to triangles of type (ii) or (iii) and each green
edge is contained in triangles of each of the three types.

To prove the theorem we now prove the following stronger statement: there exists a suitable
“resigning” G∗ of G′′ such that G∗ admits a color-preserving homomorphism to F . By resigning
here we mean exchanging the colors red and blue on edges of an edge cut, this can be regarded
as a sequence of vertex resigning.

To prove this stronger statement, let T1, . . . , Tk be the sequence of triangles obtained from
the decomposition of G′′ mentioned above. Note that since G was bipartite, each such triangle
contains a green edge. Consider the triangle T1. Either it is one of the three types (i), (ii) or
(iii), in which case we simply map it to F , or it has one green and two red edges. Let u be the
common vertex of these two red edges. After resigning at u we have a triangle of type (ii) and
thus we can map it to F .

By induction, assume now that the graph G′′i , obtained by pasting the triangles T1, . . . Ti,
i < k, is mapped to F and assume that Ti+1 is pasted to G′′i along the edge e. Let v be the
vertex of Ti+1 not incident to e. If Ti+1 is a triangle of one the three types, because of the above
mentioned property of F , we can extend the mapping of G′′i to G′′i+1, where the colors of the two
edges of Ti+1 incident with v are preserved. Otherwise Ti+1 has exactly two red edges and one
green edge. By resigning at v we get a triangle that has either one or no red edge, thus obtaining
a triangle of type (ii) or (iii). We now extend the homomorphism thanks to the properties of F .
In this process, resigning a vertex would be done at most once, when it is added to the already
built part of the graph, so our process is well-defined and the stronger claim is proved. �
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We note that our proof has an algorithmic feature. Given a signed bipartite graph (G,Σ),
where G is a K4-minor-free graph, we can find, in polynomial time, a homomorphism of (G,Σ)
to (K3,3,M).

Furthermore, we believe that the following stronger statement should also be true:

Conjecture 9.4 If G is bipartite and (G,Σ) has no (K4, E(K4)) as a signed minor, then
(G,Σ)→ (K3,3,M).

For n = 4 it is shown in [NRS12] that the following holds.

Theorem 9.5 If G is a bipartite planar graph and Σ is any signature on G, then (G,Σ) →
(K4,4,M).

This theorem is indeed stronger than the Four-Color Theorem and it does use the Four-Color
Theorem in its proof. We believe that using Wagner’s decomposition theorem of edge-maximal
K5-minor-free graphs and with a method similar to that of [NNS09] the condition of planarity
can be replaced with the more relaxed condition of having no K5-minor. However the following
extension, proposed by B. Guenin [G05] is a lot more challenging:

Conjecture 9.6 Suppose G is a bipartite graph and Σ is any signature on G. If (G,Σ) does
not have (K5, E(K5)) as a signed minor then (G,Σ)→ (K4,4,M).

For large values of n (n ≥ 7) we show that no such simple conjecture would hold. This could
be regarded as a first negative indication for Hadwiger’s conjecture for n ≥ 7.

Theorem 9.7 There exists no value of n for which Fano (the signed bipartite graph of Figure 3)
admits a homomorphism to (Kn,n,M).

Proof. Since Fano is an S-clique, any homomorphic image of Fano is isomorphic to itself.
Thus, if Fano maps to (Kn,n,M), then its image should be of the form (K7,7,M

′) where M ′ is
a matching of size 7 or less induced by M on K7,7. If there are two vertices of the same part of
K7,7 not matched by M ′, then identifying them would result in a signed homomorphic image of
order at most 13 of Fano which is a contradiction.

Thus we consider two cases, |M ′| = 7 or |M ′| = 6. In each case, by counting the number
of unbalanced 4-cycles containing a pair of non-adjacent vertices, we show that Fano cannot
be isomorphic to (K7,7,M

′). Note that there are exactly 12 unbalanced 4-cycles containing
an arbitrary pair of non-adjacent vertices of Fano. For (K7,7,M

′) with |M ′| = 7 the number
of unbalanced 4-cycles containing any pair of non-adjacent vertices is 10. For (K7,7,M

′) with
|M ′| = 6, this number is either 10 or 6. �

Corollary 9.8 The class C = {(G,Σ) | G is bipartite and has no H-minor} is not bounded by
(Kn,n,M) (for no values of n) if H is a graph on at least 15 vertices.

This shows that for n ≥ 15 the reformulation of Hadwiger’s conjecture given in Conjecture 9.2
cannot be extended to a general minor closed class of signed bipartite graphs. Even though such
an extension was possible for small values of n.

We note that to prove Hadwiger’s conjecture for a Kn-minor free graph G, using a restate-
ment in the suborder of signed bipartite graphs, one does not need to map the whole S(G) to
(Kn−1,n−1,M). It is rather enough to map S(G) to any signed bipartite graph in which the part
which is the image of the vertices of G is of size at most n − 1. This leads us to the following
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definition of bipartite chromatic number and a relaxation of Hadwiger’s conjecture. Given a
signed bipartite graph (G,Σ) the bipartite chromatic number of (G,Σ), denoted χb(G,Σ), is
the smallest n such that (G,Σ)→ CBn (see Example 5.9 for the definition of the signed graph
CBn). Intuitively speaking, the bipartite chromatic number is the smallest number of vertices
on one part of a signed bipartite graph to which (G,Σ) admits a homomorphism. We propose
the following relaxation of Hadwiger’s conjecture:

Conjecture 9.9 If G is a Kn-minor free graph then χb(S(G)) ≤ n− 1.

It is then natural to consider the problem of finding

f(n) = max{χb(G,Σ) | G is a Kn −minor free bipartite graph}.

If f(n) was equal to n−1 it would imply Hadwiger’s conjecture. This is indeed the case for n = 4
(using Theorem 9.3). Perhaps using Theorem 9.5 and Wagner’s decomposition of K5-minor free
graphs it would not be too difficult to verify that f(5) = 4. However as the following example
shows, in general f(n) is far from n − 1. This is another indication that perhaps Hadwiger’s
conjecture is true only for small chromatic numbers.

Example 9.10 Let S1 and S2 be two vertex disjoint copies of CBn−2. Note that Kn−1 is the
largest clique minor of Kn−2,2n−3 (underlying graph of CBn−2). Consider two vertices x and y
from S1 and S2 such that x is from the larger part of S1 and y is from the smaller part of S2.
Let (S,Σ) be the signed graph obtained from S1 and S2 by identifying vertices x and y. It is
easy to check that S is a Kn-minor free bipartite graph. Let (B,Σ′) be a signed bipartite graph
to which (S,Σ) admits a homomorphism to and let ϕ be such a homomorphism. Let B1 and B2

be the two parts of B. As a homomorphism of S to B, ϕ preserves the bipartition of S. Since
the larger part of S1 and S2 are in different parts of S, each part Bi of B is a range for a larger
part of CBn−2 for some mapping of CBn−2 to B. But since CBn−2 is an S-clique each part of
B must be of size at least 2n−3.

10 Prospects

We have just opened a door to an ocean of problems in direction of some of the most motivational
problems in graph theory such as the Four-Color Theorem and Hadwiger’s conjecture. Hence
it is not possible to list all the problems we would like to continue working on. But beside
the questions we asked in the text, there are a few more questions which we think should be
mentioned here.

Problem 10.1 How far can Theorem 4.1 be extended to signed graphs? In particular does
the straightforward extension hold for the families of odd signed graphs and of signed bipartite
graphs? Furthermore, when there is such an extension, what is the optimal bound in terms of
number of vertices?

As a special case to the previous question we introduce the following conjecture which is the
bipartite analog of the (odd) graph homomorphism problem studied in [N12].

Conjecture 10.2 Every planar signed bipartite graph of unbalanced girth 2g admits a homo-
morphism to SPC2g−1. Furthermore SPC2g−1 is the smallest signed bipartite graph of unbalanced
girth 2g which bounds the class of all planar signed bipartite graphs of unbalanced girth 2g.
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This question is related to several other well-known results and conjectures. We refer to [G05]
and [NRS12] for further study on this question.

A bipartite analog of Problem 4.2 is the following problem which contains Conjecture 10.2
as a particular case:

Problem 10.3 What is the smallest signed bipartite graph of unbalanced girth 2k to which every
planar signed bipartite graph of unbalanced girth 2r (r ≥ k) admits a homomorphism?

We think the answer in each case should be a subgraph of SPC2k−1. While for the extreme
case of k = r we propose the signed projective cubes to be the answer, for the other extreme, i.e.,
when r is large enough with respect to k, a simple discharging method would imply that UC2k

is the answer. The exact value of r for which UC2k is the answer for this question is the subject
of the next conjecture which can also be regarded as the bipartite analog of Jaeger-Zhang’s
conjecture. For further references and for the best current result on Jaeger-Zhang’s conjecture
we refer to [BKKW04].

Conjecture 10.4 Every planar signed bipartite graph of unbalanced girth 4g − 2 admits a ho-
momorphism to UC2g.

A positive answer for Conjecture 10.2 for g = 2 given in [NRS12] implies that every planar
signed bipartite graph admits a homomorphism to (K4,4,M), and thus a bound of 8 for the
signed chromatic number of this family of graphs. We do not know if 8 is the best bound for
this. Furthermore, it would be interesting to give a proof of this weaker statement without using
the Four-Color Theorem.

Problem 10.5 What is the largest chromatic number of a planar signed bipartite graph?

We would also like to ask if the reformulation given by Conjecture 2.1 of Hadwiger’s conjec-
ture can be extended to the odd Hadwiger’s conjecture:

Problem 10.6 Is Conjecture 6.1 equivalent to saying that every signed minor-closed family of
odd signed graphs have a maximum with respect to the signed homomorphism order?

At the end we should also mention the algorithmic point of view. The problem (G,Σ)-
coloring-of-signed-graphs can be difficult from two aspects: sometimes it is difficult to
find a required mapping, sometimes it is difficult to find an equivalent signature of the input
graph which would provide the homomorphism, but most of the time it is difficult to do either
of the two tasks. In general it is conjectured in [FN12] that the following dichotomy holds:

Conjecture 10.7 The problem (G,Σ)-coloring-of-signed-graphs is NP-complete unless
χ(G,Σ) = 2.

This would extend the dichotomy result of [HN90] and propose a new extension of the
dichotomy conjecture of [FV98] through an extension of the definitions from signed graphs to
signed structural relations. It has been shown in [FN12] that the problem UCk-coloring is
NP-complete even if the input signed graph is restricted to be in the class of planar signed
graphs.
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[PT80] A. Pultr and V. Trnková, Combinatorial, Algebraic and Topological Representa-
tions of Groups, Semigroups and Categories, North-Holland, Amsterdam (1980).

[RS94] A. Raspaud and E. Sopena. Good and semi-strong colorings of oriented planar
graphs. Inform. Proc. Letters 51 (1994), 171–174.

[S75] P. Seymour. Matroids, Hypergraphs and the Max.-Flow Min.-Cut Theorem. D. Phil.
Thesis, Oxford (1975), page 34.

[T1880] P. G. Tait, Remarks on the previous communication, proceeding of the royal society
of Edinburgh 10 (1878-1880) 729.
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