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Let’s first play...

Take your favorite graph, e.g. Petersen graph.

On her turn, each player chooses a vertex and deletes its closed 
neighbourhood...
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The first player unable to move looses the game...



Let’s first play...

Take your favorite graph, e.g. Petersen graph.

On her turn, each player chooses a vertex and deletes its closed 
neighbourhood...
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Would you prefer to be the first player? the second player?
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Would you prefer to be the first player? the second player?



Let’s first play...

 Suppose now that the initial graph is the complete graph Kn on n 
vertices...
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Would you prefer to be the first player? the second player?

Of course, the first player always wins...

 And if the initial graph is the path Pn on n vertices?

Would you prefer to be the first player? the second player?

Hum hum... seems not so easy...

In that case, the first player looses if and only if either

• n = 4, 8, 14, 20, 24, 28, 34, 38, 42, or

• n > 51 and n  4, 8, 20, 24, 28 (mod 34).



Let’s first play...

Let us now change the “winning rule” as follows: the first player 
unable to move wins the game...
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The case of Kn is again easy: the first player always looses...

The first player still wins the game on Petersen graph:



Let’s first play...

Let us now change the “winning rule” as follows: the first player 
unable to move wins the game...
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What about the game on the path Pn?

Again not easy...

Really not easy: a well-known open problem since 1935!...

This game is known as the DAWSON’S CHESS game.
T. R. DAWSON. Caissa’s Wild Roses. Problem #80 (1935).



Outline
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Discovery menu

GEOGRAPHY

NIM on graphs

NODE-KAYLES

Starters
A flavour of 

Combinatorial 
Game Theory

Impartial games – Sums of 
games – Sprague-Grundy 

value – Game-graph...
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A flavour of 
Combinatorial Game Theory



Combinatorial games (1)

Combinatorial game

A combinatorial game is a 2-player game such that:

 players alternate in turn,

 there is no hidden information and no chance elements,

 the number of positions (configurations) is finite,

 no position can be encountered twice during a game (the 
game is thus finite).
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Combinatorial games (2)

Winning rule

 Normal play
The first player unable to move looses the game.

 Misère play
The first player unable to move wins the game.
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The normal version is usually “easier” to deal with...



Combinatorial games (3)

Options

The set of rules of the game gives, for each position and each 
player, the options of this position.
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Impartial vs partisan combinatorial games

The game is impartial if both players have the same options for 
every position, it is partisan otherwise.



Combinatorial game theory (1)

Since the mathematical solution of the game of NIM by C.L. BOUTON

(1901), the theory of combinatorial games has been increasingly 
developed.
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Combinatorial game theory (2)
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Outcomes

Therefore, every position of an impartial combinatorial game is 
either a winning position (1st-player wins), or a losing position (2nd-
player wins). 

The Fundamental Theorem

If G is an impartial game then either the first or the second 
player can force a win.

Observe that

 G is a winning position iff G has at least one losing option,

 G is a losing position iff G has only winning options.



Combinatorial game theory (4)
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Sum of games

Let G1 and G2 be two games. The (disjunctive) sum of G1 and G2 is 
the game G1 + G2, played as follows:

 on her turn, each player chooses the current 
position in G1 or in G2, and then moves according 
to the rules of G1 or G2, respectively,

 the game ends as soon as a player has no move in any of the 
two games. 

= + + +

+



Combinatorial game theory (4)
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Sum of games
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Combinatorial game theory (5)

18Éric Sopena – 6PCC’16

Outcome of the sum of two games (normal play)

Knowing the outcome of both games G1 and G2 does not suffice 
for determining the outcome of G1 + G2...

G1 \ G2 winning losing

winning ???? winning

losing winning losing

Outcome of G1 + G2



Combinatorial game theory (6)
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The Sprague-Grundy function (impartial games, normal)

Two games G and H are equivalent whenever we can 
replace any occurrence of G by H in any sum of games, 
without changing the outcome of the sum (in particular, 
G and H have the same outcome)...

We then set (G) = n (n is the Sprague-Grundy value of G).

Therefore, a game G is a 2nd-player win if and only if (G) = 0.

(Every heap with n > 0 tokens is a winning position.)

Theorem [R.P. SPRAGUE, 1935 – P.M. GRUNDY, 1939]

Every game G is “equivalent” to the game of NIM on a heap of n 
tokens (or a row of n matches) for some positive integer n. 



Combinatorial game theory (7)
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Computing the SG-value of an impartial game (1)

If the set of options of G is {G1, ..., Gk}, then

(G) = mex ((G1), ..., (Gk))

where mex(S) is the smallest positive integer value not in S (in 
particular, mex() = 0).

is thus a winning position...

0
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Combinatorial game theory (8)
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Computing the SG-value of an impartial game (2)

If G is a sum of games, say G = G1 + ... + Gk, then

(G) = (G1)  ...  (Gk)

where denotes the xor operation on binary numbers (nim-sum).

 =  1  3  5  7 = 001  011  101  111 = 0

This position of NIM is thus a losing position...



The graph of a combinatoiral game
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Game-graph

With every impartial combinatorial game G, one can associate a 
graph (the game-graph of G), denoted Gg and defined as follows:

 vertices of Gg are positions of G,

 P1P2 is an arc in Gg, whenever P2 is an option of P1.


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Playing on Gg

Every impartial combinatorial game G can be viewed as a game on 
the oriented graph Gg defined as follows:

 a token is put on the initial vertex (initial position),

 on her turn, each player moves the token along one arc,

 the first player unable to move looses (or wins...).

Playing on the game-graph 


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The game GEOGRAPHY

Poland Denmark Kenya Australia ??



GEOGRAPHY (1)

VERTEX GEOGRAPHY [suggested by R.M. KARP]

The game is played on an undirected graph G. Initially, a token is 
placed on some “current vertex” v (starting position (G,v)).

 On her turn, each player moves the token to a neighbour of the 
current vertex and deletes the current vertex. 
The vertex having the token becomes the new current vertex.
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(G,v) (G’,v’)



GEOGRAPHY (2)

EDGE GEOGRAPHY

The game is played on an undirected graph G. Initially, a token is 
placed on some “current vertex” v (starting position (G,v)).

 On her turn, each player moves the token to a neighbour of the 
current vertex and deletes the traversed edge. 
The vertex having the token becomes the current vertex.
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GEOGRAPHY (3)

DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....
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Playing on a game-graph = DIRECTED VERTEX GEOGRAPHY...

... on an directed acyclic graph.





GEOGRAPHY (3)

DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....
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Playing on a game-graph = DIRECTED VERTEX GEOGRAPHY...

... on an directed acyclic graph.





GEOGRAPHY (4)

DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....
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Complexity of GEOGRAPHY games (normal play)
(deciding the outcome of a given position)

UNDIRECTED VERTEX: polynomial
[A.S. FRAENKEL, E.R. SCHEINERMAN, D. ULLMAN, 1993]

UNDIRECTED EDGE: PSPACE-complete
[A.S. FRAENKEL, E.R. SCHEINERMAN, D. ULLMAN, 1993]

DIRECTED VERTEX: PSPACE-complete
[D. LICHTENSTEIN, M. SIPSER, 1980]

DIRECTED EDGE: PSPACE-complete
[T.J. SCHAEFER, 1978]



GEOGRAPHY (5)

DIRECTED (VERTEX OR EDGE) GEOGRAPHY

The game is played on a directed graph....
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Complexity of GEOGRAPHY games

But for misère play, all these four games are PSPACE-complete...
[G. RENAULT, S. SCHMIDT, 2015]



UNDIRECTED VERTEX GEOGRAPHY

Theorem [A.S. FRAENKEL, E.R. SCHEINERMAN, D. ULLMAN, 1993]

The position (G, v) is a winning position for the game UNDIRECTED

VERTEX GEOGRAPHY (normal play) iff every maximum matching (that is, 
of maximum cardinality) of G saturates v.
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Proof.
 () 2nd-player winning strategy: choose a maximum matching M 

that does not saturate v, and always move along an edge in M.
 () 1st-player winning strategy: choose a maximum matching M 

(which thus saturates v) and always move along an edge in M.
(if no such move is possible, there exists M’ which does not saturate v...)

v



DIRECTED VERTEX GEOGRAPHY
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Theorem [M.S. HOGAN, D.G. HORROCKS, 2003]

The position (C4  Cn , v) is a losing position for the game DIRECTED

VERTEX GEOGRAPHY iff n  11 (mod 12).

Theorem [R.J. NOWAKOWSKI, D.G. POOLE, 1996]

The position (Cm  Cn , v) is a winning position for the game 
DIRECTED VERTEX GEOGRAPHY whenever:

 m = 2, or

 n and m are both even.

Theorem [R.J. NOWAKOWSKI, D.G. POOLE, 1996]

The position (C3  Cn , v) is a winning position for the game 
DIRECTED VERTEX GEOGRAPHY iff n > 0  and n  0, 2, 4, 6, 10, 11, 13, 
15, 16, 17, 19, 21, 22, 23, 25, 27, 28, 32, 34, 36, 38, 40 (mod 42).



Geography – Open problem
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Open Problem.

For which classes of graphs the outcome of GEOGRAPHY (any 
variant) is “easy” to determine?
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Playing NIM on graphs



EDGE NIMG [M. FUKUYAMA, 2003]

 each edge contains a given (non-negative) number of tokens,

 one vertex of the graph is the starting vertex,

 one action:

• move to a neighbour of the current vertex and delete any 
non-negative number of tokens on the traversed edge.
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EDGE NIMG extends ordinary NIM:

EDGE NIMG (1)



1

3

5

7



EDGE NIMG [M. FUKUYAMA, 2003]

 each edge contains a given (non-negative) number of tokens,

 one vertex of the graph is the starting vertex,

 one action:

• move to a neighbour of the current vertex and delete any 
non-negative number of tokens on the traversed edge.
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EDGE NIMG (2)

EDGE NIMG extends UNDIRECTED EDGE GEOGRAPHY (PSPACE-complete):

1 1

1

1

1

1

1

1

1 1

1
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EDGE NIMG [M. FUKUYAMA, 2003]

 each edge contains a given (non-negative) number of tokens,

 one vertex of the graph is the starting vertex,

 one action:

• move to a neighbour of the current vertex and delete any 
non-negative number of tokens on the traversed edge.
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EDGE NIMG (3)

FUKUYAMA determined the Sprague-Grundy values of EDGE NIMG
positions whenever G is either a cycle or a tree.

He also determined whether a position is a winning or a losing 
position whenever G is bipartite...
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EDGE NIMG (4)

L. ERICKSON (2010), studied the case where each edge has exactly 
one token (UNDIRECTED EDGE GEOGRAPHY), and gave several sufficient 
conditions for a position to be a winning position.

 If G contains two twin vertices v1 and v2 (that is, v1 and
v2 have the same closed neighbourhood) then the 
position (G, v1) is a winning position [L. ERICKSON, 2010].

 Therefore, every position (Kn, v), n ≥ 2, is a winning position.

 Let Qn denote the n-dimensional hypercube. A position (Qn, v) is 
a winning position iff n is odd [L. ERICKSON, W. SHREVE, 2012].

Open Problem.

 What about such graphs with an arbitrary number of tokens at 
each vertex? with at most 2 tokens?

v1 v2



VERTEX NIMG [G. STOCKMAN, A. FRIEZE, J. VERA, 2004]

 each vertex contains a given (non-negative) number of tokens,

 one vertex of the graph is the starting vertex,

 two actions:

• delete any non-negative number of tokens on the current 
vertex,

• move to a neighbour of the current vertex.
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Several variants can thus be considered: 

delete-then-move or   move-then-delete
loops on vertices are allowed or not (move-then-delete)

move to an “empty vertex” is allowed or not (delete-then-move)

VERTEX NIMG (1)



VERTEX NIMG, delete-then-move, no loop

 If the number of tokens is bounded by some constant, then 
deciding whether a position is winning or losing can be done in 
polynomial time [G. STOCKMAN, A. FRIEZE, J. VERA, 2004].
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VERTEX NIMG (2)

Open Problem.
 What is the computational complexity of VERTEX NIMG on graphs 

with optional loops?

VERTEX NIMG, move-then-delete, loop on every vertex

 If the number of tokens is bounded by some constant k ≥ 2, 
then deciding whether a position is winning or losing is PSPACE-
complete [K.G. BURKE, O.C. GEORGE, 2014].



UNDIRECTED VERTEXNIM [E. DUCHÊNE, G. RENAULT, 2014]

 Variant of delete-then-move VERTEX NIMG:

• delete any non-negative number of tokens on the current 
vertex,

• move to the next current vertex (having a non-negative 
number of tokens), along a path whose internal vertices do 
not have any token.

In all versions of NIMG, the game may end with remaining tokens 
on the graph, contrary to ordinary NIM...
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 The outcome of any UNDIRECTED VERTEXNIM position (loops are 
allowed) can be computed in polynomial time.

VERTEXNIM (1)



DIRECTED VERTEXNIM [E. DUCHÊNE, G. RENAULT, 2014]

 The outcome of any DIRECTED VERTEXNIM position (a loop at each 
vertex, the graph is strongly connected) can be computed in 
polynomial time.

 Let Cn be a directed cycle of order n, n ≥ 3, with at least 2 
tokens at each vertex. For every vertex v, the outcome of the 
position (Cn, v) can be computed in polynomial time.
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VERTEXNIM (2)

Open Problems.

 What about strongly connected graphs with optional loops?

 What about Cn if some vertices have only 1 token? 

 What about the move-then-delete version?
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NODE-KAYLES



NODE-KAYLES (1)
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Theorem [T.J. SCHAEFER, 1978]

Determining whether a given position (graph) is a winning position 
or a losing position for NODE-KAYLES is PSPACE-complete.

Theorem [H. BODLAENDER, D. KRATSCH, 2002]

Determining whether a given position G is a winning position or a 
losing position for NODE-KAYLES is polynomial whenever G is a 
cocomparability graph, a circular arc graph, a cograph, or has 
bounded asteroidal number.



NODE-KAYLES (2)
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Theorem [R. FLEISCHER, G. TRIPPEN, 2004]

Determining whether a subdivided star with 
bounded degree is a winning position or a 
losing position for NODE-KAYLES is polynomial.

Theorem [H. BODLAENDER, D. KRATSCH, 2011]

Determining whether a given position G with n vertices is a 
winning position or a losing position for NODE-KAYLES can be done 
in time O(1.6052n), or in time O(1.4423n) if G is a tree.



NODE-KAYLES on paths (DAWSON’S CHESS)

The Sprague-Grundy sequence of NODE-KAYLES on paths is ultimately 
periodic, with a period of length 34 and a preperiod of length 51:
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Sprague-Grundy sequence

The Sprague-Grundy sequence of NODE-KAYLES on paths is the 
(infinite) sequence of Sprague-Grundy values:

(P1) (P2) (P3) ... (Pn) ...



Compound games (1)
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Sum of games (reminder)

The (disjunctive) sum of G1 and G2 is the game G1 + G2, played as 
follows:
 on her turn, each player chooses the current position in G1 or in 

G2, and then moves according to the rules of G1 or G2, 
respectively,

 the game ends as soon as a player has no move in any of the 
two games. 

Compound games 

In his book (1976), JOHN H. CONWAY introduced
12 distinct notions of compound games, following 
an inspiring paper of C.A.B. SMITH (1966).



Compound games (2)
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How to play in G1 + ... + Gk?

 Component selection
 one component (disjunctive sum),
 all components (conjonctive sum),
 any number of components, at least one

(selective sum).

 Ending rule
 all components have ended (long rule),
 one component has ended (short rule).

 Winning rule
 normal play,
 misère play.

3 x 2 x 2 = 12

+

+

+



Let’s play again... (1)

Let us consider the path P5 of order 5:
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

Is P5 a winning or a losing position?

Disjunctive sum, long rule, normal play

 Component selection: one component
 Ending rule: all components must have ended 
 Winning rule: the first player unable to move looses

winning



Let’s play again... (2)

Let us consider the path P5 of order 5:
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

Is P5 a winning or a losing position?

Disjunctive sum, short rule, normal play

 Component selection: one component
 Ending rule: one component has ended 
 Winning rule: the first player unable to move looses

losing



Disjunctive sum, short rule (2)
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Foreclosed Sprague-Grundy number of paths

 The foreclosed Sprague-Grundy sequence of paths (under 
normal play) is ultimately periodic:
 preperiod of length 245,
 period of length 84.

 The number of losing positions is finite:

L = { 0, 4, 5, 9, 10, 14, 28, 50, 54, 98 }

still open for
misère play...



Let’s play again... (3)

Let us consider the path P5 of order 5:

Éric Sopena – 6PCC’16 52



Is P5 a winning or a losing position?

Conjunctive sum, long rule, normal play

 Component selection: all components
 Ending rule: all components have ended 
 Winning rule: the first player unable to move looses

losing



Conjunctive sum, long rule (1)
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Suspense number

 Strategy: losing quickly on losing components and postponing 
win as long as possible on winning ones...

 The suspense number S+(G) (normal play) of a position G is the 
number of coming turns, using this strategy:
 S+(G) = 0 if G is an ended position,
 if G’ is an option of G with maximal even suspense, then

S+(G) = S+(G’) + 1,
 if no such option exists and G” is an option of G with  

minimal odd suspense, then S+(G) = S+(G”) + 1.

A position G is a winning position iff S+(G) is odd...



Conjunctive sum, long rule (2)
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Suspense number of paths

 The suspense sequence of paths (normal play) has a geometric 
period with geometric ratio 2.

For every n ≥ 0, we have:

 S+(Pk) = 2n,   if k = 5(2n – 1),

 S+(Pk) = 2n + 1,   if 5(2n – 1) < k < 5(2n+1 – 1) – 1,

 S+(Pk) = 2n + 2,   if k = 5(2n+1 – 1) – 1.

 The set of losing positions is:

{ 5(2n – 1), n ≥ 0 }   { 5(2n+1 – 1) – 1, n ≥ 0 } 



Compound NODE-KAYLES on paths (1)
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Theorem [A. GUIGNARD, E.S., 2009]

For ten over twelve versions of compound NODE-KAYLES on paths, the 
set of losing positions can be characterized.
The two remaining unsolved versions are the following:
 disjunctive sum, misère play, long rule (DAWSON’s problem, 1935),
 disjunctive sum, misère play, short rule.



NODE-KAYLES vs. GRAPH COLOURING (1)
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Graph colouring game (Maker/Breaker)

 Using a set of k colours, on her turn, each player properly 
colours an uncoloured vertex of a graph G.

 If the whole graph is properly coloured the 1st player wins the 
game, otherwise the 2nd player wins the game.

 The game chromatic number of G is the least integer k for 
which the 1st player has a winning strategy.

Combinatorial graph colouring game

 Using a set of k colours, on her turn, each player properly 
colours an uncoloured vertex.

 The first player unable to move wins (or looses) the game...
[F. HARARY, ZS. TUZA, 1993]



NODE-KAYLES vs. GRAPH COLOURING (2)
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Observation.

Playing the combinatorial graph colouring game on G with k 
colours is equivalent to playing NODE-KAYLES on G  Kk.

Example with k = 3:

“colour 1”

“colour 2”

“colour 3”
G  K3



NODE-KAYLES vs. GRAPH COLOURING (2)
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Observation.

Playing the combinatorial graph colouring game on G with k 
colours is equivalent to playing NODE-KAYLES on G  Kk.

Example with k = 3:

“colour 1”

“colour 2”

“colour 3”
G  K3



NODE-KAYLES – Open problems
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Open Problems.

What about NODE-KAYLES on

 caterpillars?

 subdivided caterpillars?

 trees?

 ...

Suggestion.

Consider compound versions of other combinatorial games?...
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It’s time to conclude...



Many other types of combinatorial games on graphs:

 Graph deletion games

 Avoidance / Achievement games (adding edges until some 
structure appears...)

 PEG DUOTAIRE (2-player version of PEG SOLITAIRE)

 Take your favourite “graph colouring problem” and 
consider its combinatorial game version...

Acyclic, 2-distance and a few others 
in [G. BEAULIEU, K. BURKE, E. DUCHÊNE, 2013] 

 Partisan games (different options for players,  e.g. playing with 
black or white tokens)

 ...

To conclude...
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To conclude...
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Human beings are never more 

ingenious than in the invention 

of games. 

GOTTFRIED WILHELM LEIBNIZ

GEORGE BERNARD SHAW

We don't stop playing because 

we grow old; we grow old 

because we stop playing.
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Human beings are never more 

ingenious than in the invention 

of games. 

GOTTFRIED WILHELM LEIBNIZ

GEORGE BERNARD SHAW

We don't stop playing because 

we grow old; we grow old 

because we stop playing.

Thank you 

for your 

attention...

Dziękuję za

uwagę...
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Bordeaux Graph Workshop
BGW’2016

November 7-10, 2016
bgw.labri.fr

Announcement...

Invited speakers. MARIA AXENOVICH, CSILLA BUJTÁS, KATHIE CAMERON, 
PAVOL HELL, ALEXANDR KOSTOCHKA, DANIEL KRÁĽ, CARSTEN THOMASSEN.


