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Abstract

The packing chromatic number x,(G) of a graph G is the smallest integer &k such that its set
of vertices V(G) can be partitioned into k disjoint subsets Vi, ..., Vi, in such a way that every
two distinct vertices in V; are at distance greater than ¢ in G for every ¢, 1 <i < k.

Recently, Balogh, Kostochka and Liu proved that x, is not bounded in the class of subcubic
graphs [Packing chromatic number of subcubic graphs, arXiv:1703.09873 [math.CO| (2017)],
thus answering a question previously addressed in several papers. However, several subclasses of
cubic or subcubic graphs have bounded packing chromatic number. In this paper, we determine
the exact value of, or upper and lower bounds on the packing chromatic number of some classes
of cubic graphs, namely circular ladders, and so-called H-graphs and generalised H-graphs.

Keywords: Packing colouring; Packing chromatic number; Circular ladder; H-graph; Gener-
alised H-graph.
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1 Introduction

All the graphs we consider are simple and loopless. For a graph G, we denote by V(G) its set
of vertices and by E(G) its set of edges. The distance dg(u,v) between vertices v and v in G
is the length (number of edges) of a shortest path joining v and v. The diameter of G is the
maximum distance between two vertices of G. We denote by P,, n > 1, the path of order n and
by Cp, n > 3, the cycle of order n.

A packing k-colouring of G is a mapping © : V(G) — {1,...,k} such that, for every two
distinct vertices u and v, m(u) = 7(v) = i implies dg(u,v) > i. The packing chromatic number
Xp(G) of G is then the smallest & such that G admits a packing k-colouring. In other words,
Xp(G) is the smallest integer k such that V(G) can be partitioned into k disjoint subsets V;
1 <4 <k, in such a way that every two vertices in V; are at distance greater than ¢ in G for
every i, 1 <14 < k. A packing colouring of G is optimal if it uses exactly x,(G) colours.

The packing colouring of graphs was introduced by Goddard, Hedetniemi, Hedetniemi, Harris
and Rall in [13}/14], under the name broadcast colouring. In their seminal paper [14], the question
of determining the maximum packing chromatic number in the class of cubic graphs of a given
order is posed. In [18|, Sloper proved that the packing chromatic number is unbounded in the
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class of k-ary trees for every k > 3, from which it follows that the packing chromatic number is
unbounded in the class of graphs with maximum degree 4.

In [12], Gastineau and Togni observed that each cubic graph of order at most 20 has packing
chromatic number at most 10. They also observed that the largest cubic graph with diameter 4
(this graph has 38 vertices and is described in [1]) has packing chromatic number 13, and asked
whether there exists a cubic graph with packing chromatic number larger than 13 or not. This
question was answered positively by Bresar, Klavzar, Rall and Wash [9] who exhibited a cubic
graph on 78 vertices with packing chromatic number at least 14. Recently, Balogh, Kostochka
and Liu finally proved in [2| that the packing chromatic number is unbounded in the class of
cubic graphs, and Bresar and Ferme gave in [5] an explicit infinite family of subcubic graphs
with unbounded packing chromatic number.

On the other hand, the packing chromatic number is known to be upper bounded in several
classes of graphs with maximum degree 3, as for instance complete binary trees 18|, hexagonal
lattices [6}/10,/15], base-3 Sierpiniski graphs [7] or particular Sierpinski-type graphs [4], subdi-
visions of subcubic graphs [8//12] and of cubic graphs [3|, or several subclasses of outerplanar
subcubic graphs |11].

We prove in this paper that the packing chromatic number is bounded in other classes of
cubic graphs, extending in particular partial results given in [19]. More precisely, we determine
the exact value of, or upper and lower bounds on the packing chromatic number of circular
ladders (in Section , H-graphs (in Section {)) and generalised H-graphs (in Section .

2 Preliminary results

We give in this section a few results that will be useful in the sequel.

Let G be a graph. A subset S of V(G) is an i-packing, for some integer ¢ > 1, if any two
vertices in S are at distance at least ¢+ 1 in GG. Note that such a set S is a 1-packing if and only
if S is an independent set. A packing colouring of G is thus a partition of V(G) into k disjoint
subsets V7, ..., Vg, such that V; is an i-packing for every ¢, 1 < i < k.

For every integer ¢ > 1, we denote by p;(G) the maximum cardinality of an i-packing in G.
Since at most p;(G) vertices can be assigned colour i in any packing colouring of G, we have the
following result.

Proposition 1 If G is a graph with x,(G) = k, then

Let H be a subgraph of G. Since dg(u,v) < dg(u,v) for any two vertices u,v € V(H), the
restriction to V(H) of any packing colouring of G is a packing colouring of H. Hence, having
packing chromatic number at most k is a hereditary property:

Proposition 2 (Goddard, Hedetniemi, Hedetniemi, Harris and Rall [14])
Let G and H be two graphs. If H is a subgraph of G, then x,(H) < x,(G).

In particular, Proposition [2] allows to get a lower bound on the packing chromatic number
of graph G whenever G contains a subgraph H whose packing chromatic number is known. As
we will see later, all the cubic graphs we consider in this paper contain a corona of a cycle as a
subgraph. Recall that the corona G © K; of a graph G is the graph obtained from G by adding
a degree-one neighbour to every vertex of G. In |17, we have determined with I. Bouchemakh
the packing chromatic number of coronae of cycles.
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Figure 1: The circular ladder C'Ly.

Theorem 3 (Laiche, Bouchemakh, Sopena [17])
The packing chromatic number of the corona graph C, ® K1 is given by:

' 4
xp(CRQKl)—{ ‘é j;Z;? b

This result will thus provide a lower bound on the packing chromatic number of each cubic
graph considered in this paper.

3 Circular ladders

Recall that the Cartesian product G H of two graphs G and H is the graph with vertex set
V(G) x V(H), two vertices (u,u’) and (v,v") being adjacent if and only if either u = v and
u'v' € E(H) or v =9 and uwv € E(G).

The circular ladder CL, of length n > 3 is the Cartesian product C'L, = C, [ Ks. Note
that C'L, is a bipartite graph if and only if n is even.

For every circular ladder C'L,,, we let

V(CLH) = {UO, .. .,Unfl} U {’Uo, ce ,Unfl},

and
E(CLn) = {uivi ‘ 0<i<n— 1} U {uiqu,viviH | 0<i<n— 1}

(subscripts are taken modulo n). Figure (1| depicts the circular ladder C'Ly.

Note that for every n > 3, the corona graph C,, ® Kj is a subgraph of the circular ladder
CL,. Therefore, by Proposition [2] Theorem [3| provides a lower bound on the packing chromatic
number of circular ladders. More precisely, x,(CLy,) > 4 if n € {3,4}, and x,(CL,) > 5 if
n > 5.

William and Roy [19] proved that the packing chromatic number of a circular ladder of
length n = 6q, ¢ > 1, is at most 5. In Theorem [7] below, we extend this result and determine
the packing chromatic number of every circular ladder.

We first need the following technical lemma, which will also be useful in Section [5]

Lemma 4 Let X be the graph depicted in Figure [4, and 7 be a packing 5-colouring of X. If
m(u;) # 1 and w(v;) # 1 for some integer i, 3 < i < 5, then either u; or v; has colour 2, and
its three neighbours have colours 3, 4 and 5 (the three corresponding edges are the vertical edges
surrounded by the dashed boz).
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Figure 3: Optimal packing colouring of C'L3, C'Ly and C'Ls.

Proof. The proof is done by case analysis and is given in Appendix O

Observe now that for every integer n > 9, the subgraph of C'L,, induced by the set of vertices
{ui,v; | 0 <1 < 8} contains the graph X of Figure [2| as a subgraph. Moreover, every packing
5-colouring w of C'L,, 5 < n < 8, can be “unfolded” to produce a packing 5-colouring of X, by
setting m(up—14;) = m(ui—1) and w(vp—14s) = w(vi—1) for every i, 1 < ¢ < 9 — n. Therefore,
thanks to the symmetries of C'L,, for every n > 5, Proposition [2] and Lemma [] give the following
corollary.

Corollary 5 Let CL,, n > 5, be a circular ladder with x,(CLy,) < 5, and m be a packing 5-
colouring of CL,,. For every integer i, 0 <i<n—1, if m(u;) # 1 and ©(v;) # 1, then either u;
or v; has colour 2, and its three neighbours have colours 3, 4 and 5.

Let CL,, be a circular ladder satisfying the hypothesis of Corollary [§| and = be a packing
5-colouring of CL,,. From Corollary [p| it follows that if m(u;) # 1 and 7(v;) # 1 for some edge
u;v; of C'Ly, then the colour 2 has to be used on the edge u;v; and, since the neighbours of
the 2-coloured vertex are coloured with 3, 4 and 5, the colour 2 can be replaced by colour 1.
Therefore, we get the following corollary.

Corollary 6 If CL,, n > 5, is a circular ladder with x,(CLy,) < 5, then there exists a packing
5-colouring of CL,, such that the colour 1 is used on each edge of CL,.

Note that from Corollary @ it follows that for every integer n > 5, x,(C'L,) < 5 implies that
CL, is a bipartite graph. Hence, x,(CL;,) > 6 for every odd n > 5.
We are now able to prove the main result of this section.

Theorem 7 For every integer n > 3,

5 ifn=3, orn is even and n ¢ {8,14},
Xp(CLp) =4 7 ifne{7,8,9},
6 otherwise.



Proof. We first consider the case n < 5. Figure [3| describes a packing 5-colouring of CLs
and CL,, and a packing 6-colouring of CLs. We claim that these three packing colourings are
optimal. To see that, observe that pi(CL3) = 2, p;(CL3) = 1 for every i > 2, p1(CLy) =
p1(CLs) = 4, p2(CLy) = p2(CLs) = 2, and p;(CLy) = pi(CLs) = 1 for every ¢ > 3. The
optimality for C'Ls and CLs then follows from Proposition [l The optimality for C'Ly also
follows, with the additional observation that colour 2 can be used at most once if colour 1 is
used four times.

Assume now n > 6. Since n > 6 and every circular ladder C'L,, contains the corona graph
Cn ® K as a subgraph, we get x,(CLy) > x,(Cr, ® K1) > 5 by Theorem [3| and Proposition
Moreover, by Corollary [6] we have x,(CLy) > 6 if n is odd.

We now consider two general cases.

1. n is even and n ¢ {8,14}.
As observed above, in that case, it is enough to exhibit a packing 5-colouring of C'L,, to
prove X,(CLy) = 5.
If n = 0 (mod 6), a packing 5-colouring of C'L,, is obtained by repeating the following
circular pattern (the first row gives the colours of vertices u;, 0 < i < n — 1, the second
row gives the colours of vertices v;, 0 < i < n — 1, according to the value of (i mod 6)):

131215
214131

If n = 2 (mod 6), which implies n > 20, a packing 5-colouring of CL,, is obtained by
repeating the previous circular pattern ”_T% times and adding a pattern of length 20, as
illustrated below:

131215(13121314151312131415
214131121415121312141512131

Finally, if n =4 (mod 6), which implies n > 10, a packing 5-colouring of C'L,, is obtained

by repeating the same circular pattern "_610 times and adding a pattern of length 10:

1312131415

131215
2141512131

214131

2. n s odd and n > 11.
As observed above, in that case, it is enough to exhibit a packing 6-colouring of C'L,, to
prove Xx,(CLy) = 6.
Similarly as in the previous case, if n = 1,3 or 5 (mod 6), a packing 6-colouring of C'L,, is
obtained by repeating the previous circular pattern ”TJ, ”ng or %5 times, respectively,
and adding a pattern of length 7, 9 or 5, respectively, as illustrated below:

1312151314126
2141316121315

131215(141231416
21413111216152131

13121513126
21413121415

It remains to consider four cases, namely n = 7,8,9,14, which we consider separately.



1. n=1.
We first claim that x,(CL7) > 7. Note that p1(CL7) =6, p2(CL7) =3, p3(CL7) = 2, and
pi(CL7) = 1 for every i > 4. However, if we use six times colour 1, colour 2 can be used at
most twice. Hence, at most 13 vertices of C'L7 can be coloured with a colour in {1,...,6}
and the claim follows.

A packing 7-colouring of C'L7 is given by the following pattern:

1312145
2161317

2. n=28.

We first claim that x,(CLg) > 7. Note that p;(CLg) = 8, pa(CLg) = 4, p3(CLg) =
pa(CLg) = 2, and p;(CLg) = 1 for every i > 5. However, if we use eight times colour 1,
colour 2 can be used at most twice, and then colour 4 at most once. On the other hand,
if we use seven times colour 1, then, either colour 2 is used thrice, and then colour 4 can
be used at most once, or colour 2 is used at most twice, and then colour 4 can be used at
most twice. Hence, at most 15 vertices of C'Lg can be coloured with a colour in {1,...,6}
and the claim follows.

A packing 7-colouring of C'Lg is given by the following pattern:

13121517
21413161

3. n=09.
We first claim that x,(CLg) > 7. Note that p;(CLg) = 8, pa(CLg) = 4, p3(CLg) =
p4(CLg) = 2, and p;(CLg) = 1 for every i > 5. However, if we use eight times colour 1,
colour 2 can be used at most thrice. Hence, at most 17 vertices of C'Lg can be coloured
with a colour in {1,...,6} and the claim follows.

A packing 7-colouring of C'Lg is given by the following pattern:

131215146
214131217

4. n = 14.
We first claim that x,(C'L14) > 6. Note that p1(CL1a) = 14, p2(CL14) = 6, p3(CL14) = 4,
pa(CL14) = 3 and p5(CL14) = 2. However, if we use 14 times colour 1, colour 2 can be
used at most four times. On the other hand, if we use 13 times colour 1, colour 2 can be
used at most five times. Hence, at most 27 vertices of C'L14 can be coloured with a colour
in {1,...,5} and the claim follows.

A packing 6-colouring of C'Ly4 is given by the following pattern:

13121512141316
21413161312151

This completes the proof of Theorem O

4 H-graphs

The H-graph H(r), r > 2, is the 3-regular graph of order 6r, with vertex set
V(H(r)) = {us,vi,w; : 0 <i < 2r —1},

and edge set (subscripts are taken modulo 27)

EH(r) = {(uyuit1), (wi,wit1), (ug,vi), (vi,w;):0<i<2r—1}
U {(Ugi,UQiJrl) 0<i < r— 1}.

6
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Figure 4: The H-graph H(4).

Figure 4| depicts the H-graph H(4). These graphs have been introduced and studied by William
and Roy in [19], where it is proved that x,(H(r)) < 5 for every H-graph H(r) with even r > 4.
We complete their result in Theorem [10] below.

We first prove a technical lemma. For every integers r > 2 and 0 < ¢ < r — 1, we denote
by G;(r) the subgraph of H(r) induced by the set of vertices {ug;, u2it1, v2i, V2i41, Wi, W2it1 }-
Observe that for every r > 2, all the subgraphs G;(r) are isomorphic to the graph depicted on
Figure pfa). For a given packing 5-colouring 7 of H(r), we denote by 7(G;(r)) the set of colours
assigned to the vertices of G;(r).

We then have the following result.

Lemma 8 For every r > 3 and every packing 5-colouring m of H(r), the following statements
hold for every i, 0 < i <r —1 (subscripts are taken modulo r):

1. w(Gi(r)) # {1,2,3} (that is, x,(Gi(r)) > 3),
2. F(Gz@")) N W(Gi_H(T)) = {1,2,3}.

Proof. We first prove that every packing 5-colouring of H(r) must use colour 4 or colour 5 on
every Gi(r), 0 < i < r — 1. Indeed, on every such G;(r), colour 1 can be used at most thrice,
colour 2 at most twice and colour 3 at most once. But we cannot use colour 1 thrice and colour 2
twice in the same colouring, and the result follows. This gives the first item of Lemma [§

We now prove that if colour 4 (resp. colour 5) is used on G;(r), then colour 4 (resp. colour 5)
cannot be used on G;41(r). Observe first that every vertex of G;(r) is at distance at most 5
from every vertex of G,41(r). Therefore, colour 5 cannot be used on both G;(r) and G;41(r).
Suppose now that colour 4 is used on both G;(r) and G;4+1(r). Up to symmetries, we necessarily
have one of the two following cases.

1. m(ug;) = m(waiy3) = 4 (see Figure [5(b)).

Since every vertex of G;_1(r) is at distance at most 4 from ug; and two consecutive G;(r)’s
cannot both use colour 5, it follows from the first item of Lemma [§| that colour 5 is used
neither on G;(r), nor, by symmetry, on G;41(r).

Now, on the remaining uncoloured vertices of G;(r), colour 1 can be used at most thrice,
colour 2 at most twice and colour 3 at most once. If colour 1 is used thrice, then we
necessarily have m(ugi+1) = 7(ve;) = m(wair1) = 1, so that {m(veiy1), m(we)} = {2,3},
and no colour is available for wa;y2 (recall that colour 5 is not used on Giyi(r)). If
colour 1 is used twice, then we necessarily have, up to symmetry, 7(vy;) = m(wei+1) = 1,
7(ugit1) = m(we;) = 2, and 7(vei4+1) = 3, and no colour is available for wa; 9.
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Figure 5: The subgraph G;(r) and two configurations for the proof of Lemma

2. m(va;) = m(vait3) = 4 (see Figure [fc)).
Similarly as before, since every vertex of GG;_1 is at distance at most 4 from wvs; and two
consecutive G;(r)’s cannot both use colour 5, it follows from the first item of Lemma
that colour 5 is used neither on G;(r), nor, by symmetry, on Gi41(r).

Again, on the remaining uncoloured vertices of G;(r), colour 1 can be used at most thrice,
colour 2 at most twice and colour 3 at most once. If colour 1 is used thrice, then we
necessarily have m(ug;) = m(vei+1) = m(way;) = 1, so that {m(ugit+1), m(weit1)} = {2,3}. Up
to symmetry, we may assume m(ug;+1) = 2 and 7(wg;+1) = 3, which implies m(ug;2) = 1,
and no colour is available for vy; 19 (recall that colour 5 is not used on G;41(r)). If colour 1
is used twice, then we necessarily have, up to symmetry, m(ug;j+1) = m(we;) = 1, m(ug;) =
m(we;+1) = 2, and m(vgi4+1) = 3, and no colour is available for ug;io.

This completes the proof. O

From Lemma , it follows that every G;(r) must use colour 4 or 5, and that no two consecutive
Gi(r)’s can use the same colour from {4,5}. Therefore, H(r) does not admit any packing 5-
colouring when r is odd.

Corollary 9 For every odd r, r > 3, x,(H(r)) > 5.
We are now able to prove the main result of this section.

Theorem 10 For every integer r > 2, x,(H (1)) =5 if r is even, and 6 < x,(H(r)) <7 if r is
odd.

Proof. We consider two cases, according to the parity of r.

1. r s even.
Since H(r) contains the corona graph Cg ® K; as a subgraph (consider for instance the
6-cycle ujviwiwavaug), we get x,(H(r)) > 5 by Theorem [3{ and Proposition . A packing
5-colouring of H(r) is then obtained by repeating the pattern depicted in Figure @(a), and
thus x,(H(r)) = 5.

2. 7 1s odd.
From Corollary [9] we get x,(H(r)) > 6. A packing 7-colouring of H(r) is described in
Figure @(b), where the circular pattern (surrounded by the dashed box) is repeated 252
times. This gives x,(H(r)) < 7.

This concludes the proof. O



(b) A packing 7-colouring pattern for H(r), r odd, r > 3

Figure 6: Packing colouring patterns for H-graphs.

5 Generalised H-graphs

We now consider a natural extension of H-graphs. For every integer r > 2, the generalised
H-graph H*(r) with £ levels, £ > 1, is the 3-regular graph of order 2r(¢ + 2), with vertex set

V(H (r)) ={u}:0<i<+1,0<j<2r—1}
and edge set (subscripts are taken modulo 27)

EH () = {(@}uly,), (it ui])0<j<2r—13
U{(uQJ,UQJH) 1<i<(, 0<j<r-—1}
U{(uf,uf™):0<i<l, 0<j<2r -1}
Figure [7| depicts the generalised H-graph with three levels H3(4). Note that generalised
H-graphs with one level are precisely H-graphs.
The three following lemmas will be useful for determining the packing chromatic number of

generalised H-graphs.

Lemma 11 Let H(r), £,r > 3, be a generalised H-graph with Xp(H (r)) < 5, and 7 be a
packing 5-colouring of Hé( ). For every edge upuy; g, 1 <i<(,0<j<r—1 with 7r(u2j) #1
and 71'(u2 1) # 1, either u 12

and 5.

or u2j+1 has colour 2 and its three neighbours have colours 3, 4

Proof. Observe that every such edge u’éju’éjﬂ belongs to a subgraph of H(r) isomorphic to

the graph X depicted in Figure , in such a way that uéjuéﬁl corresponds to one of the edges
ugvs, ugvg or usvs of X. Therefore, the result follows by Lemma [4] ]

9
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Figure 7: The generalised H-graph H?3(4).

From Lemma , it follows that if 7(ub;) # 1 and 7(ub;, ) # 1 for some edge uh;ub; , of
H'(r), 1 <i<¢ 0<j<r—1, then the colour 2 has to be used on this edge and, since the
neighbours of the 2-coloured vertex are coloured with 3, 4 and 5, the colour 2 can be replaced
by colour 1. Therefore, we get the following corollary.

Corollary 12 If H'(r), £,r > 3, is a generalised H-graph with x,(H*(r)) < 5, then there ewists
a packing 5-colouring of H'(r) such that, for every integers i and j, 1 <i < £, 0<j<r—1,
the colour 1 is used on the edge ugjuéjﬂ of H'(r).

Lemma 13 Let H'(r), £,r > 3, be a generalised H-graph with XP(HK(T)) < 5, and 7 be a
packing 5-colouring of H(r). For every j, 0 < j < 2r — 1, m must assign colour 1 to one vertes

of each of the edges u?u?_H and uﬁ“uﬁ'ﬁ (subscripts are taken modulo 2r).

Proof. The proof is done by case analysis and is given in Appendix O

Let H%(r) be a generalised H-graph with y,(H*(r)) < 5. From Corollary [12|and Lemma
it follows that one can always produce a packing 5-colouring of H*(r) that uses colour 1 on each
edge ugjugjﬂ of Hf(r),0<i</¢+1,0<j<r—1. Since adjacent vertices cannot be assigned
the same colour and H*(r) is a bipartite graph, we get the following corollary.

Corollary 14 If H'(r), {,7 > 3, is a generalised H-graph with XP(HK(T’)) < 5, then there exists
a packing 5-colouring of H'(r) such that the colour 1 is used on each edge of H'(r).

Lemma 15 If H'(r), {,r > 3, is a generalised H-graph with Xp(He(T‘)) < 5, then there exists
a packing 5-colouring m of H(r) such that W(u?) ¢ {4,5} and ﬂ(u?“) ¢ {4,5} for every j,
0<j<or—1.

Proof. Let 7 be a packing 5-colouring of H*(r) such that colour 1 is used on each edge of H*(r)
(the existence of such a colouring is ensured by Corollary [14). Thanks to the symmetries of
H*(r), it suffices to prove the result for any vertex ugj, 0 < j <r—1. Suppose to the contrary

that W(ugj) € {4,5} for some j, 0 < j <r — 1. We have two cases to consider.

10



Figure 8: The subgraph Y of H (r).

L. W(Ugj) =4.
Let Y be the subgraph of H’(r) depicted in Figure , where the vertex ugj is the unique
vertex with colour 4, and vertices with colour 1 are drawn as “big vertices”. Observe that
the three neighbours x, as well as the three neighbours of ¢, must use colours 2, 3 and 5.
Therefore, the common neighbour of z and y must be assigned colour 5. It then follows
that no colour is available for z.

2. W(ugj) = 5.
The proof is similar to the proof of the previous case, by switching colours 4 and 5.

This completes the proof. O

Let H'(r) be a generalised H-graph satisfying the hypothesis of Lemma , and 7 be a
packing 5-colouring of H’(r). From Lemma it follows that the restriction of 7 to the 2r-
cycle induced by the set of vertices {ugJ | 0 < j < 2r —1} is a packing 3-colouring. It is not
difficult to check (see [17]) that a 2r-cycle admits a packing 3-colouring if and only if r is even.
Therefore, we get the following corollary.

Corollary 16 For every integers £ > 3 and odd r > 3, Xp(Hg(r)) > 6.

We are now able to prove the main results of this section. We first consider the case of
generalised H-graphs H*(r) with £ ¢ {2,5}.

Theorem 17 For every integers £ > 3, L #5, and r > 2,

; | 5 ifris even,
Xp(H (1)) { 6 otherwise.

Proof. We consider two cases, according to the parity of r.

1. r s even.

Since the corona graph Copio ® K is a subgraph of HY(r) for every r > 2 (consider the
cycle of length 2¢ + 2 induced by the set of vertices {ut]|0 < i < ¢} U {ub|0 <i < £}), we
get X,(H (1)) > x,p(Cap42 ® K1) = 5 by Theorem [3| and Proposition

We now prove x,(H*(r)) < 5. Figure |§I depicts a packing 5-colouring of H*(2), together
with its corresponding colouring pattern. It can easily be checked that this (6 x 4)-pattern
is periodic, that is, can be repeated, both vertically and horizontally, to produce a packing
5-colouring of any generalised H-graph of the form H%%4(2j), with 4 > 0 and j > 1.

If ¢ # 4 (mod 6), we use the colouring patterns depicted in Figure [10] depending on the
value of £ modulo 6. The upper six rows of each colouring pattern, surrounded by double

11



4 1 5 1
12 13
1 3 1 2 41 51
1312
2 1 3 1 21 31
1514
1 5 1 4 3121

Figure 9: A packing 5-colouring of H*(2) and its corresponding colouring pattern.

1213 12 13 1213 1213 1213
41 51 41 51 41 51 41 51 41 51
13 12 1312 13 12 13 12 1312
21 31 21 31 21 31 21 31 21 31
1514 1514 15 14 1514 1514
3121 3121 3121 3121 3121
14 15 12 13 1213 1213 14 15
21 31 41 51 41 51 41 51 21 31
13 12 1312 1312 13 12
51 41 o1 41 o1 41
1213 1213 12 13
3121 41 51
14 15 1312

2131

15 14

3121

=0 (mod 6) ¢£=1 (mod6) ¢=2 (mod6) ¢{=3 (mod6) ¢{=5 (mod 6)

Figure 10: Colouring patterns for H(r), r even.
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1312 16 1213 || 12 15 12 61 23
215141 41 51141 31 31 14 51
14 23 12 1312|1314 14 23 12
3114 31 5141 | 2121215141
12 61 25 1213|1516 13 12 13

(a) (b)

Figure 11: Colouring patterns for H3(3) and for H3(r), r > 5, r odd.

lines, can be repeated as many times as required, or even deleted when ¢ = 1,2,3 (mod 6).
Therefore, these colouring patterns give us a packing 5-colouring of any generalised H-
graph of the form HY(2), for every £ > 3, £ # 5. It is again easy to check that each of these
colouring patterns is “horizontally periodic”, that is, can be horizontally repeated in order
to get a packing 5-colouring of any generalised H-graph of the form H(r), for every £ > 3,
¢#5, ¢#4 (mod 6), and even 7.

. T 48 odd.

The inequality x,(H*(r)) > 6 directly follows from Corollary Therefore, we only need
to prove the inequality x,(H*(r)) < 6 (recall that £ > 3 and £ # 5).

We first consider a few particular cases. A packing 6-colouring of H?(3) is depicted in
Figure [11{a), and a packing 6-colouring of H3(r), for every odd r > 5, is depicted in
Figure (b) (the first four columns, surrounded by a double line, are repeated %5 times,
and thus do not appear if » = 5). A packing 6-colouring of H*(3) is depicted in Figure (a),
and a packing 6-colouring of H*(r), for every odd r > 5, is depicted in Figure (b) (the
first four columns are repeated ’;5 times). A packing 6-colouring of H%(r), for every
odd r > 3, is depicted in Figure [I2fc) (the four columns surrounded by a double line are
repeated Tg?’ times, and thus do not appear if » = 3). A packing 6-colouring of H"(3)
is depicted in Figure [12(d), and a packing 6-colouring of H'(r), for every odd r > 5, is
depicted in Figure (e) (the four columns surrounded by a double line, are repeated 7;3
times).

In order to produce a packing 6-colouring of H (r), with £ > 8, r > 3, and r odd, we
use the colouring patterns depicted in Figures and [14 In both these figures, the four
columns surrounded by double lines must be repeated ’”;—3 times (and thus do not appear if
r =3) or 52 times when £ = 9 and r > 5 (and thus do not appear if r = 5). In Figure
the six rows surrounded by double lines must be repeated w
do not appear if £ = 8).

times (and thus

This completes the proof. ]

The last two theorems of this section deal with the cases not covered by Theorem [17], that

is, £ = 2 and £ = 5, respectively.

Theorem 18 For every integer r > 2,

7 ifre{2,4,7,8 11}
2 . ) ) 9 ) 7
Xp(H"(r)) = { 6 otherwise.

Proof. The fact that H?(r) does not admit a packing 6-colouring for every r € {2,4,7,8,11}
has been checked by a computer program, using brute-force search. Packing 7-colourings for
each of these graphs are depicted in Figure

13



1312 16 1213112141316 13 1213|1213 || 16
215131 5141 5131212121 4151 (| 4151 21
14 14 15 131213121513 14 1312|1312 || 13
313121 2131 | 2151315131 2131 (12131 51
151214 14151 14131214 15 1514 || 1514 || 12
2161 31 3121 3121613121 31213121 31

1215 (| 14 15 || 14
61 31 || 21 31 | 21

(a) HY3)  (b) HYr),r >5,70dd  (¢c) H%(r), r >3, r odd

1213 14 1213 | 1512 16
315121 5141 || 21 31 31
16 12 15 13121314 12
21 31 31 21311612151
14 14 16 1415 (|14 1513
312121 3121313121
1513 13 1213 (1212 14
21 61 51 5141 || 51 41 31
131214 1312 || 13 16 12
(d) H"(3) (e) H'(r), r > 5, r odd

Figure 12: Colouring patterns for H*(r), H%(r) and H'(r), r > 3, r odd.
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1312 16 1213 | 12 15 12 61 23 12131213 || 16
215141 41 5114131311451 4151 || 4151 | 21
1413 12 1312 || 131414 23 12 13121312 || 13
312131 2131 (2121215131 2131|2131 41
1214 15 1514 15131312 14 1514 || 1514 || 12
513121 3121 3151513121 3121|3121 31
1312 13 1213 |1 12121214 13 1213|1213 || 15
215141 41 51 | 41 31 31 21 51 4151 || 4151 | 21
14 23 12 131213141413 12 1312 {1312 || 14
3114 31 5141 (2121215141 213112131 31
12 61 25 1213 | 15161312 13 1514 || 1514 || 12

312131211 61

(=9, r=3 (=9, r>5 (=10, r >3
131216 1312 (1312 16
41 51 31 4151 (14151 | 31
12 13 12 12131213 || 12
51 41 51 5141 || 51 41 | 51
131213 13121312 || 13
21 31 21 21311213121
14 1514 14151415 14
31 21 61 312113121 61
1514 12 1514|1514 || 12
21 31 51 21311 2131 || 51
131213 1312 (1312 13
61 51 21 61 511 4151 || 21
121314 1213 (1213 | 14

(=11, r=3 (=11, r>5

Figure 13: Colouring patterns for H(r), 9 < ¢ <11, r > 3, r odd.
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1213 | 1213 | 16

1213 | 1213 | 16

1213 1213 16

4151 || 4151 21
1312|1312 || 13
2131|2131 41
1514 | 1514 || 12
3121131211 31
1213|1213 || 15

41 5114151 | 21
13121312 || 13
2131|2131 41
1514 | 1514 || 12
312113121 31
1213|1213 || 15

4151|4151 || 21
1312 {1312 || 13
2131 | 213141
1514 | 1514 || 12
3121|3121 31
1213|1213 || 15

4151 || 4151 21
1312|1312 || 13
2141 || 5141 | 41
1513 || 1213 | 12
31213121 61
1215 || 14 15| 13
41312131 21

1213 | 1213 | 16

4151|4151 || 21
1312 {1312 || 16
2131|2131 41
1514 | 1514 || 13
3121|3121 21
1213|1213 || 15
61 51 || 41 51 || 31
13121312 | 14

1213 | 1213 | 16

4151|4151 || 21
1312 {1312 || 16
5141|5141} 31
1213 | 1213 || 14
3121|3121 21
1415|1415 || 13
2131213151
1514 | 1514 || 12
31211 312161

¢ =2 (mod 6)

2
>8

1312 1312 16

4151 || 4151 21
1312|1312 || 13
21311213141
1514 | 1514 || 12
3121|3121 31
1213 | 1213 || 15

41 5114151 | 21
1312|1312 || 15
2131|2131 31
1514 | 1514 || 12
3121312141
1213 | 1213 || 13

41 51| 4151 || 31
1213 | 12 13 || 12
3121 312141
1514 {1514 || 13
2131213121
1312 || 13 12| 15

4151 || 4151 | 61
1312 ] 1312 || 12
5141 | 51 41 | 41
1213|1213 || 13
312113121 21
1415 || 14 15| 15
2131 (12131 31
1312 {1312 || 14
5141 || 5141 | 21
1213|1213 || 16

41 5114151 | 21
1312|1312 || 15
2131|2131 61
1514 | 1514 || 12
312113121 31
1213 | 1213 || 14
41 5114151 | 21
1312|1312 || 15
2131|2131 31
1514 || 1514 || 12
3121|3121 61

41 51| 4151 || 31
1213 | 1213 || 12
5141 | 51 41 || 61
13121312 || 14
2131 (213121
1415|1415 || 13
3121|3121 51
1514 | 1514 || 12
2131|2131 41
1312 || 1312 || 13
4151|4151 || 21
1213 {1213 || 16

Figure 14: Colouring patterns for H(r), £ =8 or £ > 12, r > 3, r odd.
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13 16 1316 12 15 131614121714 15

2121 212131 31 21 212151312131
14 17 141314 12 141313131213 12
31 51 31512171 31 517121415161
r=2 r=4 r=717
131613 1217131215 1316131214131614 1217 15
21 21 21 54 31 21 41 31 2121 215131212121313131
141314 2114151312 1413141312151313 151212
3151 71 36 21 31 21 61 3151712161314171214161
r=28 r=11

Figure 15: Packing 7-colourings of H?(r), r € {2,4,7,8,11}.

Assume now r ¢ {2,4,7,8,11}. We checked by a computer program, again using brute-force
search, that the subgraph of such a generalised H-graph induced by three successive ladders,
that is, by the set of vertices {u] | 0 <7 <5, 0 < j < 3}, does not admit a packing 5-colouring.
Packing 6-colourings of such generalised II-graphs are depicted in Figure according to the
value of r, r modulo 3, or r modulo 6 (periodic patterns, made of 6 or 12 columns, are surrounded
by double lines). O

Theorem 19 For every integer r > 2, x,(H(r)) = 6.

Proof. Again, we checked by a computer program, using brute-force search, that both H?(2)
and the subgraph of H °(r), r > 5, induced by three successive ladders, that is, by the set of
vertices {u! | 0 <4 <5, 0 < j <6}, do not admit a packing 5-colouring. Packing 6-colourings
of H5(r), r € {2,3,5}, are depicted in Figure while packing 6-colourings of H?(r), r = 4 or
r > 6, are depicted in Figure [18| according to the value of » modulo 4, or r modulo 6 (periodic
patterns, made of eight or twelve columns, are surrounded by double lines and are repeated at
least once when » =0 (mod 4) or » = 3 (mod 6)). O

6 Discussion

In this paper, we have studied the packing chromatic number of some classes of cubic graphs,
namely circular ladders, H-graphs and generalised H-graphs. We have determined the exact
value of this parameter for every such graph, except for the case of H-graphs H(r) with r > 3,
r odd (see Theorem , for which we proved 6 < x,(H(r)) < 7. Using a computer program, we
have checked that x,(H(r)) = 7 for every odd r up to r = 13. We thus propose the following
question.

Question 1 Is it true that x,(H(r)) =7 for every H-graph H(r) with r > 3, r odd?

In [16,{17], we have extended the notion of packing colouring to the case of digraphs. If D is a
digraph, the (weak) directed distance between two vertices v and v in D is defined as the length

17



13121312 16 131215 131215 (11314121314 1215

21 51 41 51 31 2141 31 214131 | 61 213151216131

14131214 15 1613 14 161314 || 121316 12 1513 12

3121613121 315121 315121 || 31 51 21 41 31 21 41
r=>5 r =0 (mod 3) r=1 (mod 3), r > 10

131214 1316121312 1316 1213 12 16
2151312121 314151412131415131
1413121513151213 1514151223 15
3121 61 31 41 21 31 61 21 31 21 36 14 21

r=14

13161213141216 1312151316 1213141216 13 12 15
21 21 3151 21 31 312141312121 3151213131214131
141314 1213151215131214 13141213 15121513 12
315121 3161 2141 31 21 61 31 51 21 31 61 21 41 31 21 61

r =20
1312141312416312141316121312131612131214 (1312141312 14
2151312151322151312121314151412131415131 (215131615131
16131516131514 13 121513151213 1514151223 15| 16 13 1512 13 15
314121314121 312161314121 3161213121361421| 314121314121

r=2 (mod 6), r > 26

131214 131612131214 13124163 1213 12 16

21 51 31 21 21 31 41 51 31 21 51 32 21 51 41 51 31

1413121513151223 1516131514 131214 15

312161 3141213614 21 3141 21 31 21 61 31 21

r=17

131241631214131612131213161213 1214 | 1312141312 14
2151322151312121314151412131415131 (215131615131
16131514131215131512131514 151223 15 || 16 13151213 15
314121 312161314121 31612131213614 21| 314121314121

r=5 (mod 6), r > 23

Figure 16: Colouring patterns for H*(r), r ¢ {2,4,7,8,11}.
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1312 1316 15
41 61 212121
1513 1413 14
3121 31 51 31
12 14 151212
61 51 21 3151
1312 16 14 13
r=2 r=3

13124125 14
2151163121
16 1323 12 13
3121514161
1416 1213 12
21 31 41 51 41
1512131213

r=>5

Figure 17: Packing 6-colourings of H(r), r € {2,3,5}.

1316 13 15 1316 13 15
21214121 21214121
141312 14 141312 14
314151 31 314151 31
15151312 151513 12
21212151 21212151
16 1314 13 16 13 14 13
r=0 (mod 4), r >4 r=

215121315131
141316 14 12 16
312131213121
1214151314 15
51 3121512131
16 1514 16 15 14
312131213121

21 51 21 61 21 52 16
1313141313 1343
41413121414121
12121514 1212 15
51 312151513131
16 1513 13 13 15 12
3121412161 2141

r=1 (mod6), r>7

Figure 18: Colouring patterns for H>(r), r =4 or r > 6.

215121315131
14 1316 14 12 16
312131213121
1214151314 15
51 31215121 31
16 1514 16 15 14
312131213121

r=5 (mod 6), r>1

19

2 (mod 4), r>6

215121315131
141316 1412 16
312131213121
12141513 14 15
51 31 21 51 21 31
16 1514 16 15 14
312131213121

r =3 (mod 6),

215121 3151314131214131
14131614 12121216 1512 16
3121 3121 31613151313121
1214151314 1515121215 15
51 31 21 51 21 31 21 41 41 61 31
161514161514 16 1313 13 12
3121312131213121512141

1

13161314 13 15
212151212121
1413121516 14
315131315131
151414 42 13 12
212121162151
16 131523 14 13

21 5216
131343
41 41 21
1212 15
51 31 31
16 15 12
312141

r>9



of a shortest directed path between u and v, in either direction. Using this notion of distance
in digraphs, the packing colouring readily extends to digraphs. Recall that an orientation of
an undirected graph G is any antisymmetric digraph obtained from G by giving to each edge
of G one of its two possible orientations. It then directly follows from the definition that
Xp(D) < x,(G) for any orientation D of G. A natural question for oriented graphs, related to
this work, is then the following.

Question 2 Is it true that the packing chromatic number of any oriented graph with maximum
degree 3 is bounded by some constant?

Acknowledgment. This work has been done while the first author was visiting LaBRI, whose
hospitality is gratefully acknowledged.
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A Proof of Lemma [4]

The configurations used in the proof correspond to partial colourings of the graph X and are
depicted in Figures and with the following drawing convention. If {a,b} is the set of
colours assigned to two distinct vertices, then the “colour” of both these vertices is denoted
“a,b”. If the same configuration describes two partial colourings of X and the colours assigned
to some vertex by these two colourings are respectively a and b, then the “colour” of this vertex
is denoted “a|b”. Finally, if a vertex has no available colour, its “colour” is denoted “?”.

Let w;jv;, 3 < i < 5, be an edge of X with m(u;) # 1 and m(v;) # 1. We first prove the
following claim.

Claim 1 For every i, 3 <1 <5, 2¢€ {m(u;),m(v;)}.

Proof. Assume to the contrary that this is not the case, that is, {m(w;),m(v;)} C {3,4,5}.
Thanks to the symmetry exchanging u; and v;, we may assume 7(u;) < m(v;), without loss of
generality. Recall that there is no edge u;_ov;—o (resp. u;12vi4+2) in X when i = 3 (resp. i = 5).
We consider the following cases (subscripts are taken modulo n).

1. m(u;) =3 and w(v;) = 4.
In that case, we necessarily have m(u;y1) € {1,2,5}.
If m(uir1) = 1, then {m(vit1), m(uir2)} = {2,5}. If 7(vit1) = 2 (and 7 (u;y2) = 5), then
m(vi—1) = 1, so that m(u;—1) = 2 and no colour is available for v;_o (see Figure [19(a)). If
m(uiye) = 2 (and 7(vi41) = 5), then {m(u;—1), 7(vi—1)} = {1, 2}, and no colour is available
for either for u;_s or for v;_o (see Figure [L9|b)).
If m(uit1) = 2, then w(viy1) € {1,5}. If w(viy1) =5, then m(u;—1) = 1, so that 7(v;—1) = 2
and 1o colour is available for u;_o (see Figure[L9|(c)). If 7(vit1) = 1, then either m(u;—1) =
5, so that no colour is available for v; o (see Figure [19(d)), or 7(u;—1) = 1, which implies
{m(ui—2), m(vi—1)} = {2,5}, so that again no colour is available for v, 1o (see Figure [L9(e)).
Finally, if w(ui+1) = 5, then {m(u;—1), 7(vi—1)} = {1,2}, and no colour is available either
for u;_o or for v;_o (see Figure [L9[{)).
2. w(u;) =3 and 7(v;) = 5.
Observe that the proof is similar to the proof of the previous case, by switching colours 4
and 5, in all cases illustrated in Figure [19|(b), (c¢), (d) and (f). Therefore, it remains only
two cases to be considered, which were illustrated in Figure [19(a) and (e), respectively.
(a) m(uir1) =1 and m(ujp2) = 4.
In that case, we have 7(v;—1) = 1, which implies 7 (v;_2) = 4 and thus 7(u;—1) = 2, so
that m(u;—2) = 1, m(v;—2) = 4, and no colour is available for u;_3 (see Figure [19(g)).
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1 4 2 712 4 3 35 41 5
(a) (b) (c)
5 3 2 25 1 3 2 ? L2 3 5
i1 3 25 4 1 9 12 4
(d) (e) (f)
? 1 2 3 1 4 1 3 2 1 7 4 1 23
i1 5 2 5 1 4 5 23 1 ¢
(g) (h) (i)
? 1 2 4 1 3 ? 12 4 1 3 ?7 02 4 1
3 1 5 2 12 3 5 2 1 5 3
() (k) (1)
3 01 4 1 4 9 ML 77 23 1 4

[ J\]

~e
—
[N}
ot
w
Ot
0

13 3] 1 23 5
(m) (n) (0)
?=| 11,2 3 4 2 4 3 17 ?=| |Z 12y 3
7 11,2 5 512 21 3 21 5
(p) (a) (r)

Figure 19: Configurations for the proof of Lemma [4| (the double edge is the edge u;v;).
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(b) 7T(UH_1) = 2, W(ui_l) =1 and 7T(’U,‘+1) =1.
In that case, we necessarily have m(v;12) = 4, so that 7(u;+2) = 1, and no colour is
available for u;43 (see Figure [I9(h)).

3. m(u;) =4 and 7(v;) = 5.
In that case, we necessarily have 7(u;+1) € {1,2,3}. We consider six subcases, depending
on the value of 7(u;41) and 1.

(a) m(ui+1) =1 and i € {3,4}.
In that case, we have {m(uit+2), 7(viy1)} = {2,3}, which implies 7(v;12) = 1, and no
colour is available for vi3 (see Figure [19(1)).

(b) m(uiy1) =1 and i =5.
In that case, we have w(vg) € {2,3}. If w(vg) = 2, then we necessarily have 7(u7) = 3,
and thus 7(vq) € {1,3}. If w(vg) = 1, we get successively m(ug) = 2, w(v3) = 3,
m(ug) = 1, and no colour is available for uy (see Figure [19(j)). If m(va) = 3, then
{m(ua), (v3)} = {1,2} and no colour is available for uz (see Figure [19(k)).
If m(vg) = 3, then {m(us), m(va)} = {1,2}. If m(v4) =1 and 7(ug) = 2, then no colour
is available for vg (see Figure [19(1)). If m(us4) = 1 and 7(v4) = 2, then we necessarily
have 7(v3) = 1 and 7(ug) = 3, and no colour is available for vy (see Figure [I19(m)).

(c) m(uit1) =2 and i € {3,4}.
In that case, we necessarily have 7(v;+1) € {1,3}. If m(viy1) = 1, then m(vi42) = 3,
which implies m(u;4+2) = 1, and no colour is available for u;13. If m(v;41) = 3, then
m(uit2) = 1, and no colour is available for u;;o (see Figure [I9(n)).

(d) m(uiy1) =2 and i =5.
In that case, we necessarily have 7(uq) € {1,3}. If w(ug) = 1, then {m(uz),7(v4)} =
{2,3}, so that m(v3) = 1, and no colour is available for vy (see Figure [19(0)). If
m(ug) = 3, then either m(uz) = m(v4) = 1, which implies w(v3) = 2 and no colour
is available for ug, or {m(us),7(v4)} = {1,2}, and no colour is available for vs (see
Figure [[9[p)).

(e) m(uit1) =3 and ¢ € {3,4}.
In that case, either 7(v;y1) = 1, so that 7(vir2) = 2, m(u;42) = 1, and no colour is
available for u;ts3, or m(viy1) = 2, so that w(v;12) = 1 and no colour is available for
u;j+o (see Figure [19(q)).

(f) m(uit1) =3 and i =5.
In that case, m(uq) € {1,2}. If m(uq) = 1, then m(vs) = 2 and no colour is available
for ug. If m(u4) = 2, then m(vs4) = 1, so that w(uz) = 1 and 7 (v3) = 3, and no colour
is available for ug (see Figure [19(r)).

This completes the proof of Claim [I] O

By Claim (I} we can thus assume m(u;) = 2, without loss of generality (again, thanks to the
symmetry exchanging u; and v;), so that m(v;) € {3,4,5}. To finish the proof of Lemma [4] we
need to prove that {m(u;—1),m(ui+1)} = {3,4,5} \ {m(v;)}. Suppose that this is not the case.
We consider the following cases, according to the value of m(v;).

1. 7(v;) = 3.
In that case, we necessarily have m(u;y1) € {1,4,5}.
If m(uit1) = 1, then {m(ujr2),m(vit1)} = {4,5}), so that m(u;—;) = 1, and no colour is
available for v;_; (see Figure 20|(a)).
If m(u;j+1) = 4, then either w(u;—1) = 1, so that 7(v;—1) = 5, and no colour is available for
u;—2 (see Figure 20(b)), or m(u;—1) = 5, which contradicts our assumption since it would

imply {m(ui—1), 7(uit1)} = {3,4,5} \ {m(vi)}.
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71 4 53 5 4 3 4

Figure 20: Configurations for the proof of Lemma {4 (cont.).

Similarly, if 7(u;4+1) = 5, then either 7(u;—1) = 1, so that 7(v;—1) = 4, and no colour is
available for u;_o (see Figure 20|c)), or m(u;—1) = 4, which again contradicts our assump-
tion.

2. 7w(v;)) =4 (the case w(v;) =5 is similar, by switching colours 4 and 5).
In that case, we necessarily have m(u;y1) € {1,3,5}.
If m(uip1) = 1, then {m(uit2), 7(viy1)} = {3,5}. If m(uiye) = 3 and w(vi41) = 5, then
m(ui—1) = 1, so that m(u;—2) = 3, and no colour is available for v;_;. If m(u;+2) = 5 and
T(vit1) = 3, then m(v;—1) = 1, and no colour is available for u;—; (see Figure 20}(d)).
If w(uiy1) = 3, then either w(u;—1) = 1, so that m(v;—1) = 5, and no colour is available for
ui—g, or m(uj—1) = 5, which contradicts our assumption (see Figure 20)e)).
Finally, if m(u;+1) = 5, then either m(u;—1) = 1, so that m(v;—1) = 3, and no colour is
available for u;_g, or m(u;—1) = 3, which contradicts our assumption (see Figure 20(f)).

This completes the proof of Lemma [

B Proof of Lemma 13

We first prove the following claim.

Claim 2 For every integer j, 0 < j <r, either ﬂ(ugj) =1 or W(ugj+1) =1.

Proof. Thanks to the symmetries of H*(r), it is enough to prove the claim for the edge ugug.

Suppose to the contrary that m(uJ) # 1 and 7(u3) # 1. Thanks to the symmetries of H*(r), we
can assume 7(u3) < 7(uj), without loss of generality.
We consider four cases. The corresponding configurations are depicted in Figure using

the same drawing convention as for the proof of Lemma {4 (see Appendix |A)).

1. 7(ud) =2 and n(ul) = 3.
In that case, m(u3) € {1,4,5}. If m(ud) = 1, then {m(u3), 7(ui)} = {4,5}, which implies
m(uf) = 1, and no colour is available for u) (see Figure (a)). If m(u}) = 4, then either
7(u?) = 1, which implies m(u)) = 5, and no colour is available for u}, or 7(uY) = 5, which
implies 7(u}) = 1, m(u?) = 2, and no colour is available for u} (see Figure (b)) The
case 7(us) = 5 is similar, by switching colours 4 and 5.
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Figure 21: Configurations for the proof of Claim [2| (the double edge is the edge u3u3).
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2. m(ul) =2 and w(u3) = 4 (the case w(uy) = 2 and w(u) = 5 is similar, by switching colours
4 and5).
In that case, m(u3) € {1,3,5}. If m(ud) = 1, then {m(u3), 7(ui)} = {3,5}, which implies
m(uf) = 1, (ud) = 3, and no colour is available for ui (see Figure (c)) If m(ul) = 3, then
either m(u) = 1, which implies 7(uJ) = 5, and no colour is available for ui, or 7(u) = 5,
which implies 7(u3) = m(ui) = 1, so that 7(u3) = 2, and no colour is available for u3 (see
Figure d)) Finally, if m(ud) = 5, then either 7(u{) = 1, which implies 7(u)) = 3, and
no colour is available for ul, or 7w(u?) = 3, which implies 7(ul) = 1, w(u}) = 2, and no
colour is available for u} (see Figure (e)).

3. m(ud) =3 and w(ul) = 4.
In that case, m(u}) € {1,2,5}. If 7(ud) = 1, then {m(ud), 7(ui)} = {2,5}, and thus either
7(ud) = 1, so that 7(u)) = 2, and no colour is available for ui, or 7(ul) = 2, so that
m(ud) = 1, and no colour is available for u$ (see Figure RI|f)). If 7(u}) = 2, then either

m(u3) = 1, which implies 7(u3) = 5, and no colour is available for u3, or 7(u3) = 5,
which implies 7(u}) = 1, and no colour is available for u3 (see Figure (g)) Finally, if

m(ud) = 5, then either m(ul) = 1, which implies 7(u) = 2, and no colour is available for u1,

or m(u) = 2, which implies 7(u}) = 1, and no colour is available for u? (see Figure 21](h)).

4. w(ul) = 3 and w(ul) = 5.
This case is similar to the previous one, by switching colours 4 and 5, except when m(u3) = 1
(which implies {m(u3), 7(u3)} = {2,4}) and 7(ul) = 2. In that case, we necessarily have
m(ul) = mw(ul) = 1, which implies 7(u}) = 4, and no colour is available for u? (see
Figure 21f1)).

5. m(u)) =4 and w(ul) = 5.
In that case, m(ul) € {1,2,3}. If w(u}) = 1, then {m(u3), 7(u})} = {2,3}, which implies
m(u2) = 1, and no colour is available for u3 (see Figure R1{j)). If m(ul) = 2, then either
m(ul) = 1, which implies {m(u)),n(ui)} = {2,3}, so that 7(u}) = 1, and no colour is
available for uZ, or w(uY) = 3, which implies 7(u3) = m(u}) = 1, so that 7(u3) = 3, and no
colour is available for u3 (see Figure (k)) Finally, if w(ud) = 3, then either m(u) = 1,
which implies 7(uj) = 2, and no colour is available for ui, or 7w(u?) = 2, which implies
m(ud) = w(ul) = 1, so that m(ul) = 3, and no colour is available for u? (see Figure (1))

This completes the proof of Claim [2] O

Since the cycle induced by the set of vertices {ul, uY, ..., u9,._;} has even length, and adjacent
vertices cannot be assigned the same colour, it follows from Claim [2| that colour 1 must be used
on each edge u?ugﬂ, 0 < j <2r —1. This concludes the proof of Lemma
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