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Abstract

The packing chromatic number χρ(G) of a graph G is the smallest integer k such that its set
of vertices V (G) can be partitioned into k disjoint subsets V1, . . . , Vk, in such a way that every
two distinct vertices in Vi are at distance greater than i in G for every i, 1 ≤ i ≤ k.

We determine the exact value of, or upper and lower bounds on the packing chromatic number
of several classes of cubic graphs, namely circular ladders, H-graphs and generalised H-graphs.
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alised H-graph.

MSC 2010: 05C15, 05C12, 05C70.

1 Introduction

All the graphs we consider are simple and loopless. For a graph G, we denote by V (G) its set
of vertices and by E(G) its set of edges. The distance dG(u, v) between vertices u and v in G
is the length (number of edges) of a shortest path joining u and v. The diameter of G is the
maximum distance between two vertices of G. We denote by Pn, n ≥ 1, the path of order n and
by Cn, n ≥ 3, the cycle of order n.

A packing k-colouring of G is a mapping π : V (G) → {1, . . . , k} such that, for every two
distinct vertices u and v, π(u) = π(v) = i implies dG(u, v) > i. The packing chromatic number

χρ(G) of G is then the smallest k such that G admits a packing k-colouring. In other words,
χρ(G) is the smallest integer k such that V (G) can be partitioned into k disjoint subsets Vi,
1 ≤ i ≤ k, in such a way that every two vertices in Vi are at distance greater than i in G for
every i, 1 ≤ i ≤ k. A packing colouring of G is optimal if it uses exactly χρ(G) colours.

The packing colouring of graphs was introduced by Goddard, Hedetniemi, Hedetniemi, Harris
and Rall in [19, 20], under the name broadcast colouring, and studied by many authors since
then [2�18,21�31].

In the seminal paper of Goddard et al. [20], the question of determining the maximum packing
chromatic number in the class of cubic graphs of a given order is posed. In [26], Sloper proved
that the packing chromatic number is unbounded in the class of k-ary trees for every k ≥ 3,
from which it follows that the packing chromatic number is unbounded in the class of graphs
with maximum degree 4.
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In [18], Gastineau and Togni observed that each cubic graph of order at most 20 has packing
chromatic number at most 10. They also observed that the largest cubic graph with diameter 4
(this graph has 38 vertices and is described in [1]) has packing chromatic number 13, and asked
whether there exists a cubic graph with packing chromatic number larger than 13 or not. This
question was answered positively by Bre²ar, Klavºar, Rall and Wash [9] who exhibited a cubic
graph on 78 vertices with packing chromatic number at least 14. Recently, Balogh, Kostochka
and Liu �nally proved in [5] that the packing chromatic number is unbounded in the class of
cubic graphs.

On the other hand, the packing chromatic number is known to be upper bounded in several
classes of graphs with maximum degree 3, e.g. complete binary trees [26], hexagonal lattices [6,
14,21], base-3 Sierpi«ski graphs [7], subdivisions of subcubic graphs [8,18], or several subclasses
of outerplanar subcubic graphs [17].

We prove in this paper that the packing chromatic number is bounded in other classes of
cubic graphs, extending in particular partial results given in [30] and [31]. More precisely, we
determine the exact value of, or upper and lower bounds on the packing chromatic number of
circular ladders (in Section 3), H-graphs (in Section 4) and generalised H-graphs (in Section 5).

2 Preliminary results

We give in this section a few results that will be useful in the sequel.
Let G be a graph. A subset S of V (G) is an i-packing, for some integer i ≥ 1, if any two

vertices in S are at distance at least i+1 in G. Note that such a set S is a 1-packing if and only
if S is an independent set. A packing colouring of G is thus a partition of V (G) into k disjoint
subsets V1, . . . , Vk, such that Vi is an i-packing for every i, 1 ≤ i ≤ k.

For every integer i ≥ 1, we denote by ρi(G) the maximum cardinality of an i-packing in G.
Since at most ρi(G) vertices can be assigned colour i in any packing colouring of G, we have the
following result.

Proposition 1 If G is a graph with χρ(G) = k, then

i=k∑
i=1

ρi(G) ≥ |V (G)|.

Let H be a subgraph of G. Since dG(u, v) ≤ dH(u, v) for any two vertices u, v ∈ V (H), the
restriction to V (H) of any packing colouring of G is a packing colouring of H. Hence, having
packing chromatic number at most k is a hereditary property:

Proposition 2 (Goddard, Hedetniemi, Hedetniemi, Harris and Rall [20])
Let G and H be two graphs. If H is a subgraph of G, then χρ(H) ≤ χρ(G).

In particular, Proposition 2 allows to get a lower bound on the packing chromatic number
of graph G whenever G contains a subgraph H whose packing chromatic number is known. As
we will see later, all the cubic graphs we consider in this paper contain a corona of a cycle as a
subgraph. Recall that the corona G�K1 of a graph G is the graph obtained from G by adding
a degree-one neighbour to every vertex of G. In [23], we have determined the packing chromatic
number of coronae of cycles.
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Figure 1: The circular ladder CL7.

Theorem 3 (Laïche, Bouchemakh, Sopena [23])
The packing chromatic number of the corona graph Cn �K1 is given by:

χρ(Cn �K1) =

{
4 if n ∈ {3, 4},
5 if n ≥ 5.

This result will thus provide a lower bound on the packing chromatic number of each cubic
graph considered in this paper.

3 Circular ladders

Recall that the Cartesian product G�H of two graphs G and H is the graph with vertex set
V (G) × V (H), two vertices (u, u′) and (v, v′) being adjacent if and only if either u = v and
u′v′ ∈ E(H) or u′ = v′ and uv ∈ E(G).

The circular ladder CLn of length n ≥ 3 is the Cartesian product CLn = Cn�K2. Note
that CLn is a bipartite graph if and only if n is even.

For every circular ladder CLn, we let

V (CLn) = {u0, . . . , un−1} ∪ {v0, . . . , vn−1},

and
E(CLn) = {uivi | 0 ≤ i ≤ n− 1} ∪ {uiui+1, vivi+1 | 0 ≤ i ≤ n− 1}

(subscripts are taken modulo n). Figure 1 depicts the circular ladder CL7.
Note that for every n ≥ 3, the corona graph Cn � K1 is a subgraph of the circular ladder

CLn. Therefore, by Proposition 2, Theorem 3 provides a lower bound on the packing chromatic
number of circular ladders. More precisely, χρ(CLn) ≥ 4 if n ∈ {3, 4}, and χρ(CLn) ≥ 5 if
n ≥ 5.

William and Roy [31] proved that the packing chromatic number of a circular ladder of
length n = 6q, q ≥ 1, is at most 5. In Theorem 7 below, we extend this result and determine
the packing chromatic number of every circular ladder.

We �rst need the following technical lemma, which will also be useful in Section 5.

Lemma 4 Let X be the graph depicted in Figure 2, and π be a packing 5-colouring of X. If

π(ui) 6= 1 and π(vi) 6= 1 for some integer i, 3 ≤ i ≤ 5, then either ui or vi has colour 2, and
its three neighbours have colours 3, 4 and 5 (the three corresponding edges are the vertical edges

surrounded by the dashed box).
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Figure 2: The graph X.
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Figure 3: Optimal packing colouring of CL3, CL4 and CL5.

Proof. The proof is done by case analysis and is given in Appendix A. �

Observe now that for every integer n ≥ 9, the subgraph of CLn induced by the set of vertices
{ui, vi | 0 ≤ i ≤ 8} contains the graph X of Figure 2 as a subgraph. Moreover, every packing
5-colouring π of CLn, 5 ≤ n ≤ 8, can be �unfolded� to produce a packing 5-colouring of X, by
setting π(un−1+i) = π(ui−1) and π(vn−1+i) = π(vi−1) for every i, 1 ≤ i ≤ 9 − n. Therefore,
thanks to the symmetries of CLn for every n ≥ 5, Proposition 2 and Lemma 4 give the following
corollary.

Corollary 5 Let CLn, n ≥ 5, be a circular ladder with χρ(CLn) ≤ 5, and π be a packing 5-

colouring of CLn. For every integer i, 0 ≤ i ≤ n− 1, if π(ui) 6= 1 and π(vi) 6= 1, then either ui
or vi has colour 2, and its three neighbours have colours 3, 4 and 5.

Let CLn be a circular ladder satisfying the hypothesis of Corollary 5, and π be a packing
5-colouring of CLn. From Corollary 5, it follows that if π(ui) 6= 1 and π(vi) 6= 1 for some edge
uivi of CLn, then the colour 2 has to be used on the edge uivi and, since the neighbours of
the 2-coloured vertex are coloured with 3, 4 and 5, the colour 2 can be replaced by colour 1.
Therefore, we get the following corollary.

Corollary 6 If CLn, n ≥ 5, is a circular ladder with χρ(CLn) ≤ 5, then there exists a packing

5-colouring of CLn such that the colour 1 is used on each edge of CLn.

Note that from Corollary 6, it follows that for every integer n ≥ 5, χρ(CLn) ≤ 5 implies that
CLn is a bipartite graph. Hence, χρ(CLn) ≥ 6 for every odd n ≥ 5.

We are now able to prove the main result of this section.

Theorem 7 For every integer n ≥ 3,

χρ(CLn) =


5 if n = 3, or n is even and n 6∈ {8, 14},
7 if n ∈ {7, 8, 9},
6 otherwise.
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Proof. We �rst consider the case n ≤ 5. Figure 3 describes a packing 5-colouring of CL3

and CL4, and a packing 6-colouring of CL5. We claim that these three packing colourings are
optimal. To see that, observe that ρ1(CL3) = 2, ρi(CL3) = 1 for every i ≥ 2, ρ1(CL4) =
ρ1(CL5) = 4, ρ2(CL4) = ρ2(CL5) = 2, and ρi(CL4) = ρi(CL5) = 1 for every i ≥ 3. The
optimality for CL3 and CL5 then follows from Proposition 1. The optimality for CL4 also
follows, with the additional observation that colour 2 can be used at most once if colour 1 is
used four times.

Assume now n ≥ 6. Since n ≥ 6 and every circular ladder CLn contains the corona graph
Cn �K1 as a subgraph, we get χρ(CLn) ≥ χρ(Cn �K1) ≥ 5 by Theorem 3 and Proposition 2.
Moreover, by Corollary 6, we have χρ(CLn) ≥ 6 if n is odd.

We now consider two general cases.

1. n is even and n /∈ {8, 14}.
As observed above, in that case, it is enough to exhibit a packing 5-colouring of CLn to
prove χρ(CLn) = 5.

If n ≡ 0 (mod 6), a packing 5-colouring of CLn is obtained by repeating the following
circular pattern (the �rst row gives the colours of vertices ui, 0 ≤ i ≤ n − 1, the second
row gives the colours of vertices vi, 0 ≤ i ≤ n− 1, according to the value of (i mod 6)):

1 3 1 2 1 5
2 1 4 1 3 1

If n ≡ 2 (mod 6), which implies n ≥ 20, a packing 5-colouring of CLn is obtained by
repeating the previous circular pattern n−20

6 times and adding a pattern of length 20, as
illustrated below:

1 3 1 2 1 5 1 3 1 2 1 3 1 4 1 5 1 3 1 2 1 3 1 4 1 5
2 1 4 1 3 1 2 1 4 1 5 1 2 1 3 1 2 1 4 1 5 1 2 1 3 1

Finally, if n ≡ 4 (mod 6), which implies n ≥ 10, a packing 5-colouring of CLn is obtained
by repeating the same circular pattern n−10

6 times and adding a pattern of length 10:

1 3 1 2 1 5 1 3 1 2 1 3 1 4 1 5
2 1 4 1 3 1 2 1 4 1 5 1 2 1 3 1

2. n is odd and n ≥ 11.
As observed above, in that case, it is enough to exhibit a packing 6-colouring of CLn to
prove χρ(CLn) = 6.

Similarly as in the previous case, if n ≡ 1, 3 or 5 (mod 6), a packing 6-colouring of CLn is
obtained by repeating the previous circular pattern n−7

6 , n−9
6 or n−5

6 times, respectively,
and adding a pattern of length 7, 9 or 5, respectively, as illustrated below:

1 3 1 2 1 5 1 3 1 4 1 2 6
2 1 4 1 3 1 6 1 2 1 3 1 5

1 3 1 2 1 5 1 4 1 2 3 1 4 1 6
2 1 4 1 3 1 2 1 6 1 5 2 1 3 1

1 3 1 2 1 5 1 3 1 2 6
2 1 4 1 3 1 2 1 4 1 5

It remains to consider four cases, namely n = 7, 8, 9, 14, which we consider separately.
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1. n = 7.
We �rst claim that χρ(CL7) ≥ 7. Note that ρ1(CL7) = 6, ρ2(CL7) = 3, ρ3(CL7) = 2, and
ρi(CL7) = 1 for every i ≥ 4. However, if we use six times colour 1, colour 2 can be used at
most twice. Hence, at most 13 vertices of CL7 can be coloured with a colour in {1, . . . , 6}
and the claim follows.

A packing 7-colouring of CL7 is given by the following pattern:

1 3 1 2 1 4 5
2 1 6 1 3 1 7

2. n = 8.
We �rst claim that χρ(CL8) ≥ 7. Note that ρ1(CL8) = 8, ρ2(CL8) = 4, ρ3(CL8) =
ρ4(CL8) = 2, and ρi(CL8) = 1 for every i ≥ 5. However, if we use eight times colour 1,
colour 2 can be used at most twice, and then colour 4 at most once. On the other hand,
if we use seven times colour 1, colour 2 can be used at most thrice and colour 4 at most
once. Hence, at most 15 vertices of CL8 can be coloured with a colour in {1, . . . , 6} and
the claim follows.

A packing 7-colouring of CL8 is given by the following pattern:

1 3 1 2 1 5 1 7
2 1 4 1 3 1 6 1

3. n = 9.
We �rst claim that χρ(CL9) ≥ 7. Note that ρ1(CL9) = 8, ρ2(CL9) = 4, ρ3(CL9) =
ρ4(CL9) = 2, and ρi(CL9) = 1 for every i ≥ 5. However, if we use eight times colour 1,
colour 2 can be used at most thrice. Hence, at most 17 vertices of CL9 can be coloured
with a colour in {1, . . . , 6} and the claim follows.

A packing 7-colouring of CL9 is given by the following pattern:

1 3 1 2 1 5 1 4 6
2 1 4 1 3 1 2 1 7

4. n = 14.
We �rst claim that χρ(CL14) ≥ 6. Note that ρ1(CL14) = 14, ρ2(CL14) = 6, ρ3(CL14) = 4,
ρ4(CL14) = 3 and ρ5(CL14) = 2. However, if we use 14 times colour 1, colour 2 can be
used at most four times. On the other hand, if we use 13 times colour 1, colour 2 can be
used at most �ve times. Hence, at most 27 vertices of CL14 can be coloured with a colour
in {1, . . . , 5} and the claim follows.

A packing 6-colouring of CL14 is given by the following pattern:

1 3 1 2 1 5 1 2 1 4 1 3 1 6
2 1 4 1 3 1 6 1 3 1 2 1 5 1

This completes the proof of Theorem 7. �

4 H-graphs

The H-graph H(r), r ≥ 2, is the 3-regular graph of order 6r, with vertex set

V (H(r)) = {ui, vi, wi : 0 ≤ i ≤ 2r − 1},

and edge set (subscripts are taken modulo 2r)

E(H(r)) = {(ui, ui+1), (wi, wi+1), (ui, vi), (vi, wi) : 0 ≤ i ≤ 2r − 1}
∪ {(v2i, v2i+1) : 0 ≤ i ≤ r − 1}.
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Figure 4: The H-graph H(4).

Figure 4 depicts the H-graph H(4).
William and Roy proved in [31] that χρ(H(r)) ≤ 5 for every H-graph H(r) with even r ≥ 4.

We complete their result in Theorem 10 below.
We �rst prove a technical lemma. For every integers r ≥ 2 and 0 ≤ i ≤ r − 1, we denote

by Gi(r) the subgraph of H(r) induced by the set of vertices {u2i, u2i+1, v2i, v2i+1, w2i, w2i+1}.
Observe that for every r ≥ 2, all the subgraphs Gi(r) are isomorphic to the graph depicted on
Figure 5(a). For a given packing 5-colouring π of H(r), we denote by π(Gi(r)) the set of colours
assigned to the vertices of Gi(r).

We then have the following result.

Lemma 8 For every r ≥ 3 and every packing 5-colouring π of H(r), the following statements

hold for every i, 0 ≤ i ≤ r − 1 (subscripts are taken modulo r):

1. π(Gi(r)) 6= {1, 2, 3} (that is, χρ(Gi(r)) > 3),

2. π(Gi(r)) ∩ π(Gi+1(r)) = {1, 2, 3}.

Proof. We �rst prove that every packing 5-colouring of H(r) must use colour 4 or colour 5 on
every Gi(r), 0 ≤ i ≤ r − 1. Indeed, on every such Gi(r), colour 1 can be used at most thrice,
colour 2 at most twice and colour 3 at most once. But we cannot use colour 1 thrice and colour 2
twice in the same colouring, and the result follows. This gives the �rst item of Lemma 8.

We now prove that if colour 4 (resp. colour 5) is used on Gi(r), then colour 4 (resp. colour 5)
cannot be used on Gi+1(r). Observe �rst that every vertex of Gi(r) is at distance at most 5
from every vertex of Gi+1(r). Therefore, colour 5 cannot be used on both Gi(r) and Gi+1(r).
Suppose now that colour 4 is used on both Gi(r) and Gi+1(r). Up to symmetries, we necessarily
have one of the two following cases.

1. π(u2i) = π(w2i+3) = 4 (see Figure 5(b)).
Since every vertex of Gi−1 is at distance at most 4 from u2i and two consecutive Gi(r)'s
cannot both use colour 5, it follows from the �rst item of Lemma 8 that colour 5 is used
neither on Gi(r), nor, by symmetry, on Gi+1(r).

Now, on the remaining uncoloured vertices of Gi(r), colour 1 can be used at most thrice,
colour 2 at most twice and colour 3 at most once. If colour 1 is used thrice, then we
necessarily have π(u2i+1) = π(v2i) = π(w2i+1) = 1, so that {π(v2i+1), π(w2i)} = {2, 3},
and no colour is available for w2i+2 (recall that colour 5 is not used on Gi+1(r)). If
colour 1 is used twice, then we necessarily have, up to symmetry, π(v2i) = π(w2i+1) = 1,
π(u2i+1) = π(w2i) = 2, and π(v2i+1) = 3, and no colour is available for w2i+2.
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Figure 5: The subgraph Gi(r) and two con�gurations for the proof of Lemma 8.

2. π(v2i) = π(v2i+3) = 4 (see Figure 5(c)).
Similarly as before, since every vertex of Gi−1 is at distance at most 4 from v2i and two
consecutive Gi(r)'s cannot both use colour 5, it follows from the �rst item of Lemma 8
that colour 5 is used neither on Gi(r), nor, by symmetry, on Gi+1(r).

Again, on the remaining uncoloured vertices of Gi(r), colour 1 can be used at most thrice,
colour 2 at most twice and colour 3 at most once. If colour 1 is used thrice, then we
necessarily have π(u2i) = π(v2i+1) = π(w2i) = 1, so that {π(u2i+1), π(w2i+1)} = {2, 3}. Up
to symmetry, we may assume π(u2i+1) = 2 and π(w2i+1) = 3, which implies π(u2i+2) = 1,
and no colour is available for v2i+2 (recall that colour 5 is not used on Gi+1(r)). If colour 1
is used twice, then we necessarily have, up to symmetry, π(u2i+1) = π(w2i) = 1, π(u2i) =
π(w2i+1) = 2, and π(v2i+1) = 3, and no colour is available for u2i+2.

This completes the proof. �

From Lemma 8, it follows that every Gi(r)must use colour 4 or 5, and that no two consecutive
Gi(r)'s can use the same colour from {4, 5}. Therefore, H(r) does not admit any packing 5-
colouring when r is odd.

Corollary 9 For every odd r, r ≥ 3, χρ(H(r)) > 5.

We are now able to prove the main result of this section.

Theorem 10 For every integer r ≥ 2, χρ(H(r)) = 5 if r is even, and 6 ≤ χρ(H(r)) ≤ 7 if r is

odd.

Proof. We consider two cases, according to the parity of r.

1. r is even.
Since the corona graph C2r �K1 is a subgraph of H(r), we get χρ(H(r)) ≥ 5 by Propo-
sition 2 and Theorem 3. A packing 5-colouring of H(r) is then obtained by repeating the
pattern depicted in Figure 6(a), and thus χρ(H(r)) = 5.

2. r is odd.
From Corollary 9, we get χρ(H(r)) ≥ 6. A packing 7-colouring of H(r) is described in
Figure 6(b), where the circular pattern (surrounded by the dashed box) is repeated r−3

2
times. This gives χρ(H(r)) ≤ 7.

This concludes the proof. �
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(a) A packing 5-colouring pattern for H(r), r even

1 2 1 3 1 2 1 3 2 6
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(b) A packing 7-colouring pattern for H(r), r odd (r ≥ 5)

Figure 6: Packing colouring patterns for H-graphs.

5 Generalised H-graphs

We now consider a natural extension of H-graphs. For every integer r ≥ 2, the generalised

H-graph H`(r) with ` levels, ` ≥ 1, is the 3-regular graph of order 2r(`+ 2), with vertex set

V (H`(r)) = {uij : 0 ≤ i ≤ `+ 1, 0 ≤ j ≤ 2r − 1}

and edge set (subscripts are taken modulo 2r)

E(H`(r)) = {(u0j , u0j+1), (u
`+1
j , u`+1

j+1) : 0 ≤ j ≤ 2r − 1}
∪ {(ui2j , ui2j+1) : 1 ≤ i ≤ `, 0 ≤ j ≤ r − 1}
∪ {(uij , u

i+1
j ) : 0 ≤ i ≤ `, 0 ≤ j ≤ 2r − 1}.

Figure 7 depicts the generalised H-graph with three levels H3(4). Note that generalised
H-graphs with one level are precisely H-graphs.

The three following lemmas will be useful for determining the packing chromatic number of
generalised H-graphs.

Lemma 11 Let H`(r), `, r ≥ 3, be a generalised H-graph with χρ(H
`(r)) ≤ 5, and π be a

packing 5-colouring of H`(r). For every edge ui2ju
i
2j+1, 1 ≤ i ≤ `, 0 ≤ j ≤ r−1, with π(ui2j) 6= 1

and π(ui2j+1) 6= 1, either ui2j or ui2j+1 has colour 2 and its three neighbours have colours 3, 4
and 5.

Proof. Observe that every such edge ui2ju
i
2j+1 belongs to a subgraph of H`(r) isomorphic to

the graph X depicted in Figure 2, in such a way that ui2ju
i
2j+1 corresponds to one of the edges

u3v3, u4v4 or u5v5 of X. Therefore, the result follows by Lemma 4. �
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Figure 7: The generalised H-graph H3(4).

From Lemma 11, it follows that if π(ui2j) 6= 1 and π(ui2j+1) 6= 1 for some edge ui2ju
i
2j+1 of

H`(r), 1 ≤ i ≤ `, 0 ≤ j ≤ r − 1, then the colour 2 has to be used on this edge and, since the
neighbours of the 2-coloured vertex are coloured with 3, 4 and 5, the colour 2 can be replaced
by colour 1. Therefore, we get the following corollary.

Corollary 12 If H`(r), `, r ≥ 3, is a generalised H-graph with χρ(H
`(r)) ≤ 5, then there exists

a packing 5-colouring of H`(r) such that, for every integers i and j, 1 ≤ i ≤ `, 0 ≤ j ≤ r − 1,
the colour 1 is used on the edge ui2ju

i
2j+1 of H`(r).

Lemma 13 Let H`(r), `, r ≥ 3, be a generalised H-graph with χρ(H
`(r)) ≤ 5, and π be a

packing 5-colouring of H`(r). For every j, 0 ≤ j ≤ 2r− 1, π must assign colour 1 to one vertex

of each of the edges u0ju
0
j+1 and u`+1

j u`+1
j+1 (subscripts are taken modulo 2r).

Proof. The proof is done by case analysis and is given in Appendix B. �

Let H`(r) be a generalised H-graph with χρ(H`(r)) ≤ 5. From Corollary 12 and Lemma 13,
it follows that one can always produce a packing 5-colouring of H`(r) that uses colour 1 on each
edge ui2ju

i
2j+1 of H

`(r), 0 ≤ i ≤ `+1, 0 ≤ j ≤ r− 1. Since adjacent vertices cannot be assigned
the same colour and H`(r) is a bipartite graph, we get the following corollary.

Corollary 14 If H`(r), `, r ≥ 3, is a generalised H-graph with χρ(H
`(r)) ≤ 5, then there exists

a packing 5-colouring of H`(r) such that the colour 1 is used on each edge of H`(r).

Lemma 15 If H`(r), `, r ≥ 3, is a generalised H-graph with χρ(H
`(r)) ≤ 5, then there exists

a packing 5-colouring π of H`(r) such that π(u0j ) /∈ {4, 5} and π(u`+1
j ) /∈ {4, 5} for every j,

0 ≤ j ≤ 2r − 1.

Proof. Let π be a packing 5-colouring of H`(r) such that colour 1 is used on each edge of H`(r)
(the existence of such a colouring is ensured by Corollary 14). Thanks to the symmetries of
H`(r), it su�ces to prove the result for any vertex u02j , 0 ≤ j ≤ r − 1. Suppose to the contrary
that π(u02j) ∈ {4, 5} for some j, 0 ≤ j ≤ r − 1. We have two cases to consider.
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2,3 x 5 4

2,3

2,3

y 2,3

z

Figure 8: The subgraph Y of H`(r).

1. π(u02j) = 4.
Let Y be the subgraph of H`(r) depicted in Figure 8, where the vertex u02j is the unique
vertex with colour 4, and vertices with colour 1 are drawn as �big vertices�. Observe that
the three neighbours x, as well as the three neighbours of y, must use colours 2, 3 and 5.
Therefore, the common neighbour of x and y must be assigned colour 5. It then follows
that no colour is available for z.

2. π(u02j) = 5.
The proof is similar to the proof of the previous case, by switching colours 4 and 5.

This completes the proof. �

Let H`(r) be a generalised H-graph satisfying the hypothesis of Lemma 15, and π be a
packing 5-colouring of H`(r). From Lemma 15, it follows that the restriction of π to the 2r-
cycle induced by the set of vertices {u0j | 0 ≤ j ≤ 2r − 1} is a packing 3-colouring. It is not
di�cult to check (see [23]) that the only packing 3-colouring of a cycle must use the periodic
pattern 1213 of length 4. Therefore, we get the following corollary.

Corollary 16 For every integers ` ≥ 3 and odd r ≥ 3, χρ(H
`(r)) ≥ 6.

We are now able to prove the main results of this section. We �rst consider the case of
generalised H-graphs H`(r) with ` /∈ {2, 5}.

Theorem 17 For every integers ` ≥ 3, ` 6= 5, and r ≥ 2,

χρ(H
`(r)) =

{
5 if r is even,

6 otherwise.

Proof. We consider two cases, according to the parity of r.

1. r is even.
Since the corona graph C2r�K1 is a subgraph of H`(r) for every r ≥ 2, we get χρ(H`(r)) ≥
χρ(C2r �K1) = 5 by Theorem 3 and Proposition 2.

We now prove χρ(H`(r)) ≤ 5. Figure 9 depicts a packing 5-colouring of H4(2), together
with its corresponding colouring pattern. It can easily be checked that this (6× 4)-pattern
is periodic, that is, can be repeated, both vertically and horizontally, to produce a packing
5-colouring of any generalised H-graph of the form H6i+4(2j), with i ≥ 0 and j ≥ 1.

If `−4 6≡ 0 (mod 6), we use the colouring patterns depicted in Figure 10, depending on the
value of ` modulo 6. The upper six rows of each colouring pattern, surrounded by double
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1 2 1 3

3 1 2 1

4 1 5 1

1 3 1 2

2 1 3 1

1 5 1 4

1 2 1 3
4 1 5 1
1 3 1 2
2 1 3 1
1 5 1 4
3 1 2 1

Figure 9: A packing 5-colouring of H4(2) and its corresponding colouring pattern.

1 2 1 3
4 1 5 1
1 3 1 2
2 1 3 1
1 5 1 4
3 1 2 1

1 4 1 5
2 1 3 1
1 3 1 2
5 1 4 1
1 2 1 3
4 1 5 1
1 3 1 2

1 2 1 3
4 1 5 1
1 3 1 2
2 1 3 1
1 5 1 4
3 1 2 1

1 4 1 5
2 1 3 1

1 2 1 3
4 1 5 1
1 3 1 2
2 1 3 1
1 5 1 4
3 1 2 1

1 2 1 3
4 1 5 1
1 3 1 2

1 2 1 3
4 1 5 1
1 3 1 2
2 1 3 1
1 5 1 4
3 1 2 1

1 2 1 3
4 1 5 1
1 3 1 2
5 1 4 1
1 2 1 3
3 1 2 1
1 4 1 5
2 1 3 1
1 5 1 4
3 1 2 1

1 2 1 3
4 1 5 1
1 3 1 2
2 1 3 1
1 5 1 4
3 1 2 1

1 2 1 3
4 1 5 1
1 3 1 2
5 1 4 1
1 2 1 3

` ≡ 5 (mod 6) ` ≡ 0 (mod 6) ` ≡ 1 (mod 6) ` ≡ 2 (mod 6) ` ≡ 3 (mod 6)

Figure 10: Colouring patterns for H`(r), r even.
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1 3 1 2 1 6
2 1 5 1 4 1
1 4 2 3 1 2
3 1 1 4 3 1
1 2 6 1 2 5

1 2 1 3 1 2 1 5 1 2 6 1 2 3
4 1 5 1 4 1 3 1 3 1 1 4 5 1
1 3 1 2 1 3 1 4 1 4 2 3 1 2
5 1 4 1 2 1 2 1 2 1 5 1 4 1
1 2 1 3 1 5 1 6 1 3 1 2 1 3

(a) (b)

Figure 11: Colouring patterns for H3(3) and for H3(r), r ≥ 5, r odd.

1 2 1 3 1 6
4 1 5 1 2 1
1 3 1 2 1 3
2 1 3 1 5 1
1 5 1 4 1 2
3 1 2 1 3 1

1 2 1 3 1 2 1 3 1 6
4 1 5 1 4 1 5 1 2 1
1 3 1 2 1 3 1 2 1 3
2 1 3 1 2 1 3 1 5 1
1 5 1 4 1 5 1 4 1 2
3 1 2 1 3 1 2 1 3 1
1 2 1 5 1 4 1 5 1 4
6 1 3 1 2 1 3 1 2 1

1 6 1 3 1 2 1 3 1 2
4 1 2 1 5 1 4 1 5 1
1 2 1 4 1 3 1 2 1 3
3 1 5 1 2 1 3 1 2 1
1 5 1 3 1 4 1 5 1 4
2 1 2 1 3 1 2 1 3 1
1 3 1 6 1 2 1 3 1 2
2 1 3 1 5 1 4 1 5 1
1 4 1 2 1 3 1 2 1 3

(a) (b) (c)

Figure 12: Colouring patterns for H4(r), H6(r) and H7(r), r ≥ 3, r odd.

lines, can be repeated as many times as required, or even deleted when ` ≡ 1, 2, 3 (mod 6).
Therefore, these colouring patterns give us a packing 5-colouring of any generalised H-
graph of the form H`(2), for every ` ≥ 3, ` 6= 5. It is again easy to check that each of these
colouring patterns is �horizontally periodic�, that is, can be horizontally repeated in order
to get a packing 5-colouring of any generalised H-graph of the form H`(r), for every ` ≥ 3,
` 6= 5, and even r.

2. r is odd.
The inequality χρ(H`(r)) ≥ 6 directly follows from Corollary 16. Therefore, we only need
to prove the inequality χρ(H`(r)) ≤ 6 (recall that ` ≥ 3 and ` 6= 5).

We �rst consider a few particular cases. A packing 6-colouring of H3(3) is depicted in
Figure 11(a), and a packing 6-colouring of H3(r), for every odd r ≥ 5, is depicted in
Figure 11(b) (the �rst four columns, surrounded by a double line, are repeated r−5

2 times,
and thus do not appear if r = 5). A packing 6-colouring of H4(r), for every odd r ≥ 3,
is depicted in Figure 12(a) (the �rst four columns are repeated r−3

2 times), and a packing
6-colouring of H6(r) and of H7(r), for every odd r ≥ 3, is depicted in Figure 12(b) and in
Figure 12(c), respectively (the four columns surrounded by a double line, are repeated r−3

2
times, and thus do not appear if r = 3).

In order to produce a packing 6-colouring of H`(r), with ` ≥ 8, r ≥ 3, and r odd, we
use the colouring patterns depicted in Figure 13. The six rows surrounded by double lines
must be repeated `−6−(` mod 6)

6 times (and thus do not appear if ` ≡ 2, 3, 4, 5 (mod 6) and
` = 6 + (` mod 6)). The four columns surrounded by double lines must be repeated r−1

2
times if ` ≡ 0, 1 (mod 6), or r−3

2 times if ` ≡ 2, 3, 4, 5 (mod 6) (and thus do not appear if
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1 2 1 3 1 2 1 3 1 6

4 1 5 1 4 1 5 1 2 1
1 3 1 2 1 3 1 2 1 3
2 1 3 1 2 1 3 1 4 1
1 5 1 4 1 5 1 4 1 2
3 1 2 1 3 1 2 1 3 1
1 2 1 3 1 2 1 3 1 5

4 1 5 1 4 1 5 1 2 1
1 3 1 2 1 3 1 2 1 3
2 1 4 1 5 1 4 1 4 1
1 5 1 3 1 2 1 3 1 2
3 1 2 1 3 1 2 1 6 1
1 2 1 5 1 4 1 5 1 3
4 1 3 1 2 1 3 1 2 1

1 2 1 3 1 2 1 3 1 6

4 1 5 1 4 1 5 1 2 1
1 3 1 2 1 3 1 2 1 3
2 1 3 1 2 1 3 1 4 1
1 5 1 4 1 5 1 4 1 2
3 1 2 1 3 1 2 1 3 1
1 2 1 3 1 2 1 3 1 5

4 1 5 1 4 1 5 1 2 1
1 3 1 2 1 3 1 2 1 6
2 1 3 1 2 1 3 1 4 1
1 5 1 4 1 5 1 4 1 3
3 1 2 1 3 1 2 1 2 1
1 2 1 3 1 2 1 3 1 5
6 1 5 1 4 1 5 1 3 1
1 3 1 2 1 3 1 2 1 4

` ≡ 0 (mod 6) ` ≡ 1 (mod 6)

1 2 1 3 1 6

4 1 5 1 2 1
1 3 1 2 1 3
2 1 3 1 4 1
1 5 1 4 1 2
3 1 2 1 3 1
1 2 1 3 1 5

4 1 5 1 2 1
1 3 1 2 1 6
5 1 4 1 3 1
1 2 1 3 1 4
3 1 2 1 2 1
1 4 1 5 1 3
2 1 3 1 5 1
1 5 1 4 1 2
3 1 2 1 6 1

1 2 1 3 1 6

4 1 5 1 2 1
1 3 1 2 1 3
2 1 3 1 4 1
1 5 1 4 1 2
3 1 2 1 3 1
1 2 1 3 1 5

4 1 5 1 2 1
1 3 1 2 1 3
5 1 4 1 4 1
1 2 1 3 1 2
3 1 2 1 3 1
1 4 1 5 1 5
2 1 3 1 2 1
1 3 1 2 1 4
5 1 4 1 3 1
1 3 1 2 1 6

1 2 1 3 1 6

4 1 5 1 2 1
1 3 1 2 1 3
2 1 3 1 4 1
1 5 1 4 1 2
3 1 2 1 3 1
1 2 1 3 1 5

4 1 5 1 2 1
1 3 1 2 1 3
2 1 3 1 4 1
1 5 1 4 1 2
3 1 2 1 3 1
1 2 1 3 1 5
4 1 5 1 2 1
1 3 1 2 1 4
2 1 3 1 3 1
1 5 1 4 1 2
3 1 2 1 6 1

1 2 1 3 1 6

4 1 5 1 2 1
1 3 1 2 1 3
2 1 3 1 4 1
1 5 1 4 1 2
3 1 2 1 3 1
1 2 1 3 1 5

4 1 5 1 2 1
1 3 1 2 1 3
5 1 4 1 6 1
1 2 1 3 1 2
3 1 2 1 5 1
1 4 1 5 1 3
2 1 3 1 4 1
1 5 1 4 1 2
2 1 3 1 3 1
1 3 1 2 1 5
4 1 5 1 2 1
1 2 1 3 1 6

` ≡ 2 (mod 6) ` ≡ 3 (mod 6) ` ≡ 4 (mod 6) ` ≡ 5 (mod 6)

Figure 13: Colouring patterns for H`(r), ` ≥ 8, r ≥ 3, r odd.
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1 3 1 6
2 1 2 1
1 4 1 7
3 1 5 1

r = 2

1 3 1 6 1 2 1 5
2 1 2 1 3 1 3 1
1 4 1 3 1 4 1 2
3 1 5 1 2 1 7 1

r = 4

1 3 1 6 1 4 1 2 1 7 1 4 1 5
2 1 2 1 2 1 5 1 3 1 2 1 3 1
1 4 1 3 1 3 1 3 1 2 1 3 1 2
3 1 5 1 7 1 2 1 4 1 5 1 6 1

r = 7

1 3 1 6 1 3 1 2 1 7 1 3 1 2 1 5
2 1 2 1 2 1 5 4 3 1 2 1 4 1 3 1
1 4 1 3 1 4 2 1 1 4 1 5 1 3 1 2
3 1 5 1 7 1 3 6 2 1 3 1 2 1 6 1

r = 8

1 3 1 6 1 3 1 2 1 4 1 3 1 6 1 4 1 2 1 7 1 5
2 1 2 1 2 1 5 1 3 1 2 1 2 1 2 1 3 1 3 1 3 1
1 4 1 3 1 4 1 3 1 2 1 5 1 3 1 3 1 5 1 2 1 2
3 1 5 1 7 1 2 1 6 1 3 1 4 1 7 1 2 1 4 1 6 1

r = 11

Figure 14: Packing 7-colourings of H2(r), r ∈ {2, 4, 7, 8, 11}.

r = 3).

This completes the proof. �

The last two theorems of this section deal with the cases not covered by Theorem 17, that
is, ` = 2 and ` = 5, respectively.

Theorem 18 For every integer r ≥ 2,

χρ(H
2(r)) =

{
7 if r ∈ {2, 4, 7, 8, 11},
6 otherwise.

Proof. The fact that H2(r) does not admit a packing 6-colouring for every r ∈ {2, 4, 7, 8, 11}
has been checked by a computer program. Packing 7-colourings for each of these graphs are
depicted in Figure 14.

Assume now r /∈ {2, 4, 7, 8, 11}. Again, the fact that in that case H2(r) does not admit
a packing 5-colouring has been checked by a computer program. Packing 6-colourings of such
generalised H-graphs are depicted in Figure 15, according to the value of r, r modulo 3, or r
modulo 6 (periodic patterns, made of 6 or 12 columns, are surrounded by double lines). �

Theorem 19 For every integer r ≥ 2, χρ(H
5(r)) = 6.

Proof. The fact that H5(r) does not admit a packing 5-colouring for every r ≥ 2 has been
checked by a computer program. Packing 6-colourings of H5(r), r ∈ {2, 3, 5}, are depicted
in Figure 16, while packing 6-colourings of H5(r), r = 4 or r ≥ 6, are depicted in Figure 17
according to the value of r modulo 4 (periodic patterns, made of eight columns, are surrounded
by double lines). Note that for r = 6 and r = 7, the �rst eight columns have to be deleted. �
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1 3 1 2 1 3 1 2 1 6
2 1 5 1 4 1 5 1 3 1
1 4 1 3 1 2 1 4 1 5
3 1 2 1 6 1 3 1 2 1

1 3 1 2 1 5
2 1 4 1 3 1
1 6 1 3 1 4
3 1 5 1 2 1

1 3 1 2 1 5 1 3 1 4 1 2 1 3 1 4 1 2 1 5
2 1 4 1 3 1 6 1 2 1 3 1 5 1 2 1 6 1 3 1
1 6 1 3 1 4 1 2 1 3 1 6 1 2 1 5 1 3 1 2
3 1 5 1 2 1 3 1 5 1 2 1 4 1 3 1 2 1 4 1

r = 5 r ≡ 0 (mod 3) r ≡ 1 (mod 3), r ≥ 10

1 3 1 2 1 4 1 3 1 6 1 2 1 3 1 2 1 3 1 6 1 2 1 3 1 2 1 6
2 1 5 1 3 1 2 1 2 1 3 1 4 1 5 1 4 1 2 1 3 1 4 1 5 1 3 1
1 4 1 3 1 2 1 5 1 3 1 5 1 2 1 3 1 5 1 4 1 5 1 2 2 3 1 5
3 1 2 1 6 1 3 1 4 1 2 1 3 1 6 1 2 1 3 1 2 1 3 6 1 4 2 1

r ≡ 2 (mod 6), r ≥ 14

1 3 1 2 1 4 1 3 1 6 1 2 1 3 1 2 1 4 1 3 1 2 4 1 6 3 1 2 1 3 1 2 1 6
2 1 5 1 3 1 2 1 2 1 3 1 4 1 5 1 3 1 2 1 5 1 3 2 2 1 5 1 4 1 5 1 3 1
1 4 1 3 1 2 1 5 1 3 1 5 1 2 2 3 1 5 1 6 1 3 1 5 1 4 1 3 1 2 1 4 1 5
3 1 2 1 6 1 3 1 4 1 2 1 3 6 1 4 2 1 3 1 4 1 2 1 3 1 2 1 6 1 3 1 2 1

r ≡ 5 (mod 6), r ≥ 17

Figure 15: Colouring patterns for H2(r), r /∈ {2, 4, 7, 8, 11}.

1 3 1 2
4 1 6 1
1 5 1 3
3 1 2 1
1 2 1 4
6 1 5 1
1 3 1 2

r = 2

1 3 1 6 1 5
2 1 2 1 2 1
1 4 1 3 1 4
3 1 5 1 3 1
1 5 1 2 1 2
2 1 3 1 5 1
1 6 1 4 1 3

r = 3

1 3 1 5 1 2 1 3 1 4
2 1 2 1 4 1 6 1 2 1
1 6 1 3 1 3 1 2 1 5
3 1 4 1 2 1 4 1 3 1
1 4 1 6 1 5 1 5 1 2
2 1 3 1 3 1 3 1 6 1
1 5 1 2 1 4 1 2 1 3

r = 5

Figure 16: Packing 7-colourings of H5(r), r ∈ {2, 3, 5}.
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1 3 1 6 1 3 1 5
2 1 2 1 4 1 2 1
1 4 1 3 1 2 1 4
3 1 4 1 5 1 3 1
1 5 1 5 1 3 1 2
2 1 2 1 2 1 5 1
1 6 1 3 1 4 1 3

1 3 1 6 1 3 1 5 1 2 6 1 2 3 1 4 1 5
2 1 2 1 4 1 2 1 3 1 1 4 5 1 2 1 2 1
1 4 1 3 1 2 1 4 1 4 2 3 1 2 1 3 1 3
3 1 4 1 3 1 3 1 2 1 5 1 4 1 5 1 6 1
1 5 1 5 1 5 1 6 1 3 1 2 1 3 1 2 1 2
2 1 2 1 2 1 2 1 5 1 4 1 6 1 3 1 5 1
1 6 1 3 1 4 1 3 1 2 1 3 1 2 1 4 1 3

r ≡ 0 (mod 4), r ≥ 4 r ≡ 1 (mod 4), r ≥ 9

1 3 1 6 1 3 1 5 1 3 1 6 1 3 1 4 1 3 1 5
2 1 2 1 4 1 2 1 2 1 2 1 5 1 2 1 2 1 2 1
1 4 1 3 1 2 1 4 1 4 1 3 1 2 1 5 1 6 1 4
3 1 4 1 5 1 3 1 3 1 5 1 3 1 3 1 5 1 3 1
1 5 1 5 1 3 1 2 1 5 1 4 1 4 4 2 1 3 1 2
2 1 2 1 2 1 5 1 2 1 2 1 2 1 6 1 2 1 5 1
1 6 1 3 1 4 1 3 1 6 1 3 1 5 2 3 1 4 1 3

r ≡ 2 (mod 4), r ≥ 6

1 3 1 6 1 3 1 5 1 3 1 6 1 3 1 2 1 4 1 3 1 5
2 1 2 1 4 1 2 1 2 1 2 1 4 1 5 1 3 1 2 1 2 1
1 4 1 3 1 2 1 3 1 4 1 3 1 2 1 3 1 5 1 6 1 4
3 1 4 1 5 1 3 1 3 1 4 1 5 1 4 1 2 1 5 1 3 1
1 5 1 5 1 3 1 2 1 5 1 5 1 3 1 2 1 3 1 2 1 2
2 1 2 1 2 1 5 1 2 1 2 1 2 1 3 1 6 1 3 1 5 1
1 6 1 3 1 4 1 3 1 6 1 3 1 4 1 5 1 2 1 4 1 3

r ≡ 3 (mod 4), r ≥ 7

Figure 17: Colouring patterns for H5(r), r = 4 or r ≥ 6.
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6 Discussion

In this paper, we have studied the packing chromatic number of some classes of cubic graphs,
namely ladders, H-graphs and generalised H-graphs. We have determined the exact value of this
parameter for every such graph, except for the case of H-graphs H(r) with r ≥ 3, r odd (see
Theorem 10), for which we proved 6 ≤ χρ(H(r)) ≤ 7. We thus propose the following question.

Question 1 Is it true that χρ(H(r)) ≤ 6 for every H-graph H(r) with r ≥ 3, r odd?

In [22,23], we have extended the notion of packing colouring to the case of digraphs. If D is a
digraph, the (weak) directed distance between two vertices u and v in D is de�ned as the length
of a shortest directed path between u and v, in either direction. Using this notion of distance
in digraphs, the packing colouring readily extends to digraphs. Recall that an orientation of
an undirected graph G is any antisymmetric digraph obtained from G by giving to each edge
of G one of its two possible orientations. It then directly follows from the de�nition that
χρ(D) ≤ χρ(G) for any orientation D of G. A natural question for oriented graphs, related to
this work, is then the following.

Question 2 Is it true that the packing chromatic number of any oriented graph with maximum

degree 3 is bounded by some constant?

Acknowledgment. This work has been done while the �rst author was visiting LaBRI, whose
hospitality is gratefully acknowledged.
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A Proof of Lemma 4

The con�gurations used in the proof correspond to partial colourings of the graph X and are
depicted in Figures 18 and 19, with the following drawing convention. If {a, b} is the set of
colours assigned to two distinct vertices, then the �colour� of both these vertices is denoted
�a, b�. If the same con�guration describes two partial colourings of X and the colours assigned
to some vertex by these two colourings are respectively a and b, then the �colour� of this vertex is
denoted �a|b�. Finally, if a vertex has no available colour, its �colour� is denoted �?�. Moreover,
only the edges of X that are necessary for the argument are drawn.

Let uivi, 3 ≤ i ≤ 5, be an edge of X with π(ui) 6= 1 and π(vi) 6= 1. We �rst prove the
following claim.

Claim 1 For every i, 3 ≤ i ≤ 5, 2 ∈ {π(ui), π(vi)}.

Proof. Assume to the contrary that this is not the case, that is, {π(ui), π(vi)} ⊆ {3, 4, 5}.
Thanks to the symmetry exchanging ui and vi, we may assume π(ui) < π(vi), without loss of
generality. Recall that there is no edge ui−2vi−2 (resp. ui+2vi+2) in X when i = 2 (resp. i = 4).
We consider the following cases (subscripts are taken modulo n).

1. π(ui) = 3 and π(vi) = 4.
In that case, we necessarily have π(ui+1) ∈ {1, 2, 5}.
If π(ui+1) = 1, then {π(vi+1), π(ui+2)} = {2, 5}. If π(vi+1) = 2 (and π(ui+2) = 5), then
π(vi−1) = 1, so that π(ui−1) = 2 and no colour is available for vi−2 (see Figure 18(a)). If
π(ui+2) = 2 (and π(vi+1) = 5), then {π(ui−1), π(vi−1)} = {1, 2}, and no colour is available
for either for ui−2 or for vi−2 (see Figure 18(b)).

If π(ui+1) = 2, then π(vi+1) ∈ {1, 5}. If π(vi+1) = 5, then π(ui−1) = 1, so that π(vi−1) = 2
and no colour is available for ui−2 (see Figure 18(c)). If π(vi+1) = 1, then either π(ui−1) =
5, so that no colour is available for vi+2 (see Figure 18(d)), or π(ui−1) = 1, which implies
{π(ui−2), π(vi−1)} = {2, 5}, so that again no colour is available for vi+2 (see Figure 18(e)).

Finally, if π(ui+1) = 5, then {π(ui−1), π(vi−1)} = {1, 2}, and no colour is available either
for ui−2 or for vi−2 (see Figure 18(f)).

2. π(ui) = 3 and π(vi) = 5.
Observe that the proof is similar to the proof of the previous case, by switching colours 4
and 5, in all cases illustrated in Figure 18(b), (c), (d) and (f). Therefore, it remains only
two cases to be considered, which were illustrated in Figure 18(a) and (e), respectively.

(a) π(ui+1) = 1 and π(vi+2) = 1.
In that case, we have π(ui+1) = 4, which implies π(vi−1) = 1 and thus π(ui−1) = 2, so
that π(ui−2) = 1, π(vi−2) = 4, and no colour is available for ui−3 (see Figure 18(g)).

(b) π(ui+1) = 2, π(ui−1) = 1 and π(vi+1) = 1.
In that case, we necessarily have π(vi+2) = 4, so that π(ui+2) = 1, and no colour is
available for ui+3 (see Figure 18(h)).

3. π(ui) = 4 and π(vi) = 5.
In that case, we necessarily have π(ui+1) ∈ {1, 2, 3}. We consider six subcases, depending
on the value of π(ui+1) and i.

(a) π(ui+1) = 1 and i ∈ {3, 4}.
In that case, we have {π(ui+2), π(vi+1)} = {2, 3}, which implies π(vi+2) = 1, and no
colour is available for vi+3 (see Figure 18(i)).
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2 3 1 5

? 1 4 2

(a)

? 1,2 3 1 2

? 1,2 4 5

(b)

? 1 3 2

2 4 5

(c)

5 3 2

4 1 ?

(d)

2,5 1 3 2

2,5 4 1 ?

(e)

? 1,2 3 5

? 1,2 4

(f)

? 1 2 3 1 4

4 1 5 2

(g)

1 3 2 1 ?

5 1 4

(h)

4 1 2,3

5 2,3 1 ?

(i)

? 1 2 4 1 3

3 1 5 2

(j)

? 1,2 4 1 3

1,2 3 5 2

(k)

? 1,2 4 1

? 1,2 5 3

(l)

4 2 1|1 ?|?

5 1|3 3|

(m)

2,3 1 4 2

? 1 2,3 5

(n)

1,2 3 4 2

? 1,2 5

(o)

4 3 1|? ?|

5 1|2 2|1

(p)

|? ?|1 1|2 4 3

|3 2|1 5

(q)

Figure 18: Con�gurations for the proof of Lemma 4 (the double edge is the edge uivi).
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1 2 1 4,5

? 3 4,5

(a)

? 1 2 4

5 3

(b)

? 1 2 5

4 3

(c)

3| 1|? 2 1 3|5

?|1 4 5|3

(d)

? 1 2 3

5 4

(e)

? 1 2 5

3 4

(f)

Figure 19: Con�gurations for the proof of Lemma 4 (cont.).

(b) π(ui+1) = 1 and i = 5.
In that case, we have π(v6) ∈ {3, 4}. If π(v6) = 2, then we necessarily have π(u7) = 3,
and thus π(v4) ∈ {1, 3}. If π(v4) = 1, we get successively π(u4) = 2, π(v3) = 3,
π(u3) = 1, and no colour is available for u2 (see Figure 18(j)). If π(v4) = 3, then
{π(u4), π(v3)} = {1, 2} and no colour is available for u3 (see Figure 18(k)).
If π(v6) = 3, then {π(u4), π(v4)} = {1, 2}, and no colour is available either for u3 or
for v3 (see Figure 18(l)).

(c) π(ui+1) = 2 and i ∈ {3, 4}.
In that case, we necessarily have π(vi+1) ∈ {1, 3}. If π(vi+1) = 1, then π(vi+2) = 3,
which implies π(ui+2) = 1, and no colour is available for ui+3. If π(vi+1) = 3, then
π(ui+2) = 1, and no colour is available for ui+2 (see Figure 18(m)).

(d) π(ui+1) = 2 and i = 5.
In that case, we necessarily have π(u4) ∈ {1, 3}. If π(u4) = 1, then {π(u3), π(v4)} =
{2, 3}, so that π(v3) = 1, and no colour is available for v2 (see Figure 18(n)). If π(u4) =
3, then {π(u3), π(v4)} = {1, 2}, and no colour is available for v3 (see Figure 18(o)).

(e) π(ui+1) = 3 and i ∈ {3, 4}.
In that case, either π(vi+1) = 1, so that π(vi+2) = 2, π(ui+2) = 1, and no colour is
available for ui+3, or π(vi+1) = 2, so that π(vi+2) = 1 and no colour is available for
ui+2 (see Figure 18(p)).

(f) π(ui+1) = 3 and i = 5.
In that case, π(u4) ∈ {1, 2}. If π(u4) = 1, then π(v4) = 2 and no colour is available
for u3. If π(u4) = 2, then π(v4) = 1, so that π(u3) = 1 and π(v3) = 3, and no colour
is available for u2 (see Figure 18(q)).

This completes the proof of Claim 1. �

By Claim 1, we can thus assume π(ui) = 2, without loss of generality (again, thanks to the
symmetry exchanging ui and vi), so that π(vi) ∈ {3, 4, 5}. To �nish the proof of Lemma 4, we
need to prove that {π(ui−1), π(ui+1)} = {3, 4, 5} \ {π(vi)}. Suppose that this is not the case.
We consider the following cases, according to the value of π(vi).

1. π(vi) = 3.
In that case, we necessarily have π(ui+1) ∈ {1, 4, 5}.
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If π(ui+1) = 1, then {π(ui+2), π(vi+1)} = {4, 5}), so that π(ui−1) = 1, and no colour is
available for vi−1 (see Figure 19(a)).

If π(ui+1) = 4, then either π(ui−1) = 1, so that π(vi−1) = 5, and no colour is available for
ui−2 (see Figure 19(b)), or π(ui−1) = 5, which contradicts our assumption since it would
imply {π(ui−1), π(ui+1)} = {3, 4, 5} \ {π(vi)}.
Similarly, if π(ui+1) = 5, then either π(ui−1) = 1, so that π(vi−1) = 4, and no colour is
available for ui−2 (see Figure 19(c)), or π(ui−1) = 4, which again contradicts our assump-
tion.

2. π(vi) = 4 (the case π(vi) = 5 is similar, by switching colours 4 and 5).
In that case, we necessarily have π(ui+1) ∈ {1, 3, 5}.
If π(ui+1) = 1, then {π(ui+2), π(vi+1)} = {3, 5}. If π(ui+2) = 3 and π(vi+1) = 5, then
π(ui−1) = 1, so that π(ui−2) = 3, and no colour is available for vi−1. If π(ui+2) = 5 and
π(vi+1) = 3, then π(vi−1) = 1, and no colour is available for ui−1 (see Figure 19(d)).

If π(ui+1) = 3, then either π(ui−1) = 1, so that π(vi−1) = 5, and no colour is available for
ui−2, or π(ui−1) = 5, which contradicts our assumption (see Figure 19(e)).

Finally, if π(ui+1) = 5, then either π(ui−1) = 1, so that π(vi−1) = 3, and no colour is
available for ui−2, or π(ui−1) = 3, which contradicts our assumption (see Figure 19(f)).

This completes the proof of Lemma 5.

B Proof of Lemma 13

We �rst prove the following claim.

Claim 2 For every integer j, 0 ≤ j ≤ r, either π(u02j) = 1 or π(u02j+1) = 1.

Proof. Thanks to the symmetries of H`(r), it is enough to prove the claim for the edge u02u
0
3.

Suppose to the contrary that π(u02) 6= 1 and π(u03) 6= 1. Thanks to the symmetries of H`(r), we
can assume π(u02) < π(u03), without loss of generality.

We consider four cases. The corresponding con�gurations are depicted in Figure 20, using
the same drawing convention as for the proof of Lemma 4 (see Appendix A).

1. π(u02) = 2 and π(u03) = 3.
In that case, π(u12) ∈ {1, 4, 5}. If π(u12) = 1, then {π(u22), π(u13)} = {4, 5}, which implies
π(u01) = 1, and no colour is available for u00 (see Figure 20(a)). If π(u12) = 4, then either
π(u01) = 1, which implies π(u00) = 5, and no colour is available for u11, or π(u

0
1) = 5, which

implies π(u04) = 1, π(u05) = 2, and no colour is available for u14 (see Figure 20(b)). The
case π(u12) = 5 is similar, by switching colours 4 and 5.

2. π(u02) = 2 and π(u03) = 4 (the case π(u02) = 2 and π(u03) = 5 is similar, by switching colours

4 and 5).
In that case, π(u12) ∈ {1, 3, 5}. If π(u12) = 1, then {π(u22), π(u13)} = {3, 5}, which implies
π(u01) = 1, π(u00) = 3, and no colour is available for u11 (see Figure 20(c)). If π(u

1
2) = 3, then

either π(u01) = 1, which implies π(u00) = 5, and no colour is available for u11, or π(u
0
1) = 5,

which implies π(u22) = π(u13) = 1, so that π(u23) = 2, and no colour is available for u32 (see
Figure 20(d)). Finally, if π(u12) = 5, then either π(u01) = 1, which implies π(u00) = 3, and
no colour is available for u11, or π(u

0
1) = 3, which implies π(u11) = 1, π(u21) = 2, and no

colour is available for u10 (see Figure 20(e)).
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? 1 2 3

1 4,5

4,5

(a)

5| 1|5 2 3 |1 |2

4?| |?

(b)

3 1 2 4

? 1 3,5

3,5

(c)

5| 1|5 2 4

3?| |1

|1 |2

|?

(d)

3| 1|3 2 4

|? ?|1 5

|2

(e)

2|1 1|2 3 4

|? ?| 1 2,5

2,5

(f)

3 4

2 |1

1|5 ?|?

5|

(g)

2| 1|2 3 4

?|1 5

|?

(h)

1 2 3 5

4 1 1 2,4

? 2,4

(i)

4 5

1 2,3

2,3 1

?

(j)

2,3| 1|3 4 5

1|
2,3|

2 |1

?| |1 |3

|?

(k)

2|1 1|2 4 5

|3 ?|1 3

|?

(l)

Figure 20: Con�gurations for the proof of Claim 2 (the double edge is the edge u0
2u

0
3).
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3. π(u02) = 3 and π(u03) = 4.
In that case, π(u12) ∈ {1, 2, 5}. If π(u12) = 1, then {π(u22), π(u13)} = {2, 5}, and thus either
π(u01) = 1, so that π(u00) = 2, and no colour is available for u11, or π(u

0
1) = 2, so that

π(u00) = 1, and no colour is available for u10 (see Figure 20(f)). If π(u12) = 2, then either
π(u22) = 1, which implies π(u32) = 5, and no colour is available for u23, or π(u

2
2) = 5,

which implies π(u13) = 1, and no colour is available for u23 (see Figure 20(g)). Finally, if
π(u12) = 5, then either π(u01) = 1, which implies π(u00) = 2, and no colour is available for u11,
or π(u01) = 2, which implies π(u11) = 1, and no colour is available for u21 (see Figure 20(h)).

4. π(u02) = 3 and π(u03) = 5.
This case is similar to the previous one, by switching colours 4 and 5, except when π(u12) = 1
(which implies {π(u22), π(u13)} = {2, 4}) and π(u01) = 2. In that case, we necessarily have
π(u00) = π(u11) = 1, which implies π(u10) = 4, and no colour is available for u21 (see
Figure 20(i)).

5. π(u02) = 4 and π(u03) = 5.
In that case, π(u12) ∈ {1, 2, 3}. If π(u12) = 1, then {π(u22), π(u13)} = {2, 3}, which implies
π(u23) = 1, and no colour is available for u33 (see Figure 20(j)). If π(u12) = 2, then either
π(u01) = 1, which implies {π(u00), π(u11)} = {2, 3}, so that π(u10) = 1, and no colour is
available for u20, or π(u

0
1) = 3, which implies π(u22) = π(u13) = 1, so that π(u24) = 3, and no

colour is available for u32 (see Figure 20(k)). Finally, if π(u12) = 3, then either π(u01) = 1,
which implies π(u00) = 2, and no colour is available for u11, or π(u

0
1) = 2, which implies

π(u00) = π(u11) = 1, so that π(u10) = 3, and no colour is available for u21 (see Figure 20(l)).

This completes the proof of Claim 2. �

Since the cycle induced by the set of vertices {u00, u01, . . . , u02r−1} has even length, and adjacent
vertices cannot be assigned the same colour, it follows from Claim 2 that colour 1 must be used
on each edge u0ju

0
j+1, 0 ≤ j ≤ 2r − 1. This concludes the proof of Lemma 13.
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