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Abstract

An oriented graph is a loopless digraph with no opposite arcs. An oriented

k-colouring of an oriented graph
−→
G is a partition of its set of vertices into k

parts in such a way that no two adjacent vertices belong to the same part,
and all the arcs connecting every two parts have the same direction. Hence,

such a colouring exists if and only if
−→
G admits a homomorphism to some

oriented graph of order k.

The oriented chromatic number of
−→
G is then defined as the smallest k for

which
−→
G admits an oriented k-colouring or, equivalently, as the minimum

order of an oriented graph to which
−→
G admits a homomorphism.

In this paper, we survey the main results about oriented colourings and
propose a few open problems.

Keywords: Homomorphism, Oriented chromatic number, Oriented
colouring, Oriented graph

1. Introduction

A (proper) k-colouring of an undirected graph G is a partition of V (G)
into k parts, called colour classes, such that no two adjacent vertices belong
to the same colour class. Such a k-colouring can be equivalently regarded as
a homomorphism of G to the complete graph Kk on k vertices. Therefore
the chromatic number χ(G) of G, defined as the smallest k such that G
admits a k-colouring, corresponds to the smallest k such that G admits a
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homomorphism to Kk (for a survey on graph homomorphisms, see e.g. Hahn
and Tardif [30] or the monography by Hell and Nešetřil [31]).

By considering homomorphisms of oriented graphs (that is loopless di-
graphs with no opposite arcs), we get a natural extension of the notion of
colouring to oriented graphs, leading in particular to the notion of the ori-
ented chromatic number of a graph. This notion was first considered by
Courcelle [19] as a tool for encoding graph orientations by means of ver-
tex labels. Since then, oriented colourings and homomorphisms of oriented
graphs have attracted much attention.

Several notions of colourings of oriented graphs, or digraphs, have been
considered in the literature, which differ from the notion of oriented colouring
discussed here. In particular, Neumann-Lara [45] introduced in 1982 the
dichromatic number of a digraph, a well-studied parameter, defined as the
minimum number of parts into which its vertex set can be partitioned in such
a way that each part induces an acyclic subgraph.

The aim of this paper is to survey the main results concerning colourings
of oriented graphs and to propose a few open problems. It can thus be
considered as an update of the papers [64] and [65] (see also [63]), and is
organised as follows. In the next section, we introduce the main definitions
and notation. We give general results in Section 3, relating the oriented
chromatic number to other graph parameters, and focus on the special classes
of planar graphs in Section 4 and of graphs with bounded degree in Section 5.
We then consider various other classes of graphs in Section 6. We discuss
complexity issues in Section 7 and the game version of oriented colouring in
Section 8. Finally, we deal with two weaker versions of oriented colourings,
namely simple and 2-dipath colourings, in Section 9 and propose some open
problems in the last section.

2. Preliminaries

If G is an undirected graph, we denote by V (G) its set of vertices and

by E(G) its set of edges. If
−→
G is a digraph, we denote by V (

−→
G) its set of

vertices and by A(
−→
G) its set of arcs. The order of an undirected graph, or a

digraph, is the cardinality of its vertex set. All the graphs we consider are
simple and have no loops.

Definition 1 (Homomorphism). Let G and H be two undirected graphs.
A homomorphism of G to H is a mapping f : V (G)→ V (H) that preserves
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the edges: f(x)f(y) ∈ E(H) whenever xy ∈ E(G).

Similarly, if
−→
G and

−→
H are two digraphs, a homomorphism of

−→
G to

−→
H is

a mapping f : V (
−→
G) → V (

−→
H ) that preserves the arcs:

−−−−−→
f(x)f(y) ∈ E(

−→
H )

whenever −→xy ∈ E(
−→
G).

An orientation of an undirected graph G is a digraph obtained from G
by giving to every edge uv of G one of its two possible orientations, namely
−→uv or −→vu. A digraph

−→
G is an oriented graph if it is an orientation of some

undirected graph, called the underlying graph of
−→
G . In the following, an arc

−→uv will be simply denoted uv.

2.1. Oriented colourings

As for undirected graphs, homomorphisms of oriented graphs induce a
notion of oriented graph colouring as follows.

Definition 2 (Oriented k-colouring). An oriented k-colouring of an ori-

ented graph
−→
G is a partition of V (

−→
G) into k colour classes such that no two

adjacent vertices belong to the same colour class, and all the arcs connecting
every two colour classes have the same direction.

Equivalently, an oriented k-colouring of
−→
G may be regarded as a homo-

morphism of
−→
G to some oriented graph

−→
H k of order k (the vertices of

−→
H k

are then used as colours and such a homomorphism is sometimes called an−→
H k-colouring), or as a mapping γ from V (

−→
G) to a set of k colours such that

(i) γ(u) 6= γ(v) for every arc uv in A(
−→
G),

(ii) γ(u) 6= γ(x) for every two arcs uv and wx with γ(v) = γ(w).

Definition 3 (Oriented chromatic number). The oriented chromatic

number χo(
−→
G) of an oriented graph

−→
G is the smallest k for which

−→
G admits

an oriented k-colouring or, equivalently, the minimum order of an oriented

graph
−→
H such that

−→
G admits a homomorphism to

−→
H .

This notion can be extended to undirected graphs as follows: the oriented
chromatic number of an undirected graph G is defined as the maximum of
the oriented chromatic numbers of its orientations. Similarly, the oriented
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Figure 1: An oriented 4-colouring of an oriented graph
−→
G

chromatic number of a class of undirected or oriented graphs is defined as
the maximum of the oriented chromatic numbers of its members.

Figure 1 shows an oriented 4-colouring of an oriented graph
−→
G , viewed as

a homomorphism to an oriented graph
−→
H of order 4. It can easily be checked

that
−→
G admits no oriented 3-colouring, so that χo(

−→
G) = 4.

Observe that conditions (i) and (ii) above imply that any two vertices
connected by a directed path of length 1 or 2 must be assigned distinct
colours in any oriented colouring. We then get for instance that the oriented

chromatic number of the directed cycle
−→
C 5 on five vertices is 5. This property

can also be expressed by saying that homomorphisms of oriented graphs
“preserve” directed paths of length at most 2 (the image of such a path is still
a directed path of the same length). Homomorphisms preserving other types
of configurations, namely paths of length k or trees, have been considered
in [48].

2.2. Oriented cliques

An oriented graph
−→
G is an oriented clique (or, simply, an o-clique) if

χo(
−→
G) = |V (

−→
G)|. Therefore, an oriented graph is an o-clique if and only

if every two of its vertices are connected (in either direction) by a directed
path of length 1 or 2. Every tournament is obviously an o-clique but being
a tournament is not a necessary condition for being an o-clique. Figure 2
depicts some sample o-cliques of order up to 7.

Let
−→
O n be an o-clique of order n. Take now two copies of

−→
O n, a new

vertex v, and add all possible arcs from vertices of the first copy towards v
and all possible arcs from v towards vertices of the second copy. The oriented

graph so-obtained is indeed an o-clique of order 2n + 1. (The o-clique
−→
O 7
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−→
O 1

−→
O 2

−→
O 3

−→
O 4

−→
O 5

−→
O 6

−→
O 7

Figure 2: Sample o-cliques of order k, 1 ≤ k ≤ 7

given in Figure 2 is obtained in this way from the o-clique
−→
O 3, which is itself

so-obtained from the o-clique
−→
O 1.)

An undirected graph G is a k-tree if either G = Kk or G is obtained from
a k-tree H by adding a new vertex connected to a subgraph of H isomorphic
to Kk. A subgraph of a k-tree is a partial k-tree. Every forest is thus a 1-tree
and every outerplanar graph is a partial 2-tree (recall that a planar graph
is outerplanar if it admits a planar embedding such that every vertex lies
on the outerface). In [35], Klostermeyer and MacGillivray proved that the
maximum order of an o-clique whose underlying graph is a partial 2-tree is
7 which implies, in particular, that the maximum order of an outerplanar

o-clique is 7 (observe that the o-clique
−→
O 7 of order 7 depicted in Figure 2 is

indeed outerplanar). They also proved that every planar o-clique has order
at most 36 and conjectured that the maximum order of a planar o-clique is
15. Notice that applying the above-described construction to the outerplanar

o-clique
−→
O 7 produces a planar o-clique of order 15. This conjecture has been

recently settled by Sen [59]:

Theorem 4 (Sen, 2012). The maximum order of a planar o-clique is 15.
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Figure 3: The oriented graph
−→
H p

It was proved in [26] and [37] that the minimum number of edges in an
o-clique of order n is (1 + o(1))n log2 n.

2.3. Oriented clique numbers

The clique number ω(G) of an undirected graph G is the maximum order
of a complete subgraph of G and, obviously, a lower bound on the chro-
matic number of G. We can define the absolute oriented clique number of an

oriented graph
−→
G in a similar way:

Definition 5 (Absolute oriented clique number). The absolute ori-

ented clique number ωao(
−→
G) of an oriented graph

−→
G is the maximum order

of an o-clique subgraph of
−→
G .

However, it may happen that all vertices of a subset S of V (
−→
G) require

distinct colours in every oriented colouring of
−→
G although the subgraph of

−→
G

induced by S is not itself an o-clique. This leads to the notion of the relative
oriented clique number:

Definition 6 (Relative oriented clique number). The relative oriented

clique number ωro(
−→
G) of an oriented graph

−→
G is the maximum cardinality of

a subset S of
−→
G such that every two vertices of S are connected in

−→
G by a

directed path of length 1 or 2.

From these definitions we clearly have, for every oriented graph
−→
G , the

following inequalities:

ωao(
−→
G) ≤ ωro(

−→
G) ≤ χo(

−→
G).
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girth ωao ωro

3 15 15 ≤ ωro ≤ 80

4 6 10 ≤ ωro ≤ 26

5 5 6

6 3 4

≥ 7 3 3

Table 1: Maximum absolute and relative oriented clique numbers of planar graphs with
given girth

The following example (see Figure 3) shows that the difference between
the absolute and the relative clique numbers can be arbitrarily large. Let−→
H p, p ≥ 3, be the bipartite oriented graph given by:

V (
−→
H p) = {xi | 1 ≤ i ≤ p} ∪ {yj,k | 1 ≤ j < k ≤ p},

E(
−→
H p) = {xiyi,j | 1 ≤ i < j ≤ p} ∪ {yi,jxj | 1 ≤ i < j ≤ p}.

Clearly, every two vertices xi and xj, 1 ≤ i < j ≤ p, are connected by a

directed 2-path going through yi,j and, therefore, ωro(
−→
H p) ≥ p. On the other

hand, it is not difficult to check that there is no o-clique subgraph in
−→
H p of

order greater than 3, so that ωao(
−→
H p) = 3.

The maximum value of the absolute and relative clique numbers of planar
oriented graphs with given girth have been studied in [60] and [44]. The
corresponding results are summarized in Table 1.

3. General results

One of the main difficulties when dealing with oriented colourings is that,
contrary to the undirected case, we cannot decide “locally” the availability
of a colour for a given vertex u: if u has some already coloured neighbour v
then, in order to satisfy condition (ii), we need to check the neighbourhood of
all other vertices in the oriented graph having the same colour as v. Hence,
the (ordinary) chromatic number of an undirected graph G is upper bounded
by ∆(G)+1 (by Brook’s Theorem), while its oriented chromatic number can
be exponential in ∆(G) (see the sentence following Theorem 18). Therefore,
it is not surprising that we cannot bound the oriented chromatic number of
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an oriented graph by a function of the ordinary chromatic number of its un-
derlying undirected graph. To see this, consider for instance the orientation−→
Kn,n of the complete bipartite undirected graph Kn,n obtained by orienting
all the edges from the first part of the bipartition to the other part, and then
reversing the orientation of all the edges of any perfect matching of Kn,n.
Doing this, every two vertices are clearly connected by a directed path of

length at most 2, so that χo(
−→
Kn,n) = 2n while χ(Kn,n) = 2.

In this section, we give some general relations between the oriented chro-
matic number of an undirected graph and its acyclic chromatic number or its
maximum average degree. We then consider oriented graphs that are critical
with respect to oriented colourings.

3.1. Graphs with bounded acyclic chromatic number

A proper vertex colouring of an undirected graph G is acyclic if, for every
two colours a and b, the subgraph of G induced by the vertices with colour a
or b is a forest. In other words, every cycle of G uses at least three colours.
The acyclic chromatic number χa(G) of G is then the smallest number of
colours needed by an acyclic colouring of G.

Raspaud and Sopena [58] proved that every graph with bounded acyclic
chromatic number has bounded oriented chromatic number:

Theorem 7 (Raspaud and Sopena, 1994). If G is an undirected graph
with χa(G) ≤ k, then χo(G) ≤ k · 2k−1.

In [50], Ochem proved that this bound is tight for every k ≥ 3. Kostochka,
Sopena and Zhu proved in [38] that, conversely, every class of graphs with
bounded oriented chromatic number has bounded acyclic chromatic number:

Theorem 8 (Kostochka, Sopena and Zhu, 1997). If G is an undi-
rected graph with χo(G) ≤ k, then χa(G) ≤ kdlog2(dlog2 ke+k/2)e+1.

Since every planar graph has acyclic chromatic number at most 5 (a cel-
ebrated result of Borodin, see [8]), we get by Theorem 7 that every planar
graph has oriented chromatic number at most 5 · 24 = 80. This upper bound
is indeed the best known bound for planar graphs up to now (see also Sub-
sections 4.3, 9.1 and Problem 1 in Section 10).
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mad girth χo Author(s)

< 10/3 ≤ 19 Borodin, Kostochka, Nešetřil, Raspaud and Sopena [15]

< 10/3 ≥ 5 ≤ 16 Pinlou [56]

< 3 ≤ 11 Borodin , Kostochka, Nešetřil, Raspaud and Sopena [15]

< 11/4 ≥ 5 ≤ 7 Borodin , Kostochka, Nešetřil, Raspaud and Sopena [15]

< 12/5 ≥ 5 ≤ 5 Borodin, Ivanova and Kostochka [12]

Table 2: Oriented chromatic number of graphs with bounded maximum average degree

3.2. Graphs with bounded maximum average degree

The maximum average degree mad(G) of an undirected graph G is defined
as the maximum of the average degrees of its subgraphs, that is

mad(G) = max
H⊆G

{2|E(H)|
|V (H)|

}
.

Intuitively speaking, the maximum average degree of an undirected graph
provides a measure of its “local density”. Recall that the girth of an undi-
rected graph G is the length of a shortest cycle in G. If G is a planar graph
with girth at least g then, using Euler’s formula, it can be proved that G has
maximum degree less than 2g/(g − 2). Therefore, several authors have con-
sidered the problem of determining the oriented chromatic number of graphs
with bounded maximum average degree (and, sometimes, with high girth),
in order to get upper bounds on the oriented chromatic number of planar
graphs with high girth [12, 15, 56]. The best known upper bounds are sum-
marized in Table 2, some of them giving the best known upper bounds for
planar graphs with high girth (see Subsection 4.3).

3.3. Critical graphs

An oriented graph
−→
G is vertex-critical if, for every vertex u in V (

−→
G),

χo(
−→
G − u) < χo(

−→
G). Similarly, an oriented graph

−→
G is arc-critical if, for

every arc uv in A(
−→
G), χo(

−→
G − uv) < χo(

−→
G).

Let
−→
G be an oriented graph, γ an oriented colouring of

−→
G and u and v two

non-adjacent vertices of
−→
G . By giving two new colours to u and v, we clearly

get an oriented colouring γ′ of
−→
G +uv. Hence, χo(

−→
G +uv)−χo(

−→
G) ≤ 2. On

the other hand, Borodin, Fon-der-Flaass, Kostochka, Raspaud and Sopena [9]
proved that such a universal bound does not exist when we add new vertices:
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Theorem 9 (Borodin et al., 2001). For every k > 0, there exists an ori-

ented graph
−→
G k such that χo(

−→
G k) − χo(

−→
G k − u) ≥ k for every vertex u in

V (
−→
G k) and χo(

−→
G k)− χo(

−→
G k − uv) = 2 for every arc uv in A(

−→
G k).

4. Planar graphs

Due to the famous Four-Colour Theorem for ordinary colourings of undi-
rected planar graphs, it is not surprising that the study of oriented colourings
of various classes of planar graphs has attracted much attention in the liter-
ature.

Since every oriented forest
−→
F contains a vertex with degree 1, it clearly

admits a homomorphism to
−→
C 3, the directed cycle of order 3 (every vertex

in
−→
C 3 has indegree 1 and outdegree 1). Hence, for every undirected forest

F , χo(F ) ≤ 3.

As observed in Section 2, the directed cycle
−→
C 5 on 5 vertices is an o-clique

(
−→
O 5 in Figure 2) and, therefore, has oriented chromatic number 5. It can

be proved that every other oriented cycle has oriented chromatic number at

most 4. Let
−→
C be an oriented cycle. We define the level λ(

−→
C ) of C as the

number of forward arcs minus the number of backward arcs in
−→
C . We then

have:

Proposition 10. If
−→
C is an oriented cycle then:

(1) if the orientation of
−→
C is alternating then χo(

−→
C ) = 2,

(2) if the orientation of
−→
C is not alternating and either λ(

−→
C ) ≡ 0 (mod 3)

or
−→
C does not contain three consecutive arcs with the same direction then

χo(
−→
C ) = 3,

(3) otherwise, χo(
−→
C ) = 4 if

−→
C is not the directed cycle

−→
C 5 on 5 vertices.

Proof. (1) If the orientation of
−→
C is alternating then an oriented 2-colouring

γ is obtained by setting γ(u) = 1 for every source vertex u and γ(v) = 2 for
every sink vertex v.

(2) If the orientation of
−→
C is not alternating, then

−→
C contains a directed

path of length 2, and thus χo(
−→
C ) ≥ 3.

Suppose that λ(
−→
C ) ≡ 0 (mod 3) and let

−→
C = u0u1 . . . un−1u0. A homomor-

phism f of
−→
C to the directed 3-cycle

−→
C 3, with arcs 01, 12 and 20, can be

iteratively constructed as follows: f(u0) = 0 and for every i, 1 ≤ i ≤ n− 1,
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f(ui) = f(ui−1) + 1 (mod 3) if ui−1ui is an arc and f(ui) = f(ui−1) − 1

(mod 3) if uiui−1 is an arc. Since λ(
−→
C ) ≡ 0 (mod 3), we get that f(un−1) = 2

if un−1u0 is an arc and f(un−1) = 1 if u0un−1 is an arc. Hence, f is indeed a

homomorphism of
−→
C to

−→
C 3.

Suppose now that
−→
C does not contain three consecutive arcs with the same

direction. A homomorphism f of
−→
C to the transitive tournament

−→
T 3 of or-

der 3, with arcs 01, 12 and 02, can be constructed as follows: set f(u) = 0
for every source vertex u, f(v) = 2 for every sink vertex v and f(w) = 1 for

every vertex w which is neither a source not a sink. Since
−→
C does not contain

three consecutive arcs with the same direction, the mapping f is well-defined

and is indeed a homomorphism of
−→
C to

−→
T 3.

(3) Assume first that
−→
C is a directed cycle (of length 3, 4 or at least 6). Since

every nonnegative integer, except 1, 2 and 5, can be expressed as a sum of

3’s and 4’s, we can construct an oriented 4-colouring of
−→
C by “splitting” the

cycle into directed paths of length 3 or 4 and colouring each such path 123 or

1234 (in this way, we obtain a homomorphism of
−→
C to the oriented graph of

order 4 with arcs 12, 23, 34, 31 and 41). Hence, χo(
−→
C ) ≤ 4. Since λ(

−→
C ) 6≡ 0

(mod 3), at least one directed 4-path must appear in the above splitting, and

thus χo(
−→
C ) = 4.

Finally, assume that
−→
C = u0u1 . . . un−1u0 is not a directed cycle and, with-

out loss of generality, that u0 is a source vertex. Since
−→
C − {u0} is a path,

it admits a homomorphism to the directed cycle
−→
C 3 of order 3. Hence, by

assigning a fourth colour to the vertex u0, we get χo(
−→
C ) ≤ 4. If χo(

−→
C ) ≤ 3,

then
−→
C admits a homomorphism to

−→
C 3 or

−→
T 3, the transitive tournament of

order 3, which implies that λ(
−→
C ) ≡ 0 (mod 3) or

−→
C does not contain any

directed path of length 3, contradicting the fact that we are not in cases (1)

or (2). Hence χo(
−→
C ) = 4 and we are done. �

4.1. Outerplanar graphs

The maximum oriented chromatic number of an outerplanar undirected
graph was determined in [64]:

Theorem 11 (Sopena, 1997). If G is an outerplanar undirected graph,
then χo(G) ≤ 7 and this bound is tight.
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In fact, this result was shown to hold for the larger class of partial 2-trees.

The tightness of the bound comes from the outerplanar o-clique
−→
O 7 depicted

in Figure 2.
Pinlou and Sopena [57] later determined the oriented chromatic number

of outerplanar graphs (in fact, again more generally, of partial 2-trees) of
given girth:

Theorem 12 (Pinlou and Sopena, 2006). If G is an outerplanar undi-
rected graph with girth g, then
(1) χo(G) ≤ 6 if g ≥ 4, and this bound is tight,
(2) χo(G) ≤ 5 if g ≥ 5, and this bound is tight.

A graph is 2-outerplanar if it has a planar embedding such that the
subgraph obtained by removing the vertices of the outerface is outerpla-
nar. In [24], Esperet and Ochem proved that every 2-outerplanar graph has
oriented chromatic number at most 67. This bound was recently decreased
to 40 by Ochem and Pinlou [53]:

Theorem 13 (Ochem and Pinlou, 2014). If G is a 2-outerplanar undi-
rected graph, then χo(G) ≤ 40.

4.2. Grid graphs

The rectangular grid Gm,n is the Cartesian product (see Subsection 6.3)
of Pm by Pn, the two paths with m and n vertices, respectively. Fertin,
Raspaud and Roychowdhury [25] proved the following:

Theorem 14 (Fertin, Raspaud and Roychowdhury, 2003). For every
integers m,n ≥ 1, χo(Gm,n) ≤ 11.

Moreover, they proved that there exists an orientation of the grid G4,5

with oriented chromatic number 7. They also conjectured that the oriented
chromatic number of every rectangular grid is at most 7, and that every

such grid admits a homomorphism to the Paley tournament
−→
T 7, given by

V (
−→
T 7) = {0, 1, . . . , 6} and uv ∈ A(

−→
T 7) if and only if v ≡ u+ x (mod 7) for

some x ∈ {1, 2, 4}. They proved that this conjecture is true when m = 2, 3.
Szepietowski and Targan [69] later proved that this conjecture is also

true when m = 4 but that the second part of the conjecture fails to be true
whenever m ≥ 5 by providing an orientation of the grid G5,33 which admits no
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homomorphism to the tournament
−→
T 7. The first part of the conjecture was

finally disproved by Dybizbański and Nenca [22] who exhibited an orientation
of the grid G7,212 with oriented chromatic number at least 8.

Bielak [5] studied hexagonal grids Hm,n, made of m rows of n hexagons
and she proved the following:

Theorem 15 (Bielak, 2006). For all integers m,n ≥ 1, χo(Hm,n) ≤ 6.
Moreover, χo(H1,n) = 5 for every n ≥ 3.

4.3. Planar graphs with given girth

In [8], Borodin proved that every undirected planar graph is acyclically
5-colourable. Therefore, using Theorem 7 [58], we get:

Theorem 16 (Raspaud and Sopena, 1994). If G is a planar undirected
graph, then χo(G) ≤ 80.

Despite many efforts, this upper bound has not been improved yet. As
observed in Section 3, there exists a planar o-clique of order 15, which im-
mediately gives χo ≥ 15. This lower bound on the oriented chromatic num-
ber of the class of planar graphs has successively been improved to 16 by
Sopena [66], to 17 by Marshall [40], and to 18, again by Marshall [41].

Several authors have considered the problem of determining the oriented
chromatic number of classes of planar graphs with given girth, successively
improving various lower or upper bounds (see [58], [46], [14], [15], [49], [13],
[10], [11], [24], [12], [43], [52], [56], [53], [41], [42]). The best known lower
and upper bounds are summarized in Table 3 (first reference is for the lower
bound, second reference is for the upper bound).

Borodin, Kim, Kostochka and West [13] considered other surfaces and
proved the following:

Theorem 17 (Borodin, Kim, Kostochka and West, 2004). If G is an
undirected graph with girth at least 13, embeddable on the torus or the Klein
bottle, then χo(G) ≤ 5.

5. Graphs with bounded degree

It was proved in [64] that every undirected graph with maximum degree
∆ has oriented chromatic number at most (2∆− 1) · 22∆−2. This bound was
further decreased as follows [38]:
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girth χo Author(s)

≥ 3 18 ≤ χo ≤ 80 Marshall [41] - Raspaud and Sopena [58]

≥ 4 11 ≤ χo ≤ 40 Ochem [49] - Ochem and Pinlou [53]

≥ 5 7 ≤ χo ≤ 16 Marshall [42] - Pinlou [56]

≥ 6 7 ≤ χo ≤ 11 Marshall [42] - Borodin et al. [15]

≥ 7 6 ≤ χo ≤ 7 Nešetřil et al. [46] - Borodin and Ivanova [10]

≥ 8 5 ≤ χo ≤ 7 Nešetřil et al. [46] - Borodin and Ivanova [10]

≥ 11 5 ≤ χo ≤ 6 Nešetřil et al. [46] - Ochem and Pinlou [52]

≥ 12 χo = 5 Nešetřil et al. [46] - Borodin, Ivanova and Kostochka [12]

Table 3: Oriented chromatic number of planar graphs with large girth

Theorem 18 (Kostochka, Sopena and Zhu, 1997). If G is an undi-
rected graph with maximum degree ∆, then χo(G) ≤ 2 ·∆2 · 2∆.

These authors also proved that for every ∆ ≥ 2, there exists an oriented
graph with maximum degree ∆ and oriented chromatic number at least 2

∆
2 .

The upper bound of Theorem 18 has been specialised by Aravind and
Subramanian [2]. Recall that the degeneracy of an undirected graph G is the
smallest integer d such that every subgraph of G contains a vertex of degree
at most d. Then we have:

Theorem 19 (Aravind and Subramanian, 2009). If G is an undirected
graph with maximum degree ∆ and degeneracy d, then χo(G) ≤ 16 ·∆ · d · 2d.

In [71], Wood proved that every oriented graph of order n with maxi-
mum degree ∆ has oriented chromatic number at most 2 · ∆ ·

√
n− 1 and

constructed such graphs with oriented chromatic number at least ∆ ·
√

n
8
.

It was proved in [64] that every oriented graph with maximum degree 3
has oriented chromatic number at most 16. This upper bound was decreased
to 11 by Sopena and Vignal [68] and has not been improved yet.

The following conjecture was proposed in [64]:

Conjecture 20. Every connected oriented graph with maximum degree 3
has oriented chromatic number at most 7.

If the conjecture is true then the bound of 7 cannot be improved, as shown
by the oriented graph depicted in Figure 4.
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Figure 4: An o-clique of order 7 with maximum degree 3

6. Other graph classes

6.1. Halin graphs

A Halin graph is a planar graph which admits a planar embedding such
that deleting the edges of its external face gives a tree with at least three
vertices. The first result for this class of graphs was proved in [32]:

Theorem 21 (Hosseini Dolama and Sopena, 2006). If G is a Halin
graph, then χo(G) ≤ 9. Moreover, there exist oriented Halin graphs with
oriented chromatic number at least 8.

The exact bound for the oriented chromatic number of Halin graphs has
been recently proved [23]:

Theorem 22 (Dybizbański and Szepietowski, 2014). If G is a Halin
graph, then χo(G) ≤ 8.

6.2. Hypercubes

Let Qd denote the d-dimensional hypercube. Wood [71] proved the fol-
lowing:

Theorem 23 (Wood, 2007). For every integer d ≥ 1,

0.8007... ·
√

2d ≤ χo(Qd) ≤ 2d ·
√

2d − 1.
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6.3. Cartesian products

The Cartesian product of two undirected graphsG andH, denotedG2H,
is the graph defined by V (G2H) = V (G) × V (H) and (u, v)(u′, v′) ∈
E(G2H) if and only if either u = u′ and vv′ ∈ E(H) or v = v′ and
uu′ ∈ E(G).

In [1], Aravind, Narayanan and Subramanian proved that for every undi-
rected graph G:

(1) χo(G2Pk) ≤ (2k − 1) · χo(G), for every k ≥ 2,

(2) χo(G2Ck) ≤ 2k · χo(G), for every k ≥ 3,

where Pk and Ck denote the path and the cycle on k vertices, respectively.
These results were further improved in [67] as follows:

Theorem 24 (Sopena, 2012). For every undirected graph G, we have
(1) χo(G2T ) ≤ 6 · χo(G), for every undirected tree T ,
(2) χo(G2Ck) ≤ 12 · χo(G), for every k ≥ 3, k 6= 5,
(3) χo(G2C5) ≤ 15 · χo(G).

6.4. Fully subdivided graphs

Let G be an undirected graph. We denote by Gs the undirected graph
obtained from G by subdividing exactly once every edge of G. Wood [70]
proved the following:

Theorem 25 (Wood, 2005). For every undirected graph G,
(1) χo(G

s) ≤ 7 if χ(G) ≤ 7,
(2) χo(G

s) ≤ 9 if χ(G) = 8, and this bound is tight,
(3) χo(G

s) = χ(G) if χ(G) ≥ 9,
where χ(G) stands for the ordinary chromatic number of G.

The upper bounds given in this theorem are based on the existence of 2-

existentially closed tournaments [6]: a tournament
−→
T is 2-existentially closed

if, for every two vertices u and v in
−→
T , there exist four vertices a, b, c and

d in
−→
T such that au, av, ub, vb, uc, cv, du and vd are arcs in T . Bonato

and Cameron proved in [7] that 2-existentially closed tournaments of order
n exist only for n = 7 and n ≥ 9. Note that this implies that the bound
given in Theorem 25(2) is tight, since χo(K

s
8) = 8 would imply that the

oriented graph
−→
K s

8, obtained by connecting every two original vertices of
K8 by a directed 2-path, admits a homomorphism to a 2-existentially closed
tournament of order 8, a contradiction.
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6.5. Line-digraphs

An edge-colouring of an undirected graph is nothing but a vertex-
colouring of its line-graph, so that the chromatic index χ′(G) of G is the
chromatic number of the line-graph of G. The same idea applies to oriented
graphs.

Let
−→
G be an oriented graph. The line-digraph of

−→
G , denoted LD(

−→
G), is

the oriented graph whose set of vertices is the set of arcs of
−→
G , and whose set

of arcs if the set of pairs (uv, vw) of “consecutive” arcs in
−→
G . An oriented

k-arc-colouring of
−→
G is then defined as an oriented (vertex) k-colouring of

LD(
−→
G). In other words, an oriented k-arc-colouring of

−→
G is a mapping c

from A(
−→
G) to a set of k colours such that (i) c(uv) 6= c(vw) for every arcs

uv and vw in A(
−→
G) and (ii) c(vw) 6= c(xy) for every arcs uv, vw, xy and yz

in A(
−→
G) with c(uv) = c(yz).

The oriented chromatic index of
−→
G , denoted χ′o(

−→
G), is then the smallest

k such that
−→
G admits an oriented k-arc-colouring.

Let
−→
G be an oriented graph with oriented chromatic number k and γ be

an oriented (vertex) k-colouring of
−→
G . It is not difficult to check that the

mapping c defined by c(uv) = γ(u) for every arc uv in A(
−→
G) is an oriented

k-arc-colouring of
−→
G . Therefore, χ′o(

−→
G) ≤ χo(

−→
G) for every oriented graph

−→
G .

Arc-colourings of oriented graphs have been studied by Ochem, Pinlou
and Sopena [57, 55, 51, 54]. The main results can be summarized as follows:

Theorem 26.

(1) If the underlying undirected graph of
−→
G has acyclic chromatic number

at most k, then χ′o(
−→
G) ≤ 2k(k − 1)− bkc. As a corollary, we get that

every oriented planar graph has chromatic index at most 38. Moreover,
there exist oriented planar graphs with oriented chromatic index at least
10 [54].

(2) If
−→
G is a planar oriented graph with girth g ≥ 46 then χ′o(

−→
G) ≤ 4 [54].

(3) For every partial 2-tree
−→
G , χ′o(

−→
G) ≤ 7 and this bound is tight [57].

(4) Every outerplanar graph with girth g has oriented chromatic index at
most 7 if g ≥ 3, at most 6 is g ≥ 4, at most 5 if 5 ≤ g ≤ 9 and at most
4 if g ≥ 10. Moreover, all these bounds are tight [57].
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(5) Every partial 2-tree with girth g has oriented chromatic index at most
7 if g ≥ 3, at most 6 is g ≥ 5, at most 5 if 7 ≤ g ≤ 17 (tight bound),
and at most 4 if g ≥ 18 (tight bound) [51].

(6) If
−→
G is an oriented graph with maximum degree ∆, then χ′o(

−→
G) ≤

2 · (b∆2

2
c+ ∆) [54].

(7) If
−→
G is an oriented graph with maximum degree 3, then χ′o(

−→
G) ≤ 7,

and there exist such oriented graphs with oriented chromatic index at
least 6 [55].

7. Complexity issues

It is NP-complete to decide whether an undirected graph has ordinary
chromatic number at most k, unless k ≤ 2 [28]. Unsurprisingly, the situation
is quite similar in the oriented case. Consider the following decision problem:

Problem: ocnk (Oriented chromatic number at most k, k ≥ 1)

Instance: An oriented graph
−→
G .

Question: Does
−→
G admit an oriented k-colouring?

Klostermeyer and MacGillivray [36] proved the following:

Theorem 27 (Klostermeyer and MacGillivray, 2004). The problem
ocnk is polynomial if k ≤ 3 and NP-complete if k ≥ 4, even if the input
graph is connected.

Culus and Demange [20] proved that ocn4 is NP-complete even if the
underlying graph of the input graph is bipartite with bounded degree, or
acyclic with bounded degree.

Ganian and Hliněný [27] proved that ocn4 is also NP-complete when
restricted to graphs with K-width 1 and DAG-depth 3 1.

1A digraph G has K-width k if k is the smallest integer such that, for any pair of
vertices u, v ∈ V (G), the number of distinct directed paths from u to v is at most k.
For a digraph G and any v ∈ V (G), let Gv denote the subdigraph of G induced by
the vertices reachable from v. The maximal elements of the poset {Gv : v ∈ V (G)}
in the digraph-inclusion order are then called reachable fragments of G, referred to as
RF(G). The DAG-depth ddp(G) of a digraph G is then inductively defined as follows:
If |V (G)| = 1, then ddp(G) = 1. If G has a single reachable fragment, then ddp(G) =
1 + min{ddp(Gv) : v ∈ V (G)}. Otherwise, ddp(G) = max{ddp(F ) : F ∈ RF(G)}.
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Coelho, Faria, Gravier and Klein [18] proved that ocn4 is still NP-
complete when restricted to connected, planar, bipartite, acyclic oriented
graphs with maximum degree 3. This gives a dichotomy result for ocnk

with respect to the maximum degree since ocnk is polynomial for graphs
with maximum degree at most 2.

The smallest known class of graphs for which the problem ocn4 has been
proved to be NP-complete is the following [29]:

Theorem 28 (Guegan and Ochem, 2014). For any fixed g > 3, decid-

ing whether an oriented graph
−→
G has oriented chromatic number at most 4 is

NP-complete, even if
−→
G is restricted to be a planar graph with girth g, bipar-

tite, subcubic, with DAG-depth 3, with maximum outdegree 2 and maximum
indegree 2, and such that every vertex with degree 3 is adjacent to at most
one vertex of degree 3.

Recall that the oriented chromatic index of an oriented graph
−→
G is de-

fined as the oriented chromatic number of its line-digraph LD(
−→
G) (see Sub-

section 6.5). The associated decision problem is the following:

Problem: ocik (Oriented chromatic index at most k, k ≥ 1)

Instance: An oriented graph
−→
G .

Question: Does LD(
−→
G) admit an oriented k-colouring?

Ochem, Pinlou and Sopena [54] proved the following:

Theorem 29 (Ochem, Pinlou and Sopena, 2008). The problem ocik
is polynomial if k ≤ 3 and NP-complete if k ≥ 4.

Let u and v be any two distinct vertices of an oriented graph
−→
G . The weak

distance between u and v is the shortest length of a directed path connecting

either u to v or v to u. The weak diameter of
−→
G is then the largest weak

distance between pairs of vertices of
−→
G .

In [4], Bensmail, Duvignau and Kirgizov considered the following decision
problem:

Problem: owdk (Orientation with weak diameter k, k ≥ 1)
Instance: An undirected graph G.
Question: Does G admit an orientation with weak diameter k?

They proved the following:
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Theorem 30 (Bensmail, Duvignau and Kirgizov, 2013). The prob-
lem owdk is polynomial if k = 1 and NP-complete if k ≥ 2.

Note that an o-clique is nothing but an oriented graph with weak diameter
at most 2. Clearly, only tournaments have weak diameter 1. Hence we get:

Corollary 31. Deciding whether a non-complete undirected graph admits an
orientation which is an o-clique is NP-complete.

8. The oriented colouring game

Nešetřil and Sopena introduced in [47] the oriented version of the graph
colouring game (see the survey by Bartnicki, Grytczuk, Kierstead and

Zhu [3]). Let
−→
H be any fixed oriented graph. The oriented

−→
H -colouring

game is played on an oriented graph
−→
G by two players, Alice and Bob, who

alternate in turn, Alice having the first move. Each move consists in choosing

an uncoloured vertex u in
−→
G and assigning it a colour α from V (

−→
H ) such

that:

(i) if uv (resp. vu) is an arc in A(
−→
G) and v has colour β, then αβ (resp.

βα) is an arc in A(
−→
H ),

(ii) if there exists a directed 2-path from u to some vertex w with colour
γ, then α 6= γ.

Alice’s goal is to eventually produce a homomorphism of
−→
G to

−→
H while

Bob tries to prevent her from doing so. The oriented game chromatic number

of
−→
G , denoted χg

o(
−→
G), is defined as the smallest k for which there exists an

oriented graph
−→
H of order k such that Alice has a winning strategy when

playing the oriented
−→
H -colouring game on

−→
G .

The authors proved the following:

Theorem 32 (Nešetřil and Sopena, 2001). For every oriented path
−→
P ,

χg
o(
−→
P ) ≤ 7 and this bound is tight. For every oriented tree

−→
T , χg

o(
−→
T ) ≤ 19.

Moreover, they proved that the oriented game chromatic number of every
oriented outerplanar graph is finite and ask whether this is also the case
for planar graphs. This question was answered positively by Kierstead and
Trotter [33] who proved the following more general result:
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Theorem 33 (Kierstead and Trotter, 2001). For every k, there exists

an integer t and a tournament
−→
T t of order t such that, if Γ is a topologically

closed class of graphs (that is, every subgraph or subdivision of a member of Γ
belongs to Γ) and Γ does not contain the complete graph Kk, then Alice wins

the oriented
−→
T t-colouring game on every orientation of any member of Γ.

In [34], Kierstead and Tuza proved that, for every k, the oriented game
chromatic number of the class of oriented partial k-trees is also finite:

Theorem 34 (Kierstead and Tuza, 2003). For every oriented partial k-

tree
−→
T k, χg

o(
−→
T k) ≤ 6k − 2.

9. Weaker versions of oriented colouring

9.1. Simple colourings

Recall that an oriented k-colouring of an oriented graph
−→
G is a partition

of V (
−→
G) into k independent sets such that all the arcs connecting any two

parts have the same direction. If we drop the requirement that every part
must be an independent set, and ask to have at least two non-empty parts
(in order to avoid monochromatic colourings), we get the notion of a simple
k-colouring, introduced by Smoĺıková in 2000 [61]. The simple chromatic

number of
−→
G is then defined as the smallest k such that

−→
G admits a simple

k-colouring.
Note that simple colourings can equivalently be defined by means of sim-

ple homomorphisms, that is, homomorphisms to oriented graphs having a
loop at each vertex with the additional requirement that the homomorphic
image cannot be reduced to a single vertex.

In [61], Smoĺıková proved the following quite surprising result (see
also [62]):

Theorem 35 (Smoĺıková, 2000). The maximum oriented chromatic
number and the maximum simple chromatic number of a planar graph
(resp. a graph with acyclic chromatic number χa, a graph with treewidth k)
coincide.

In particular, this result shows that in order to improve the upper bound
of 80 on the oriented chromatic number of planar graphs (see Theorem 16),
one could “simply” consider simple colourings of planar graphs.
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9.2. 2-dipath colouring

In [17], Chen and Wang introduced and studied 2-dipath colourings of
oriented graphs, that is colourings such that every two vertices connected by
a directed path of length 1 or 2 are assigned distinct colours. Every oriented
colouring is clearly a 2-dipath colouring. On the other hand, there is no
restriction on the orientation of arcs connecting any two colour classes in a
2-dipath colouring. Chen and Wang [17] proved the following:

Theorem 36 (Chen and Wang, 2006). Every orientation of a Halin
graph admits a 2-dipath colouring using 7 colours, and this bound is tight.

Notice that the optimal upper bound on the oriented chromatic number
of Halin graphs is 8 (Theorem 22).

Such 2-dipath colourings thus correspond to the so-called L(1,1)-labellings
of oriented graphs (see [16] for a recent survey on L(h, k)-labellings).

MacGillivray and Sherk [39] recently introduced the improper version of
2-dipath colourings, in which only vertices connected by a directed path of
length 2 are required to get distinct colours. In both the proper and the
improper case, they describe a homomorphism model2, prove a dichotomy
theorem for the complexity of the problem of deciding whether there exists
such a colouring with a fixed number of colours, and give a polynomial time
algorithm for determining the minimum number of colours needed to colour
a given multipartite tournament.

10. Open problems

In this section, we propose some open problems concerning the oriented
chromatic number or the oriented chromatic index of special classes of graphs.

The most challenging one is certainly the following:

Problem 1. Determine the largest possible oriented chromatic number of a
planar graph.

2More precisely, for every integer k ≥ 1, they construct an oriented graph
−→
Hk (resp.

−→
H ′

k) such that for every oriented graph
−→
G ,
−→
G admits a homomorphism to

−→
Hk (resp.

−→
H ′

k)

if and only if
−→
G admits a proper (resp. improper) 2-dipath colouring using at most k

colours.
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We know from Theorem 16 and [41] that the answer to Problem 1 lies
between 18 and 80. Recall also that thanks to Theorem 35 one can consider
simple colourings instead of oriented colourings.

In relation with the above problem, it would also be interesting to improve
the bounds given in Table 1:

Problem 2. Determine the largest possible value of the relative oriented
clique number of planar graphs.

Problem 3. Determine the largest possible value of the relative oriented
clique number of triangle-free planar graphs.

The situation for cubic graphs is also still unknown although the gap
between the best known lower and upper bounds is small. We thus propose
the following:

Problem 4. Determine the largest possible oriented chromatic number of a
cubic graph. Determine the largest possible oriented chromatic number of a
connected cubic graph.

We know from [68] and Figure 4 that the answer to the first part of
Problem 4 lies between 7 and 11. Conjecture 20 claims that the answer to
the second part is 7. Recently, Duffy [21] annouced that he decreased the
upper bound of 11 to 9.

The case of rectangular grids is also quite intriguing:

Problem 5. Determine the largest possible oriented chromatic number of a
rectangular grid.

We know from Theorem 14 and [22] that the answer to Problem 5 lies
between 8 and 11.

The following question was proposed by Raspaud and first results on this
problem were obtained by Wood [71] (see Theorem 23):

Problem 6. Determine the oriented chromatic number of the d-dimensional
hypercube.

We finally propose two questions concerning the oriented chromatic index
of graphs:
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Problem 7. Determine the largest possible oriented chromatic index of a
planar graph.

From Theorem 26(1), we know that the answer to Problem 7 lies be-
tween 10 and 38.

Problem 8. Determine the largest possible oriented chromatic index of a
cubic graph.

From Theorem 26(7), we know that the answer to Problem 8 lies be-
tween 6 and 7.
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On the maximum average degree and the oriented chromatic number of
a graph. Discrete Math., 206:77–89, 1999.

[16] T. Calamoneri. The L(h, k)-labelling problem: An updated survey and
annotated bibliography. Computer J., 54(8):1344–1371, 2014.

[17] M. Chen and W. Wang. The 2-dipath chromatic number of Halin graphs.
Inform. Process. Lett., 99:47–53, 2006.

25



[18] H. Coelho, L. Faria, S. Gravier, and S. Klein. Oriented coloring in
planar, bipartite, bounded degree 3 acyclic oriented graphs. Electron.
Notes Discrete Math., 44:195–200, 2013.

[19] B. Courcelle. The monadic second order logic of graphs VI: On several
representations of graphs by relational structures. Discrete Appl. Math.,
54:117–149, 1994. Erratum in Discrete Appl. Math. 63:199-200, 1995.

[20] J.-F. Culus and M. Demange. Oriented colouring: Complexity and ap-
proximation. In Proc. 32nd International Conference on Current Trends
in Theory and Practice of Computer Science, SOFSEM’2006. Lecture
Notes in Computer Science (LNCS), 3831:226–236, 2006.

[21] C. Duffy. Oriented colouring of bounded degree graphs. In ICGT’14,
9th International Colloquium on Graph Theory and Combinatorics, June
30–July 4, Grenoble, France, 2014.
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