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Colourings of undirected graphs

A (proper) k-colouring of a graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that every two adjacent vertices are assigned distinct colours.

The chromatic number χ(G) of G is the smallest k for which G has a 
k-colouring.
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Homomorphisms of undirected graphs

A homomorphism from G to H is a mapping h : V(G) → V(H) such 
that :

xy ∈ E(G)   ⇒ h(x)h(y) ∈ E(H)

Notation.

G → H : there exists a homomorphism from G to H
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Colourings vs homomorphisms

A k-colouring of G is nothing but a homomorphism from G to Kk, 
the complete graph on k vertices.

Remark.

χ(G) = k if and only if     G → Kk and G → Kk-1
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Oriented graphs

An oriented graph is an antisymmetric digraph (no directed cycle 
of length 1 or 2).

An oriented graph is an orientation of its underlying undirected 
graph, obtained by giving to each edge one of its two possible 
orientations.
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Homomorphisms of oriented graphs

A homomorphism from G to H is a mapping h : V(G) → V(H) such 
that :

xy ∈ E(G)   ⇒ h(x)h(y) ∈ E(H)



Oriented colourings (1)
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Oriented colourings of oriented graphs

An oriented k-colouring of an oriented graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that:

(1) uv ∈ E(G)   ⇒ c(u) ≠ c(v)

(2) uv, xy ∈ E(G), c(u) = c(y)   ⇒ c(v) ≠ c(x)

⇒

Hence, all the arcs linking two colour classes (independent sets) 
must have the same direction (non-local condition...).



Oriented colourings (2)
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Examples.

Any two vertices linked

by a directed path of length 1 or 2 

must get distinct colours.



Oriented colourings (3)
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Remark.

An oriented k-colouring of an oriented graph is nothing but a 
homomorphism to a given oriented graph (or tournament) with k 

vertices.

The target graph gives

the orientation of arcs

linking any two colour

classes...



Oriented chromatic number (1)
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Oriented chromatic number of oriented graphs

The oriented chromatic number χo(G) of an oriented graph G is 
the smallest k for which G admits an oriented k-colouring.

(Or, equivalently, the minimal order of an oriented graph H such 
that G → H)

χo = 4



Oriented chromatic number (2)
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Oriented chromatic number of undirected graphs

The oriented chromatic number χo(U) of an undirected graph U is 
the smallest k for which every orientation of U admits an oriented 
k-colouring: 

χo(U) = max { χo(G) ; G is an orientation of U }

χo = 5

Observation.

χ(U) = min { … }



χo of some graph classes (1)
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� If G is a forest, then χo(G) ≤ 3 (easy)

� Theorem. If G is an outerplanar graph, then χo(G) ≤ 7
(and this bound is tight)

The target graph is the tournament QR7, defined as follows:

- V(QR7) = {0, 1, ..., 6}
- uv ∈ E(QR7)   iff v – u (mod 7) = 1, 2 or 4

(non-zero quadratic residues of 7)

4 3

0

5 2

16
Property. For every arc uv ∈ E(QR7), there 
exists a vertex w for every possible 
orientation of the edges uw and vw:

0

2

1 0 1 0 1 0 1

4 3,5 6



χo of some graph classes (1’’)
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� If G is a forest, then χo(G) ≤ 3 (easy)

� Theorem. If G is an outerplanar graph, then χo(G) ≤ 7
(and this bound is tight)

An outerplanar graph with oriented chromatic number 7:



χo of some graph classes (2)
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Graphs with bounded acyclic chromatic number

A k-colouring of an undirected graph U is acyclic if every cycle in U
uses at least 3 colours.
(In other words, any two colours induce a forest.)

� Theorem. If G has acyclic chromatic number at most a, then 
χo(G) ≤ a.2a-1 (Raspaud, S., 1994)

(and this bound is tight)

(Ochem, 2005)

� Theorem. Every planar graph admits an acyclic 5-coloring (and 

this bound is tight) (Borodin, 1979)

� Corollary. If G is planar, then χo(G) ≤ 80
Best known lower bound : 18 (Marshall, 2012)



χo of some graph classes (3)

Eric Sopena – CCGT 2014 49

Planar graphs

The girth g(G) of G is the size of a shortest cycle in G. 

� The best known results are as follows:

girth
lower
bound

upper 
bound

≥ 3 18 80 Marshall 2012 – Raspaud, S., 1994

≥ 4 11 40 Ochem, 2004 – Ochem, Pinlou, 2011

≥ 5 7 16 Marshall, 2012 – Pinlou, 2009

≥ 6 7 11 id. – Borodin, Kostochka, Nešetřil, Raspaud, S., 1999

≥ 7 6 7 Nešetřil, Raspaud, S., 1997 – Borodin, Ivanova 2005

≥ 8 5 7 Nešetřil, Raspaud, S., 1997 – id.

≥ 11 5 6 id. – Ochem, Pinlou, 2008

≥ 12 5 5 id. – Borodin, Ivanova, Kostochka, 2007



χo of some graph classes (5)
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Graphs with bounded degree

� Every graph G with maximum degree 2, except the directed cycle 
on 5 vertices, satisfies χo(G) ≤ 4 (easy)



Oriented cliques (o-cliques) (1)
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A well-known fact is that the (ordinary) chromatic number χ(G) of 
an undirected graph G is bounded from below by the clique number 
ω(G) of G (maximum order of a clique in G): χ(G) ≥ ω(G).

Of course, a similar relation holds for oriented graphs...

Oriented cliques

An oriented clique C is an oriented graph satisfying χo(C) = |V(C)|.

Remark. An o-clique is nothing 
but an oriented graph in which 
any two vertices are linked by 
a directed path (in any 
direction) of length at most 2.(all tournaments)

Examples.



Oriented cliques (o-cliques) (2)
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Building oriented o-cliques of order 2k - 1

Ok Ok
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Structural properties of o-cliques

� Theorem. The minimum number of edges in an o-clique of order 
n is (1 + o(1))nlog2n.

(Füredi, Horak, Parrek, Zhu, 1998 – Kostochka, Łuczak, Simonyi, S., 1999)

� Theorem. The order of a planar o-clique is at most 36.
(Klostermeyer, MacGillivray, 2002)

� Theorem. The maximum order of a planar o-clique is 15.
(Sen, 2012)



Oriented clique numbers... (1)
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The oriented clique number of an oriented graph may be defined in 
two different ways...

Absolute oriented clique number

The absolute oriented clique number ωao(G) of an oriented graph 
G is the maximum order of an o-clique subgraph of G.

Relative oriented clique number

The relative oriented clique number ωro(G) of an oriented graph G
is the maximum size of a subset S of V(G) satisfying: every two 
vertices in S are linked (in G) by a directed path of length at most 2.



Oriented clique numbers... (2)
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Example.

Clearly, for every oriented graph G, we have:   

ωao(G) ≤ ωro(G) ≤ χo(G)

x1 x2
xi xj xk

yi,j yk-1,ky1,2

ωao = 3
ωro = k



Oriented clique numbers... (3)

Eric Sopena – CCGT 2014 79

For planar graphs with given girth, the following is known:

(Sen, 2013+)
(Nandy, Sen, S., 2014+)

girth ωao ωro

3 15 15 ≤ ... ≤ 80

4 6 10 ≤ ... ≤ 26

5 5 6

6 3 4

≥ 7 3 3



Complexity issues (1)
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We have the following:

� Theorem. OCNk is polynomial if k ≤ 3 and NP-complete if k ≥ 4.
(Klostermeyer, MacGillivray, 2002)

Consider the following decision problem:

OCNk: oriented k-colorability
INSTANCE: an oriented graph G
QUESTION: do we have χo(G) ≤ k?



Complexity issues (2)
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Even even more:

� Theorem. For every fixed g ≥ 3, OCN4 is NP-complete for oriented 
graphs that are planar, with girth at most g, bipartite, subcubic, 
with DAG-depth 3, with maximum outdegree 2 and maximum 
indegree 2, and such that every 3-vertex is adjacent to at most 
one 3-vertex!

(Guegan, Ochem, 2014+)

� Remark. It is polynomial to decide whether an oriented graph 
admits a homomorphism to a tournament T of order 4, except
when T is the following (contains a directed cycle of length 4):



Complexity issues (3)
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Another related problem:

OWDk: orientation with weak diameter k

INSTANCE: an undirected graph U
QUESTION: does U admit an orientation with 

weak diameter k?

weak distance:  dw(u,v) = min { d(u,v), d(v,u) }

� Theorem. OWDk is NP-complete if k ≥ 2.
(Bensmail, Duvignau, Kirgizov, 2013+)

� Corollary. It is NP-complete to decide whether an undirected 
graph U admits an orientation which is an o-clique... 



Simple colourings (1)
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(Recall that) An oriented k-colouring of an oriented G is a partition of 
V(G) into k independent sets in such a way that all the arcs joining 
any two such sets have the same direction:

Simple colourings

� do not require the parts to be independent sets
� require at least two parts... (Nešetřil, Smolíková, 2000)



Simple colourings (1’)
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(Recall that) An oriented k-colouring of an oriented G is a partition of 
V(G) into k independent sets in such a way that all the arcs joining 
any two such sets have the same direction:

Simple colourings

� do not require the parts to be independent sets
� require at least two parts... (Nešetřil, Smolíková, 2000)



Simple colourings (1’’)
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Simple colourings

� do not require the parts to be independent sets
� require at least two parts... (Nešetřil, Smolíková, 2000)

For every oriented graph G,
χs(G) ≤ χo(G)



Simple colourings (2)
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Simple colourings

� do not require the parts to be independent sets
� require at least two parts... (Nešetřil, Smolíková, 2000)

For every oriented graph G,
χs(G) ≤ χo(G)

� Theorem. The maximum oriented chromatic number of planar 
graphs and the maximum simple chromatic number of planar 
graphs coincide... (Smolíková, 2000)



2-dipath colouring (1)
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In 2006, Chen and Wang introduced another weaker version of 
oriented colouring:

2-dipath colouring

A 2-dipath k-colouring of an oriented graph G is a mapping 

c : V(G) → {1, 2, ..., k} 

such that any two vertices linked by a directed path of length 1 or 2

get distinct colours.

but is allowed...

implies



2-dipath colouring (2)
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Remark. A 2-dipath colouring of an oriented graph G may also be 
viewed as a L(1,1)-labelling of G (using directed distance).

We have the following results:

� For every oriented graph G, χ2d(G) ≤ χo(G) (definition)

� For every oriented graph G, χ2d(G) ≥ ωro(G) ≥ ωao(G) (definition)

From these observations, we get:

� If G is an oriented outerplanar graph, then χ2d(G) ≤ 7, and this 
bound is tight

(recall that there exists an outerplanar o-clique of order 7)

� If G is an oriented planar graph, then χ2d(G) ≤ 80, and there exist 
planar graphs with 2-dipath chromatic number 15.



2-dipath colouring (3)
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� Theorem. If G is an oriented Halin graph, then χ2d(G) ≤ 7 (and this 
bound is tight). (Chen, Wang, 2006)

A tree with no
vertex of degree 2

� Theorem. Determining whether an oriented graph is 2-dipath k-
colourable is polynomial if k ≤ 2 and NP-complete if k ≥ 3

(MacGillivray, Sherk, 2014)



A homomorphism model (1)
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[MacGillivray, Sherk, 2014]

Let Gk, k ≥ 1, be the oriented graph defined as follows:

� V(Gk) = { (u0 ; u1, ..., uk) : 1 ≤ u0 ≤ k, ui ∈ {+,–} if i ≠ u0, uu0 = * }

� E(Gk) = { (u0 ; u1, ..., uk)(v0 ; v1, ..., vk) : uv0 = +, vu0 = – }

Example. The oriented graph G3     (3.22 = 12 vertices)

(1;*++) (1;*+-) (1;*-+) (1;*--)

(2;+*+)

(2;+*-)

(2;-*+)

(2;-*-)

(3;++*)

(3;+-*)

(3;-+*)

(3;--*)



A homomorphism model (2)
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� Theorem. For every k ≥ 1 and every oriented graph G,
χ2d(G) ≤ k iff G → Gk

(MacGillivray, Sherk, 2014)

(1;*++) (1;*+-) (1;*-+) (1;*--)

(2;+*+)

(2;+*-)

(2;-*+)

(2;-*-)

(3;++*)

(3;+-*)

(3;-+*)

(3;--*)


