Homomorphisms and colourings of oriented graphs

Éric SOPENA LaBRI, Bordeaux University France

SEVENTH CRACOW CONFERENCE ON GRAPH THEORY "RYTRO '14" September 14-19, 2014 Rytro, Poland

Colourings of undirected graphs

A (proper) *k*-colouring of a graph *G* is a mapping $c: V(G) \rightarrow \{1, 2, ..., k\}$

such that every two *adjacent vertices* are assigned *distinct colours*.

The chromatic number $\chi(G)$ of G is the smallest k for which G has a k-colouring.

Preliminary (basic) notions

Homomorphisms of undirected graphs

A homomorphism from G to H is a mapping $h : V(G) \rightarrow V(H)$ such that :

 $xy \in E(G) \implies h(x)h(y) \in E(H)$

Notation.

 $G \rightarrow H$: there exists a homomorphism from G to H

A *k*-colouring of *G* is nothing but a *homomorphism* from *G* to K_k , the *complete graph* on *k* vertices.

Remark.

 $\chi(G) = k$ if and only if $G \to K_k$ and $G \not\to K_{k-1}$

Preliminary (basic) notions

Oriented graphs

An oriented graph is an *antisymmetric* digraph (no directed cycle of length 1 or 2).

An oriented graph is an *orientation* of its underlying undirected graph, obtained by giving to each edge one of its two possible orientations.

Preliminary (basic) notions

Homomorphisms of oriented graphs

A homomorphism from G to H is a mapping $h : V(G) \rightarrow V(H)$ such that :

$xy \in E(G) \implies h(x)h(y) \in E(H)$

Oriented colourings of oriented graphs

An oriented *k*-colouring of an oriented graph *G* is a mapping $c: V(G) \rightarrow \{1, 2, ..., k\}$

such that:

(1)
$$uv \in E(G) \implies c(u) \neq c(v)$$

(2) $uv, xy \in E(G), c(u) = c(y) \implies c(v) \neq c(x)$

Hence, all the arcs linking two colour classes (independent sets) *must have the same direction* (non-local condition...).

Oriented colourings

Examples.

Any two vertices linked by a directed path of length 1 or 2 must get distinct colours.

(2)

Oriented colourings

(3)

Remark.

An oriented *k*-colouring of an oriented graph is nothing but a *homomorphism* to a given oriented graph (or *tournament*) with *k* vertices.

The target graph gives the orientation of arcs linking any two colour classes...

Oriented chromatic number of oriented graphs

The oriented chromatic number $\chi_o(G)$ of an oriented graph G is the smallest k for which G admits an oriented k-colouring. (Or, equivalently, the minimal order of an oriented graph H such that $G \rightarrow H$)

Oriented chromatic number of <u>undirected</u> graphs

The oriented chromatic number $\chi_0(U)$ of an *undirected* graph U is the smallest k for which *every orientation* of U admits an oriented k-colouring:

 $\chi_{o}(U) = \max \{ \chi_{o}(G) ; G \text{ is an orientation of } U \}$

χ_o of some graph classes

 \succ If G is a forest, then $\chi_o(G) \leq 3$

➤ Theorem. If G is an outerplanar graph, then $\chi_o(G) \le 7$ (and this bound is tight)

The target graph is the tournament QR_7 , defined as follows:

-
$$V(QR_7) = \{0, 1, ..., 6\}$$

- $uv \in E(QR_7)$ iff $v - u \pmod{7} = 1, 2 \text{ or } 4$
(non-zero quadratic residues of 7)

Eric Sopena – CCGT 2014

(easy)

χ_o of some graph classes

 \succ If *G* is a forest, then $\chi_o(G) ≤ 3$

➤ Theorem. If G is an outerplanar graph, then $\chi_o(G) \le 7$ (and this bound is tight)

An outerplanar graph with oriented chromatic number 7:

(1")

(easy)

Graphs with bounded acyclic chromatic number

A *k*-colouring of an undirected graph *U* is acyclic if every cycle in *U* uses *at least 3 colours*.

(In other words, any two colours induce a forest.)

Theorem. If G has acyclic chromatic number at most a, then $\chi_0(G) \le a.2^{a-1}$ (Raspaud, S., 1994) (and this bound is tight)

(Ochem, 2005)

- Theorem. Every planar graph admits an acyclic 5-coloring (and this bound is tight) (Borodin, 1979)
- ➤ Corollary. If G is planar, then $\chi_o(G) \le 80$ Best known lower bound : 18

(Marshall, 2012)

(3)

Planar graphs

The girth g(G) of G is the size of a *shortest* cycle in G.

> The best known results are as follows:

girth	lower bound	upper bound		
≥ 3	18	80	Marshall 2012 – Raspaud, S., 1994	
≥4	11	40	Ochem, 2004 – Ochem, Pinlou, 2011	
≥ 5	7	16	Marshall, 2012 – Pinlou, 2009	
≥6	7	11	id. – Borodin, Kostochka, Nešetřil, Raspaud, S., 1999	
≥7	6	7	Nešetřil, Raspaud, S., 1997 – Borodin, Ivanova 2005	
≥8	5	7	Nešetřil, Raspaud, S., 1997 – id.	
≥11	5	6	id. – Ochem, Pinlou, 2008	
≥12	5	5	id. – Borodin, Ivanova, Kostochka, 2007	

Graphs with bounded degree

➢ Every graph G with maximum degree 2, except the directed cycle on 5 vertices, satisfies $\chi_o(G) ≤ 4$ (easy)

(1)

A well-known fact is that the (ordinary) chromatic number $\chi(G)$ of an undirected graph G is bounded from below by the clique number $\omega(G)$ of G (maximum order of a clique in G): $\chi(G) \ge \omega(G)$.

Of course, a similar relation holds for oriented graphs...

Oriented cliques

An oriented clique C is an oriented graph satisfying $\chi_o(C) = |V(C)|$.

Examples.

Remark. An o-clique is nothing but an oriented graph in which any two vertices are linked by a directed path (in any direction) of length at most 2.

Oriented cliques (o-cliques)

Building oriented o-cliques of order 2^k - 1

Structural properties of o-cliques

Theorem. The minimum number of edges in an o-clique of order n is (1 + o(1))nlog₂n.

(Füredi, Horak, Parrek, Zhu, 1998 – Kostochka, Łuczak, Simonyi, S., 1999)

> **Theorem.** The order of a *planar* o-clique is at most 36.

(Klostermeyer, MacGillivray, 2002)

Theorem. The maximum order of a *planar* o-clique is 15.

(Sen, 2012)

3

(1)

The oriented clique number of an oriented graph may be defined in two different ways...

Absolute oriented clique number

The absolute oriented clique number $\omega_{ao}(G)$ of an oriented graph G is the maximum order of an o-clique subgraph of G.

Relative oriented clique number

The relative oriented clique number $\omega_{ro}(G)$ of an oriented graph G is the maximum size of a subset S of V(G) satisfying: every two vertices in S are linked (in G) by a directed path of length at most 2.

Oriented clique numbers...

(2)

Example.

Clearly, for every oriented graph G, we have:

 $\omega_{ao}(G) \le \omega_{ro}(G) \le \chi_{o}(G)$

(3)

For planar graphs with given girth, the following is known:

girth	ω _{ao}	ω _{ro}
3	15	$15 \leq \leq 80$
4	6	$10 \leq \ldots \leq 26$
5	5	6
6	3	4
≥ 7	3	3

(Sen, 2013+) (Nandy, Sen, S., 2014+)

(1)

Consider the following decision problem:

OCN_k: oriented k-colorability INSTANCE: an oriented graph G QUESTION: do we have $\chi_o(G) \le k$?

We have the following:

For theorem. OCN_k is polynomial if $k \le 3$ and NP-complete if $k \ge 4$.

(Klostermeyer, MacGillivray, 2002)

(2)

Even even more:

Theorem. For every fixed g ≥ 3, OCN₄ is NP-complete for oriented graphs that are planar, with girth at most g, bipartite, subcubic, with DAG-depth 3, with maximum outdegree 2 and maximum indegree 2, and such that every 3-vertex is adjacent to at most one 3-vertex!

(Guegan, Ochem, 2014+)

Remark. It is *polynomial* to decide whether an oriented graph admits a homomorphism to a tournament *T* of order 4, except when *T* is the following (contains a directed cycle of length 4):

(3)

Another related problem:

OWD_k: orientation with weak diameter k INSTANCE: an undirected graph U

QUESTION: does *U* admit an orientation with weak diameter *k*?

weak distance: $d_w(u,v) = min \{ d(u,v), d(v,u) \}$

> **Theorem.** OWD_k is NP-complete if $k \ge 2$.

(Bensmail, Duvignau, Kirgizov, 2013+)

Corollary. It is NP-complete to decide whether an undirected graph U admits an orientation which is an o-clique...

(1)

(Recall that) An oriented *k*-colouring of an oriented *G* is a partition of V(G) into *k* independent sets in such a way that all the arcs joining any two such sets have the same direction:

Simple colourings

- b do not require the parts to be independent sets
- require at least two parts...

(1')

(Recall that) An oriented *k*-colouring of an oriented *G* is a partition of V(G) into *k* independent sets in such a way that all the arcs joining any two such sets have the same direction:

Simple colourings

- b do not require the parts to be independent sets
- require at least two parts...

(1'')

- > do not require the parts to be independent sets
- require at least two parts...

Simple colourings

- Theorem. The maximum oriented chromatic number of planar graphs and the maximum simple chromatic number of planar graphs coincide... (Smolíková, 2000)
- $For every oriented graph G, \\ \chi_{s}(G) \leq \chi_{o}(G)$
 - b do not require the parts to be independent sets
 - require at least two parts...

(1)

In 2006, Chen and Wang introduced another weaker version of oriented colouring:

2-dipath colouring

A 2-dipath *k*-colouring of an oriented graph *G* is a mapping

 $c:V(G)\to \{1,\,2,\,...,\,k\}$

such that any two vertices linked by a *directed path of length 1 or 2* get distinct colours.

Remark. A 2-dipath colouring of an oriented graph G may also be viewed as a L(1,1)-labelling of G (using directed distance).

We have the following results:

- For every oriented graph G, $\chi_{2d}(G) \le \chi_{o}(G)$ (definition)
- For every oriented graph G, $\chi_{2d}(G) ≥ ω_{ro}(G) ≥ ω_{ao}(G)$ (definition)

From these observations, we get:

If G is an oriented outerplanar graph, then $\chi_{2d}(G) ≤ 7$, and this bound is tight

(recall that there exists an outerplanar o-clique of order 7)

If G is an oriented planar graph, then $\chi_{2d}(G) ≤ 80$, and there exist planar graphs with 2-dipath chromatic number 15.

(3)

➤ Theorem. If G is an oriented Halin graph, then $\chi_{2d}(G) \leq 7$ (and this bound is tight).
(Chen, Wang, 2006)

➤ Theorem. Determining whether an oriented graph is 2-dipath k-colourable is polynomial if $k \le 2$ and NP-complete if $k \ge 3$

(MacGillivray, Sherk, 2014)

[MacGillivray, Sherk, 2014]

Let G_k , $k \ge 1$, be the oriented graph defined as follows:

$$V(G_k) = \{ (u_0; u_1, ..., u_k) : 1 \le u_0 \le k, u_i \in \{+, -\} \text{ if } i \ne u_0, u_{u0} = * \}$$

$$V(G_k) = \{ (u_0; u_1, ..., u_k) (v_0; v_1, ..., v_k) : u_{v0} = +, v_{u0} = - \}$$

Example. The oriented graph G_3 (3.2² = 12 vertices)

(1)

➤ Theorem. For every $k \ge 1$ and every oriented graph G, $\chi_{2d}(G) \le k \text{ iff } G \to G_k$

(MacGillivray, Sherk, 2014)

(2)

