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e.Abstra
t. A time-stamp system allows to maintain in a distributed way a total order among a set of obje
tsby assigning them some labels or time-stamps. An elementary operation 
onsists in moving one of theseobje
ts from the ith position to the �rst one by only modifying its time-stamp. We introdu
e the notion ofinterpolation system, whi
h generalizes the previous notion by allowing the obje
ts to move from any position toany other position. Time-stamp systems and interpolation systems 
an be des
ribed as dire
ted graphs (whoseverti
es stand for time-stamps) satisfying some spe
ial properties. We study in this paper di�erent 
onstru
tionme
hanisms leading to su
h systems.Keywords. Distributed systems, Time-stamp systems, Interpolation systems.1 Introdu
tionOne of the frequently addressed problems in distributed 
omputing 
onsists in maintaining somestru
ture on a set of obje
ts (data, events) by means of some additional information, 
alled time-stamp, asso
iated with ea
h of these obje
ts. For instan
e, a distributed implementation of a singlepie
e of data, or variable, 
an be a
hieved as follows : ea
h pro
ess holds a multi-reader-single-writerregister [6℄ asso
iated with this variable. If a pro
ess wants to determine the a
tual 
ontents of thevariable, it s
ans all the registers and, thanks to the time-stamps, 
ompute the last modi�ed value.In order to modify the 
ontents of the variable, a pro
ess must be able to 
ompute a new time-stampsu
h that all pro
esses will 
onsider that time-stamp as the most re
ent one. The register then writesthe new value of the variable, as well as the 
omputed time-stamp, in its own register. Depending onwhether overlapping a
tions of pro
esses are allowed or not, one speaks about 
on
urrent or sequentialsystems.We 
onsider in this paper sequential time-stamp systems and generalize them by introdu
ing thenew 
on
ept of interpolation system. The general time-stamping problem 
an be illustrated as follows :the mailbox problem : A set of users share a 
ommon mailbox. At any time, the mailbox may
ontain at most one message per user : when a user wants to put a message in the mailbox he�rst removes his old own message, if ne
essary. Every time a message is put in the mailbox, it isasso
iated with a time-stamp. The aim of this time-stamping me
hanism is the following : by lookingat any two time-stamps 
urrently in the mailbox one must be able to determine the real-time order oftheir respe
tive deposit dates.Su
h a system allows to maintain a total order (here the temporal order) among a set of obje
ts(the messages). The time-stamps allow to 
ompare, with respe
t to that order, any two messages in1With the support of the European Basi
 Resear
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2 Combinatorial 
onstru
tion of time-stamp systems and interpolation systemsthe mailbox. We are thus able to retrieve the total order among all the 
urrent messages. A systemsu
h that the time-stamps simply allow us to retrieve the last 
reated message is 
alled a weak time-stamp system [2, 11℄ (su
h a system gives us a solution for the distributed implementation of a variabledis
ussed before). In [9℄, Saks and Zaharoglou 
onsidered a time-stamp system, whi
h 
ould be 
alledglobal , allowing to retrieve the total order among the messages by looking at all the time-stamps atthe same time. This system does not allow to 
ompare any given pair of messages.Isra�eli et Li [5℄ have shown that the time-stamping problem 
an be solved by using a �nite setof time-stamps when the set of users is bounded. They proposed a 
ombinatorial solution to thatproblem by means of a dire
ted antisymmetri
 graph (whose verti
es are the time-stamps) satisfyingsome spe
i�
 property.Another distin
tion 
an be made depending on whether we require the time-stamp to 
ontain theidentity of the user or not. In this 
ase, we speak about signed or unsigned systems. In the signed 
ase,ea
h user has his own set of time-stamps. In the unsigned 
ase, ea
h time-stamp may be indi�erentlyused by any of the users. The time-stamping problem in the signed 
ase has been optimally solved byZielonka [13℄.We introdu
e here the notion of interpolation system, whi
h allows a user to insert his new messagein any position within the set of 
urrent messages. The total order among the messages thus obtaineddoes no longer ne
essarily re
e
t the temporal order of their deposit dates. Su
h systems may also bedes
ribed by means of antisymmetri
 dire
ted graphs. We are then interested in several 
onstru
tionme
hanisms leading to su
h graphs for both time-stamp and interpolation systems. We prove thatZielonka's solution also provides an optimal solution for interpolation systems in the signed 
ase. Forthis reason, we will essentially 
onsider in the following the unsigned 
ase.This paper is organized as follows : we introdu
e in se
tion 2 the main de�nitions and properties wewill use in the sequel. The following se
tions are devoted to several 
onstru
tion me
hanisms leadingto time-stamp and interpolation systems. All 
omplete proofs 
an be found in [1℄.2 De�nitions and basi
 propertiesA dire
ted graph G is given as a �nite set of verti
es V (G) and a set of ar
s A(G) � V (G) � V (G).We will only 
onsider loopless and antisymmetri
 dire
ted graphs (that is su
h that (x; y) 2 A(G) =)(y; x) =2 A(G)), simply 
alled graphs later on. If (x; y) is an ar
, we say that x is a prede
essor of y andthat y is a su

essor of x. We denote by �+G(x) (resp. ��G(x)) the set of su

essors (resp. prede
essors)of a vertex x in G. The subgraph of G indu
ed by the su

essors (resp. prede
essors) of x is denotedby G+x (resp. G�x ).A sequen
e of verti
es (y1; y2; : : : ; yp) is 
alled an ordered sequen
e if for any i; j with 1 � i < j � p,yj is a su

essor of yi. We will say that a vertex x is a su

essor (resp. prede
essor) of an orderedsequen
e (y1; y2; : : : ; yp) if for any i, 1 � i � p, x is a su

essor (resp. prede
essor) of yi. By 
onvention,we will 
onsider that any vertex is a su

essor and a prede
essor of the empty sequen
e.De�nition 1 Let k be a stri
tly positive integer ; a graph G is a time-stamp system of order k if thefollowing 
ondition holds :(Ek) any ordered sequen
e in G having at most k � 1 elements has a su

essor.Su
h a graph gives a solution to the above-stated mailbox problem (for k users) as follows : we usethe verti
es of G as time-stamps and the pre
eden
e relation is given by the set of ar
s. When a userwants to put a new message in the mailbox he 
hooses as time-stamp a vertex whi
h is a su

essor ofthe verti
es 
urrently in the mailbox. It is not diÆ
ult to 
he
k that by using this algorithm, the setof time-stamps whi
h are 
urrently in the mailbox is always an ordered sequen
e in G. Property (Ek)ensures that a su

essor for su
h a sequen
e will always exist.De�nition 2 Let k be a stri
tly positive integer ; a graph G is an interpolation system of order k ifthe following 
ondition holds :



V. Albiero and E. Sopena 3(Ik) any ordered sequen
e (s1; s2; : : : ; sp) in G having at most k � 1 elements is su
h that :8 1 � i � p+ 1; 9 yi 2 V (G) = ( 1 � j < i =) (sj; yi) 2 A(G)i � j � p =) (yi; sj) 2 A(G):We will say that su
h a sequen
e 
an be interpolated in G. The value i is the interpolation positionand yi is said to be inserted in position i.Note that property (Ik) generalizes property (Ek). Hen
e, any interpolation system is also atime-stamp system of the same order.Example 3 A graph satis�es the property (E2) (resp. (I2)) if all its verti
es have a su

essor (resp.a su

essor and a prede
essor). The smallest time-stamp system (resp. interpolation system) of order2 is thus the dire
ted 
y
le C3 on three verti
es.The following properties will be useful in the next se
tions.Proposition 4 [5℄ A graph G is a time-stamp system of order k if and only if for any vertex x inV (G) the subgraph G+x is a time-stamp system of order k � 1.This property allows us to establish a lower bound on the number of verti
es in a time-stamp systemof order k :Corollary 5 [2, 5℄ If G is a time-stamp system of order k, then jV (G)j � 2k � 1.This lower bound 
an be rea
hed for k = 2 (the dire
ted 
y
le C3) and k = 3 (see the graph QR7in se
tion 5). For k = 4, it 
an be proved that there is no time-stamp system with 15 verti
es. Theoptimal graph in this 
ase has 16 verti
es and is due to Tromp [12℄ (see se
tion 6).A similar property 
an be derived for interpolation systems :Proposition 6 A graph G is an interpolation system of order k if and only if for any vertex x inV (G) the subgraphs G+x and G�x are both interpolation systems of order k � 1.Proof. Let us �rst show that if G is an interpolation system of order k then for any x 2 V (G), G+xis an interpolation system of order k � 1. Let (y1; y2; : : : ; yp) be an ordered sequen
e in G+x having atmost k�2 elements ; then (x; y1; y2; : : : ; yp) is an ordered sequen
e in G having at most k�1 elementswhi
h 
an be interpolated. For any interpolation position i, 2 � i � p+1, the inserted vertex belongsto G+x . Hen
e, the sequen
e (y1; y2; : : : ; yp) 
an be interpolated in G+x . In a similar way, it 
an beshown that G�x is also an interpolation system of order k � 1. Conversely, let (x1; x2; : : : ; xq) be anyordered sequen
e in G having at most k�1 elements. Sin
e G+x1 (resp. G�xq ) is an interpolation systemof order k � 1, this sequen
e 
an be interpolated in any position i, 2 � i � q + 1 (resp. 1 � i � q). 2Note that for interpolation systems, we do not have up to now a better lower bound than fortime-stamp systems (2k � 1 verti
es).In the following se
tions we introdu
e di�erent 
onstru
tion me
hanisms for time-stamp systemsand interpolation systems.3 The lexi
ographi
 produ
tThis method is well-known in graph theory and leads to solutions for time-stamp systems.De�nition 7 Let G and H be two graphs : the lexi
ographi
 produ
t of G and H, denoted by G
H,is the graph whose set of verti
es is V (G) � V (H) and whose set of ar
s is given by :((x; y); (x0; y0)) 2 A(G
H)() (x; x0) 2 A(G) or (x = x0 and (y; y0) 2 A(H)):



4 Combinatorial 
onstru
tion of time-stamp systems and interpolation systemsProposition 8 [2, 5℄ If G and H are two time-stamp systems of respe
tive orders k and ` then G
His a time-stamp system of order k + `� 1.Example 9 Figure 1 depi
ts the graph C3 
 C3. The double-arrows linking two 
onse
utives 
opiesof C3 stand for an ar
 from any vertex of one 
opy towards any vertex of the following 
opy. Thegraph C3 satis�es the property (E2), the graph C3 
 C3 thus satis�es the property (E3) : one 
aneasily 
he
k that every ordered sequen
e having at most 2 elements (that is every vertex and everyar
) has a su

essor.This 
onstru
tion allows us to obtain time-stamp systems of any order : by applying k � 2 timesthis 
onstru
tion to the graph C3, we obtain a time-stamp system of order k having 3k�1 verti
es.However, this 
onstru
tion 
annot be used for interpolation systems as shown by the following remark.Remark 10 The graph C3 satis�es the property (I2) but the graph C3 
 C3 does not satisfy theproperty (I3). One 
an see for instan
e that the ordered sequen
e (0; 1) 
annot be interpolated inposition 2 : 0 does not have any su

essor whi
h is a prede
essor of 1.4 Zielonka's 
onstru
tionThis 
onstru
tion has been proposed by Zielonka [13℄ as a generalization of a 
onstru
tion initiallyintrodu
ed by Lamport [6℄, and gives an optimal solution for time-stamp systems in the signed 
ase.We prove that the graphs thus obtained also give solutions for interpolation systems. Sin
e everyinterpolation system is a time-stamp system, those solutions are also optimal in the signed 
ase.De�nition 11 Let k be a stri
tly positive integer : the Zielonka graph of order k, denoted by Zk, isgiven by :(i) V (Zk) = f(�; x1; : : : ; xk) 2 f1; 2; : : : ; kg � f0; 1gk=x� = 0g(ii) ((�; x1; : : : ; xk); (�; y1; : : : ; yk)) 2 A(Zk)() 8><>: (� < � and x� = y�)or(� > � and x� 6= y�):Note that the graph Zk has exa
tly k � 2k�1 verti
es.Proposition 12 The graph Zk is an interpolation system of order k.Proof. Note �rst that there is no ar
 between any two verti
es having the same �rst 
omponent.Thus, any ordered sequen
e S = (s1; s2; : : : ; sp) in Zk is su
h that the �rst 
omponents of its verti
esare pairwise distin
t. If S has at most k�1 elements then there exists a �rst 
omponent, say �, whi
hdoes not appear in S. In order to interpolate S in position i, 1 � i � p + 1, it suÆ
es to insert thevertex x = (�; x1; x2; : : : ; xk) given by :(i) x� = 0,(ii) if no element in S has � as �rst 
omponent then x� = 0,(iii) if sj = (�; y1; y2; : : : ; yk) 2 S then :{ if j < i, x� = y� if � < �, x� = 1� y� otherwise,{ if j � i, x� = 1� y� if � < �, x� = y� otherwise. 2
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Figure 1: The graph C3 
 C35 Rotational tournamentsThe notion of time-stamp system is related to a property of tournaments, stronger than (Ek), initially
onsidered by S
h�utte and Erd�os [3, 8℄ : a tournament T satis�es the property (Sk) is every set havingat most k � 1 verti
es in T has a su

essor (in 
ase of time-stamp systems, only ordered sequen
esare 
onsidered). Szekeres and Szekeres [10℄ have proved that su
h a tournament must have at least2k�2(k + 1) � 1 verti
es ; they also gave in their paper two sample tournaments having 7 and 19verti
es whi
h respe
tively satisfy the properties (S3) and (S4). By using some results from grouptheory, Graham et Spen
er [4℄ gave a 
onstru
tion whi
h, for any value of k, leads to a tournamentsatisfying the property (Sk).Every tournament satisfying the property (Sk) is obviously a time-stamp system of order k. How-ever, the 
onverse is not ne
essarily true : the graph C3 
 C3 
 C3 is a tournament whi
h does notsatisfy the property (S4) although it satis�es the property (E4) by 
onstru
tion.We show in this se
tion that the tournaments introdu
ed by Graham and Spen
er are also inter-polation systems.De�nition 13 Let p be a prime, 
ongruent to 3 modulo 4. The rotational tournament QRp, obtainedfrom the quadrati
 residues of p [7℄ is de�ned by :(i) V (QRp) = f0; 1; : : : ; p� 1g,(ii) A(QRp) = f(i; j) = j � i is a non-zero quadrati
 residue of pg.One 
an 
he
k that this 
onstru
tion leads to an antisymmetri
 dire
ted graph : sin
e p is 
ongruentto 3 modulo 4, if j � i is a non-zero quadrati
 residue of p then i� j is not [7℄.Example 14 The tournament depi
ted in Figure 2 is QR7. The non-zero quadrati
 residues of 7 are1; 2; 4. These are the su

essors of 0. The su

essors of any vertex are dedu
ed from the su

essorsof 0 by applying a rotation. It is not diÆ
ult to 
he
k that the graph QR7 satis�es the property (S3)(and thus (E3)) as well as the property (I3).In [4℄ Graham and Spen
er proved that for any k, there exists an integer Nk su
h that everytournament of QRp type, with p > Nk, satis�es the property (Sk). The proof of this result 
an beextended to interpolation systems [1℄ :Theorem 15 If p is a prime 
ongruent to 3 modulo 4, p > (k � 1)222k�4, then the tournament QRpis an interpolation system of order k.
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Figure 3: Tromp's 
onstru
tionSmaller values of p may lead to tournaments whi
h are also interpolation systems : we have seenthat QR3 = C3 satis�es the property (I2) and that QR7 satis�es the property (I3). One 
an also
he
k for instan
e that QR19 satis�es the property (I4), that QR47 satis�es the property (I5) and thatQR271 satis�es the property (I6).6 Tromp's 
onstru
tionThis method was initially proposed by Tromp [12℄ for building a time-stamp system of order 4. This
onstru
tion is based on the graph QR7 and leads to a solution with 16 verti
es. This 
onstru
tion
an in fa
t be applied to any graph. We show in this se
tion that this 
onstru
tion 
an be used toobtain time-stamp systems and interpolation systems of any order.De�nition 16 Let G be a graph, and G an isomorphi
 
opy of G. The \Tromp's 
onstru
tion"applied to G, denoted by Tr(G), is the graph obtained as follows :(i) V (Tr(G)) = V (G) [ V (G) [ fw;wg(ii) 8 x 2 V (G); (x;w); (w; x); (w; x); (x;w) 2 A(Tr(G)),(iii) 8 x; y 2 V (G); (x; y) 2 A(G) =) (x; y); (x; y); (y; x); (y; x) 2 A(Tr(G)).By 
onstru
tion, the graph Tr(G) satis�es in parti
ular the following property :8 x 2 V (G) [ fwg; T r(G)+x = Tr(G)�x and Tr(G)�x = Tr(G)+x :



V. Albiero and E. Sopena 7If the starting graph G is an interpolation system of order k and if for every vertex x in Tr(G)the subgraph Tr(G)+x is isomorphi
 to G itself, denoted by Tr(G)+x � G, then the graph Tr(G) thusobtained is an interpolation system of order k+1 (proposition 6). It is then interesting to 
hara
terizethose graphs G whi
h satisfy su
h a property. This is namely the 
ase for the rotational tournamentsintrodu
ed in the previous se
tion :Proposition 17 Let p be a prime 
ongruent to 3 modulo 4. The graph Tr(QRp) is su
h that :8 x 2 V (Tr(QRp)); T r(QRp)+x � QRp:Sket
h of proof. We �rst prove that the graph Tr(QRp) is vertex-transitive, that is for any verti
esx and y there exists an automorphism of Tr(QRp) whi
h maps x onto y. It is then suÆ
ient to provethe desired result for one vertex in Tr(QRp), whi
h is immediate for the vertex w. 2We then obtain :Corollary 18 Let p be a prime 
ongruent to 3 modulo 4. If QRp is an interpolation system of orderk � 1, then Tr(QRp) is an interpolation system of order k.This result gives in parti
ular time-stamp systems (and interpolation systems) of orders 5 and6 whi
h improve the previously known 
onstru
tions. By using the lexi
ographi
 produ
t this alsoimproves the time-stamp systems upper bounds for the orders from 8 to 11.7 Con
luding remarksThe table in Figure 4 gives the best known results for time-stamp systems and interpolation systems(in the unsigned 
ase). A minus sign in a given entry indi
ates that we do not know in this 
ase any
onstru
tion a
hieving a better bound than Zielonka's one. In parti
ular, note that for k � 12 we donot know any (unsigned) time-stamp system having less verti
es than the 
orresponding Zielonka'sgraph. For interpolation systems this is true as soon as k > 6 (the lexi
ographi
 produ
t is not a valid
onstru
tion for interpolation systems) : if we apply Tromp's 
onstru
tion to the graph QR271 (whi
hsatis�es the property (I6)), we obtain a graph having 544 verti
es.Note that up to k = 6, the best known solutions for time-stamp systems are also solutions for inter-polation systems, although property (Ik) is stronger than property (Ek).Referen
es[1℄ V. Albiero, E. Sopena, Syst�emes d'estampillage et syst�emes d'interpolation, Universit�e Bordeaux I, Te
h-ni
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onstru
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onstru
tion of time-stamp systems and interpolation systemsOrder Time-stamp systems Interpolation systems Zkk #verti
es Graph #verti
es Graph2 3 C3 3 C3 43 7 QR7 7 QR7 124 16 Tr(QR7) 16 Tr(QR7) 325 40 Tr(QR19) 40 Tr(QR19) 806 96 Tr(QR47) 96 Tr(QR47) 1927 256 Tr(QR7)
 Tr(QR7) - 4488 640 Tr(QR19)
 Tr(QR7) - 10249 1536 Tr(QR47)
 Tr(QR7) - 230410 3840 Tr(QR47)
 Tr(QR19) - 512011 9216 Tr(QR47)
 Tr(QR47) - 1126412 24576 Tr(QR47)
 Tr(QR7)
 Tr(QR7) - 2457613 - - 53248... Figure 4: Table of best known solutions[10℄ E. Szekeres, G. Szekeres, On a problem of S
h�utte and Erd�os, Math. Gaz. 49 (1965), 290-293.[11℄ J. Tromp, On update-last s
hemes, Parallel Pro
essing Letters 3 no 1 (1993), 25-28.[12℄ J. Tromp, Unpublished manus
ript.[13℄ W. Zielonka, Time-stamp systems for a �xed set of agents, Universit�e Bordeaux I, Te
hni
al Report LaBRI(1990).


