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Abstract. For every positive integer k, we present an oriented graph G} such that deleting any vertex of Gy,
decreases its oriented chromatic number by at least k& and deleting any arc decreases the oriented chromatic
number of GG, by two.
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1 Introduction and results

Oriented graphs are directed graphs without opposite arcs. The oriented chromatic number o(H) of
an oriented graph H is defined to be the minimum order of an oriented graph H' such that H has a
homomorphism to H'. In other words, o(H) is the minimum positive integer m such that there exists
a proper (in usual sense) colouring f of V(H) with m colours with the additional property that

Vo, w,u,2 € V(H) [vw € E(H), uz € E(H) &f(v) = f(2)] = f(w) # f(u). (1)

Several properties of oriented chromatic number differ from those of the (ordinary) chromatic
number (see e.g. [1, 3, 5]). In this note, we observe one more distinction. Deleting a vertex or an edge
from a graph decreases its chromatic number by at most one. For the oriented chromatic number, this
is not true.

Observation 1 (i) If for some oriented graph H and some v € V(H), o(H —v) < k, then o(H) <
2k + 1. On the other hand, for every positive integer k, there exist an oriented graph Hj and a vertex
v € V(Hy) such that o(Hy) = 2k + 1 and o(Hj, —v) = k.

(ii) For every oriented graph H and (v,u) € E(H),

o(H — (v,u)) > o(H) —2. (2)

Studying colour-critical (w.r.t. usual chromatic number) graphs helped to understand some prop-
erties of chromatic number. In view of (2), we call an oriented graph H deeply critical if for every
(v,u) € E(H),

o(H) —o(H — (v,u)) = 2. (3)
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2 On deeply critical oriented graphs

The oriented 5-cycle 65 is an example of a deeply critical graph: 0(65) =5 and for every arc e in 65,

o(Cs —e) =3.
The main result of this note is that there are infinitely many deeply critical graphs.

Theorem 2 For every positive integer k, there exists a deeply critical graph Gy such that o(Gy) —
o(G —v) > k for every v € V(Gy).

2 Proofs

Proof of Observation 1. In order to prove (i), fix an oriented colouring f of H — v with at most k
colours, say, 1,...,k. Define the colouring f' of H as follows:

f(@), ifzeV(H)\(NT(v)U{v},
fllz) =1 k+ f(z), ifzeN*(v),
2k+1, ifx=w.

Observe that

(a) colour 2k + 1 is used only for v;

(b) the colours used for N*(v) are distinct from those used for N~ (v);

(c) if any two vertices z and y have the same colour in f’ then they have the same colour in f.
This implies that f’ is an oriented colouring.

In order to show that the bound is sharp, consider the following construction described by Sopena
in [5]. Let H' and H” be disjoint oriented graphs and let the graph H be obtained by adding
a new vertex v and arcs (w',v) for every w' € V(H') and (v,u”) for every u” € V(H"). Then
o(H) = o(H') + o(H") + 1. This yields (i), if we take as H and H"” two isomorphic oriented graphs
with oriented chromatic number k.

To prove (ii), consider an oriented colouring f of H — (u,v) with the minimum number (say, k) of
colours. Then the colouring f’ defined by

f(2), itz #u0,
flz)=1¢ k+1, ifz=u,
k+2, ifz=w,

is an oriented colouring of H. This proves (ii). O

Proof of Theorem 2. It is enough to prove the theorem for some infinite sequence ki, ko,.... We
deliver the proof in a series of claims.

Let Ty, be the set of ternary vectors of length m. Let also T}, be the subset of vectors in T,, whose
entries are zeros and ones and T} be the subset of vectors in T}, whose entries are zeros and two’s.
Clearly for every t"” € T} | there exists exactly one ' € T}, such that t" = ¢ +¢'.

The following two claims are evident.

Claim 3 Every t € Ty, is a sum of two vectors in T),.

Claim 4 For every t" € TV, there is only one way to represent t" as a sum of two vectors in T),
(namely, t" =t + ', where t' =1"/2).

Let p = 3" and ¢ = 2p — 1. Let V;, = {0,1,...,¢ — 1} and for v,w € Vi, let d(v,w) =
min{v — w ( mod ¢),w —v ( mod ¢)}. Then for any distinct v, w € V,,, we have

1 <d(v,w) <p-1. (4)
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To every integer v, 0 < v < p — 1, we can assign the m-dimensional ternary vector ¢(v) whose entries
are the first (from the right) m digits of the ternary expansion of the number v. (For example, if
v =11 and m = 4, then t(v) = (0,1,0,2).) This correspondence is one-to-one.

Let D,, be the oriented graph with V(D,,) = V;;, such that

(u,v) € E(Dy,) if and only if v —u( mod ¢) < p and t(d(v,u)) € T},. (5)
Remark 1. If #(d(u,v)) € T!,, then d(u,v) < 3™ 1 +3m2 4 +1=(p-1)/2=(¢—1)/4

Claim 5 o(D,,) = q.

Proof. Let u and v be arbitrary distinct vertices of D,,. By (4) and Claim 3, t(d(u,v)) is a sum of
two vectors in T),. Hence, by (5), there is an oriented path of length at most two (of length one if
t(d(u,v)) € T),) either from u to v or from v to u. Therefore, in any oriented colouring of D, the
vertices u and v must have different colours. This proves the claim. O

Claim 6 For every e € E(Dy,),
o(Dy, —e) =q— 2.

Proof. Because of the symmetry, we may assume that e = (0,v) where t(v) € T),. Let f(0) = f(2v) =
1 and f(v) = f(q —v) = 2. Let all other vertices get different colours from 3 to ¢ — 2.

Due to Remark 1 and the absence of e, D, — e has no arcs with the tail in {0,2v} and the head in
{v,q — v}. By Claim 4 and Remark 1, D,, — e has no oriented paths of length at most two between
0 and 2v and between ¢ — v and v. It follows that colouring f of D,, — e satisfies (1) and thus
0(Dym, — €) < g — 2. The lower bound on o(D,, — e) follows from Observation 1. O

Claim 7 For every z € V(Dy,),

o(Dy, — ) < q— ({%1)

Proof. Because of the symmetry, we may assume that z = 0. Let T\, be the set of vectors in T},
with exactly [mT-H-I ones. Let VO={v eV, |v<pandt(v) € T2} and V O = {g—v|v eV} For
every v € VY, we define f(v) = f(q—v) = ¢, where ¢, are distinct for distinct v. All other vertices are
coloured with different colours. If f is a proper oriented colouring of D,,, —0, then o(D,,) < ¢— (|- @ -|)

and the claim is proved. So, let us show that f is a proper oriented colouring of D,, — 0.

First we prove that VYUV =0 is an independent set in D,, —0. If some vertices v,u € VOUV 0 are

adjacent, then u,v and 0 form a triangle in D,,, which by Remark 1 is transitively oriented. Therefore
by (5), T}, contains three non-zero vectors t,t2 and ¢3 such that
(a) t1 + 1ty = t3 and
(b) at least two of 1, and t3 belong to T2..
But for (a) to hold, we need that the ones in ¢; and ¢2 be in disjoint coordinates and that the number of
ones in t3 be the sum of the numbers of ones in #; and £5. The former condition violates the possibility
that both ¢; and ¢, are in T, (since every w € T}, has more than m/2 ones) and the latter condition
violates the possibility that both ¢; and ¢3 (or t3 and #3) are in T, (since every w € T, has the same
number of ones).

Next we observe that for every v € V0, there is no oriented path of length two between ¢ — v and
v. This follows from Claim 4 and Remark 1. Thus, f satisfies (1), and the claim holds. O

Claims 6 and 7 yield the theorem for k,, = (|-m"$1-|). By the first paragraph of the proof, we are
2
done. -



4 On deeply critical oriented graphs

3 Comments

The proof of Theorem 2 shows that for infinitely many integers g, there are deeply critical graphs with
oriented chromatic number ¢ such that deleting any vertex decreases the oriented chromatic number
by at least ¢'°%22/\/Togq = ¢*%399 /\/Iogq. The statement (i) of Observation 1 shows that sometimes
we make the oriented chromatic number twice less by deleting a vertex. It would be interesting to find
out if there are infinitely many (not necessarily deeply critical) graphs in which deleting any vertex
decreases the oriented chromatic number by at least one percent.

Although we present deeply critical graphs only with very specific number of vertices (namely,
with the number of the form 2 - 3™ — 1), experimenting on computer indicates that deeply critical
graphs on ¢ vertices with oriented chromatic number ¢ might exist for all odd ¢ > 31.

References

[1] O. V. Borodin, A. V. Kostochka, J. Nesetfil, A. Raspaud and E. Sopena, On the maximum
average degree and the oriented chromatic number of a graph, Discrete Math., 206(1999), 77-90.

[2] O. V. Borodin, A. V. Kostochka, J. Nesetfil, A. Raspaud and E. Sopena, On universal graphs for
planar oriented graphs of a given girth, Discrete Math., 188 (1998), 78-85.

3] A. V. Kostochka, E. Sopena and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J.
Graph Theory, 24 (1997), 331-340.

[4] J. Nesetiil, A. Raspaud and E. Sopena, Colorings and girth of oriented planar graphs, Discrete
Math. 165—166 (1997), 519-530.

[5] E. Sopena, The chromatic number of oriented graphs, J. Graph Theory 25 (1997), 191-205.



