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2 Ayli list 7-oloring of planar graphsDenote the degree of a vertex v by d(v). A k-vertex is that of degree k. We write a � k-vertex forthat of degree at most k, et. By minor verties we mean those of degree at most 5.The proof of Theorem 1 is based on a strutural property of the plane triangulations (loops andmultiple edges are allowed), whih is of interest by itself. The weight, w(f), of a fae f in a triangulationis the degree sum of its boundary verties. Kotzig [7℄ onjetured that eah plane triangulation withthe minimum degree 5 has a fae of weight at most 17, whih was proved by Borodin [2℄. The bound17 is sharp, as follows from the (5; 6; 6) Arhimedian solid. The following theorem gives a suÆientondition for a plane triangulation to have a fae of weight at most 17; no parameter of this onditionan be weakened.Theorem 3 If a plane triangulation has1. neither a � 3-vertex,2. nor a 4-vertex adjaent to a � 6-vertex,3. nor a 7-vertex adjaent to a 4-vertex and to two other minor verties,then it has a fae of weight at most 17 not inident with 4-verties.2 Proof of Theorem 3First we show that no assumption 1-3 in Theorem 3 an be dropped or weakened.(1) If 3-verties are allowed, we an have a plane triangulation with only 3- and 10-verties inwhih every fae has weight equal to 23 by putting a vertex inside eah fae of the iosahedron andjoining it with the boundary verties of the fae.(2) Take a new vertex in eah fae of the 3-dimensional ube and join it to all the middle points ofits edges, onsidering them as new verties. The result is a quadrangulation with all faes of the type(3; 4; 4; 4). By putting a vertex inside eah fae and joining it with all verties of the fae, we obtaina triangulation with only 4-, 6-, and 8-verties in whih every fae has weight 18.(3) Take six opies of the graph shown in the �gure below as the faes of the 3-ube. Now put anew vertex inside eah nontriangular fae to obtain a triangulation without � 3-verties in whih theweight of every fae is at least 18 and no 4-vertex is adjaent to a � 6-vertex.

Suppose T is a ounterexample to Theorem 3. Euler's formula jV (T )j � jE(T )j+ jF (T )j = 2 maybe rewritten as Xv2V (T )(d(v) � 6) = �12:



O.V. Borodin, D.G. Fon-der Flaass, A.V. Kostohka, A. Raspaud and E. Sopena 3We set the initial harge of every vertex v of T to be h(v) = d(v)�6. Then we use the dishargingproedure, leading to a �nal harge h�, de�ned by applying the following rules:R1. Every � 7-vertex v gives every fae f ontaining v the following harge :� 16 if d(v) = 7 and f is inident with a 5-vertex;� 14 if d(v) = 7 and f is inident with a 4-vertex;� 14 if d(v) � 8 and f is inident with a minor vertex.R2. Every fae f either shares the harge obtained by R1 between the two 5-verties inidentwith f , or gives all obtained by R1 to the only minor vertex inident with f .Sine the above proedure preserves the total harge, we have:Xv2V (T ) h(v) = Xv2V (M) h�(v) = �12:We shall get a ontradition by proving that for every vertex v 2 V (T ) the inequality h�(v) � 0holds.If d(v) � 8 then h�(v) � d(v)� 6� d(v)4 = 3(d(v)�8)4 � 0.Suppose d(v) = 7. If v is inident with a 4-vertex, then it an have at most two minor neighbors.This yields h�(v) � 1� 4� 14 = 0. If a fae ontaining v ontains also two 5-verties, then its weightis 17, and we are done. Otherwise, by parity, v an be inident with at most six faes inident with a5-vertex, whih yields h�(v) � 1� 6� 16 = 0.If d(v) = 6 then learly h(v) = h�(v) = 0.Suppose d(v) = 5. If v is adjaent to two 5-verties (whih would be nononseutive), thenh�(v) � �1 + 4� 18 + 2� 14 = 0.If v is adjaent to one 5-vertex then v is adjaent to two � 8-verties, an � 7-vertex and a� 6-vertex, so that h�(v) � �1 + 2� 18 + 2� 16 + 2� 14 > 0.If v is not adjaent to 5-verties then v is adjaent to three � 7-verties, whih yields h�(v) ��1 + 6� 16 = 0.Suppose d(v) = 4. Then v is surrounded by � 7-verties, so thath�(v) � �2 + 8� 14 = 0.This ompletes the proof of Theorem 3.3 Deduing Theorem 1 from Theorem 3Let P with a P -list L be a ounterexample to Theorem 1 on the fewest verties. Then by addingdiagonals, we an obtain a triangulation T without loops and multiple edges, on the same verties. Itfollows that T is also a minimal ounterexample, with the same list L, to Theorem 1.(1) There is no � 3-vertex x in T .Otherwise we hoose from L an ayli oloring of T � x, and hoose a olor for x from L(x) thatdoes not appear on its neighbour verties. Clearly, no uniolored K2's or biolored yle an arise.(2) No 4-vertex x in T an be adjaent to a � 6-vertex y.Suppose otherwise; let a; b; ; y be the neigbours of x in the lokwise order, and leta; x; ; d1; : : : ; dd(y)�3 be the neigbours of y in the lokwise order. Sine T has no multiple edges,the endverties of the edges ax and x are di�erent, i.e., a 6= . Delete the vertex x. If a and  are notadjaent, then we add the edge a. We an hoose from L an ayli oloring � of the graph obtained,beause it has fewer verties than T . It follows from the onstrution that �(a) 6= �(). In L(x) thereare at least three olors that do not appear on verties adjaent to x. We must hoose one of them sothat no biolored yle arises.If �(b) 6= �(y), then we an take any �(x) 2 L(x) n f�(a); �(b); �(); �(y)g. Otherwise, we hoose aolor for x from the olors in L(x) not appearing on the verties adjaent to x or y (there are at mostsix restritions, while jL(x)j � 7). As a result, we obtain an ayli oloring of G hosen from L.



4 Ayli list 7-oloring of planar graphs(3) If a 7-vertex y is adjaent to a 4-vertex x, then y annot be adjaent to another minor vertex.Suppose the ontrary; let a; x; ; d1; : : : ; d4 be the neigbours of y in the lokwise order, and let bbe the fourth neighbor of x. Replae x by the edge a if a 62 E(G), or simply remove x otherwise.Let � be an ayli oloring of the obtained graph, hosen from L. Suppose �(a; b; ) = (1; 2; 3). Theargument given in the previous ase does not work only if �(y) = 2, �(d1; : : : ; d4) = (4; : : : ; 7), andany attempt to olor x di�erently from 1,2, and 3 reates a biolored yle going through bxydi, where1 � i � 4. In partiular, it follows that L(x) = f1; 2; : : : ; 7g.However, one of di's is minor; w.l.o.g., suppose it is d4. If y an be reolored with a olor greaterthan 7, say 8, then there are no biolored yles, sine all the neighbours of y now have pairwisedi�erent olors. Then it is possible to olor x by a olor not belonging to f1; 2; 3; 8g and obtain anayli oloring of T .Otherwise, L(y) = f1; 2; : : : ; 7g; then we reolor y with 7. It is now easy to olor x, and we mustonly reolor d4. If d(d4) = 4 then it is easy, sine the neighbours of d4 are now olored by pairwisedi�erent olors.Suppose d(d4) = 5, and let the neighbors of d4 in the lokwise order be a; y; d3; u; v. Reall thatdue to the existene of a biolored (2,7)-path between b and d4, one of u; v has the olor 2. W.l.o.g.,suppose �(u) = 2. The present olor 7 of y does not appear on the other neighbours of d4; therefore,the only obstale for oloring d4 with a olor � 2 L(d4) n f�(v); 1; 2; 6; 7g ould be a biolored (6; �)-yle d3d4v : : :. However, suh a yle is learly prevented by the biolored (2; 7)-path from b to u.Hene d4 an be reolored.(Here and in what follows, we use the obvious fat that two biolored paths with disjoint olor setsannot ross eah other. In partiular, � =2 f2; 7g in the last ase above.)By above, G satis�es the onditions of Theorem 3 and thus ontains a fae of weight at most 17.Moreover, we now prove that this is impossible.(40) A 5-vertex x in T annot form a fae with two � 6-verties y and z.We only give a proof for the most diÆult ase d(y) = d(z) = 6; the same argument works if oneor both of y; z have degree 5, and it is left to the reader.Suppose we have a vertex x with a lokwise neighborhood N(x) = (a; b; y; z; h), and let N(y) =(x; b; ; d; e; z), N(z) = (x; y; e; f; g; h). Remove x and add an edge bh if suh an edge does not alreadyexist in T , and let � be an ayli oloring of the obtained graph T 0 aording to L. W.l.o.g., suppose�(h) = 1, �(a) = 2, �(b) = 3.If �(y) = 4 and �(z) = 5, then it easy to olor x. Also observe that we annot have �(y) = 1 and�(z) = 3 due to the impossibility of the nontrivial (1; 3)-yle byzh in T 0.If 2 =2 f�(y); �(z)g, then, by symmetry, we may suppose in addition that �(y) = 1 and �(z) = 4.There are at least three olors in L(x) n f1; 2; 3; 4g. These olors, say 5, 6, 7 should appear on theneighbors of y, for otherwise we are done. Moreover, there should exist all the three (�; 1)-pathsjoining f; d; eg with h, where � 2 f5; 6; 7g.If 2 2 L(y) then we reolor y with 2, and now not all the three (�; 2)-paths from a to f; d; eg anexist, where � 2 f5; 6; 7g (for example, biolored paths from  to h and from d to a annot o-exist),and we an olor x with suh an �. If 2 =2 L(y) then we simply reolor y with an 8 2 L(y).The last ase to onsider is 2 2 f�(y); �(z)g, or, w.l.o.g., �(y) = 2, �(z) 2 f3; 4g. If �(z) = 4, thenthere are at least three olors > 4 in L(x), say 5, 6, and 7. The only obstale for oloring x with oneof them is the existene of (2,5)-, (2,6)-, and (2,7)-paths from a to f; d; eg, whih implies that eaholor 5, 6, and 7 is the olor of preisely one vertex in f; d; eg. Then we reolor y and arrive at oneof the already onsidered ases.Finally, suppose �(z) = 3. Then L(x) has at least four olors greater that 3, say 4, 5, 6, and 7.Suppose none of the verties ; d; e is olored 4. We see that the only obstale for oloring x with 4 isa biolored (3,4)-path from b to ff; gg. This forbids all (�; 2)-paths from a to f; d; eg. It now suÆesto olor x with a olor > 4 that does not appear on fe; f; gg.(400)A 7-vertex x in T annot form a fae with two 5-verties y and z.



O.V. Borodin, D.G. Fon-der Flaass, A.V. Kostohka, A. Raspaud and E. Sopena 5Suppose we have a vertex x with a lokwise neighborhood N(x) = (a; b; ; y; z; g; h), and letN(y) = (x; ; d; e; z), N(z) = (x; y; e; f; g). Delete y and z and add those of the edges e, eg and gthat do not exist in T . Let � be an ayli oloring of the obtained graph T 0 aording to L. W.l.o.g.,suppose �(e) = 1, �() = 2, �(g) = 3. Also suppose that all lists onsist of positive integers.Case 1. �(x) = 4.Subase 1.1. �(f) 2 f2; 5g. W.l.o.g. assume that �(d) 2 f3; 4; 5; 6g. If �(d) 6= 4, then it suÆesto olor y and z (in this order) with olors greater than 5 from their lists.Suppose �(d) = 4. If y an be olored with a olor greater than 4 without reating a bioloredyle dyx : : :, then we are done by oloring z with any olor greater than 5. Suppose the ontrary,i.e., that there are (4; �)-paths between d and fb; a; hg for three distint � > 4, � 2 L(y). Then wereolor x by any olor not belonging to f2; 3; �(a); �(b); �(h)g, and olor z and y, in this order, witholors greater than 5; the only additional requirement is that if �0(x) 2 f1; 5g, then we, moreover,hoose �(z) 6= �(h). (Now the biolored (4; �(h))-path from d to h forbids all biolored yles of thetype : : : zx : : :.)Subase 1.2. �(d) = �(f) = 4. First observe that we an hoose at least one olor � > 4 for y sothat no biolored yle arises, z being still unolored.Indeed, otherwise there should exist a biolored (4; �)-path joining d with fb; a; hg for eah of atleast three olors � > 4 in L(y). It follows that eah olor � > 4 in L(y) must our on fb; a; hg. Butthen we obtain a oloring of T as follows: �rst, reolor x, using the fat that the olors of the �vealready olored neighbors of x are pairwise distint. Now if �0(x) 6= 1, we just hoose any olor greaterthan 4 for y and z. If �0(x) = 1, we olor y and z with olors greater than 4 di�erent from �(h).We see that biolored (1; �)-paths from e to fb; ag, where � > 4, are now forbidden by the biolored(4; �(h))-path from d to h.We have thus proved that at least one olor � > 4 an be hosen for y to get an ayli oloringof T � z. By symmetry, a olor � > 4 an be hosen for z to obtain a oloring of T � y. If � 6= �, thisreadily gives an ayli oloring of T . We are already done, unless there exists only one suh admissible� for y, only one admissible � for z, and � = �. Assume this to be the ase, with � = � = 5.It follows that we have (at least) two biolored paths from d to fb; a; hg and two from f to fb; a; hg.These four paths must have a vertex in ommon in fb; a; hg. Let this vertex w be olored 6.Observe that now x an be reolored. Indeed, the only obstale for doing so is a biolored ylegoing through x and two verties u, v of the same olor in S = fg; h; a; b; g. Clearly, u and v annotbe onseutive on the path P = ghab. We know that at least two of the �ve verties of P are oloredwith 2 or 3 and at least two have olors greater than 4. It is onvenient to onsider two possibilities:�(u) < 4 and �(u) > 4. In eah of them, we see that the vertex w de�ned above separates u and valong P . Now reall that w is joined to d and f by a (4; > 4)-path, whih learly forbids a bioloredyle : : : uxv : : : when a olor for x is di�erent from 4 and does not appear on P .If the new �0(x) 6= 1, we are done. Suppose �0(x) = 1. Sine there are (4,6)-paths from d and fromf to fb; a; hg, only (1; 6)-paths from e to fb; a; hg are possible. Thus, we an olor y and z with anyadmissible olors greater than 4 and di�erent from 6 (eah of them has a hoie of at least two olors).Case 2. �(x) = 1. W.l.o.g., suppose �(f) 2 f2; 4g, �(d) 2 f3; 4; 5g. If for at most one � > 4there is a (1; �)-path joining e to fb; a; hg, we an olor with olors > 4 �rst y and then z to obtainan ayli oloring of T . So, suppose there are at least two suh pathes, with �1 > 4 and �2 > 4.If x annot be reolored, then there is a olor  2 f2; 3; �1; �2g that appears on the path P = ghabat least twie. Furthermore, the verties u and v in P olored  must be joined by a (�; )-path, where� =2 f1; 2; 3; �1 ; �2g. It is easy to see (as in Subase 1.2) that u and v should be separated along P byvertex w olored �1 or �2; w.l.o.g, assume �(w) = �1. Moreover, w is the only vertex in P oloredwith that olor. It follows that w is joined to e by a (1; �1)-path. But this makes biolored paths ofthe type : : : uxv : : : impossible.Sine x an be reolored, we have Case 1.Thus our ounterexample T to Theorem 1 ontradits Theorem 3. This ompletes the proof ofTheorem 1.
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