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1 Introduction

We denote by V(G) the set of vertices of a graph G' and by E(G) its set of edges. A (proper) k-coloring
of G is a mapping f : V(G) — {1,2,...,k} such that f(x) # f(y) whenever z and y are adjacent in
G.

A proper vertex coloring of a graph is acyclic if every cycle uses at least three colors (Griitnbaum [4]).
Borodin [1] proved Griinbaum’s conjecture that every planar graph is acyclically 5-colorable. This
bound is best possible. Moreover, there are bipartite 2-degenerate planar graphs which are not acycli-
cally 4-colorable (Kostochka and Mel’nikov, [6]). Acyclic colorings turned out to be useful for obtaining
results about other types of colorings; for a survey see [5, 8].

Now suppose each vertex v of a graph G is given a list L(v) of colors. The G-list L is choosable if
there is a proper vertex coloring of G such that the color of each vertex v belongs to L(v). A graph G
is said to be list k-colorable if every G-list L is choosable provided that |L(v)| > k for each v € V(G).

It is trivial that each planar graph is list 6-colorable, because every of its subgraphs has a vertex
of degree at most 5. Thomassen [9] proved that each planar graph is list 5-colorable, and Voigt [10]
showed that this bound is the best possible.

Our main result is

Theorem 1 FEwvery planar graph is acyclic list 7-colorable.

This means that if each vertex v of a planar graph G has a list L(v) of at least seven admissible
colors, then we can choose a color ¢(v) from L(v) so that the resulting coloring of G is acyclic. We
believe that the bound above is not sharp, i.e. that the following extension of Borodin’s result in [1],
which strengthens Thomassen’s result in [9], is true:

Conjecture 2 Fvery planar graph is acyclic list 5-colorable.
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2 Acyclic list T-coloring of planar graphs

Denote the degree of a vertex v by d(v). A k-vertex is that of degree k. We write a < k-vertex for
that of degree at most k, etc. By minor vertices we mean those of degree at most 5.

The proof of Theorem 1 is based on a structural property of the plane triangulations (loops and
multiple edges are allowed), which is of interest by itself. The weight, w(f), of a face f in a triangulation
is the degree sum of its boundary vertices. Kotzig [7] conjectured that each plane triangulation with
the minimum degree 5 has a face of weight at most 17, which was proved by Borodin [2]. The bound
17 is sharp, as follows from the (5,6,6) Archimedian solid. The following theorem gives a sufficient
condition for a plane triangulation to have a face of weight at most 17; no parameter of this condition
can be weakened.

Theorem 3 If a plane triangulation has
1. neither a < 3-verter,
2. nor a 4-vertex adjacent to a < 6-vertez,
3. nor a T-vertex adjacent to a 4-vertex and to two other minor vertices,

then it has a face of weight at most 17 not incident with J-vertices.

2 Proof of Theorem 3

First we show that no assumption 1-3 in Theorem 3 can be dropped or weakened.

(1) If 3-vertices are allowed, we can have a plane triangulation with only 3- and 10-vertices in
which every face has weight equal to 23 by putting a vertex inside each face of the icosahedron and
joining it with the boundary vertices of the face.

(2) Take a new vertex in each face of the 3-dimensional cube and join it to all the middle points of
its edges, considering them as new vertices. The result is a quadrangulation with all faces of the type
(3,4,4,4). By putting a vertex inside each face and joining it with all vertices of the face, we obtain
a triangulation with only 4-, 6-, and 8-vertices in which every face has weight 18.

(3) Take six copies of the graph shown in the figure below as the faces of the 3-cube. Now put a
new vertex inside each nontriangular face to obtain a triangulation without < 3-vertices in which the
weight of every face is at least 18 and no 4-vertex is adjacent to a < 6-vertex.

<
1o
e

Suppose T' is a counterexample to Theorem 3. Euler’s formula |V (T)| — |E(T)| + |F(T)| = 2 may
be rewritten as

> (dw) —6) = —12.

veV(T)



O.V. BOrODIN, D.G. FON-DER FLAASS, A.V. KOSTOCHKA, A. RASPAUD AND E. SOPENA 3

We set the initial charge of every vertex v of T to be ch(v) = d(v) —6. Then we use the discharging
procedure, leading to a final charge ch*, defined by applying the following rules:

R1. Every > 7T-vertex v gives every face f containing v the following charge :

L'if d(v) = 7 and f is incident with a 5-vertex;

®* 5

e - ifd(v) =7 and f is incident with a 4-vertex;

=

e 1 ifd(v) > 8 and f is incident with a minor vertex.

R2. Every face f either shares the charge obtained by R1 between the two 5-vertices incident
with f, or gives all obtained by R1 to the only minor vertex incident with f.

Since the above procedure preserves the total charge, we have:

Z ch(v) = Z ch*(v) = —12.

vev(T) veV (M)

We shall get a contradiction by proving that for every vertex v € V(T') the inequality ch*(v) > 0
holds.

If d(v) > 8 then ch*(v) > d(v) — 6 — 20 = 3WB) > ¢

Suppose d(v) = 7. If v is incident with a 4-vertex, then it can have at most two minor neighbors.
This yields ch*(v) > 1 —4 x i = 0. If a face containing v contains also two 5-vertices, then its weight
is 17, and we are done. Otherwise, by parity, v can be incident with at most six faces incident with a
5-vertex, which yields ch*(v) >1—6 x § = 0.

If d(v) = 6 then clearly ch(v) = ch*(v) = 0.

Suppose d(v) = 5. If v is adjacent to two 5-vertices (which would be nonconsecutive), then
ch*(v) > —1+4x $+2x 5 =0.

If v is adjacent to one 5-vertex then v is adjacent to two > 8-vertices, an > 7-vertex and a
> 6-vertex, so that ch*(v) > —1+2x £ +2%x § +2x 1 > 0.

If v is not adjacent to 5-vertices then v is adjacent to three > T-vertices, which yields ch*(v) >
~146x§=0.

Suppose d(v) = 4. Then v is surrounded by > 7-vertices, so that
ch*(v) > -2 +8x + =0.

This completes the proof of Theorem 3.

3 Deducing Theorem 1 from Theorem 3

Let P with a P-list L be a counterexample to Theorem 1 on the fewest vertices. Then by adding
diagonals, we can obtain a triangulation 7" without loops and multiple edges, on the same vertices. It
follows that T is also a minimal counterexample, with the same list L, to Theorem 1.

(1) There is no < 3-vertex x in T.

Otherwise we choose from L an acyclic coloring of T' — z, and choose a color for z from L(z) that
does not appear on its neighbour vertices. Clearly, no unicolored K»’s or bicolored cycle can arise.

(2) No j-vertex x in T can be adjacent to a < 6-vertez y.

Suppose otherwise; let a,b,c,y be the neigbours of z in the clockwise order, and let
a,T,¢ydy, ..., dyy)—3 be the neigbours of y in the clockwise order. Since T' has no multiple edges,
the endvertices of the edges ax and cx are different, i.e., a # c. Delete the vertex x. If ¢ and c¢ are not
adjacent, then we add the edge ac. We can choose from L an acyclic coloring ¢ of the graph obtained,
because it has fewer vertices than T. Tt follows from the construction that ¢(a) # ¢(c). In L(z) there
are at least three colors that do not appear on vertices adjacent to . We must choose one of them so
that no bicolored cycle arises.

If ¢(b) # ¢(y), then we can take any ¢(z) € L(z) \ {¢(a), p(b), #(c), p(y)}. Otherwise, we choose a
color for z from the colors in L(z) not appearing on the vertices adjacent to z or y (there are at most
six restrictions, while |L(z)| > 7). As a result, we obtain an acyclic coloring of G chosen from L.
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(3) If a T-vertex y is adjacent to a 4-vertex x, then y cannot be adjacent to another minor vertex.

Suppose the contrary; let a,z,c,dy,...,ds be the neighbours of y in the clockwise order, and let b
be the fourth neighbor of x. Replace z by the edge ac if ac ¢ F(G), or simply remove = otherwise.
Let ¢ be an acyclic coloring of the obtained graph, chosen from L. Suppose ¢(a,b,c) = (1,2,3). The
argument given in the previous case does not work only if ¢(y) = 2, ¢(dy,...,ds) = (4,...,7), and
any attempt to color z differently from 1,2, and 3 creates a bicolored cycle going through bzyd;, where
1 < i < 4. In particular, it follows that L(z) = {1,2,...,7}.

However, one of d;’s is minor; w.l.o.g., suppose it is d4. If y can be recolored with a color greater
than 7, say 8, then there are no bicolored cycles, since all the neighbours of y now have pairwise
different colors. Then it is possible to color z by a color not belonging to {1,2,3,8} and obtain an
acyclic coloring of T.

Otherwise, L(y) = {1,2,...,7}; then we recolor y with 7. Tt is now easy to color z, and we must
only recolor dy. If d(dy) = 4 then it is easy, since the neighbours of d4 are now colored by pairwise
different colors.

Suppose d(dy) = 5, and let the neighbors of d4 in the clockwise order be a,y, ds,u,v. Recall that
due to the existence of a bicolored (2,7)-path between b and dy, one of u,v has the color 2. W.l.o.g.,
suppose ¢(u) = 2. The present color 7 of y does not appear on the other neighbours of d4; therefore,
the only obstacle for coloring ds with a color a € L(dy4) \ {¢(v),1,2,6,7} could be a bicolored (6, c)-
cycle dsdyqv . ... However, such a cycle is clearly prevented by the bicolored (2,7)-path from b to w.
Hence d4 can be recolored.

(Here and in what follows, we use the obvious fact that two bicolored paths with disjoint color sets
cannot cross each other. In particular, a ¢ {2,7} in the last case above.)

By above, GG satisfies the conditions of Theorem 3 and thus contains a face of weight at most 17.
Moreover, we now prove that this is impossible.

(4") A 5-vertex x in T cannot form a face with two < 6-vertices y and z.

We only give a proof for the most difficult case d(y) = d(z) = 6; the same argument works if one
or both of y, z have degree 5, and it is left to the reader.

Suppose we have a vertex = with a clockwise neighborhood N(z) = (a,b,y,2,h), and let N(y) =
(z,b,¢,d,e,z), N(z) = (z,y,e, f,g,h). Remove x and add an edge bh if such an edge does not already
exist in T, and let ¢ be an acyclic coloring of the obtained graph T” according to L. W.l.o.g., suppose
B(h) =1, $la) = 2, B(b) = 3.

If ¢(y) = 4 and ¢(z) = 5, then it easy to color z. Also observe that we cannot have ¢(y) = 1 and
¢(z) = 3 due to the impossibility of the nontrivial (1, 3)-cycle byzh in T".

If 2 ¢ {#(y), ¢(2)}, then, by symmetry, we may suppose in addition that ¢(y) = 1 and ¢(z) = 4.
There are at least three colors in L(z) \ {1,2,3,4}. These colors, say 5, 6, 7 should appear on the
neighbors of y, for otherwise we are done. Moreover, there should exist all the three (o, 1)-paths
joining {¢,d, e} with h, where o € {5,6,7}.

If 2 € L(y) then we recolor y with 2, and now not all the three (a,2)-paths from a to {c,d, e} can
exist, where o € {5,6,7} (for example, bicolored paths from ¢ to h and from d to a cannot co-exist),
and we can color z with such an «. If 2 ¢ L(y) then we simply recolor y with an 8 € L(y).

The last case to consider is 2 € {¢(y), #(2)}, or, w.lo.g., ¢(y) = 2, ¢(2) € {3,4}. If ¢(z) = 4, then
there are at least three colors > 4 in L(z), say 5, 6, and 7. The only obstacle for coloring x with one
of them is the existence of (2,5)-, (2,6)-, and (2,7)-paths from a to {c,d, e}, which implies that each
color 5, 6, and 7 is the color of precisely one vertex in {¢,d,e}. Then we recolor y and arrive at one
of the already considered cases.

Finally, suppose ¢(z) = 3. Then L(z) has at least four colors greater that 3, say 4, 5, 6, and 7.
Suppose none of the vertices ¢, d, e is colored 4. We see that the only obstacle for coloring x with 4 is
a bicolored (3,4)-path from b to {f, g}. This forbids all («, 2)-paths from a to {c,d, e}. It now suffices
to color z with a color > 4 that does not appear on {e, f, g}.

(4")A T-vertex z in T cannot form a face with two 5-vertices y and z.
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Suppose we have a vertex x with a clockwise neighborhood N(z) = (a,b,c,y,2,9,h), and let
N(y) = (z,c,d,e,z), N(z) = (z,y,e, f,g). Delete y and z and add those of the edges ce, eg and cg
that do not exist in T'. Let ¢ be an acyclic coloring of the obtained graph T' according to L. W.l.o.g.,
suppose ¢(e) =1, ¢(c) =2, ¢(g) = 3. Also suppose that all lists consist of positive integers.

Case 1. ¢(z) = 4.

Subcase 1.1. ¢(f) € {2,5}. W.l.o.g. assume that ¢(d) € {3,4,5,6}. If #(d) # 4, then it suffices
to color y and z (in this order) with colors greater than 5 from their lists.

Suppose ¢(d) = 4. If y can be colored with a color greater than 4 without creating a bicolored
cycle dyzx ..., then we are done by coloring z with any color greater than 5. Suppose the contrary,
i.e., that there are (4, «)-paths between d and {b,a,h} for three distinct &« > 4, a € L(y). Then we
recolor z by any color not belonging to {2, 3, ¢(a), #(b), ¢(h)}, and color z and y, in this order, with
colors greater than 5; the only additional requirement is that if ¢'(xz) € {1,5}, then we, moreover,
choose ¢(z) # ¢(h). (Now the bicolored (4, ¢(h))-path from d to h forbids all bicolored cycles of the
type ...zx....)

Subcase 1.2. ¢(d) = ¢(f) = 4. First observe that we can choose at least one color o > 4 for y so
that no bicolored cycle arises, z being still uncolored.

Indeed, otherwise there should exist a bicolored (4, «)-path joining d with {b,a,h} for each of at
least three colors « > 4 in L(y). It follows that each color & > 4 in L(y) must occur on {b,a,h}. But
then we obtain a coloring of T as follows: first, recolor z, using the fact that the colors of the five
already colored neighbors of z are pairwise distinct. Now if ¢'(x) # 1, we just choose any color greater
than 4 for y and 2. If ¢'(z) = 1, we color y and z with colors greater than 4 different from ¢(h).
We see that bicolored (1, )-paths from e to {b,a}, where 8 > 4, are now forbidden by the bicolored
(4, ¢(h))-path from d to h.

We have thus proved that at least one color & > 4 can be chosen for y to get an acyclic coloring
of T — z. By symmetry, a color § > 4 can be chosen for z to obtain a coloring of T'— y. If a # 3, this
readily gives an acyclic coloring of T'. We are already done, unless there exists only one such admissible
« for gy, only one admissible 3 for z, and @ = 8. Assume this to be the case, with a = g = 5.

It follows that we have (at least) two bicolored paths from d to {b, a, h} and two from f to {b,a,h}.
These four paths must have a vertex in common in {b,a,h}. Let this vertex w be colored 6.

Observe that now z can be recolored. Indeed, the only obstacle for doing so is a bicolored cycle
going through z and two vertices u, v of the same color in S = {g, h,a,b,c}. Clearly, u and v cannot
be consecutive on the path P = ghabc. We know that at least two of the five vertices of P are colored
with 2 or 3 and at least two have colors greater than 4. It is convenient to consider two possibilities:
¢(u) < 4 and ¢(u) > 4. In each of them, we see that the vertex w defined above separates u and v
along P. Now recall that w is joined to d and f by a (4, > 4)-path, which clearly forbids a bicolored
cycle ... uzv ... when a color for x is different from 4 and does not appear on P.

If the new ¢'(z) # 1, we are done. Suppose ¢'(z) = 1. Since there are (4,6)-paths from d and from
f to {b,a,h}, only (1,6)-paths from e to {b,a,h} are possible. Thus, we can color y and z with any
admissible colors greater than 4 and different from 6 (each of them has a choice of at least two colors).

Case 2. ¢(z) = 1. W.lo.g., suppose ¢(f) € {2,4}, ¢(d) € {3,4,5}. If for at most one o > 4
there is a (1, «)-path joining e to {b,a,h}, we can color with colors > 4 first y and then z to obtain
an acyclic coloring of T'. So, suppose there are at least two such pathes, with oy > 4 and a9 > 4.

If z cannot be recolored, then there is a color v € {2,3, ay, as} that appears on the path P = ghabc
at least twice. Furthermore, the vertices u and v in P colored v must be joined by a (3, y)-path, where
B¢ {1,2,3,a1,a2}. It is easy to see (as in Subcase 1.2) that v and v should be separated along P by
vertex w colored aq or ag; w.l.o.g, assume ¢(w) = a;. Moreover, w is the only vertex in P colored
with that color. It follows that w is joined to e by a (1, «)-path. But this makes bicolored paths of
the type ... uzv ... impossible.

Since x can be recolored, we have Case 1.

Thus our counterexample T' to Theorem 1 contradicts Theorem 3. This completes the proof of
Theorem 1.
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