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oloring.1 Introdu
tionWe denote by V (G) the set of verti
es of a graph G and by E(G) its set of edges. A (proper) k-
oloringof G is a mapping f : V (G) �! f1; 2; : : : ; kg su
h that f(x) 6= f(y) whenever x and y are adja
ent inG. A proper vertex 
oloring of a graph is a
y
li
 if every 
y
le uses at least three 
olors (Gr�unbaum [4℄).Borodin [1℄ proved Gr�unbaum's 
onje
ture that every planar graph is a
y
li
ally 5-
olorable. Thisbound is best possible. Moreover, there are bipartite 2-degenerate planar graphs whi
h are not a
y
li-
ally 4-
olorable (Kosto
hka and Mel'nikov, [6℄). A
y
li
 
olorings turned out to be useful for obtainingresults about other types of 
olorings; for a survey see [5, 8℄.Now suppose ea
h vertex v of a graph G is given a list L(v) of 
olors. The G-list L is 
hoosable ifthere is a proper vertex 
oloring of G su
h that the 
olor of ea
h vertex v belongs to L(v). A graph Gis said to be list k-
olorable if every G-list L is 
hoosable provided that jL(v)j � k for ea
h v 2 V (G).It is trivial that ea
h planar graph is list 6-
olorable, be
ause every of its subgraphs has a vertexof degree at most 5. Thomassen [9℄ proved that ea
h planar graph is list 5-
olorable, and Voigt [10℄showed that this bound is the best possible.Our main result isTheorem 1 Every planar graph is a
y
li
 list 7-
olorable.This means that if ea
h vertex v of a planar graph G has a list L(v) of at least seven admissible
olors, then we 
an 
hoose a 
olor 
(v) from L(v) so that the resulting 
oloring of G is a
y
li
. Webelieve that the bound above is not sharp, i.e. that the following extension of Borodin's result in [1℄,whi
h strengthens Thomassen's result in [9℄, is true:Conje
ture 2 Every planar graph is a
y
li
 list 5-
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2 A
y
li
 list 7-
oloring of planar graphsDenote the degree of a vertex v by d(v). A k-vertex is that of degree k. We write a � k-vertex forthat of degree at most k, et
. By minor verti
es we mean those of degree at most 5.The proof of Theorem 1 is based on a stru
tural property of the plane triangulations (loops andmultiple edges are allowed), whi
h is of interest by itself. The weight, w(f), of a fa
e f in a triangulationis the degree sum of its boundary verti
es. Kotzig [7℄ 
onje
tured that ea
h plane triangulation withthe minimum degree 5 has a fa
e of weight at most 17, whi
h was proved by Borodin [2℄. The bound17 is sharp, as follows from the (5; 6; 6) Ar
himedian solid. The following theorem gives a suÆ
ient
ondition for a plane triangulation to have a fa
e of weight at most 17; no parameter of this 
ondition
an be weakened.Theorem 3 If a plane triangulation has1. neither a � 3-vertex,2. nor a 4-vertex adja
ent to a � 6-vertex,3. nor a 7-vertex adja
ent to a 4-vertex and to two other minor verti
es,then it has a fa
e of weight at most 17 not in
ident with 4-verti
es.2 Proof of Theorem 3First we show that no assumption 1-3 in Theorem 3 
an be dropped or weakened.(1) If 3-verti
es are allowed, we 
an have a plane triangulation with only 3- and 10-verti
es inwhi
h every fa
e has weight equal to 23 by putting a vertex inside ea
h fa
e of the i
osahedron andjoining it with the boundary verti
es of the fa
e.(2) Take a new vertex in ea
h fa
e of the 3-dimensional 
ube and join it to all the middle points ofits edges, 
onsidering them as new verti
es. The result is a quadrangulation with all fa
es of the type(3; 4; 4; 4). By putting a vertex inside ea
h fa
e and joining it with all verti
es of the fa
e, we obtaina triangulation with only 4-, 6-, and 8-verti
es in whi
h every fa
e has weight 18.(3) Take six 
opies of the graph shown in the �gure below as the fa
es of the 3-
ube. Now put anew vertex inside ea
h nontriangular fa
e to obtain a triangulation without � 3-verti
es in whi
h theweight of every fa
e is at least 18 and no 4-vertex is adja
ent to a � 6-vertex.

Suppose T is a 
ounterexample to Theorem 3. Euler's formula jV (T )j � jE(T )j+ jF (T )j = 2 maybe rewritten as Xv2V (T )(d(v) � 6) = �12:



O.V. Borodin, D.G. Fon-der Flaass, A.V. Kosto
hka, A. Raspaud and E. Sopena 3We set the initial 
harge of every vertex v of T to be 
h(v) = d(v)�6. Then we use the dis
hargingpro
edure, leading to a �nal 
harge 
h�, de�ned by applying the following rules:R1. Every � 7-vertex v gives every fa
e f 
ontaining v the following 
harge :� 16 if d(v) = 7 and f is in
ident with a 5-vertex;� 14 if d(v) = 7 and f is in
ident with a 4-vertex;� 14 if d(v) � 8 and f is in
ident with a minor vertex.R2. Every fa
e f either shares the 
harge obtained by R1 between the two 5-verti
es in
identwith f , or gives all obtained by R1 to the only minor vertex in
ident with f .Sin
e the above pro
edure preserves the total 
harge, we have:Xv2V (T ) 
h(v) = Xv2V (M) 
h�(v) = �12:We shall get a 
ontradi
tion by proving that for every vertex v 2 V (T ) the inequality 
h�(v) � 0holds.If d(v) � 8 then 
h�(v) � d(v)� 6� d(v)4 = 3(d(v)�8)4 � 0.Suppose d(v) = 7. If v is in
ident with a 4-vertex, then it 
an have at most two minor neighbors.This yields 
h�(v) � 1� 4� 14 = 0. If a fa
e 
ontaining v 
ontains also two 5-verti
es, then its weightis 17, and we are done. Otherwise, by parity, v 
an be in
ident with at most six fa
es in
ident with a5-vertex, whi
h yields 
h�(v) � 1� 6� 16 = 0.If d(v) = 6 then 
learly 
h(v) = 
h�(v) = 0.Suppose d(v) = 5. If v is adja
ent to two 5-verti
es (whi
h would be non
onse
utive), then
h�(v) � �1 + 4� 18 + 2� 14 = 0.If v is adja
ent to one 5-vertex then v is adja
ent to two � 8-verti
es, an � 7-vertex and a� 6-vertex, so that 
h�(v) � �1 + 2� 18 + 2� 16 + 2� 14 > 0.If v is not adja
ent to 5-verti
es then v is adja
ent to three � 7-verti
es, whi
h yields 
h�(v) ��1 + 6� 16 = 0.Suppose d(v) = 4. Then v is surrounded by � 7-verti
es, so that
h�(v) � �2 + 8� 14 = 0.This 
ompletes the proof of Theorem 3.3 Dedu
ing Theorem 1 from Theorem 3Let P with a P -list L be a 
ounterexample to Theorem 1 on the fewest verti
es. Then by addingdiagonals, we 
an obtain a triangulation T without loops and multiple edges, on the same verti
es. Itfollows that T is also a minimal 
ounterexample, with the same list L, to Theorem 1.(1) There is no � 3-vertex x in T .Otherwise we 
hoose from L an a
y
li
 
oloring of T � x, and 
hoose a 
olor for x from L(x) thatdoes not appear on its neighbour verti
es. Clearly, no uni
olored K2's or bi
olored 
y
le 
an arise.(2) No 4-vertex x in T 
an be adja
ent to a � 6-vertex y.Suppose otherwise; let a; b; 
; y be the neigbours of x in the 
lo
kwise order, and leta; x; 
; d1; : : : ; dd(y)�3 be the neigbours of y in the 
lo
kwise order. Sin
e T has no multiple edges,the endverti
es of the edges ax and 
x are di�erent, i.e., a 6= 
. Delete the vertex x. If a and 
 are notadja
ent, then we add the edge a
. We 
an 
hoose from L an a
y
li
 
oloring � of the graph obtained,be
ause it has fewer verti
es than T . It follows from the 
onstru
tion that �(a) 6= �(
). In L(x) thereare at least three 
olors that do not appear on verti
es adja
ent to x. We must 
hoose one of them sothat no bi
olored 
y
le arises.If �(b) 6= �(y), then we 
an take any �(x) 2 L(x) n f�(a); �(b); �(
); �(y)g. Otherwise, we 
hoose a
olor for x from the 
olors in L(x) not appearing on the verti
es adja
ent to x or y (there are at mostsix restri
tions, while jL(x)j � 7). As a result, we obtain an a
y
li
 
oloring of G 
hosen from L.



4 A
y
li
 list 7-
oloring of planar graphs(3) If a 7-vertex y is adja
ent to a 4-vertex x, then y 
annot be adja
ent to another minor vertex.Suppose the 
ontrary; let a; x; 
; d1; : : : ; d4 be the neigbours of y in the 
lo
kwise order, and let bbe the fourth neighbor of x. Repla
e x by the edge a
 if a
 62 E(G), or simply remove x otherwise.Let � be an a
y
li
 
oloring of the obtained graph, 
hosen from L. Suppose �(a; b; 
) = (1; 2; 3). Theargument given in the previous 
ase does not work only if �(y) = 2, �(d1; : : : ; d4) = (4; : : : ; 7), andany attempt to 
olor x di�erently from 1,2, and 3 
reates a bi
olored 
y
le going through bxydi, where1 � i � 4. In parti
ular, it follows that L(x) = f1; 2; : : : ; 7g.However, one of di's is minor; w.l.o.g., suppose it is d4. If y 
an be re
olored with a 
olor greaterthan 7, say 8, then there are no bi
olored 
y
les, sin
e all the neighbours of y now have pairwisedi�erent 
olors. Then it is possible to 
olor x by a 
olor not belonging to f1; 2; 3; 8g and obtain ana
y
li
 
oloring of T .Otherwise, L(y) = f1; 2; : : : ; 7g; then we re
olor y with 7. It is now easy to 
olor x, and we mustonly re
olor d4. If d(d4) = 4 then it is easy, sin
e the neighbours of d4 are now 
olored by pairwisedi�erent 
olors.Suppose d(d4) = 5, and let the neighbors of d4 in the 
lo
kwise order be a; y; d3; u; v. Re
all thatdue to the existen
e of a bi
olored (2,7)-path between b and d4, one of u; v has the 
olor 2. W.l.o.g.,suppose �(u) = 2. The present 
olor 7 of y does not appear on the other neighbours of d4; therefore,the only obsta
le for 
oloring d4 with a 
olor � 2 L(d4) n f�(v); 1; 2; 6; 7g 
ould be a bi
olored (6; �)-
y
le d3d4v : : :. However, su
h a 
y
le is 
learly prevented by the bi
olored (2; 7)-path from b to u.Hen
e d4 
an be re
olored.(Here and in what follows, we use the obvious fa
t that two bi
olored paths with disjoint 
olor sets
annot 
ross ea
h other. In parti
ular, � =2 f2; 7g in the last 
ase above.)By above, G satis�es the 
onditions of Theorem 3 and thus 
ontains a fa
e of weight at most 17.Moreover, we now prove that this is impossible.(40) A 5-vertex x in T 
annot form a fa
e with two � 6-verti
es y and z.We only give a proof for the most diÆ
ult 
ase d(y) = d(z) = 6; the same argument works if oneor both of y; z have degree 5, and it is left to the reader.Suppose we have a vertex x with a 
lo
kwise neighborhood N(x) = (a; b; y; z; h), and let N(y) =(x; b; 
; d; e; z), N(z) = (x; y; e; f; g; h). Remove x and add an edge bh if su
h an edge does not alreadyexist in T , and let � be an a
y
li
 
oloring of the obtained graph T 0 a

ording to L. W.l.o.g., suppose�(h) = 1, �(a) = 2, �(b) = 3.If �(y) = 4 and �(z) = 5, then it easy to 
olor x. Also observe that we 
annot have �(y) = 1 and�(z) = 3 due to the impossibility of the nontrivial (1; 3)-
y
le byzh in T 0.If 2 =2 f�(y); �(z)g, then, by symmetry, we may suppose in addition that �(y) = 1 and �(z) = 4.There are at least three 
olors in L(x) n f1; 2; 3; 4g. These 
olors, say 5, 6, 7 should appear on theneighbors of y, for otherwise we are done. Moreover, there should exist all the three (�; 1)-pathsjoining f
; d; eg with h, where � 2 f5; 6; 7g.If 2 2 L(y) then we re
olor y with 2, and now not all the three (�; 2)-paths from a to f
; d; eg 
anexist, where � 2 f5; 6; 7g (for example, bi
olored paths from 
 to h and from d to a 
annot 
o-exist),and we 
an 
olor x with su
h an �. If 2 =2 L(y) then we simply re
olor y with an 8 2 L(y).The last 
ase to 
onsider is 2 2 f�(y); �(z)g, or, w.l.o.g., �(y) = 2, �(z) 2 f3; 4g. If �(z) = 4, thenthere are at least three 
olors > 4 in L(x), say 5, 6, and 7. The only obsta
le for 
oloring x with oneof them is the existen
e of (2,5)-, (2,6)-, and (2,7)-paths from a to f
; d; eg, whi
h implies that ea
h
olor 5, 6, and 7 is the 
olor of pre
isely one vertex in f
; d; eg. Then we re
olor y and arrive at oneof the already 
onsidered 
ases.Finally, suppose �(z) = 3. Then L(x) has at least four 
olors greater that 3, say 4, 5, 6, and 7.Suppose none of the verti
es 
; d; e is 
olored 4. We see that the only obsta
le for 
oloring x with 4 isa bi
olored (3,4)-path from b to ff; gg. This forbids all (�; 2)-paths from a to f
; d; eg. It now suÆ
esto 
olor x with a 
olor > 4 that does not appear on fe; f; gg.(400)A 7-vertex x in T 
annot form a fa
e with two 5-verti
es y and z.



O.V. Borodin, D.G. Fon-der Flaass, A.V. Kosto
hka, A. Raspaud and E. Sopena 5Suppose we have a vertex x with a 
lo
kwise neighborhood N(x) = (a; b; 
; y; z; g; h), and letN(y) = (x; 
; d; e; z), N(z) = (x; y; e; f; g). Delete y and z and add those of the edges 
e, eg and 
gthat do not exist in T . Let � be an a
y
li
 
oloring of the obtained graph T 0 a

ording to L. W.l.o.g.,suppose �(e) = 1, �(
) = 2, �(g) = 3. Also suppose that all lists 
onsist of positive integers.Case 1. �(x) = 4.Sub
ase 1.1. �(f) 2 f2; 5g. W.l.o.g. assume that �(d) 2 f3; 4; 5; 6g. If �(d) 6= 4, then it suÆ
esto 
olor y and z (in this order) with 
olors greater than 5 from their lists.Suppose �(d) = 4. If y 
an be 
olored with a 
olor greater than 4 without 
reating a bi
olored
y
le dyx : : :, then we are done by 
oloring z with any 
olor greater than 5. Suppose the 
ontrary,i.e., that there are (4; �)-paths between d and fb; a; hg for three distin
t � > 4, � 2 L(y). Then were
olor x by any 
olor not belonging to f2; 3; �(a); �(b); �(h)g, and 
olor z and y, in this order, with
olors greater than 5; the only additional requirement is that if �0(x) 2 f1; 5g, then we, moreover,
hoose �(z) 6= �(h). (Now the bi
olored (4; �(h))-path from d to h forbids all bi
olored 
y
les of thetype : : : zx : : :.)Sub
ase 1.2. �(d) = �(f) = 4. First observe that we 
an 
hoose at least one 
olor � > 4 for y sothat no bi
olored 
y
le arises, z being still un
olored.Indeed, otherwise there should exist a bi
olored (4; �)-path joining d with fb; a; hg for ea
h of atleast three 
olors � > 4 in L(y). It follows that ea
h 
olor � > 4 in L(y) must o

ur on fb; a; hg. Butthen we obtain a 
oloring of T as follows: �rst, re
olor x, using the fa
t that the 
olors of the �vealready 
olored neighbors of x are pairwise distin
t. Now if �0(x) 6= 1, we just 
hoose any 
olor greaterthan 4 for y and z. If �0(x) = 1, we 
olor y and z with 
olors greater than 4 di�erent from �(h).We see that bi
olored (1; �)-paths from e to fb; ag, where � > 4, are now forbidden by the bi
olored(4; �(h))-path from d to h.We have thus proved that at least one 
olor � > 4 
an be 
hosen for y to get an a
y
li
 
oloringof T � z. By symmetry, a 
olor � > 4 
an be 
hosen for z to obtain a 
oloring of T � y. If � 6= �, thisreadily gives an a
y
li
 
oloring of T . We are already done, unless there exists only one su
h admissible� for y, only one admissible � for z, and � = �. Assume this to be the 
ase, with � = � = 5.It follows that we have (at least) two bi
olored paths from d to fb; a; hg and two from f to fb; a; hg.These four paths must have a vertex in 
ommon in fb; a; hg. Let this vertex w be 
olored 6.Observe that now x 
an be re
olored. Indeed, the only obsta
le for doing so is a bi
olored 
y
legoing through x and two verti
es u, v of the same 
olor in S = fg; h; a; b; 
g. Clearly, u and v 
annotbe 
onse
utive on the path P = ghab
. We know that at least two of the �ve verti
es of P are 
oloredwith 2 or 3 and at least two have 
olors greater than 4. It is 
onvenient to 
onsider two possibilities:�(u) < 4 and �(u) > 4. In ea
h of them, we see that the vertex w de�ned above separates u and valong P . Now re
all that w is joined to d and f by a (4; > 4)-path, whi
h 
learly forbids a bi
olored
y
le : : : uxv : : : when a 
olor for x is di�erent from 4 and does not appear on P .If the new �0(x) 6= 1, we are done. Suppose �0(x) = 1. Sin
e there are (4,6)-paths from d and fromf to fb; a; hg, only (1; 6)-paths from e to fb; a; hg are possible. Thus, we 
an 
olor y and z with anyadmissible 
olors greater than 4 and di�erent from 6 (ea
h of them has a 
hoi
e of at least two 
olors).Case 2. �(x) = 1. W.l.o.g., suppose �(f) 2 f2; 4g, �(d) 2 f3; 4; 5g. If for at most one � > 4there is a (1; �)-path joining e to fb; a; hg, we 
an 
olor with 
olors > 4 �rst y and then z to obtainan a
y
li
 
oloring of T . So, suppose there are at least two su
h pathes, with �1 > 4 and �2 > 4.If x 
annot be re
olored, then there is a 
olor 
 2 f2; 3; �1; �2g that appears on the path P = ghab
at least twi
e. Furthermore, the verti
es u and v in P 
olored 
 must be joined by a (�; 
)-path, where� =2 f1; 2; 3; �1 ; �2g. It is easy to see (as in Sub
ase 1.2) that u and v should be separated along P byvertex w 
olored �1 or �2; w.l.o.g, assume �(w) = �1. Moreover, w is the only vertex in P 
oloredwith that 
olor. It follows that w is joined to e by a (1; �1)-path. But this makes bi
olored paths ofthe type : : : uxv : : : impossible.Sin
e x 
an be re
olored, we have Case 1.Thus our 
ounterexample T to Theorem 1 
ontradi
ts Theorem 3. This 
ompletes the proof ofTheorem 1.
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