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eAbstra
t. The oriented 
hromati
 number o(H) of an oriented graph H is de�ned to be the minimum order ofan oriented graph H 0 su
h that H has a homomorphism to H 0. If ea
h graph in a 
lass K has a homomorphismto the same H 0, then H 0 is K-universal. Let Pk denote the 
lass of orientations of planar graphs with girth atleast k. Clearly, P3 � P4 � P5. . .We dis
uss the existen
e of Pk-universal graphs with spe
ial properties. It isknown (see [10℄) that there exists a P3-universal graph on 80 verti
es. We prove here that(1) there exist no planar P4-universal graphs;(2) there exists a planar P16-universal graph on 6 verti
es;(3) for any k, there exist no planar Pk-universal graphs of girth at least 6;(4) for any k, there exists a P40k-universal graph of girth at least k + 1.Keywords. Oriented 
olorings, Planar graphs, Planar graphs with large girth, Universal graphs.1 Introdu
tionGraphs in this paper 
an be dire
ted, oriented and unoriented. The di�eren
e between dire
ted andoriented graphs is that in dire
ted graphs opposite ar
s are allowed, while in oriented graphs theyare not allowed. (Two ex
eptions: by dire
ted 
y
le we mean an oriented 
y
le without sour
es andby dire
ted path|an oriented path with exa
tly one sour
e and exa
tly one sink.) In other words, anoriented graph is an orientation of an undire
ted graph obtained by assigning to every edge one of thetwo possible orientations. For every graph G = (V;E), V is its set of verti
es and E is its set of ar
sor edges. Given graphs G = (V;E) and G0 = (V 0; E0), a homomorphism from G to G0 is any mappingf : V ! V 0 satisfying xy 2 E =) f(x)f(y) 2 E0:Here the elements or E andE0 either both are edges or both are ar
s. The existen
e of a homomorphismfrom G to G0 will be denoted by G! G0.Homomorphisms are 
learly related to the 
hromati
 number of undire
ted graphs by the obser-vation that �(G) � k if and only if G ! Kk. In other words, an undire
ted graph G has 
hromati
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2 On universal graphs for planar oriented graphs of a given girthnumber k if and only if G has a homomorphism to the 
omplete graph Kk but no homomorphism toKk�1. Therefore, the 
hromati
 number �(G) of an undire
ted graph G 
an equivalently be de�nedas the minimum number of verti
es in an undire
ted graph H su
h that G has a homomorphism toH. Homomorphisms of undire
ted graphs have been extensively studied (see, e.g., [2, 3, 4, 5, 6, 9℄)as a generalization of graph 
olouring. We 
an similarly de�ne the oriented 
hromati
 number o(H)of an oriented graph H as the minimum number of verti
es in an oriented graph H 0 su
h that Hhas a(n oriented) homomorphism to H 0. We will often say that a graph G is H-
olourable if G hasa homomorphism to H and the verti
es of H will be 
alled 
olours. Oriented homomorphisms havebeen studied in [1, 7, 8, 10, 11℄.A di�eren
e between undire
ted and dire
ted homomorphisms is that every undire
ted graph Gwith �(G) � k is Kk-
olourable, while the minimum number of verti
es in an oriented graph H su
hthat every oriented graph G with o(G) � k is H-
olourable is exponential in k. This di�eren
e justi�esstudying K-universal oriented graphs, i.e. the oriented graphs H su
h that every graph in K is H-
olourable. In this paper we study universal graphs for oriented planar graphs of given girth. By girth(resp., length of a path or a 
y
le) of an oriented graph we mean the girth (resp., length of a path or
y
le) of the underlying undire
ted graph.Denote by Pk the 
lass of planar oriented graphs with girth at least k. In parti
ular, P3 is the 
lassof all planar oriented graphs. Evidently, P3 � P4 � P5. . . , whi
h yields that any Pk-universal graphis also Pm-universal for every m > k. The following theorem is a summary of results in [1, 8, 10, 11℄related to planar graphs.Theorem 1 1. There is a P3-universal graph on 80 verti
es ( [10℄);2. there is a P5-universal graph on 19 verti
es ( [1℄);3. there is a P6-universal graph on 11 verti
es ( [1℄);4. there is a P8-universal graph on 7 verti
es ( [1℄);5. there is a P14-universal graph on 5 verti
es ( [1℄);6. for every k, there exists a graph G 2 Pk with o(G) � 5 ([8℄);7. there exists a graph G 2 P7 with o(G) � 6 ([8℄);8. there exists a planar oriented graph G with o(G) � 15 ([11℄).In fa
t, some results in [1℄ 
ited above have a stronger form in terms of maximum average degree.The maximum average degree mad(G) of a graph G is de�ned to be the maximum of the averagedegrees ad(H) = 2jE(H)j=jV (H)j taken over all the subgraphs H of G. Euler formula implies thatfor ea
h surfa
e, any graph with suÆ
iently large girth embedded in this surfa
e has small maximumaverage degree. In parti
ular, for every planar or proje
tive planar graph G with girth at least g, wehave (see, e.g. [1℄) mad(G) < 2g=(g � 2): (1)That is, if MAD� is the 
lass of all graphs with the maximum average degree stri
tly less than �,then MAD2g=(g�2) � Pg for ea
h g � 3. This explains how statements 2,3 and 5 of Theorem 1 areimplied by the following fa
ts proved in [1℄.2'. there is a MAD10=3-universal graph on 19 verti
es;3'. there is a MAD3-universal graph on 11 verti
es;5'. there is a MAD7=3-universal graph on 5 verti
es.In the present paper we are looking for Pk-universal graphs whi
h themselves are planar and/orof a given girth. Several existen
e results are obtained for MAD�-universal graphs. In 
ontrast withthe statement 1 of Theorem 1, we haveTheorem 2 There are no planar P3- and P4-universal graphs.



O.V. Borodin, A.V. Kosto
hka, J. Ne�set�ril, A. Raspaud and E. Sopena 3On the other hand, the following is true.Theorem 3 There exists a planar graph on 6 verti
es whi
h is universal for the set of graphs inMAD16=7 with girth at least 10.Note that, by (1), Theorem 3 yields the followingCorollary 4 There exists a planar P16-universal graph on 6 verti
es.It 
an be also proved that an orientation of the planar graph K5 � e is P31-universal.Clearly, ea
h dire
ted 
y
le is MAD2-universal, i.e. universal for oriented forests. The situationis similar for graphs G with mad(G) = 2:Proposition 5 For ea
h k � 3 and for any � > 0, there exists an outerplanar graph G 2 MAD2+�of girth k whi
h is universal for all graphs with mad at most 2 of girth k.But as soon as mad is greater than 2, the pi
ture 
hanges. Planar graphs with large girth have,by (1), mad 
lose to 2, and still the following is true.Theorem 6 For ea
h k, any Pk-universal graph has maximum average degree at least 3.This together with (1) yields the following.Corollary 7 For ea
h k, there exists no planar Pk-universal graph of girth at least 6.Re
all that when mad approa
hes 4, another jump takes pla
e: we have proved in [1℄ that forevery � > 0, there exists a MAD4��{universal graph, while the oriented 
hromati
 number of graphsin MAD4 
an be arbitrarily large.Finally, we show that there are (non-planar) Pk-universal graphs of large girth if k is suÆ
ientlylarger.Theorem 8 For every g � 2, there exists a graph H of girth g + 1 whi
h is P40g-universal andMAD2+1=(12g�2)-universal.2 Nonexisten
e of some planar universal graphsIn this Se
tion, we prove Theorem 2 by 
ontradi
tion. If the result is not true, then there exists aminimal by in
lusion P4-universal planar graph H. Below we derive a sequen
e of properties whi
hare possessed by H. The �rst two of them are immediately implied by the minimality of H.(i) There is no homomorphism of H to any of its proper subgraphs.(ii) For every ar
 e in H, there exists a graph Ge 2 P4 su
h that every homomorphism f : Ge ! Hmaps some ar
 of Ge to the ar
 e.(iii) For every ar
 e in H, for every planar graph G with girth g � 4 and every ar
 e0 in G thereexists a homomorphism from G to H whi
h maps e0 to e.Proof. We 
onstru
t an auxiliary graph G0 as follows : take a 
opy of the graph Ge from (ii). Toevery ar
 e00 in Ge we \glue" a 
opy of G by identifying the ar
s e0 and e00. The graph G0 thus obtainedis 
learly planar and has girth g0 � 4. Thus, there exists a homomorphism f : G0 ! H. Sin
e everyhomomorphism of Ge to H uses e, there is an ar
 e00 from Ge whi
h is mapped to e. Let G00 be the
orresponding 
opy of G whi
h is glued to e00. The restri
ted homomorphism f jG00 is obviously ahomomorphism from G to H whi
h maps e0 to e. 2(iv) No vertex in H has in-degree or out-degree less than 3.



4 On universal graphs for planar oriented graphs of a given girthProof. Let x 2 V (H). Consider the graph G0 obtained from the dire
ted 6-
y
le (123456) by addinga vertex 7 and three ar
s 17, 37 and 57. Clearly, G0 is planar and has girth 4. By (iii), there exists ahomomorphism of G0 to H whi
h maps vertex 7 to x0. But the verti
es 1,3 and 5 must get distin
t
olors. It follows that in-degree of x is at least 3. Similarly, the out-degree of x also is at least 3. 2Sin
e, by (iv), every vertex in H has degree at least 6, H 
annot be planar. This 
ontradi
tionproves Theorem 2.3 Existen
e of a planar MAD16=7-universal graphThe aim of this se
tion is to prove Theorem 3 whi
h immediately implies Corollary 4.Let T denote the 
ir
ulant graph T (6; 1; 2), i.e. the graph with the vertex-set f1; 2; 3; 4; 5; 6g andsu
h that ab is an ar
 in T if and only if b�a � 1 (mod 6) or b�a � 2 (mod 6). Note that T is planar.Call a subset I of f1; 2; 3; 4; 5; 6g the (i; j)-interval if I = fj; j + 1; : : : ; j + i � 1g (the sums aretaken modulo 6). Any (i; j)-interval will be sometimes 
alled an i-interval or simply an interval. Foran orientation P of a path and v 2 V (T ), let NPT (v) denote the set of verti
es w 2 V (T ) su
h that T
ontains a path isomorphi
 to P 
onne
ting v with w. By indu
tion on the number of ar
s in P , it iseasy to observe the following fa
t.Lemma 9 For any v 2 V (T ) and any orientation P of a path with k edges (1 � k � 5), the set NPT (v)is a (k+1)-interval. Moreover, if NPT (v) is a (k+1; j)-interval, then NPT (v+i) is a (k+1; j+i)-interval.Let G be a minimum (with respe
t to the number of verti
es) oriented graph with maximumaverage degree less than 16/7 whi
h has no homomorphism to T . Clearly, G has no verti
es of degree1. Verti
es of degree k will be often referred to as k-verti
es; verti
es of degree at least three willbe also 
alled senior verti
es. We say that a vertex w of G is a quasi-neighbour of v 2 V (G) if itis a neighbour of v or there is a path 
onne
ting w and v whose all internal verti
es have degree 2.A 3-vertex having exa
tly i ) quasi-neighbours of degree 2 will be sometimes 
alled a (3; i)-vertex.Similarly, an i-quasi-neighbour (respe
tively, a (3; i)-quasi-neighbour) of v 2 V (G) is a quasi-neighbourof v whi
h is an i-vertex (respe
tively, a (3; i)-vertex). Graph G possesses the following properties.(G1) G 
ontains no path of length 5 whose internal verti
es have degree 2.Proof. Assume that G 
ontains su
h a path (v0; : : : ; v5). By the minimality of G, there exists ahomomorphism f : G n f(v1; : : : ; v4g ! T . By Lemma 9, T 
ontains a 5-path from f(v0) to f(v5)whose orientation is the same as in G[fv0; : : : ; v5g℄. Thus, we 
an extend f to a homomorphism of Gto T . 2Remark. As in the proof of (G1), the main problem with embedding a subgraph of G whi
h isa path with internal 2-verti
es into T is to map the internal verti
es so that there is a path of givenorientation in T 
onne
ting the images of the ends of this path. In parti
ular, if (v0; : : : ; vi) is a pathin G whose internal verti
es have degree 2 and we know the image of v0, then for the image of vi, byLemma 9, the path (v0; : : : ; vi) forbids exa
tly 5� i 
olours. Sometimes, we shall say in this situationthat v0 forbids for vi 5� i 
olours (or, equivalently, allows i+ 1 
olours).(G2) G 
ontains no (3; i)-verti
es for any i � 7.Proof. Assume that G 
ontains a (3; i)-vertex v, and the senior quasi-neighbours of v are u1; u2and u3. Let the shortest path from v to uj (j = 1; 2; 3) 
ontain ij 2-verti
es. By the minimalityof G, there exists a homomorphism f to T of the graph G0 obtained from G by deleting v and allits 2-quasi-neighbours. We 
laim that f 
an be extended to a homomorphism of G to T . By theremark above, ea
h uj forbids for v exa
tly 4� ij 
olours. Thus, altogether they forbid for v at most12� i1 � i2 � i3 = 12� i 
olours, and if i > 6, we have an admissible 
olour for v. 2



O.V. Borodin, A.V. Kosto
hka, J. Ne�set�ril, A. Raspaud and E. Sopena 5(G3) G 
ontains no (3; 6)-vertex whi
h is adja
ent to a (3; 6)-, (3; 5)- or (3; 4)-vertex.Proof. Assume that G 
ontains a (3; 6)-vertex v whi
h is adja
ent to a (3; j)-vertex u (j � 4). Then,by (G1), v is 
onne
ted with other senior quasi-neighbours by 4-paths. Let v1 and v2 be these distin
tfrom u senior quasi-neighbours of v, and u1 and u2 be distin
t from v senior quasi-neighbours of u.Let G0 be obtained from G by deleting u, v, and their 2-quasi-neighbours. By the minimality of G,there exists a homomorphism f of G0 to T . By the remark, v1 and v2 forbid for v at most two 
olours,and u1 and u2 forbid for u at most four 
olours. Let � and � be two 
olours allowed for u. By these
ond part of Lemma 9, the quadruple of 
olours forbidden for v by u if we 
olour u with � di�ersfrom that if we 
olour u with �. Thus, in at least one 
ase, there is a 
olour in T allowed for v. 2(G4) If some (3; 4)-vertex in G has a (3; 6)-quasi-neighbour on distan
e two, then G does not
ontain another (3; i)-quasi-neighbour for i � 5 on distan
e two.Proof. Assume that G 
ontains a (3; 4)-vertex v whi
h has a (3; 6)-quasi-neighbour u and a (3; 5)-quasi-neighbourw, both on distan
e two from v. Then the third senior quasi-neighbour x is on distan
e3 from v. Let u1 and u2 (respe
tively, w1 and w2) be the distin
t from v senior quasi-neighbours of u(respe
tively, of w).Let G0 be obtained from G by deleting v, u, w, and their 2-quasi-neighbours. By the minimalityof G, there exists a homomorphism f of G0 to T . By the remark, w1 and w2 forbid for w at most four
olours, u1 and u2 forbid for u at most three 
olours and x forbids for v exa
tly two 
olours. Let �and � be two 
olours allowed for w. The size of the union of the set of 
olours allowed for v by w ifwe 
olour w with � and the set of 
olours allowed for v by w if we 
olour w with � is at least four.Thus, we 
an 
hoose a 
olour for w so that w and x together forbid for v at most four 
olours.Re
all that we have a 
hoi
e of three 
olours for u, ea
h of whi
h allows for v a 3-interval of 
olours.But the union of three distin
t 3-intervals has the size at least �ve. Consequently, we 
an extend fon whole G.If w is a (3; 6){vertex, then the proof is only easier. 2The proofs of the following four fa
ts are very similar to that of (G3) and (G4), and we omit them.(G5) No (3; 6)-vertex in G has a (3; 6)- or (3; 5)-quasi-neighbour on distan
e two.(G6) No (3; 6)-vertex in G has a (3; 6)-quasi-neighbour on distan
e at most three.(G7) If a (3; 4)-vertex v in G is adja
ent to a (3; 5){vertex, then it has no other (3; 5)-quasi-neighbour on distan
e at most two, and no (3; 6)-quasi-neighbour on distan
e at most three.(G8) If a (3; 5)-vertex v in G hss a (3; 6)-quasi-neighbour on distan
e three, then v has neitheranother (3; 6)-quasi-neighbour on distan
e three, nor a (3; 5)-quasi-neighbour on distan
e at most two.Now, let ea
h vertex of G have the 
harge equal to its degree. We de�ne a dis
harging pro
edureas follows:(a) ea
h senior vertex gives the amount 1/7 to ea
h 2-quasi-neighbour;(b) ea
h senior vertex whi
h is not a (3; 6)-vertex gives the amount (4 � k)=21 to ea
h (3; 6)-quasi-neighbour on distan
e k � 3 ;(
) ea
h senior vertex whi
h is neither a (3; 6)-vertex nor a (3; 5)-vertex gives the amount (3 � k)=21to ea
h (3; 5)-quasi-neighbour on distan
e k � 2 .For ea
h v 2 V (G), let d?(v) denote the 
harge of vertex v after our pro
edure. Sin
e the sumof 
harges did not 
hange, it is enough to verify that d?(v) � 16=7 for ea
h v 2 V (G), to prove thetheorem.CASE 1. dG(v) = k � 4. Note that along any path with internal 2-verti
es starting at v, v sendsat most 3/7. Indeed, if it sends something to the senior quasi-neighbour at the end of this path, thenthis path has less than three 2-verti
es. Thus, d?(v) � k � 3k=7 = 4k=7 � 16=7.



6 On universal graphs for planar oriented graphs of a given girthCASE 2. dG(v) = 2. Then v re
eives 1/7 from ea
h of its senior quasi-neighbours. Thus, d?(v) �2 + 2=7 = 16=7.CASE 3. v is a (3; i)-vertex and i � 3. By the rules, along a path of length j + 1 with internal2-verti
es starting at v, v sends at most j=7+(3�j)=21 = 1=7+2j=21. Hen
e d?(v) � 3�3=7�2i=21 �3� 3=7� 2=7 = 16=7.CASE 4. v is a (3; 4)-vertex. If v has no (3; 6)-quasi-neighbour on distan
e at most three, then,in view of (G7), it sends to (3; 5)-quasi-neighbours at most 3/21, and d?(v) � 3� 4=7� 3=21 = 16=7.So, let u1 be a (3; 6)-quasi-neighbour of v on minimum distan
e. By (G3), the distan
e between vand u1 is at least two. If this distan
e is exa
tly two, then, by (G4) and (G7), at most one (3; 5)- or(3; 6)-quasi-neighbour of v di�erent from u1 is on distan
e at most three, and v gives to that vertex atmost 1/21. Thus, in this 
ase d?(v) � 3� 4=7� 2=21� 1=21 = 16=7. Finally, let the distan
e betweenv and u1 be exa
tly three. By (G7), v is not adja
ent to a (3; 5)-vertex, and hen
e gives to ea
h ofsenior quasi-neighbours at most 1/21. Again, d?(v) � 3� 4=7 � 3=21 = 16=7.CASE 5. v is a (3; 5)-vertex. If v has no (3; 6)-quasi-neighbours on distan
e at most three, thenit gives nothing to senior verti
es, and d?(v) � 3� 5=7 = 16=7. So, let u1 be a (3; 6)-quasi-neighbourof v. By (G3) and (G5), the distan
e between v and u1 is exa
tly three. Moreover, by (G8), noneof the remaining senior quasi-neighbours u2 and u3 is a (3; 6)-vertex on distan
e at most three fromv. Sin
e the sum of the distan
es from v to u2 and u3 is equal to �ve, one of them, say u2, is ondistan
e at most two from v, and the other is on distan
e at least three from v. By (G8), u2 is not a(3; 5)-vertex, and u3 is not a (3; 6)-vertex on distan
e at most three from v. Thus, v gives nothing tou3 and re
eives exa
tly 1/21 from u2. In total, d?(v) � 3� 5=7� 1=21 + 1=21 = 16=7.CASE 6. v is a (3; 6)-vertex. If v has no senior quasi-neighbours on distan
e at least four, then, by(G6) and (b), it re
eives from ea
h senior quasi-neighbour at least 1/21, and d?(v) � 3� 6=7+3=21 =16=7. So, let the distan
e between v and an its senior quasi-neighbour u1 be at least four. If at leastone of the remaining senior quasi-neighbours u2 and u3 is adja
ent to v, then v re
eives 1/7 from thisvertex and has d?(v) at least 16=7. If this is not the 
ase, then one of u2 and u3 is on distan
e at mosttwo and the other at most three from v. Again, v re
eives at least 2=21 + 1=21 = 1=7 from u2 and u3.Therefore, ea
h vertex v in G has d?(v) � 16=7 whi
h 
ontradi
ts the fa
t that mad(G) < 16=7.This proves Theorem 3.4 On the girth of planar universal graphsIn this Se
tion, we prove Proposition 5 and Theorem 6.Let M(k) denote the set of oriented graphs of girth at least k with maximum average degree atmost two whi
h have no homomorphisms to other graphs of girth at least k with maximum averagedegree at most two. Sin
e any M(k)-universal graph admits a homomorphism from ea
h orientedgraph with maximum average degree at most two, we �rst des
ribeM(k).Let G 2M(k). If two ar
s wv and uv enter the same vertex in G then the graph G0 obtained fromG by identifying w with u must be not inM(k). The only reason for it 
an be that the path (wvu) isa part of a 
y
le of length k or k+1 in G. Similar observation holds if two ar
s leave the same vertexin G. These observations imply the following lemma.Lemma 10 Let M(k)1 denote the set of all dire
ted 
y
les of length at least k, and M(k)2 denotethe set of uni
y
li
 oriented graphs whose 
y
le has length k or k + 1 and su
h that ea
h sour
e inthis 
y
le is entered by exa
tly one dire
ted path, and from ea
h sink in the 
y
le starts exa
tly onedire
ted path. Then M(k) �M(k)1 [M(k)2.Let m = maxfk; d1=�eg. We 
onstru
t the universal graph F in question as the disjoint union ofgraphs F1 and F2. Ea
h 
omponent of F1 
onsists of two dire
ted 
y
les with exa
tly one 
ommonvertex. One of these 
y
les has length 2m and another has one of the lengths k; k + 1; : : : ; k + 2m.Ea
h 
omponent of F2 
onsists of some oriented 
y
le C of length k or k+1 with exa
tly one dire
ted
y
le of length 2m atta
hed to every sour
e or sink in C.



O.V. Borodin, A.V. Kosto
hka, J. Ne�set�ril, A. Raspaud and E. Sopena 7Observe that every 
omponent of F is outerplanar of girth at least k and has maximum averagedegree less than 2 + 2=(2m) � 2 + �. It follows that F also possesses these properties. On the otherhand, any graph in M(k)1 has a homomorphism to some 
omponent of F1, and any graph in M(k)2has a homomorphism to some 
omponent of F2. This proves the proposition.To prove Theorem 6, 
onsider an arbitrary minimal by in
lusion Pk-universal graph H. Ifmad(H) � 3, we are done. Suppose that mad(H) < 3. Repeating the argument of Se
tion 2, weobtain that the properties (i){(iii) in Se
tion 2 hold also for our H (with repla
ing 4 by k in (iii)).Instead of (iv) we 
an prove only the following weaker statement.(iv0) No vertex in H has in-degree or out-degree equal to 0.Proof. Let x 2 V (H). Consider the dire
ted 
y
le Ck as the graph G0. Sin
e, by (iii), we 
an mapany of its vertex to x, x has positive in- and out-degrees. 2Call an ar
 e in
ident with a vertex v ex
eptional for v, if e is the only ar
 whi
h leaves v or e isthe only ar
 whi
h enters v. Denote by EA the set of all ex
eptional ar
s in H, and by nm the numberof verti
es of degree m in H. The following observation is obvious in view of (iv0).(v) If d(v) = 2, then both ar
s in
ident with v are ex
eptional for v. If d(v) = 3, then exa
tly onear
 in
ident with v is ex
eptional for v.(vi) An ar
 uv 
annot be ex
eptional for both u and v.Proof. Assume it is. Let G be the 
y
le (x1; : : : ; x2k+1) whose ar
s are x2i�1x2i and x2i+1x2i (i =1; : : : ; k) and x1x2k+1. By (iii), there exists a homomorphism of G into H mapping x1x2 to uv. Sin
euv is ex
eptional for v, x3x2 also should be mapped to uv. Similarly, x3x4 should be mapped into uvand so on. Finally, x2k+1 should be mapped to u whi
h is a 
ontradi
tion. 2From (v) and (vi) we 
on
lude that(vii) jEAj � 2n2 + n3.(viii) A vertex v of degree m 
annot be adja
ent to m � 1 ar
s whi
h are ex
eptional for otherverti
es.Proof. Assume it is. Be
ause of symmetry, we may assume that all ar
s entering v are ex
eptionaland these ar
s are y1v; : : : ; ytv. Denote Y = fy1; : : : ; ytg.Let G be as in the proof of (vi). By (iii), there exists a homomorphism of G to H mapping x1x2to y1v. By the de�nition of Y , the ar
 x3x2 must be mapped to an ar
 of the kind yiv. Sin
e yiv isex
eptional for yi, x3x4 also must be mapped to yiv, and so on. Finally, x2k+1 should be mapped toyj for some j whi
h yields existen
e of the ar
 y1yj. Similarly, we obtain that the out-degree of everyyi in H[Y ℄ is at least 1; in parti
ular, jY j � 3. But then the average degree of H[Y [ fvg℄ is at least3, whi
h 
ontradi
ts the assumption mad(H) < 3. 2By (viii), we have jEAj �P1m=2 nm(m� 2). Comparing this with (vii), we get2n2 + n3 � 1Xm=2nm(m� 2);whi
h is equivalent to n2 � 1Xm=4nm(m� 2)=2:



8 On universal graphs for planar oriented graphs of a given girthSin
e (m� 2)=2 � m� 3 for m � 4, this implies thatn2 � 1Xm=4nm(m� 3);that is, Xv2V (H) dH(v) = 1Xm=2nmm � 1Xm=2nm3 = 3jV (H)j:This proves the theorem.5 On the girth of Pk-universal graphsIn this Se
tion, we prove Theorem 8. To do it, we need the following lemma (see Alon and Spen
er,pp. 238{239):Lemma 11 Let Y be the sum of n mutually independent indi
ator variables, � = E(Y ). For all � > 0,P[Y < (1� �)�℄ < e��2�=2: 2Let g be �xed and � = 1=3g. We 
hoose any n su
h thatn� > 200 lnn (2)and 
onstru
t a random dire
ted graph G (with loops) as follows. Let U = fu1; : : : ; ung, W =fw1; : : : ; wng. For ea
h wi and uj , the ar
 wiuj exists with probability p = n��1 independently of anyother ar
s. Our G is obtained from this bipartite oriented graph by identifying wi with ui into thevertex vi for ea
h i 2 f1; : : : ; ng. Denote V = f1; : : : ; ng.So de�ned G with high probability has short 
y
les and even loops, but not many. Let S1 be theevent that there exists k; 2 � k � 2g � 1, and M � V with jM j = k su
h that jE(G(M))j � k + 1.Note that S1 in
ludes the event that a vertex with a loop belongs to some 
y
le of length at most2g � 1.Lemma 12 P[S1℄ < 1=3.Proof. P[S1℄ � 2g�1Xk=2  nk! k2k + 1!pk+1 � 2g�1Xk=2 12�k �nek �k  k2ek + 1!k+1 n(��1)(k+1) �2g�1Xk=2 12�e2k+1n�(k+1)�1 � e2(2g�1)n2g��1 = e2(2g�1)n�1=3:By (2), the last expression is less than �e4=200�g < 1=3. 2For ea
h A � V , let N+(A) = fv 2 V j 9x 2 A : xv 2 E(G)g and N�(A) = fv 2 V j9x 2 A : vx 2 E(G)g. Let S2 be the event that for some A � V with jAj < 1=p, the inequalityminfjN+(Aj; jN�(Ajg < pnjAj=4 holds.Lemma 13 P[S2℄ � 1=10.



O.V. Borodin, A.V. Kosto
hka, J. Ne�set�ril, A. Raspaud and E. Sopena 9Proof. Let A � V with jAj = a < 1=p and v 2 V . Clearly, P[v 2 N+(A)℄ = 1 � (1 � p)a. Sin
ea < 1=p, we have 1� (1� p)a � 1� 1 + pa� p2 a2! = pa(1� p(a� 1)=2) > pa=2:It follows that E[jN+(A)j℄ > npa=2. By Lemma 11, we haveP[jN+(A)j < npa=4℄ < expf�pan=16g:Similarly, P[jN�(A)j < npa=4℄ < expf�pan=16g. Thus,P[S2℄ < d1=peXa=1 2 na! expf�pan=16g �� d1=peXa=1 �nea �a expf�an�=16g < 1Xa=1 �ne1�n�=16�a :By (2), n�=16 > 10 lnn, and so, P[S2℄ < 1Xa=1n�3a < 1=10: 2Let S3 be the event that for some A � V with jAj = d1=pe, the inequality minfjN+(Aj; jN�(Ajg <4(e�1)5e n holds.Lemma 14 P[S3℄ � 1=n.Proof. Let A � V with jAj = a = d1=pe and v 2 V . Sin
e pa � 1,P[v 2 N+(A)℄ = 1� (1� p)a > 1� e�pa � 1� e�1:It follows that E[jN+(A)j℄ > n(e� 1)=e. By Lemma 11, we haveP[jN+(A)j < 0:8n(e� 1)=e℄ < expf�0:02n(e � 1)=eg:Similarly, P[jN�(A)j < 0:8n(e� 1)=e℄ < expf�0:02n(e � 1)=eg. Thus,P[S3℄ < 2 nd1=pe! expf�0:02n(e � 1)=eg �� n1=p expf�0:01ng < expfn1�� lnn� 0:01ng:By (2), n1�� lnn < n=200, and so, P[S3℄ < expf� lnng = 1=n: 2By Lemmas 12{14, with probality at least 1/3, G possesses the following properties:(i) No two 
y
les of length at most g have a 
ommon vertex (in parti
ular, no vertex with a loopbelongs to a 
y
le of length at most g);



10 On universal graphs for planar oriented graphs of a given girth(ii) For ea
h A � V with jAj < 1=p, the inequality minfjN+(A)j; jN�(A)jg � pnjAj=4 holds;(iii) For ea
h A � V with jAj = d1=pe, the inequality minfjN+(A)j; jN�(A)jg � 4(e�1)5e n holds.It follows that there exists a digraph G = (V;E) possessing all properties (i){(iii). Denote byH = (V;E0) the oriented graph obtained from G by deleting one ar
 from ea
h 
y
le of length at mostg in G (in parti
ular, every loop and an ar
 in every 2-
y
le must be deleted). By (i), it 
an be doneand the resulting H has girth at least g + 1. By (ii), for ea
h A � V with jAj < 1=p, we haveminfjN+H (A)j; jN�H (A)jg � pnjAj=4� jAj > pnjAj=5 = n�jAj=5: (3)Similarly, under 
onditions (2), for ea
h A � V with jAj = d1=pe, we haveminfjN+H (A)j; jN�H (A)jg � 4(e � 1)5e n� d1=pe > 0:505n� n� > n=2: (4)For an orientation P of a path and v 2 V , let NP (v) denote the set of su
h verti
es w 2 V thatH 
ontains a path isomorphi
 to P 
onne
ting v with w. Now, we prove that for ea
h v 2 V and forea
h orientation P of a 4g-path, jNP (v)j > n=2: (5)Indeed, if jNPkH (v)j � 1=p for at least one initial subpath Pk with k edges of P , (1 � k � 4g� 1), thenthis follows from (4). Otherwise, by (3) and (2),jN4gH (v)j � (n�=5)4g = n4=3=54g > n;whi
h is impossible.Inequality (5) implies that for ea
h v; x 2 V and for ea
h orientation of a 8g-path, x 
an be rea
hedfrom v by a path of this orientation. Now we are ready to prove Theorem 8.A smallest 
ounterexample to any of the statements of the theorem must have no 1-verti
es. Byabove, it has no subpath on 8g� 1 verti
es of degree 2. Then the �rst statement follows from the fa
tthat any planar graph without 1- and 2-verti
es has girth at most �ve, and the se
ond follows fromthe dis
harging pro
edure when ea
h vertex v of degree at least three gives 1=(24g � 2) to ea
h of its2-quasi-neighbours.Referen
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