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eAbstra
t. A vertex 
oloring of a graph is a
y
li
 if the ends of ea
h edge have di�erent 
olors and ea
h bi
oloredsubgraph is a
y
li
. Let ea
h fa
e of size at most k, where k �, in a map on a surfa
e SN be repla
ed by a
lique on the same verti
es. Then the resulting map 
an be a
y
li
ally 
olored with a number of 
olors thatdepends linearly both on N and on k. Su
h results were previously known only for 1 � N � 2 and 3 � k � 4.Keywords. A
y
li
 
oloring, A
y
li
 strong 
oloring.1 Introdu
tionThe problems of 
oloring graphs embedded on surfa
es is an important part of graph theory. Inparti
ular, the well-known Four Color Problem belongs to this area.We denote by V (G) the set of verti
es of a graph G and by E(G) its set of edges. A (proper)k-
oloring of G is a mapping f : V (G) �! f1; 2; : : : ; kg su
h that f(x) 6= f(y) whenever x and y areadja
ent in G.A vertex 
oloring of a graph is 
alled k-
y
li
 or k-strong hypergraph 
oloring if every two distin
tverti
es lying in the boundary of the same fa
e of size at most k have di�erent 
olors. (We use belowboth terms.) This type of 
oloring may be looked at as an admissible 
oloring of a pseudographobtained by repla
ing ea
h fa
e of size at most k by a 
lique on the same verti
es. Let �k(G) bethe minimum number of 
olors suÆ
ient to 
olor G k-
y
li
ally, and let �k(SN ) be the minimumnumber of 
olors suÆ
ient to 
olor k-
y
li
ally ea
h map on surfa
e SN with Euler 
hara
teristi
 N .(Sometimes we drop the arguments.)The 
ase k = 3 
orresponds to the ordinary vertex 
olouring, and the Four Color Theorem byAppel and Haken [1℄ and Heawood's theorem [2℄ give pre
ise upper bounds for the plane and for thehigher surfa
es, respe
tively.The 
ase k = 4 may also be formulated in terms of the simultaneous vertex-fa
e 
oloring andthe vertex 
oloring of 1-embeddable graphs. For the plane, Borodin [3℄ proved, 
on�rming Ringel's
onje
ture in [4℄, pre
ise upper bound �4 � 6; for the proje
tive plane, S
huma
her [5℄ proved pre
iseupper bound �4 � 7; and for the other surfa
es, Ringel [6℄ proved that �4(SN ) � 2H(N)p3 , whereH(N) = b7+p49�24N2 
 is the Heawood number.1A part of this resear
h was done during a visit of LaBRI, supported by the NATO Collaborative Resear
h Grant no97-1519. It was partially supported by the grant 97-01-01075 of the Russian Foundation for Fundamental Resear
h.2This work was partially supported by the INTAS grant 97-1001 and by the grant 96-01-01614 of the RussianFoundation for Fundamental Resear
h.3The work of these two authors was partly supported by the NATO Collaborative Resear
h Grant no 97-1519.1



2 A
y
li
 k-strong hypergraph 
oloring of maps on surfa
esFor arbitrary k � 3, Ore and Plummer [7℄ proved that ea
h plane graph G is k-
y
li
ally 2k-
olorable, and Borodin, Sanders and Zhao [8℄ improved this bound to �k(G) � 9k5 .A vertex 
oloring of a graph is a
y
li
 if it is admissible, i.e., the ends of ea
h edge are 
oloreddi�erently, and there is no bi
olored 
y
le. Note that a loop gives a uni
olored edge and two multipleedges give a bi
olored 
y
le. We de�ne a vertex 
oloring of a map to be a
y
li
 provided that notwo ends of an edge e are 
oloured the same unless e is a loop, and no bi
olored 
y
le of length> 2 exists. Borodin [9℄ proved that ea
h plane graph is a
y
li
ally 5-
olorable, whi
h bound is bestpossible. Albertson and Berman [10℄ proved that ea
h graph embedded on the oriented surfa
e SN ,where N < 0, is a
y
li
ally (8�2N)-
olorable. Alon, Mohar and Sanders [11℄ proved, using the a
y
li
5-
olorability of plane graphs, that ea
h graph on the proje
tive plane is a
y
li
ally 7-
olorable, andshowed this bound to be best possible. Also, they prove that ea
h graph embedded on an arbitrarysurfa
e SN is a
y
li
ally O(N4=7)-
olorable, and this bound is tight up to the fa
tor of (logN)1=7.The a
y
li
 
oloring has a number of appli
ations to other 
oloring problems, for the de�nitions see[12, 13, 14, 15, 16℄. Suppose one has proved that a(G) � a. Then G has the star 
hromati
 numberat most a2a�1 (Gr�unbaum [13℄) and the oriented 
hromati
 number at most a2a�1 (Raspaud andSopena [16℄); every m-
oloring of the edges of G 
an be homomorphi
ally mapped on that of a graphwith at most ama�1 verti
es (Alon and Marshall [12℄); every m-
oloring of the edges of mixed graph G
ombined with its n-
oloring 
an be homomorphi
ally mapped on a graph with at most a(2n+m)a�1verti
es (Ne�set�ril and Raspaud [15℄).Also, Hakimi, Mit
hem and S
hmei
hel [14, p.38-39℄ proved that E(G) 
an be partitioned intoa(G) star forests (whose every 
omponent is a star). Dire
tly using [9℄, this 
on�rms the 
onje
tureof Algor and Alon [17℄ that the edges of every planar graph 
an be partitioned into �ve star forests.In this paper we 
onsider a 
oloring that is both a
y
li
 and k-
y
li
. Namely, we 
olor a
y
li
allythe result of repla
ing all fa
es of size at most k in a map by 
liques of the same sizes. So, ea
h fa
eof size at most k is assumed to have all `invisible' diagonals. For k = 3 this type of 
oloring 
oin
ideswith the a
y
li
 
oloring.Our main result isTheorem 1 Every map on a surfa
e SN is a
y
li
ally k-strong hypergraph 
olorable with 
Nk + dN
olors whenever k � 4 and N � 0.In fa
t, we prove the result with 
N = maxf999; 117 � 471Ng and dN = 39� 156N . The argument isintentionally kept simple; more 
ompli
ated argument may be used to de
rease 
N and dN .Corollary 2 Every map on the plane (N = 2) or on the proje
tive plane (N = 1) is a
y
li
allyk-strong hypergraph 
olorable with 
0k + d0 
olors whenever k � 4.Proof. Follows from the fa
ts that ea
h plane or proje
tive plane map is also a map on the torus orKlein bottle, respe
tively. 2In [18℄, we prove that ea
h proje
tive plane graph (and hen
e ea
h plane graph) is a
y
li
ally4-strong hypergraph 20-
olorable, i.e., ea
h graph 1-embedded on the proje
tive plane is a
y
li
ally20-
olorable. Thus, Theorem 1 and Corollary 2 augment the results of [9℄ (N = 2, k = 3), of [11℄(N � 1, k = 3), and of [18℄ (1 � N � 2, k = 4).2 Proof of Theorem 1The size, s(f), of a fa
e f is the number of edges in its boundary, �(f), 
ounting multipli
ities. Forinstan
e, a 
ut edge appears twi
e on the boundary of a 
ertain fa
e. To simplify the argument, werestri
t ourselves to the 
ase when �(f) is 
onne
ted whenever f 2 F . The degree of a vertex v, i.e.,the number of in
ident edges (loops are 
ounted twi
e), is denoted by d(v). By a � k-vertex we meanthat of degree at least k, et
.



O.V. Borodin, A.V. Kosto
hka, A. Raspaud and E. Sopena 3Given SN and k, let P 000 be a 
ounterexample with the minimum number of verti
es. For brevity,the a
y
li
ally k-strong hypergraph 
oloring with 
Nk + dN 
olors we are sear
hing for will be 
alledgood.Delete from P 000 the 
ommon edge of two aja
ent 3-fa
es, if any. Repeat this operation until theresulting 
ounterexample, P 00, has no adja
ent 3-fa
es.Triangulate all > k-fa
es of P 00 by adding diagonals to obtain another 
ounterexample, P 0, withthe minimum number of verti
es. (A good 
oloring of P 0 would be good for P 00.)Remove from P 0 ea
h loop e that forms a 1-fa
e. This de
reases the size of the other fa
e in
identwith e by 1. Similarly, for a 2-fa
e f = e1e2 in P 0, remove one of the boundary edges, say e1. Thisresults in a fa
e of the same size as the former fa
e that was in
ident with e1 and di�erent from f .If the so obtained graph P were well 
olorable, then re
overing loops and repeated edges would notspoil the good 
oloring. Thus, P is also a 
ounterexample with the fewest verti
es. We have a
tuallyproved the followingLemma 3 If f is a fa
e of P , then 3 � s(f) � k; no two 3-fa
es of P are adja
ent.Informally speaking, only adding new nontrivial adja
en
ies, represented by `visible' edges or `invis-ible diagonals', 
an spoil the good 
oloring. Our 
on
ern therefore is not to loose adja
en
ies whiletransforming P into a smaller pseudograph, whi
h already admits a good 
oloring.The following two observations should be kept in mind during the rest of the proof.Observation 4 Contra
ting an edge e = vz into a vertex v � z de
reases the size of ea
h fa
e f in Pby 0,1 or 2, depending on how many times e appears on �(f).The obtained map R is well 
olorable by the minimality of P . Transfer its 
oloring to P with z
olored as v � z and v un
olored. Then in order that to get a good 
oloring for P , it remains to �nd a
olor for v without 
reating uni
olored edges other than loops and bi
olored 
y
les other than 2-
y
les.Observation 5 Suppose a vertex v is in
ident with edges ei = vzi, where 0 � i � d(v) � k � 1,in a 
y
li
 order. (Of 
ourse, zi's are not all ne
essarily distin
t.) Split ea
h nontriangular fa
efi = : : : zivzi+1, where subs
ripts are taken modulo d(v), into a triangle zivzi+1 and a fa
e f 0i. Thens(f 0i) < s(fi). Remove v and all ei's, then a new fa
e arises of size d(v) � k, so that the obtainedpseudograph 
an be well 
olored. Hen
e, all distin
t zi's are 
olored di�erently. If we 
hoose a 
olor �for v not appearing on any vertex in [0�i�k�1�(fi), then the only possibility for the obtained 
oloringto be bad is a bi
olored �; �-
y
le (i.e., 
onsisting of verti
es alternatively 
olored with � and �) throughv and some vertex u su
h that u is 
olored with � and u 2 �(fi) n fzi; zi+1g for some fi.Lemma 6 If v 2 V (P ) then d(v) � 2.Proof. If d(v) = 1, we 
ontra
t the edge vz, transfer the good 
oloring of the obtained pseudographto P , and 
olor v di�erently from those at most k verti
es that belong to the same fa
es as v. 2Lemma 7 Ea
h fa
e in P is in
ident with at least three verti
es (not ne
essarily distin
t) of degreeat least three.Proof. If a fa
e f in P has only two verti
es u, w (not ne
essarily distin
t) of degree greater than 2in �(f), then we remove the longer of the two paths that form �(f). This 
reates a new fa
e f 0 of size� k. From a good 
oloring of the resulting graph, it is easy to obtain a good 
oloring of P , sin
e allverti
es on �(f 0) are 
olored pairwise di�erently.The 
ase that there is only one > 2-vertex in �(f) easily redu
es to the previous one. If all verti
esin �(f) have degree 2, then P is a 
y
le; a 
ontradi
tion. 2



4 A
y
li
 k-strong hypergraph 
oloring of maps on surfa
esIf every fa
e of P is an open 2-
ell, then Euler's formula says that jV j � jEj+ jF j = N ; otherwisejV j � jEj+ jF j � N:Using obvious equalities 2jEj =Pv2V d(v) =Pf2F s(f), this may be rewritten asXv2V (d(v) � 4) +Xf2F(s(f)� 4) � �4N;or �2n2 + Xv2V3+(d(v) � 4) +Xf2F(s(f)� 4) < �4N + 1; (1)where ni is the number of i-verti
es in P , and Vi+ is the set of � i-verti
es in P .Denote by n2(f) the number of 2-verti
es on the boundary of fa
e f , 
ounting multipli
ities. Theredu
ed size, s�(f), of a fa
e f is de�ned to be s(f)�n2(f). In fa
t, s�(f) is the number of > 2-verti
esin �(f), 
ounting multipli
ities. Then (1) may be put asXv2V +3 (d(v) � 4) +Xf2F(s�(f)� 4) < �4N + 1: (2)By Lemma 7, s�(f) � 3 whenever f 2 F . Let f�i (v) be the number of i�-fa
es at v, i.e., those havings�(f) = i. Then Xv2V3+(d(v) � 4� f�3 (v)3 ) + Xf2F �4+(s�(f)� 4) < �4N + 1; (3)where F �i+ is the set of � i�-fa
es in P , orXv2V3+(d(v) � 4� f3�(v)3 + 4N � 1n� ) + Xf2F �4+(s�(f)� 4) < 0; (4)where n� = jV3+ j = jV j � n2.Put 
h(v) = d(v) � 4 � f3�(v)3 + 4N�1n� whenever v 2 V3+ , 
h(f) = 0 if f is a 3�-fa
e, and 
h(f) =s�(f)� 4 whenever f 2 F �4+ . Then (4) be
omesXv2V3+ 
h(v) +Xf2F 
h(f) < 0: (5)The rest of our proof 
onsists in redistributing the 
harge 
h(x) on x 2 V3+[F , preserving the sumof 
harges, so that the new 
harge, 
h�(x), is nonnegative whenever x 2 V3+ [ F . The 
ontradi
tionwith (5) will 
omplete the proof.First observe the following fa
t.Lemma 8 n� > 39(�4N + 1).Proof. Euler's formula (1) for the map P � obtained from P by 
ontra
ting ea
h path uv1 : : : vsw su
hthat d(u) � 3, d(v1) = : : : = d(vs) = 2, d(w) � 3 into an edge uw, may be written asXv2V (P �)(dP �(v)� 6) + Xf2F (P �)(2sP �(f)� 6) � �6N;whi
h implies Xv2V (P �)(dP �(v) � 6) � �6N;



O.V. Borodin, A.V. Kosto
hka, A. Raspaud and E. Sopena 5or else jE(P �)j � 3n� � 3N:By Lemma 1, n � n� + kjE(P �)j:But n > 
Nk + dN , for otherwise P has a trivial good 
oloring (all verti
es have di�erent 
olors),and son�(1 + 3k) � 3kN > 
Nk + dN � (117 � 471N)k + 39� 156N = 39(�4N + 1)(1 + 3k) � 3kN;as desired (
ompare the leftmost and the rightmost expressions). 2Lemma 9 If d(v) � 7 then 
h(v) � 0.Proof. Indeed,
h(v) � d(v)� 4� f3�(v)3 + 4N � 1n� � d(v) � 4� d(v)3 + 4N � 1n� � 23 + 4N � 1n� ;and we are done by Lemma 8. 2If v 2 V and 
h(v) < 0, then v is 
alled poor. Put� = �4N + 1n�and " = 139 :By Lemmas 4 and 5, � � ", and ea
h poor vertex v satis�es 3 � d(v) � 6.Our rules of redistribution of 
harge are:R1. Ea
h � 14-vertex gives 23 + " to ea
h in
ident � 4�-fa
e and 13 + " to ea
h in
ident 3�-fa
e.R2. Ea
h poor vertex v re
eives 23 + "� from ea
h in
ident � 4�-fa
e f su
h that there is a � 14-vertex z in �(f) not joined to v along�(f) by a path of 2-verti
es, and� from ea
h in
ident � 13�-fa
e f .R3. If a 3�-fa
e f is in
ident with a � 14-vertex, then f gives 16 + "2 to every in
ident poor vertex.Lemma 10 If v is poor, then v re
eives 16 + "2 by R3 from ea
h of every two 
onse
utive 3�-fa
es at v.Proof. We �rst prove that if a 3�-fa
e f is in
ident with a 2-vertex u, then the � 3-vertex whi
h isopposite to u in �(f) is in fa
t a � 14-vertex.Let �(f) = xx1x2 : : : xk(x)yy1y2 : : : yk(y)zz1z2 : : : zk(z), where all xi's, yi's, and zi's are all 2-verti
es,while x, y, and z are � 3-verti
es. Suppose that k(x) � 1, i.e., x1 exists. Denote by fxy the fa
elying on the other side of path xx1x2 : : : xk(x)xy than f (perhaps fxy = f). The fa
es fyz and fzx arede�ned similarly.Contra
t the edge xx1 transfer a good 
oloring of the obtained map to P �x1. If we 
olor x1 witha 
olor that does not appear on the boundaries of f and the fa
es in
ident with z, then the obtained
oloring is good. This is impossible only if d(z) � 14.To 
omplete the proof of our Lemma, observe that by the se
ond statement of Lemma 3, at leastone of every two 
onse
utive 3�-fa
es, f1 and f2, at v is in
ident with a 2-vertex, z. If z is in
ident both



6 A
y
li
 k-strong hypergraph 
oloring of maps on surfa
eswith f1 and with f2, then we are done by R3 and the statement just proved. Otherwise, z is oppositeto the � 3-vertex, w, whi
h is in
ident both with f1 and with f2, be
ause by the above statement, z
annot be opposite to the poor vertex v whi
h has degree at most six due to Lemma 5. It follows thatd(w) � 14, and we again use R3. 2Lemma 11 If d(v) = 3 then v is in
ident with at least two fa
es ea
h of whi
h gives 23 + " to v by R2.Proof. Let v be in
ident with paths vx1x2 : : : xk(x)x, vy1y2 : : : yk(y)y, and vz1z2 : : : zk(z)z, whereall xi's, yi, and zi's are 2-verti
es while x, y, and z are all > 2-verti
es. Let �(f1) =: : : xxk(x) : : : x2x1vy1y2 : : : yk(y)y, �(f2) = : : : yyk(y) : : : y2y1vz1z2 : : : zk(z)z,and �(f3) = : : : zzk(z) : : : z2z1vx1x2 : : : xk(x)x.Suppose the 
ontrary, namely, by symmetry, that neither f1 nor f2 gives 23 + " to v. Then by R2ea
h of f1 and f2 is a � 12�-fa
e, and ea
h vertex in �(f1) n fx; yg and in �(f2) n fy; zg has degree atmost 13.Contra
t the path vy1y2 : : : yk(y)y to a vertex v�y. Transfer a good 
oloring of the obtained map toP . Color y1; y2; : : : ; yk(y) and v pairwise di�erently using 
olors that do not appear on the boundariesof the fa
es f1, f2, f3, and those at most 2� 9� (13 � 1) fa
es that are in
ident with > 2-verti
es in�(f1)nfx; yg[�(f2)nfy; zg. The number of restri
tions is less than 3k+2�9� (13�1)k < 
Nk+dN ,and no nontrivial uni
olored edges or bi
olored 
y
les appear. 2Lemma 12 If d(v) = 4 then v is in
ident with at least one fa
e giving 23 + " to v by R2.Proof. Let v be in
ident with paths vxi1xi2 : : : xik(xi)xi in a 
y
li
 order, where 0 � i � 3, all xij 's are2-verti
es, and all xi's are > 2-verti
es.Let the fa
e f i have �(f i) = xixik(xi) : : : xi2xi1vxi+11 xi+12 : : : xi+1k(xi+1)xi+1 : : : ;where upper indi
es are taken modulo 4.Suppose that none of f i gives 23 + " to v. Then by R2 ea
h f i is a � 12�-fa
e, and ea
h vertex in�(f i) n fxi; xi+1g has degree at most 13.Add the edge xixi+1 into f i whenever 0 � i � 3, unless su
h an edge already exists in �(f i).Delete v and transfer a good 
oloring of the obtained map to P . Color v using a 
olor that does notappear on the boundaries of the fa
es in
ident with verti
es in �(f i) n fxi; xi+1g whenever 0 � i � 3.The number of restri
tions is less than 4 � 9 � 13k � 
Nk + dN , and it is not hard to see that nonontrivial uni
olored edges or bi
olored 
y
les appear. 2Lemma 13 If v 2 V3+, then 
h�(v) � 0.Proof. First suppose v is poor, i.e., has 
h(v) < 0. Then, by Lemma 9, d(v) < 7. If d(v) = 3 then
h(v) = �1� �, and we are done due to Lemma 11, be
ause 2� (23 + ") > 1 + �.If d(v) = 4 then 
h(v) = ��. By Lemma 12, v gets at least 23 + " from an in
ident � 4�-fa
e. Ifv is in
ident with at most two 3�-fa
es, then 
h�(v) � "� � � 0. Otherwise, by Lemma 10, v gets atleast 2(16 + "2) from the three in
ident 3�-fa
es, and 
h�(v) � 0.If d(v) = 5 then 
h(v) = 1� �, and we are done if v is in
ident with at most two 3�-fa
es. If thereare r su
h fa
es at v, where 3 � r � 5, then Lemma 10 provides v with at least 2(16 + "2) if r = 3 andat least 4(16 + "2) if r � 4, when
e 
h�(v) � 0.If d(v) = 6 then 
h(v) = 2 � �, so that we are done if v is in
ident with at most �ve 3�-fa
es.Otherwise, by Lemma 10, v gets at least 3� (16 + "2 ) from the six in
ident 3�-fa
es, and 
h�(v) � 0.



O.V. Borodin, A.V. Kosto
hka, A. Raspaud and E. Sopena 7Now let v not be poor. If it does not give anything to neighbor verti
es by R1 or R2, then
h�(v) = 
h(v) � 0. Otherwise, d(v) � 14. Then v makes at most d(v) transfers by R1. It followsthat 
h�(v) = d(v) � 4� � � d(v)(23 + ");when
e 
h�(v) � 0, be
ause � � ". 2Lemma 14 If f 2 F , then 
h�(f) � 0.Proof. A 3�-fa
e does not parti
ipate in dis
harging if all its in
ident verti
es have degree at most13. Otherwise, it re
eives at least 23 +" by R1 and gives at most 2(13 + "2) to the in
ident poor verti
es.Hen
e 
h�(f) � 0 in both 
ases.Now suppose f 2 F �4+ . If there are at least two verti
es of degree � 14 in
ident with f , then
h�(f) � s�(f)� 4 + 2(23 + ")� (s�(f)� 2)(23 + ") = (s�(f)� 4)(13 � ") � 0:If there is only one � 14-vertex, z, at f , then
h�(f) � s�(f)� 4 + 23 + "� (s�(f)� 3)(23 + ") � 0;be
ause f gives 23 + " to at most s�(f)� 3 poor verti
es by R2: nothing is given to z itself and to itsleft and right neighbours of degree � 3 along �(f).Suppose there is no vertex of degree � 14 at f . If s�(f) � 12, then 
h�(f) = 
h(f) = s�(f)�4 � 0,be
ause f does not parti
ipate in dis
harging. Finally, if s�(f) � 13 then by R2,
h�(f) � s�(f)� 4� s�(f)(23 + ") = s�(f)(13 � ")� 4 � 0;be
ause " = 139 . 2The lemmas above imply together that 
h�(x) � 0 for every x 2 V3+ [F . This 
ontradi
tion with(5) 
ompletes the proof.Referen
es[1℄ K.Appel, W.Haken, The solution of the four-
olor-map problem. S
ienti�
 Ameri
an, 237, No.4,(1977), 108-121.[2℄ P.J.Heawood, Map-
olor theorem, Quart. J. Math., 24, (1890), 332-338.[3℄ O.V.Borodin, Solution of Ringel's problems on the vertex-fa
e 
oloring of plane graphs and onthe 
oloring of 1-planar graphs. Diskret. Analiz, Novosibirsk, 41 (1984) 12-26 (in Russian).[4℄ G.Ringel, Ein Se
hsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg. 1965. V. 29.P. 107-117.[5℄ H.S
huma
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