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Abstract. A vertex coloring of a graph is acyclic if the ends of each edge have different colors and each bicolored
subgraph is acyclic. Let each face of size at most k, where k >, in a map on a surface SV be replaced by a
clique on the same vertices. Then the resulting map can be acyclically colored with a number of colors that
depends linearly both on N and on k. Such results were previously known only for 1 < N <2 and 3 < k < 4.
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1 Introduction

The problems of coloring graphs embedded on surfaces is an important part of graph theory. In
particular, the well-known Four Color Problem belongs to this area.

We denote by V(G) the set of vertices of a graph G and by E(G) its set of edges. A (proper)
k-coloring of G is a mapping f : V(G) — {1,2,...,k} such that f(z) # f(y) whenever z and y are
adjacent in G.

A vertex coloring of a graph is called k-cyclic or k-strong hypergraph coloring if every two distinct
vertices lying in the boundary of the same face of size at most k& have different colors. (We use below
both terms.) This type of coloring may be looked at as an admissible coloring of a pseudograph
obtained by replacing each face of size at most & by a clique on the same vertices. Let xx(G) be
the minimum number of colors sufficient to color G k-cyclically, and let x4(S") be the minimum
number of colors sufficient to color k-cyclically each map on surface SV with Euler characteristic N.
(Sometimes we drop the arguments.)

The case k& = 3 corresponds to the ordinary vertex colouring, and the Four Color Theorem by
Appel and Haken [1] and Heawood’s theorem [2] give precise upper bounds for the plane and for the
higher surfaces, respectively.

The case £ = 4 may also be formulated in terms of the simultaneous vertex-face coloring and
the vertex coloring of 1-embeddable graphs. For the plane, Borodin [3] proved, confirming Ringel’s
conjecture in [4], precise upper bound x4 < 6; for the projective plane, Schumacher [5] proved precise

upper bound x4 < 7; and for the other surfaces, Ringel [6] proved that x4(SV) < L\/(év), where

H(N) = Lui “13724]\[] is the Heawood number.
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2 Acyclic k-strong hypergraph coloring of maps on surfaces

For arbitrary k£ > 3, Ore and Plummer [7] proved that each plane graph G is k-cyclically 2k-
colorable, and Borodin, Sanders and Zhao [8] improved this bound to x;(G) < %.

A vertex coloring of a graph is acyclic if it is admissible, i.e., the ends of each edge are colored
differently, and there is no bicolored cycle. Note that a loop gives a unicolored edge and two multiple
edges give a bicolored cycle. We define a vertex coloring of a map to be acyclic provided that no
two ends of an edge e are coloured the same unless e is a loop, and no bicolored cycle of length
> 2 exists. Borodin [9] proved that each plane graph is acyclically 5-colorable, which bound is best
possible. Albertson and Berman [10] proved that each graph embedded on the oriented surface SN,
where N < 0, is acyclically (8 —2N)-colorable. Alon, Mohar and Sanders [11] proved, using the acyclic
5-colorability of plane graphs, that each graph on the projective plane is acyclically 7-colorable, and
showed this bound to be best possible. Also, they prove that each graph embedded on an arbitrary
surface SV is acyclically O(N*/7)-colorable, and this bound is tight up to the factor of (log N')'/7.

The acyclic coloring has a number of applications to other coloring problems, for the definitions see
[12, 13, 14, 15, 16]. Suppose one has proved that a(G) < a. Then G has the star chromatic number
at most a2?! (Griinbaum [13]) and the oriented chromatic number at most a2 ! (Raspaud and
Sopena [16]); every m-coloring of the edges of G can be homomorphically mapped on that of a graph
with at most am® ! vertices (Alon and Marshall [12]); every m-coloring of the edges of mixed graph G
combined with its n-coloring can be homomorphically mapped on a graph with at most a(2n +m)*~!
vertices (Nesettil and Raspaud [15]).

Also, Hakimi, Mitchem and Schmeichel [14, p.38-39] proved that E(G) can be partitioned into
a(QG) star forests (whose every component is a star). Directly using [9], this confirms the conjecture
of Algor and Alon [17] that the edges of every planar graph can be partitioned into five star forests.

In this paper we consider a coloring that is both acyclic and k-cyclic. Namely, we color acyclically
the result of replacing all faces of size at most k£ in a map by cliques of the same sizes. So, each face
of size at most k is assumed to have all ‘invisible’ diagonals. For & = 3 this type of coloring coincides
with the acyclic coloring.

Our main result is

Theorem 1 Every map on a surface S™ is acyclically k-strong hypergraph colorable with cxk + dn
colors whenever k > 4 and N < 0.

In fact, we prove the result with ¢y = max{999,117 — 471N} and dy = 39 — 156 N. The argument is
intentionally kept simple; more complicated argument may be used to decrease cy and dy.

Corollary 2 Every map on the plane (N = 2) or on the projective plane (N = 1) is acyclically
k-strong hypergraph colorable with cok + dg colors whenever k > 4.

Proof. Follows from the facts that each plane or projective plane map is also a map on the torus or
Klein bottle, respectively. |

In [18], we prove that each projective plane graph (and hence each plane graph) is acyclically
4-strong hypergraph 20-colorable, i.e., each graph 1-embedded on the projective plane is acyclically
20-colorable. Thus, Theorem 1 and Corollary 2 augment the results of [9] (N = 2, k = 3), of [11]
(N <1,k=3),and of [18] (1 < N <2,k =4).

2  Proof of Theorem 1

The size, s(f), of a face f is the number of edges in its boundary, 9(f), counting multiplicities. For
instance, a cut edge appears twice on the boundary of a certain face. To simplify the argument, we
restrict ourselves to the case when 9(f) is connected whenever f € F. The degree of a vertex v, i.e.,
the number of incident edges (loops are counted twice), is denoted by d(v). By a > k-vertex we mean
that of degree at least k, etc.
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Given SV and k, let P" be a counterexample with the minimum number of vertices. For brevity,
the acyclically k-strong hypergraph coloring with cyk + dy colors we are searching for will be called
good.

Delete from P the common edge of two ajacent 3-faces, if any. Repeat this operation until the
resulting counterexample, P”, has no adjacent 3-faces.

Triangulate all > k-faces of P” by adding diagonals to obtain another counterexample, P’, with
the minimum number of vertices. (A good coloring of P’ would be good for P".)

Remove from P’ each loop e that forms a 1-face. This decreases the size of the other face incident
with e by 1. Similarly, for a 2-face f = ejes in P/, remove one of the boundary edges, say e;. This
results in a face of the same size as the former face that was incident with e; and different from f.

If the so obtained graph P were well colorable, then recovering loops and repeated edges would not
spoil the good coloring. Thus, P is also a counterexample with the fewest vertices. We have actually
proved the following

Lemma 3 If f is a face of P, then 3 < s(f) < k; no two 3-faces of P are adjacent.

Informally speaking, only adding new nontrivial adjacencies, represented by ‘visible’ edges or ‘invis-
ible diagonals’, can spoil the good coloring. Our concern therefore is not to loose adjacencies while
transforming P into a smaller pseudograph, which already admits a good coloring.

The following two observations should be kept in mind during the rest of the proof.

Observation 4 Contracting an edge e = vz into a vertex v * z decreases the size of each face f in P
by 0,1 or 2, depending on how many times e appears on O(f).

The obtained map R is well colorable by the minimality of P. Transfer its coloring to P with z
colored as v * z and v uncolored. Then in order that to get a good coloring for P, it remains to find a
color for v without creating unicolored edges other than loops and bicolored cycles other than 2-cycles.

Observation 5 Suppose a vertex v is incident with edges e; = vz;, where 0 < i < d(v) < k — 1,
in a cyclic order. (Of course, z;’s are not all necessarily distinct.) Split each nontriangular face
fi = ... 2vzi11, where subscripts are taken modulo d(v), into a triangle zvzi11 and a face f]. Then
s(f]) < s(fi). Remove v and all e;’s, then a new face arises of size d(v) < k, so that the obtained
pseudograph can be well colored. Hence, all distinct z;’s are colored differently. If we choose a color «
for v not appearing on any verter in Uy<;<r—10(f;), then the only possibility for the obtained coloring
to be bad is a bicolored «, B-cycle (i.e., consisting of vertices alternatively colored with « and 3) through
v and some vertex u such that u is colored with B and u € O(f;) \ {zi, zi41} for some f;.

Lemma 6 Ifv € V(P) then d(v) > 2.

Proof. If d(v) = 1, we contract the edge vz, transfer the good coloring of the obtained pseudograph
to P, and color v differently from those at most & vertices that belong to the same faces as v. |

Lemma 7 FEach face in P is incident with at least three vertices (not necessarily distinct) of degree
at least three.

Proof. If a face f in P has only two vertices u, w (not necessarily distinct) of degree greater than 2
in 9(f), then we remove the longer of the two paths that form 9(f). This creates a new face f’ of size
< k. From a good coloring of the resulting graph, it is easy to obtain a good coloring of P, since all
vertices on J(f') are colored pairwise differently.

The case that there is only one > 2-vertex in d(f) easily reduces to the previous one. If all vertices
in 9(f) have degree 2, then P is a cycle; a contradiction. |
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If every face of P is an open 2-cell, then Euler’s formula says that |V| — |E| + |F| = N; otherwise
V| —|E|+|F| > N.

Using obvious equalities 2|E| = 3,cy, d(v) = 3 cp s(f), this may be rewritten as

> _(d(v) —4)+ Y (s(f) —4) < —4N,

veV fEF
or
“2ny+ Y (d(v) —4)+ Y (s( ) < —4N +1, (1)
UEV3+ fer

where n; is the number of i-vertices in P, and V;+ is the set of > i-vertices in P.

Denote by no(f) the number of 2-vertices on the boundary of face f, counting multiplicities. The
reduced size, s*(f), of a face f is defined to be s(f)—nso(f). In fact, s*(f) is the number of > 2-vertices
in 9(f), counting multiplicities. Then (1) may be put as

Z )—4)+ D (s* ) < —4N +1. (2)

By Lemma 7, s*(f) > 3 whenever f € F. Let f(v) be the number of i*-faces at v, i.e., those having
s*(f) =i. Then

S (d(v) —4— f3” + Z ) < —4N + 1, (3)

’UEV3+ fE

where F, is the set of > i*-faces in P, or

> ) -4 L s ey —a <o (@)

veEV+ fEF*

where n* = V31| = |V| — no.
Put ch(v) = d(v) — 4 — hT(U) + =L whenever v € Va4, ch(f) = 0 if f is a 3*-face, and ch(f) =
s*(f) — 4 whenever f € F;,. Then (4) becomes

Z ch(v) + Z ch(f) <O. (5)

vEV,4 feF

The rest of our proof consists in redistributing the charge ch(x) on z € V3+ UF, preserving the sum
of charges, so that the new charge, ch*(x), is nonnegative whenever x € V3+ U F. The contradiction
with (5) will complete the proof.

First observe the following fact.

Lemma 8 n* > 39(—4N +1).

Proof. Euler’s formula (1) for the map P* obtained from P by contracting each path uvy ... vsw such
that d(u) > 3, d(v1) = ... =d(vs) =2, d(w) > 3 into an edge uw, may be written as

Y (dp-(v) =6)+ Y (2sp-(f) —6) < —6N,
veEV(P*) feF(P*)

which implies

Y (dp-(v) —6) < 6N,

veV(P*)
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or else

|[E(P*)] < 3n* — 3N.

By Lemma 1,
n <n* + k| E(P")|.

But n > cyk + dy, for otherwise P has a trivial good coloring (all vertices have different colors),
and so

n*(1+ 3k) — 3kN > exk + dy > (117 — 47IN)k + 39 — 156N = 39(—4N + 1)(1 + 3k) — 3kN,

as desired (compare the leftmost and the rightmost expressions). a

Lemma 9 If d(v) > 7 then ch(v) > 0.

Proof. Indeed,

ch(v) > d(v) —4 — f5" () + V-1 >

- 3 n*

and we are done by Lemma 8. a

If v € V and ch(v) < 0, then v is called poor. Put

4N +1
- =

3

and
1

39
By Lemmas 4 and 5, £ < ¢, and each poor vertex v satisfies 3 < d(v) < 6.
Our rules of redistribution of charge are:
R1. Each > 14-vertex gives % + € to each incident > 4*-face and % + ¢ to each incident 3*-face.
R2. Each poor vertex v receives % +e

£

e from each incident > 4*-face f such that there is a > 14-vertex z in 9(f) not joined to v along
d(f) by a path of 2-vertices, and

e from each incident > 13*-face f.
R3. If a 3*-face f is incident with a > 14-vertex, then f gives % + 5 to every incident poor vertex.

Lemma 10 If v is poor, then v receives %—l—% by R3 from each of every two consecutive 3*-faces at v.

Proof. We first prove that if a 3*-face f is incident with a 2-vertex wu, then the > 3-vertex which is
opposite to u in d(f) is in fact a > 14-vertex.

Let O(f) = 22172 . .. Tp(o)YY1Y2 - - - Yk(y) 27122 - - - Zk(z), Where all z;’s, y;’s, and 2;’s are all 2-vertices,
while z, y, and z are > 3-vertices. Suppose that k(z) > 1, i.e., z; exists. Denote by f;, the face
lying on the other side of path zx1z3 ... zy)7y than f (perhaps fy, = f). The faces f,, and f,, are
defined similarly.

Contract the edge zx; transfer a good coloring of the obtained map to P — z;. If we color z; with
a color that does not appear on the boundaries of f and the faces incident with z, then the obtained
coloring is good. This is impossible only if d(z) > 14.

To complete the proof of our Lemma, observe that by the second statement of Lemma 3, at least
one of every two consecutive 3*-faces, fi and fo, at v is incident with a 2-vertex, z. If z is incident both
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with fi and with fo, then we are done by R3 and the statement just proved. Otherwise, z is opposite
to the > 3-vertex, w, which is incident both with f; and with fo, because by the above statement, z
cannot be opposite to the poor vertex v which has degree at most six due to Lemma 5. It follows that
d(w) > 14, and we again use R3. O

Lemma 11 Ifd(v) = 3 then v is incident with at least two faces each of which gives %—l—e tov by R2.

Proof. Let v be incident with paths vziza...Tpe)T, VY1Y2. . Yry)Y, and vz122... 2g(;)2, where
all z;’s, y;, and z;’s are 2-vertices while z, y, and 2z are all > 2-vertices. Let 9(f1) =
DTy - TRTIVYLY2 - - Yi()Ys O(f2) = - YUk(y) - - Y2Y1V2122 - - - Z(2) 2,
and O(f3) = ... 22k(z) - - - 2221VT1T2 - . . Tpy() T

Suppose the contrary, namely, by symmetry, that neither fi nor fy gives % + ¢ to v. Then by R2
each of f; and fo is a < 12*-face, and each vertex in 9(f1) \ {z,y} and in 9(f2) \ {y, z} has degree at
most 13.

Contract the path vy1ya . . . yp(,)y to a vertex vxy. Transfer a good coloring of the obtained map to
P. Color y1,y2,...,Yky) and v pairwise differently using colors that do not appear on the boundaries
of the faces f1, fo, f3, and those at most 2 x 9 x (13 — 1) faces that are incident with > 2-vertices in
A(f1) \{z,y}Ud(f2) \{y, z}. The number of restrictions is less than 3k +2x 9 x (13—1)k < exk+dp,
and no nontrivial unicolored edges or bicolored cycles appear. a

Lemma 12 If d(v) =4 then v is incident with at least one face giving % +¢ towv by R2.

Proof. Let v be incident with paths vziz}. .. x};(xi)xi in a cyclic order, where 0 <7 < 3, all xé-’s are
2-vertices, and all z%’s are > 2-vertices.

Let the face f* have

A(fY) = xixfc(xi) abaloztitel x?(“;iﬂ)xi"'l e
where upper indices are taken modulo 4.

Suppose that none of f* gives % + ¢ to v. Then by R2 each f*is a < 12*-face, and each vertex in
O(fH) \ {#%, "'} has degree at most 13.

Add the edge z’z'! into f' whenever 0 < i < 3, unless such an edge already exists in J(f?).
Delete v and transfer a good coloring of the obtained map to P. Color v using a color that does not
appear on the boundaries of the faces incident with vertices in (%) \ {z%, 2'"!} whenever 0 <4 < 3.
The number of restrictions is less than 4 x 9 x 13k < c¢yk + dy, and it is not hard to see that no
nontrivial unicolored edges or bicolored cycles appear. a

Lemma 13 Ifv € V3+, then ch*(v) > 0.

Proof. First suppose v is poor, i.e., has ch(v) < 0. Then, by Lemma 9, d(v) < 7. If d(v) = 3 then
ch(v) = —1 — ¢, and we are done due to Lemma 11, because 2 x (3 +¢) > 1 +¢.

If d(v) = 4 then ch(v) = —¢. By Lemma 12, v gets at least 2 + ¢ from an incident > 4*-face. If
v is incident with at most two 3*-faces, then ch*(v) > ¢ — €& > 0. Otherwise, by Lemma 10, v gets at
least 2(¢ + ) from the three incident 3*-faces, and ch*(v) > 0.

If d(v) =5 then ch(v) =1 —¢, and we are done if v is incident with at most two 3*-faces. If there
are r such faces at v, where 3 < r <5, then Lemma 10 provides v with at least 2(% +5) if r = 3 and
at least 4(3 + 5) if r > 4, whence ch*(v) > 0.

If d(v) = 6 then ch(v) = 2 — &, so that we are done if v is incident with at most five 3*-faces.
Otherwise, by Lemma 10, v gets at least 3 x (é + 5) from the six incident 3*-faces, and ch*(v) > 0.
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Now let v not be poor. If it does not give anything to neighbor vertices by R1 or R2, then
ch*(v) = ch(v) > 0. Otherwise, d(v) > 14. Then v makes at most d(v) transfers by R1. It follows
that

ch*(v) = d(v) — 4 — £ — d(v)(§ +o),

whence ch*(v) > 0, because & < e. O

Lemma 14 If f € F, then ch*(f) > 0.

Proof. A 3*-face does not participate in discharging if all its incident vertices have degree at most
13. Otherwise, it receives at least %-I— ¢ by R1 and gives at most 2(% +5) to the incident poor vertices.
Hence ch*(f) > 0 in both cases.

Now suppose f € F, . If there are at least two vertices of degree > 14 incident with f, then

1

() > 5°(f) ~ 44202 +) = () = 2 +) = (") - (5 — ) >0.

If there is only one > 14-vertex, z, at f, then

2 2
W (f) > 8 () — 4+ S e = (8"() =) +) 20,
because f gives % + ¢ to at most s*(f) — 3 poor vertices by R2: nothing is given to z itself and to its
left and right neighbours of degree > 3 along 9(f).
Suppose there is no vertex of degree > 14 at f. If s*(f) < 12, then ch*(f) = ch(f) = s*(f)—4 > 0,
because f does not participate in discharging. Finally, if s*(f) > 13 then by R2,

1

() 2 ()~ 4= S ()G +) = (g —2) 420,

— 1
because € = 39- O

The lemmas above imply together that ch*(x) > 0 for every xz € V3+ U F. This contradiction with
(5) completes the proof.
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