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ACYCLIC IMPROPER
COLOURINGS OF GRAPHS
WITH BOUNDED DEGREE

Pierre Boiron, Eric Sopena' and Laurence Vignal
LaBRI, Université Bordeauz I, 33405 Talence, France

Abstract. In this paper, we continue the study of acyclic improper colourings of graphs introduced in a
previous work. An improper colouring of a graph G is a mapping ¢ from the set of vertices of G to a set of
colours such that for every colour i, the subgraph induced by the vertices with colour i satisfies some property
depending on i. Such an improper colouring is acyclic if for every two distinct colours ¢ and j, the subgraph
induced by all the edges linking a i-coloured vertex and a j-coloured vertex is acyclic.

We consider in this paper the case of graphs with bounded degree. We prove some positive and negative
results for graphs with maximum degree three and generalize some of the negative results to graphs with
maximum degree k.
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1 Introduction

Let G be a graph. We denote by V(G) the vertex set of G and by E(G) the edge set of G. A (proper)
k-colouring of G is a mapping ¢ from V(G) to a set of k colours such that ¢(z) # c(y) whenever zy is
an edge in G. We say that G is k-colourable if G admits a k-colouring. The chromatic number x(QG)
of G is defined as the minimum k such that G is k-colourable. A k-colouring of a graph G may be
equivalently regarded as a partition Vi, Vs, ..., Vi of V(G) where for every i, 1 < i < k, V; is the set
of vertices with colour 7. Elements of such a partition are usually called colour classes.

Many variations and extensions of graph colourings have been considered in the literature (see [8]
for a general overview). In particular improper colourings (sometimes called generalized, defective or
relazed colourings) have extensively been studied [6, 15, 16]. A colouring of a graph G is said to be
improper whenever two adjacent vertices may be assigned the same colour. In such colourings, the
adjacency constraint is replaced by a constraint on the structure of monochromatic subgraphs, that is
subgraphs induced by colour classes.

Following Borowiecki and Mihdék [4], improper colourings may be defined as follows. Let
Py, P,,...,P, be graph properties. A (P, Ps,...,P)-partition of a graph G is a partition
(Vi,Va, ..., Vi) of V(G) such that for every i, 1 < i < k, the subgraph of G induced by V;, de-
noted by G[V;], has property P;. If a graph G has such a partition we say that G has property
PioPyo...oP,. If P, =P, =...= P, = P we will denote by P* the property Py o Pyo...o P. If
Dy denotes the property to be without edges, then D’g is the property to be k-colourable.

In the following we will call (P, Ps,..., P;)-colouring of a graph G a mapping ¢ from V(G) to
the set of colours C' = {1,2,...,k} such that the partition (V1,Va,..., V%) given by V; = {z € V(G) :
clx) =i}, 1 <i<k,isa (P, P,,...,P)-partition of G. Moreover, for every graph property P we
will denote by F(P) the family of all graphs satisfying P.

A proper k-colouring of a graph G is acyclic if for every two colours ¢ and j the subgraph induced
by V; U Vj has no cycle [1, 3, 7]. The acyclic chromatic number of a graph G is then defined as the
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minimum £ such that G has an acyclic proper k-colouring. This notion can be extended to the case of
improper colourings as follows. Let V1, Vs,..., Vi be a (Py, Py, ..., P;)-partition of a graph G. Let us
call a (7,7)-edge an edge linking a vertex in V; to a vertex in V. Such a partition is said to be acyclic
if for every i,7, 1 < i < j < k, the subgraph induced by all the (i,j)-edges has no cycle. The reader
should note here that the subgraph induced by any two colour classes may contain bichromatic cycles
but that any such cycle has to contain at least one monochromatic edge. A bichromatic cycle with
no monochromatic edge will be called an alternating bichromatic cycle. If a graph H has an acyclic
(Py, Py, ..., Py)-partition we say that G has property PO P, ®...O P,. U PL=P,=...=FP, =P
we will denote by P®*) the property P, ® P, ® ... ® Pj. Observe that D((]k) is the property of being
acyclically (properly) k-colourable in the usual sense.

Acyclic improper colourings originally arose in the study of oriented colourings. An orientation
of a graph G is a digraph obtained from G by giving to every edge of G one of the two possible
orientations. A digraph is called an oriented graph if it is an orientation of some undirected graph. An
oriented k-colouring of an oriented graph Gisa mapping ¢ from V(G) to a set of k colours such that
(i) for every arc i in E(G), ¢(z) # c(y) (an oriented colouring is thus a proper colouring) and (i) for
every two arcs Y and z¢ in E(G), c(z) = ¢(t) = c(y) # c(z). The oriented chromatic number ¥(G)
of an oriented graph G is then defined as the minimum & such that G has an oriented k-colouring.

Oriented chromatic numbers have been studied in [9, 11, 12, 13]. In [2] we have proved the following
result which gives a link between acyclic improper colourings and oriented colourings:

Theorem 1 Let Py, Ps,..., Py be graph properties such that for every i, 1 < i <k, every orientation
of every graph in the family F (P, ) has oriented chromatic number at most a;. Then every orientation
of every graph in F(Py ® Py ® ... ® P,) has oriented chromatic number at most 2F~1 x Z 0.

Acyclic improper colourings of outerplanar and planar graphs have been considered in [2]. We
continue here the study of acyclic improper colourings by considering the case of graphs with bounded
degree. We will denote by Dj, the property of having degree at most k and by 77 the property of being
a forest. The main result concerning improper colourings of graphs with bounded degree is due to
Lovasz [10]:

Theorem 2 [Lovasz, 1966] For every p,q > 0, F(Dpiq+1) C F(DyoDy).

The problem of determining the acyclic chromatic number of graphs with bounded degree appears
to be more difficult and it is still an open question [8]. Alon et al. [1] proved the following result:

Theorem 3 [Alon et al., 1991] For every k, there exist positive constants ay and by such that:
1. Every graph with mazimum degree k has acyclic chromatic number at most aj, x k*/3.
2. There exist graphs with mazimum degree k and acyclic chromatic number at least by x k3 x

(log k)~1/3.

For small values of k, Griinbaum proved in [7] that every graph with maximum degree three has
acyclic chromatic number at most four (this result is optimal). In [5] Burstein proved that every
graph with maximum degree four has acyclic chromatic number at most five (he also mentionned
that this result was independently obtained by Kostochka). Using our notation we thus get that
F(Ds) € F(D{) and F(Ds) C F(D).

We will consider acyclic improper colourings of graphs with bounded degree whose colour classes
induce either forests or graphs with bounded degree. In the case of graphs with maximum degree
three we know from Grinbaum’s result that we only have to consider acyclic improper colourings
using at most three colours. Moreover, since there exist infinitely many graphs with maximum degree
three and acyclic chromatic number four we clearly get that F(Ds) ¢ F(T1 ® Dy) (and thus F(D3) C
/ F(D1 ®Dy)). In addition, we will prove the following negative results:

Theorem 4
1. F(D3) ¢ F(Dy® Dsy),
2. F(D3) ¢ F(D; © D).
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(a) Thecircular grid T(2.n) (b) Cyclic arrangement of copies of K4-e

Figure 1: Negative results for graphs with maximum degree three

Our second theorem gives some positive results:

Theorem 5

1. F(Dy)\ {Ki} C F(Ti © Th),
2. F(Ds) C F(Ti © Dy),

3. F(D3) C F(D1 ® Dy ® Dy).

The general case of graph with maximum degree k seems to be quite difficult to handle. Netherthe-
less, we can prove the following negative results:

Theorem 6
1. For every k > 2, F(Dy) € F(Dy_2 ® Dg_3),
2. For every p,q, pg # 0, p+q >4, F(Dypyq) ¢ F(Dp © D).

In the following sections we will prove our three theorems and we will end this paper by stating
some open problems.
Drawing conventions. In all the forthcomming figures, grey (resp. black) vertices will represent
vertices with colour 1 (resp. 2). Uncoloured vertices will be drawn as white vertices.

2 Negative results for graphs with maximum degree three

We prove in this section the negative statements of Theorem 4. In every case we will exhibit infinitely
many graphs having no corresponding acyclic colouring.

Proof of first statement. Let T'(2 x n), n > 3, be the circular grid of dimension two with 2 rows
of n vertices each (see Figure 1(a)). Let {z1,z9,...,2,} (resp. {y1,y2,...,yn}) denote the vertices of
row 1 (resp. of row 2). Since every vertex has degree 3, at least one of them, say z;, must get colour 1.
Vertices z; 1, x;1+1,y; then necessarily get colour 2. In order to avoid alternating bichromatic cycles,
vertices y;—1 and y;41 must also get colour 2. Since they both have two neighbours already coloured
with colour 2, vertices y; 2 and ;12 must get colour 1 and so on. It is not difficult to observe that

the pattern ( 2122 must be repeated all along the grid. Therefore, if n =0 (mod 4), the colouring

2221 )
thus obtained is an acyclic (Dyg, Ds)-colouring, if n =1 (mod 4), the colour 1 does not induce a graph
with no edges, if n =2 (mod 4), the colour 2 does not induce a graph with maximum degree two
and if n =3 (mod 4), we get an alternating bichromatic cycle. a

Proof of second statement. Observe first that the graph K4 —e (that is K4 minus one edge) has a
unique acyclic (Dy, Dy )-colouring. By arranging several copies of K4 — e into a cycle (see Figure 1(b))
we get infinetely many graphs having no acyclic (Dy, D;)-colouring: if every colour induces a graph
with maximum degree one, we necessarily have an alternating bichromatic cycle (drawn in thick edges).

O
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Figure 2: Deleting an alternating bichromatic cycle in a (77, 71)-colouring

3 Positive results for graphs with maximum degree three

We prove in this section the positive statements of Theorem 5. Observe first that it is sufficient to
prove these statements for 3-regular graphs. From Lovasz’ Theorem, we know that F(D3) C F(T10Tq)
and F(D3) C F(T; o Ds). In the following we will prove that we can modify any (not acyclic) such
improper colouring in order to strictly decrease the number of alternating bichromatic cycles. By
repeating this step we will get in each case an acyclic improper colouring.

Let C = (xo,x1,...,%o,—1) be an alternating bichromatic cycle. For every 4, 0 < i < 2n —1, let y;
be the neighbour of z; not belonging to C'. We say that C' is of type I if there exists some ¢ such that
y; and y;11 have the same colour (the subscripts are always taken modulo 2n). We say that C' is of
type 11 if it is not of type I and for every 4, z; and y; have distinct colours. Otherwise, we say that C'
is of type IIT (in that case, for every i, x; and y; have the same colour).

Unless otherwise specified, in the following pictures vertices not belonging to the alternating bichro-
matic cycle may be identified with vertices of the cycle provided they have the same color.

Proof of first statement. Let G be a 3-regular graph, ¢ a (not acyclic) (71, 71)-colouring of G and
C an alternating bichromatic cycle of smallest type in G. We have three cases to consider:

1. C s of type I. Let i be such that y; and y;11 have the same colour. If x; and y; have the same
colour it suffices to change the colour of z;, otherwise it suffices to change the colour of ;11 (see
Figure 2(a)).

2. C is of type IL Tt suffices to change the colour of any of the z’s (see Figure 2(b)).
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Figure 3: Deleting an alternating bichromatic cycle in a (77, Ds)-colouring

3. C is of type III. We have three subcases to consider:

(a) if there exits an index 7 such that z; and z;;5 does not belong to the same tree (induced
by their colour), it suffices to change the colour of z;;1 (see Figure 2(c)).

(b) Otherwise, if there exists a vertex y; with the same colour as its three neighbours, it suffices
to change the colour of z; and ;1 (see Figure 2(d)).

(c) if none of the previous subcases happens, we still have two cases to consider:

i. if none of the y;’s belongs to C' it suffices to change the colour of vertices x9;, ¢ > 0,
and of vertices yzj41, j > 1 (see Figure 2(e)).

ii. if there exists y; such that y; belongs to C' then vertices z; and y; belong to the same
tree (induced by their colour) and this tree is of order two. If the length of C is at
least 6, we are in the subcase 3(a). If C has length 4, since G is not K4, we necessarily
have the configuration depicted in Figure 2(f) and it suffices to change the colour of
two consecutive vertices of C.

a

The reader should observe that K, is thus the only 3-regular graph having no acyclic (77, 77)-
colouring.

Proof of second statement. Let G be a 3-regular graph, ¢ a (not acyclic) (77, D2)-colouring of G
and C an alternating bichromatic cycle of smallest type in G. We have three cases to consider:

1. C is of type I. Let i be such that y; and y;41 have the same colour. If z; and y; have the same
colour it suffices to change the colour of z;, otherwise it suffices to change the colour of ;11 (see
Figure 3(a)).

2. C is of type II Tt suffices to change the colour of any of the z}s having colour 1 (see Figure 3(b)).

3. Cis of type III. Tt suffices to change the colour of any of the zs having colour 2 (see Figure 3(c)).
a

Proof of third statement. This statement can be proved by induction on the number of vertices
of the graph. Due to the lack of space, we will not report the proof here. The complete proof can be
found in [14]. O
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4 Negative results for graphs with maximum degree &

We prove in this section the negative statements of Theorem 6. In every case we will exhibit infinitely
many graphs having no corresponding acyclic colouring.

Proof of first statement. Let us show that the graph G = K11 — e does not have any acyclic
(Dk_2,Dy_o)-colouring. Denote by v and v the two non-adjacent vertices of G and let ¢ be any
(Dg—2, Di—2)-colouring of G (we know by Lovasz’ Theorem that such a colouring exists). Since
colours 1 and 2 both induce a graph of degree at most £ — 2 both of them must be used at least
two times on V(Gj) \ {u} and therefore ¢ contains an alternating bichromatic cycle. Since G, is not
k-regular there are infinitely many graphs with maximum degree k containing G}, as a subgraph and
thus having no acyclic (Dk—_s, Di_2)-colouring. O

Proof of second statement. Let H ,%, k > 4, be the graph obtained by cyclically connecting two

copies of Ky 141, as depicted by Figure 4(a). Let us denote by z{,...,z} and z3,..., 2% (resp. by
z3, ..., x5 and (), ..., z;) the vertices of the first (resp. the second) copy of Kg_1,—1. A vertex T

will be said to be of type i. Let ¢ be any (D,, Dy)-colouring of H? (we know by Lovasz’ Theorem that
such a colouring exists).

We first claim that each copy of Kj_j;_; contains at least two vertices of each colour. If all
vertices of a given copy have the same colour, say 1, then p = k — 1. All their neighbours in the other
copy are thus 2-coloured and we get p + ¢ = 2k — 2 > k, a contradiction since k > 4. If all vertices
but one, say z{, in the first copy, have the same colour, say 1, then p = k — 1 (all the x]l’s, j # 0, have
k — 1 neighbours of type 2 with the same colour) and thus ¢ = 1. But in that case, vertices x‘ll, . ,x%
must have colour 2 and thus all the x;’?’s must have colour 1. It is not difficult to check that we then
necessarily have an alternating bichromatic cycle.

Our second claim is that for every type of vertex, one colour is used at most once. This is obvious
if k =4. If £ > 4, suppose on the contrary that two vertices of type 1 are 1-coloured and two vertices
of type 1 are 2-coloured. In that case, no two vertices of type 2 may have the same colour in order to
avoid alternating bichromatic cycles. We thus get k£ = 3, a contradiction.

From these two claims we get that each copy of Kj_;_; contains exactly two vertices of one
colour, say 1. Colour 2 thus induces a graph of degree at least £k — 2. We have two cases to consider:

1. p = 2 and ¢ = k — 2. The subgraph induced by the 2-coloured vertices in the first copy of
Kj_1 -1 has degree k — 2. The neighbours of these vertices in the second copy are thus 1-
coloured and we get p = ¢ = 2 and thus k£ = 4. In that case, we necessarily have an alternating
bichromatic cycle (see Figure 4(b)).

2. p=1and ¢ =k — 1. Every l-coloured vertex in a copy of K;_; j_; is adjacent to a 2-coloured
vertex in the second copy and we also get an alternating bichromatic cycle (see Figure 4(c)).

Thus H? has no acyclic (D,, D,)-colouring. It is not so difficult to check that this is also the case for
the graphs H,’; obtained by cyclically connecting p copies of Kj_j ;1. a

5 Discussion and open problems

None of the positive results given in Theorem 5 improves the best known upper bound for the oriented
chromatic number of oriented graphs with maximum degree three (this bound has been settled to 11
in [14] and it has been conjectured in [13] that every connected oriented graph with maximum degree
three has oriented chromatic number at most 7).

We do not know whether every (or almost every) graph with maximum degree three admits an
acyclic (Dgy, Dy, D1)-, (Do, D1,D1)-, (D1, Ds2)- or (T1,Dq)-colouring. In the answer of this last question
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(b) Thecasep=q=2 (c) Thecasep=1,q=k-1

Figure 4: Construction for statement 2 of Theorem 6

is YES, this would decrease to 10 the upper bound for the oriented chromatic number of oriented
graphs with maximum degree three. We know that at least three graphs do not admit an acyclic
(71, D1)-colouring, namely the Petersen graph and the cyclic grids T'(2 x 3) and T'(2 x 4). We know by
Lovasz’ Theorem that every graph in D3 admits a (Dsy, Dsy)-colouring. Concerning acyclic colourings,
we have the following conjecture:

Conjecture 7 F(D3) C F(Dy ® Ds).

The problem of acyclic improper colourings of graphs with degree at most k seems really difficult

to handle. We have no idea of whether there exist or not such colourings whose colour classes induce
graphs with bounded degree or forests.
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