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eAbstra
t. In this paper, we introdu
e the new notion of a
y
li
 improper 
olorings of graphs. An improper
oloring of a graph is a vertex-
oloring in whi
h adja
ent verti
es are allowed to have the same 
olor, but ea
h
olor 
lass Vi satis�es some 
ondition depending on i. Su
h a 
oloring is a
y
li
 if there are no alternating2-
olored 
y
les.We prove that every outerplanar graph 
an be a
y
li
ally 2-
olored in su
h a way that ea
h mono
hromati
subgraph has degree at most �ve and that this result is best possible. For planar graphs, we prove some negativeresults and state some open problems.Keywords. A
y
li
 
oloring, Improper 
oloring, Planar graph, Outerplanar graph.1 Introdu
tionFor every graph G, we denote by V (G) its vertex set and by E(G) its edge set. A k-
oloring 
 :V (G) �! f1; 2; : : : ; kg of a graph G may be equivalently regarded as a partition of V (G) into 
olor
lasses V1; V2; : : : ; Vk where for every i, 1 � i � k, Vi is the set of verti
es with 
olor i. In the following,we shall use the term \improper" in order to stress the fa
t that adja
ent verti
es are not required toget distin
t 
olors. Improper 
olorings are usually de�ned by requiring ea
h 
olor 
lass Vi to satisfysome property depending on i [6, 10℄. In parti
ular, Borowie
ki and Mih�ok 
onsidered in [4℄ improper
olorings su
h that ea
h 
olor 
lass Vi satis�es a so-
alled hereditary property Pi (a property P ishereditary if every subgraph of a graph whi
h satis�es P also satis�es P).Following their notation, we say that a graph G satis�es the property P1 �P2 � : : : �Pk if there existsa partition (V1; V2; : : : ; Vk) of V (G) su
h that for every i, 1 � i � k, the subgraph G[Vi℄ indu
ed by Visatis�es Pi. Su
h a partition will be 
alled a (P1;P2; : : : ;Pk)-partition ofG. If P1 = P2 = : : : = Pk = Pwe denote the property P1 �P2 � : : : �Pk by Pk. By a (P1;P2; : : : ;Pk)-
oloring of G we mean a k-
oloringsu
h that the partition (V1; V2; : : : ; Vk) given by the 
olor 
lasses is a (P1;P2; : : : ;Pk)-partition of G.For 
onvenien
e, we shall also denote by P the family of graphs satisfying the property P. Weshall 
onsider in parti
ular the properties Dk of having degree at most k (Dk0 is thus the propertyof being properly k-
olorable), Tk of having treewidth at most k (T1 is thus the property of being aforest) and O of being outerplanar.A proper k-
oloring of a graph G is a
y
li
 if all the subgraphs indu
ed by any two 
olors haveno 
y
le [5℄. The a
y
li
 
hromati
 number of G is then de�ned as the minimum k su
h that G hasan a
y
li
 proper k-
oloring. We extend this notion to the 
ase of improper 
olorings as follows. Let(V1; V2; : : : ; Vk) be a (P1;P2; : : : ;Pk)-partition of G. By an (i; j)-edge we mean an edge linking a vertexin Vi to a vertex in Vj . Su
h a partition is said to be a
y
li
 if for every pair (i; j), i 6= j, the subgraphindu
ed by all the (i; j)-edges has no 
y
le; G[Vi[Vj℄ may 
ontain bi
hromati
 
y
les but any su
h 
y
lemust 
ontain at least one mono
hromati
 edge. A bi
hromati
 
y
le having no mono
hromati
 edgewill be 
alled an alternating bi
hromati
 
y
le. We say that a graph G has property P1�P2�: : :�Pk ifit admits an a
y
li
 (P1;P2; : : : ;Pk)-partition. If P1 = P2 = : : : = Pk = P we will denote the propertyP1 �P2 � : : :�Pk by P(k) (D(k)0 is thus the property of being a
y
li
ally properly k-
olorable).1Part of this work has been supported by the BARRANDE programme no 97-137.1



2 A
y
li
 improper 
olorings of graphsThe study of a
y
li
 improper 
olorings was motivated by the problem of improving the upperbound for the oriented 
hromati
 number of planar graphs [8℄. Oriented 
olorings and their links witha
y
li
 improper 
olorings are introdu
ed in the next Se
tion. In Se
tion 3 we 
onsider the 
ase ofouterplanar graphs and prove that every outerplanar graph admits an a
y
li
 (D5;D5)-partition andthat this result is in some sense optimal. We give some negative results 
on
erning planar graphs inSe
tion 4 and state some open questions.In a 
ompanion paper [1℄, a
y
li
 improper 
olorings of graphs with bounded degree are 
onsidered.2 A
y
li
 improper 
olorings and oriented 
oloringsLet ~G be an oriented graph (a digraph without 2-
y
les). An oriented k-
oloring of ~G is a mapping
 : V ( ~G) �! f1; 2; : : : ; kg su
h that (i) for every ar
 ~xy in E( ~G), 
(x) 6= 
(y) (an oriented 
oloring isthus a proper 
oloring) and (ii) for every two ar
s ~xy and ~zt in E( ~G), 
(x) = 
(t) =) 
(y) 6= 
(z).Intuitively speaking, 
ondition (ii) means that the 
olors assigned to any two adja
ent verti
es x andy uniquely determine the orientation of the edge xy. The oriented 
hromati
 number ~�( ~G) of ~G isde�ned as the minimum k su
h that ~G has an oriented k-
oloring. The oriented 
hromati
 numbers ofan undire
ted graph G and a family F of graphs are de�ned by ~�(G) = maxf~�( ~G) : ~G is an orientationof Gg and ~�(F) = maxf~�(G) : G 2 Fg.Oriented 
hromati
 numbers of graphs have been studied in [7, 8, 9℄. Raspaud and Sopena provedin [8℄ that every graph with a
y
li
 
hromati
 number k has oriented 
hromati
 number at mostk�2k�1. A result of Borodin [2℄ states that every planar graph has a
y
li
 
hromati
 number at most5. Thus every planar graph has oriented 
hromati
 number at most 80. Improving this upper boundseems to be parti
ularly 
hallenging. Our initial interest in a
y
li
 improper 
olorings was motivatedby this problem sin
e we 
an prove the following extension of Raspaud and Sopena's result:Theorem 1 Let P1;P2; : : : ;Pk be graph properties su
h that for every i, 1 � i � k, the family Pi hasoriented 
hromati
 number at most �i. Then we have:~�(P1 �P2 � : : : �Pk) � 2k�1 � kXi=1 �i:Proof. Let P = P1 � P2 � : : : � Pk, G be a graph in P, ~G be any �xed orientation of G and(V1; V2; : : : ; Vk) be an a
y
li
 (P1;P2; : : : ;Pk)-partition of V (G). For every i, 1 � i � k, let 
i;i beany oriented �i-
oloring of ~G[Vi℄. We assume in the following that for every i; j, 1 � i < j � k, theoriented 
olorings 
i;i and 
j;j use disjoint sets of 
olors, none of them 
ontaining 
olors 1 or 2.For every i; j, 1 � i < j � k, denote by Gi;j the subgraph of G indu
ed by all the (i; j)-edges. Forevery 
onne
ted 
omponent C of Gi;j let xC be any arbitrarily 
hosen vertex and denote by A0 theset of those xC 's. Let now Am, m � 1 be the set of verti
es at distan
e m from A0 in Gi;j (that isat distan
e m from one vertex in A0). Observe that sin
e the partition is a
y
li
, the graph Gi;j is aforest and thus every vertex in Am has exa
tly one neighbor in Am�1. We now indu
tively de�ne a2-
oloring 
i;j of Gi;j as follows:1. 
i;j(x0) = 1 for every x0 2 A0,2. for every xm 2 Am, m � 1, with neighbor xm�1 in Am�1, let 
i;j(xm) = 
i;j(xm�1) if xm 2 Vi and~xmxm�1 is an ar
 in ~G or xm 2 Vj and ~xm�1xm is an ar
 in ~G and let 
i;j(xm) = 3� 
i;j(xm�1)otherwise.In other words, two adja
ent verti
es are assigned the same 
olor if and only if the 
orresponding ar
in ~G is dire
ted from the vertex belonging to the subset of lower index towards the vertex belongingto the subset of higher index in the partition.
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laim that the mapping 
 de�ned by
(x) = (
1;i(x); : : : ; 
i�1;i(x); 
i;i(x); 
i;i+1(x); : : : ; 
i;k(x))for every i and x 2 Vi is an oriented 
oloring of ~G. From above, we get that this mapping uses exa
tly2k�1 �Pki=1 �i 
olors. Now let x 2 Vi and y 2 Vj be two adja
ent verti
es in ~G. If i = j then thede�nition of 
i;i implies 
(x) 6= 
(y), while if i 6= j then 
(x) and 
(y) 
learly di�er on their ith andjth 
omponents. Finally, let us suppose that there exist two ar
s ~xy and ~zt in ~G su
h that 
(x) = 
(t)and 
(y) = 
(z). Sin
e all the 
i;i's are oriented 
olorings, these four verti
es 
annot belong to thesame Vi. Then w.l.o.g. we have x; t 2 Vi and y; z 2 Vj for some i < j. Thus 
i;j(x) = 
i;j(t) and
i;j(y) = 
i;j(z), whi
h is a 
ontradi
tion sin
e the de�nition of 
i;j implies that 
i;j(x) = 
i;j(y) and
i;j(z) 6= 
i;j(t). 2Theorem 1 provides a new way to atta
k the problem of determining an upper bound for theoriented 
hromati
 number of some families of graphs. Our main interest 
on
erns partitions whose
olor 
lasses indu
e subgraphs with bounded degree or bounded treewidth sin
e some upper bounds forthe oriented 
hromati
 numbers of these families are known [7, 9℄. Re
all that a k-tree is indu
tivelyde�ned as follows: the 
omplete graph Kk is a k-tree; if G is a k-tree and x1; x2; : : : ; xk are k verti
esindu
ing a 
omplete subgraph in G then the graph obtained from G by adding a new vertex y adja
entto x1; x2; : : : ; xk is also a k-tree. A graph is then said to have treewidth at most k if it is a subgraphof some k-tree.3 Outerplanar graphsAn outerplanar graph is a planar graph that 
an be drawn in su
h a way that every vertex lies on theouter fa
e. An outerplanar graph is maximal if adding to it one edge makes it no longer outerplanar.Every outerplanar graph has at least two verti
es with degree two and has treewidth at most two. Byusing an easy indu
tive argument it 
an be proved that the a
y
li
 
hromati
 number of an outerplanargraph is at most 3. We shall thus 
onsider a
y
li
 partitions with two 
olor 
lasses, ea
h indu
ingeither a forest or a graph with bounded degree. We shall prove that an outerplanar graph admits ana
y
li
 partition with two 
olor 
lasses, ea
h indu
ing a subgraph with maximum degree at most 5,and that this result is best possible if we require the 
olor 
lasses to indu
e subgraphs having boundeddegree or bounded treewidth.We �rst prove the following negative results:Proposition 21. O �= T1 � T1,2. for every k � 0, O �= T1 �Dk,3. for every k � 0, O �= D4 �Dk.Proof.1. Let G1 be the outerplanar graph shown in Figure 1(a). Suppose that 
 is an a
y
li
 (T1;T1)-
oloring of G. The triangle ab
 must then use 2 
olors. Suppose 
(a) = 2, 
(b) = 
(
) = 1. If
(d) = 1 we have a mono
hromati
 triangle while if 
(d) = 2 we have an alternating bi
hromati
 
y
le,a 
ontradi
tion.2. Let G2;k be the outerplanar graph shown in Figure 1(b). We �rst 
laim that if 
 is an a
y
li
(T1;Dk)-
oloring of G2;k then 
(x) = 1. To see that, suppose that 
(x) = 2. Sin
e at most k neighborsof x may be assigned 
olor 2, there exists some i, 1 � i � 2k � 1, su
h that 
(yi) = 
(yi+1) = 1. Butin that 
ase, if 
(zi) = 1 we have a mono
hromati
 triangle and if 
(zi) = 2 we have an alternatingbi
hromati
 
y
le, a 
ontradi
tion. Consider now the outerplanar graph H2;k obtained by taking threedisjoint 
opies of G2;k and joining their 
orresponding x-verti
es in a triangle (see Figure 1(
)). At leastone of the x-verti
es must be assigned 
olor 2 and thus H2;k 
annot be a
y
li
ally (T1;Dk)-
olored.
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Figure 1: Impossibility results for outerplanar graphs.3. Let 
 be an a
y
li
 (D4;Dk)-
oloring of the graph G3 depi
ted in Figure 1(d). We �rst 
laimthat we 
annot have 
(x) = 2 and 
(yi) = 1 for every i, 1 � i � 4. If this is the 
ase then
(z1) = 
(z3) = 
(z5) = 1, otherwise there would be an alternating bi
hromati
 
y
le. Thus verti
esy2 and y3 both have four neighbors with 
olor 1 and we must have 
(z2) = 
(z4) = 2 whi
h 
reatesan alternating bi
hromati
 6-
y
le. Now let H3;k be the outerplanar graph obtained by taking k + 1disjoint 
opies of G3 and identifying their 
orresponding x-verti
es into one unique vertex x0 (seeFigure 1(e)). Let 
 be an a
y
li
 (D4;Dk)-
oloring of H3;k. We 
laim that 
(x0) = 1. If not, then atmost k y-verti
es have 
olor 2, so that at least one of the k + 1 
opies of G3 has all its y-verti
es of
olor 1, a 
ontradi
tion as dis
ussed above. Taking �ve distin
t 
opies of H3;k, we now 
onstru
t theouterplanar graph I3;k as shown in Figure 1(f). If 
 is an a
y
li
 (D4;Dk)-
oloring of I3 then 
(y0) = 2,sin
e otherwise at least one 
opy of H3;k would have a x-vertex with 
olor 2, a 
ontradi
tion. Finally,by taking one 
opy of H3;k, one 
opy of I3;k and identifying their 
orresponding x0- and y0-verti
es,we obtain an outerplanar graph that 
annot be a
y
li
ally (D4;Dk)-
olored. 2The main result of this se
tion is the following:Theorem 3 O � D5 �D5.An indu
tive proof of this result 
an be obtained from a theorem of Borodin and Woodall [3℄ whi
hstates that every maximal outerplanar graph 
ontains a triangle of a spe
ial type. We give here amore 
onstru
tive proof from whi
h we 
an easily derive a linear 
oloring algorithm.Proof. Let G be an outerplanar graph. W.l.o.g. we assume that G is maximal outerplanar and
onsider a �xed outerplane embedding of G. Let x0 be any vertex in G. For every i � 0 let Wi be the
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b 2Figure 2: Con�gurations of Rule R1.set of verti
es whi
h are at distan
e i from x0 in G. If d denotes the maximum distan
e between x0and any other vertex in G then (W0;W1; : : : ;Wd) de�nes a partition of V (G). For every i, 0 � i � d,we denote G[Wi℄ by Gi. The following simple fa
ts are easy to prove:Fa
t 1. For every i, 0 � i � d, Gi is a union of disjoint paths.Fa
t 2. Ea
h vertex in Gi is adja
ent to verti
es in at most two paths in Gi+1.Fa
t 3. For every i, 2 � i � d, every maximal path P = amam�1 : : : a1rb1b2 : : : bn in Gi (as seenfrom x0 in 
lo
kwise order) is linked to Gi�1, Gi�2 as follows:
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nThe unique vertex r in P having two neighbors in Gi�1 will be 
alled the root of P , the trianglexyz will be 
alled the basis of P , and the vertex x will be 
alled the head of the basis. For any 
olor� in f1; 2g, we denote by � the 
olor 3 � �. We now indu
tively de�ne a 
oloring 
 of G using thefollowing rules:Rule R0. We set 
(x0) = 1 and 
(x) = 2 for every x 2 G1.Rule R1. Let P = am : : : a1rb1 : : : bn be a maximal path in Gi, i > 1, with root r and basis xyz. Wethen set:(1) 
(a2) = : : : = 
(am) = 
(y)(2) 
(b2) = : : : = 
(bn) = 
(z)(3) 
(a1) = 
(r) = 
(x)(4) 
(b1) = � where � is the 
olor that appears at most on
e on the basis.The di�erent 
on�gurations 
orresponding to Rule R1 are depi
ted in Figure 2.We 
laim that the 
oloring 
 thus obtained is su
h that ea
h 
olor 
lass indu
es a graph withmaximum degree at most 5 and that 
 produ
es no alternating bi
hromati
 
y
le. Let a j-neighbor bea neighbor with 
olor j and a j-basis be a basis whose head has 
olor j.Observe �rst that by Rule R0, vertex x0 has no 1-neighbor. Now let u be any vertex in Gi,1 � i � d and assume w.l.o.g. that 
(u) = 1. Let �(u) denote the number of 1-neighbors of u. Observe�rst that all the neighbors of u belong to Gi�1, Gi or Gi+1. The vertex u has at most two 1-neighborsin Gi (by Fa
t 1), at most two in Gi�1 (by Fa
t 3) and at most 2� 2 = 4 in Gi+1 (by Fa
t 2 and RuleR1). Thus �(u) � 8. We now prove that �(u) � 5.1. If u does not belong to a 2-basis then u has no 1-neighbor in Gi+1 (by Rule R1) and thus�(u) � 4.



6 A
y
li
 improper 
olorings of graphs2. If u belongs to exa
tly one 2-basis then it has at most two 1-neighbors on the 
orrespondingpath in Gi+1 and none on the other path. Moreover, it has at most one 1-neighbor in Gi�1 andthus �(u) � 5.3. Finally, suppose that u belongs to two 2-bases (whi
h means that u has no 1-neighbor in Gi�1).If u has a 2-neighbor in Gi, then it has at most two 1-neighbors on ea
h path in Gi+1 andthus �(u) � 5. If both neighbors of u in Gi have 
olor 1 then, by Rule R1, u has at most one1-neighbor on one path in Gi+1 and at most two on the other path. Thus �(u) � 5.Therefore, in ea
h 
ase, �(u) � 5.Now suppose that G 
ontains an alternating bi
hromati
 
y
le C. From the 
oloring rules, we �rstobserve that no three 
onse
utive verti
es of C 
an belong to the same Gi. Thus if i0 is minimal su
hthat Gi0 and C interse
t, then G 
ontains one of the following four 
on�gurations:
x

i0

x
i0x

i0

(a)

x
i0

(b)

b

c

a

(c) (d)

i0
yBut by Rule R1, 
on�gurations (a), (b) and (d) 
annot o

ur; and (
) also 
annot o

ur sin
e, if itdid, then by 
onsidering the shortest paths from x0 to xi0 and from x0 to 
 we would see that b didnot lie on the outer fa
e and so G was not outerplanar. Thus G 
ontains no alternating bi
hromati

y
le and 
 is therefore an a
y
li
 (D5;D5)-
oloring of G. 24 Planar graphsThe result of Borodin [2℄ states that every planar graph 
an be a
y
li
ally 5-
olored. We are thusinterested in a
y
li
 improper 
olorings of planar graphs that use at most 4 
olors.The following negative result says that in every a
y
li
 improper 
oloring of a planar graph withless than �ve 
olors in whi
h ea
h 
olor 
lass indu
es a subgraph with bounded treewidth or boundeddegree, at least one 
olor 
lass has to indu
e a subgraph with treewidth at least 3. More pre
isely, wehave:Theorem 4 There exist planar graphs having no a
y
li
 (P1;P2;P3;P4)-partition where for every i,1 � i � 4, Pi = T2 or Pi = Dki, ki � 0.Proof. Consider the planar graph G depi
ted in Figure 3(a) whose (usual) a
y
li
 
hromati
 numberis 5. We de�ne the planar graph Gp, p > 0, obtained from G by 
onne
ting to every edge xy a pathz1z2 : : : zp as depi
ted in Figure 3(b), and let 
 be an a
y
li
 (P1;P2;P3;P4)-
oloring of Gp. In thefollowing, the original verti
es of G in Gp will be 
alled main verti
es.Observe �rst that 
 indu
es a mono
hromati
 edge linking two main verti
es, say xy, with 
(x) =
(y) = i. Now 
onsider the path z1z2 : : : zp 
onne
ted to xy. Sin
e 
 is a
y
li
, all the 
olors but i 
anbe used at most on
e on this path. Thus, p�3 verti
es of this path have to be of 
olor i. If p � 8 thentwo 
onse
utive verti
es zj and zj+1 have 
olor i and the subgraph indu
ed by 
olor i, whi
h 
ontainsa K4, has treewidth at least 3. If p � ki + 3 then the subgraph indu
ed by 
olor i has degree at leastki + 1. This 
on
ludes the proof. 2There is a striking di
hotomy between Theorem 4 and the result of Borodin [2℄: to a
y
li
ally 
olora planar graph in su
h a way that ea
h 
olor 
lass indu
es a graph with bounded degree we have touse at least �ve 
olors, but in that 
ase an a
y
li
 proper 
oloring 
an be provided.
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Figure 3: Impossibility results for planar graphs.Con
erning a
y
li
 improper 
olorings of planar graphs with two 
olors we 
an prove the twofollowing results:Theorem 5 There exist planar graphs having no a
y
li
 (T3;T3)-partition.Proof. Consider again the graph G depi
ted in Figure 3(a). Sin
e G is 4-regular, G is not a partial3-tree. Thus every (T3;T3)-
oloring of G must use two 
olors. Moreover, in every a
y
li
 (T3;T3)-
oloring of G one of the two 
olors has to be used exa
tly on
e, leading to 4 mono
hromati
 triangles(or fa
es).Consider now the graph G0 obtained from G by inserting into ea
h of the 8 fa
es of G a triangle
onne
ted to the verti
es of the fa
e as depi
ted by Figure 3(
) (every original fa
e in G be
omes inG0 isomorphi
 to the graph G itself). Suppose that 
 is an a
y
li
 (T3;T3)-
oloring of G0. We still have4 mono
hromati
 triangles made of verti
es originating from G. The se
ond 
olor has thus to be usedon the four triangles in
luded into these fa
es. It is then easy to 
he
k that we have an alternatingbi
hromati
 
y
le, a 
ontradi
tion. 2Theorem 6 For every k � 0, there exist planar graphs having no a
y
li
 (T3;Dk)-partition.Proof. We 
onsider again the graph G depi
ted in Figure 3(a). Let G0p, p > 0, be the planar graphobtained from G by inserting a triangle a1b1
1 and verti
es 
2; : : : ; 
p into ea
h fa
e of G as depi
tedby Figure 3(d). Using the same argument as before, we know that in every a
y
li
 (T3;Dk)-partitionof G0p we have 4 mono
hromati
 triangles made of verti
es originating from G. We have two 
ases to
onsider:



8 A
y
li
 improper 
olorings of graphsCase (i): These 4 triangles have 
olor 1. For every p � 1, every 
orresponding inner trianglea1b1
1 must use 
olor 2, leading to an alternating bi
hromati
 
y
le as in the proof of the previoustheorem.Case (ii): These 4 triangles have 
olor 2. For every p > k � 1, at least two verti
es 
i, 
j in ea
hof these triangles must have 
olor 1, leading again to alternating bi
hromati
 
yles.We thus get in ea
h 
ase a 
ontradi
tion, whi
h 
on
ludes the proof. 2Some questions 
on
erning planar graphs remain open. Considering our original motivation, that isthe study of oriented 
hromati
 numbers of planar graphs, some questions are parti
ularly 
hallenging:is it true or not that every planar graph has an a
y
li
 (T3;D0;D0)-partition ? an a
y
li
 (T3;D0;D1)-partition ? A positive answer would imply that the oriented 
hromati
 number of every planar graphis at most 72 or 76 respe
tively.A
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