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Abstract. In this paper, we introduce the new notion of acyclic improper colorings of graphs. An improper
coloring of a graph is a vertex-coloring in which adjacent vertices are allowed to have the same color, but each
color class V; satisfies some condition depending on i. Such a coloring is acyclic if there are no alternating
2-colored cycles.

We prove that every outerplanar graph can be acyclically 2-colored in such a way that each monochromatic
subgraph has degree at most five and that this result is best possible. For planar graphs, we prove some negative
results and state some open problems.
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1 Introduction

For every graph G, we denote by V(G) its vertex set and by E(G) its edge set. A k-coloring c :
V(G) — {1,2,...,k} of a graph G may be equivalently regarded as a partition of V(G) into color
classes V1,Va, ..., Vi where for every i, 1 <1 < k, V; is the set of vertices with color 7. In the following,
we shall use the term “improper” in order to stress the fact that adjacent vertices are not required to
get distinct colors. Improper colorings are usually defined by requiring each color class V; to satisfy
some property depending on ¢ [6, 10]. In particular, Borowiecki and Mihék considered in [4] improper
colorings such that each color class V; satisfies a so-called hereditary property P; (a property P is
hereditary if every subgraph of a graph which satisfies P also satisfies P).

Following their notation, we say that a graph G satisfies the property P;-Ps-...- Py if there exists
a partition (V1,Va,..., V%) of V(G) such that for every i, 1 < i < k, the subgraph G[V;] induced by V;
satisfies P;. Such a partition will be called a (Py, P, ..., Pg)-partitionof G. f Py =Py =... =P =P
we denote the property Pi-Ps-...- P by P*. By a (Py, Pa,. .., Py)-coloring of G we mean a k-coloring
such that the partition (Vi,Va,..., Vi) given by the color classes is a (Py, P, ..., Py)-partition of G.

For convenience, we shall also denote by P the family of graphs satisfying the property P. We
shall consider in particular the properties Dy of having degree at most k (Df is thus the property
of being properly k-colorable), 7 of having treewidth at most & (77 is thus the property of being a
forest) and O of being outerplanar.

A proper k-coloring of a graph G is acyclic if all the subgraphs induced by any two colors have
no cycle [5]. The acyclic chromatic number of G is then defined as the minimum £ such that G has
an acyclic proper k-coloring. We extend this notion to the case of improper colorings as follows. Let
(Vi,Va,..., Vi) bea (P, Pa,..., Pg)-partition of G. By an (7, j)-edge we mean an edge linking a vertex
in V; to a vertex in Vj. Such a partition is said to be acyclic if for every pair (7, 5), ¢ # j, the subgraph
induced by all the (i, j)-edges has no cycle; G[V;UV;] may contain bichromatic cycles but any such cycle
must contain at least one monochromatic edge. A bichromatic cycle having no monochromatic edge
will be called an alternating bichromatic cycle. We say that a graph G has property P1OP2®...O Py if
it admits an acyclic (Py, Pe, ..., Pg)-partition. If P; = Py = ... = Py, = P we will denote the property
PrOP®...0 P by P® (D(()k) is thus the property of being acyclically properly k-colorable).
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2 Acyclic improper colorings of graphs

The study of acyclic improper colorings was motivated by the problem of improving the upper
bound for the oriented chromatic number of planar graphs [8]. Oriented colorings and their links with
acyclic improper colorings are introduced in the next Section. In Section 3 we consider the case of
outerplanar graphs and prove that every outerplanar graph admits an acyclic (D5, D5)-partition and
that this result is in some sense optimal. We give some negative results concerning planar graphs in
Section 4 and state some open questions.

In a companion paper [1], acyclic improper colorings of graphs with bounded degree are considered.

2 Acyclic improper colorings and oriented colorings

Let G be an oriented graph (a digraph without 2-cycles). An oriented k-coloring of Gisa mapping

— —

c:V(G) — {1,2,...,k} such that (i) for every arc i in E(G), ¢(z) # c(y) (an oriented coloring is
thus a proper coloring) and (ii) for every two arcs 2 and zt in E(G), ¢(z) = c(t) = c(y) # c(2).
Intuitively speaking, condition (i7) means that the colors assigned to any two adjacent vertices x and
y uniquely determine the orientation of the edge zy. The oriented chromatic number )"('(é) of G is
defined as the minimum & such that G has an oriented k-coloring. The oriented chromatic numbers of
an undirected graph G and a family F of graphs are defined by x¥(G) = max{)"('(é) : G is an orientation
of G} and ¥(F) = max{x(G) : G € F}.

Oriented chromatic numbers of graphs have been studied in [7, 8, 9]. Raspaud and Sopena proved
in [8] that every graph with acyclic chromatic number k& has oriented chromatic number at most
k x 2k=1. A result of Borodin [2] states that every planar graph has acyclic chromatic number at most
5. Thus every planar graph has oriented chromatic number at most 80. Improving this upper bound
seems to be particularly challenging. Our initial interest in acyclic improper colorings was motivated
by this problem since we can prove the following extension of Raspaud and Sopena’s result:

Theorem 1 Let Py, Pa, ..., Py be graph properties such that for every i, 1 < i <k, the family P; has
oriented chromatic number at most o;. Then we have:

k
X(PLOP,O...0P) < 21 x> a
=1

Proof. et P = P1 ©®© P2 ® ... ® Pi, G be a graph in P, G be any fixed orientation of G and
(V1,Va,..., Vi) be an acyclic (P1, P2, ..., Pk)-partition of V(G). For every i, 1 < i < k, let ¢;; be
any oriented «;-coloring of é[‘ft] We assume in the following that for every 4,7, 1 < i < j < k, the
oriented colorings c;; and c; ; use disjoint sets of colors, none of them containing colors 1 or 2.

For every 4,7, 1 <1 < j <k, denote by G; ; the subgraph of G induced by all the (7, j)-edges. For
every connected component C' of G; ; let ¢ be any arbitrarily chosen vertex and denote by Ay the
set of those z¢’s. Let now A,,, m > 1 be the set of vertices at distance m from Ag in G;; (that is
at distance m from one vertex in Ap). Observe that since the partition is acyclic, the graph G ; is a
forest and thus every vertex in A, has exactly one neighbor in A,, 1. We now inductively define a
2-coloring c¢; j of G ; as follows:

1. ¢ j(zo) =1 for every zo € Ay,

2. for every z,, € Ap,, m > 1, with neighbor z,,,_1 in Ap,—1, let ¢; j(zm) = ¢ j(Tm—1) if £ € Vi and
TmTm—1 18 an arc in G or &, € V; and z,, 1%y, is an arc in G and let ¢; j(2m) = 3 — ¢ j(Tm—1)
otherwise.

In other words, two adjacent vertices are assigned the same color if and only if the corresponding arc
in G is directed from the vertex belonging to the subset of lower index towards the vertex belonging
to the subset of higher index in the partition.
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We claim that the mapping ¢ defined by
co(z) = (cri(x), ..., ci1i(2), cii (@), ciigr (2), - ., cip(2))

for every 7 and = € Vj; is an oriented coloring of G. From above, we get that this mapplng uses exactly
2k=1 % ZZ 1 «; colors. Now let z € V; and y € V; be two adjacent vertices in G. If i = = j then the
definition of ¢;; implies ¢(z) # c(y), while if i # j then ¢(z) and ¢(y) clearly differ on their ith and
jth components. Finally, let us suppose that there exist two arcs 27 and z# in G such that c(z) = c(t)
and ¢(y) = c(z). Since all the ¢;;’s are oriented colorings, these four vertices cannot belong to the
same V;. Then w.lo.g. we have z,t € V; and y,z € V; for some i < j. Thus ¢;;(z) = ¢;;(t) and
¢i,j(y) = ¢ij(z), which is a contradiction since the definition of ¢; ; implies that ¢; j(z) = ¢; ;(y) and

cij(2z) # cij(t)- O

Theorem 1 provides a new way to attack the problem of determining an upper bound for the
oriented chromatic number of some families of graphs. Our main interest concerns partitions whose
color classes induce subgraphs with bounded degree or bounded treewidth since some upper bounds for
the oriented chromatic numbers of these families are known [7, 9]. Recall that a k-tree is inductively
defined as follows: the complete graph K}, is a k-tree; if G is a k-tree and z1, 22, ...,z are k vertices
inducing a complete subgraph in G then the graph obtained from G by adding a new vertex y adjacent
to 1, Ta,..., Tk i also a k-tree. A graph is then said to have treewidth at most k if it is a subgraph
of some k-tree.

3 Outerplanar graphs

An outerplanar graph is a planar graph that can be drawn in such a way that every vertex lies on the
outer face. An outerplanar graph is mazimal if adding to it one edge makes it no longer outerplanar.
Every outerplanar graph has at least two vertices with degree two and has treewidth at most two. By
using an easy inductive argument it can be proved that the acyclic chromatic number of an outerplanar
graph is at most 3. We shall thus consider acyclic partitions with two color classes, each inducing
either a forest or a graph with bounded degree. We shall prove that an outerplanar graph admits an
acyclic partition with two color classes, each inducing a subgraph with maximum degree at most 5,
and that this result is best possible if we require the color classes to induce subgraphs having bounded
degree or bounded treewidth.
We first prove the following negative results:

Proposition 2
1.O¢ ThoT,
2. for every k >0, O ¢ T1 © Dy,
3. for every k>0, O ¢ Dy ® Dy.

Proof.

1. Let Gy be the outerplanar graph shown in Figure 1(a). Suppose that ¢ is an acyclic (71, 771)-
coloring of G. The triangle abc must then use 2 colors. Suppose c(a) = 2, ¢(b) = ¢(c) = 1. If
¢(d) = 1 we have a monochromatic triangle while if ¢(d) = 2 we have an alternating bichromatic cycle,
a contradiction.

2. Let Ga, be the outerplanar graph shown in Figure 1(b). We first claim that if ¢ is an acyclic
(T1, Dy)-coloring of Gg j, then ¢(x) = 1. To see that, suppose that ¢(z) = 2. Since at most k£ neighbors
of z may be assigned color 2, there exists some i, 1 < i < 2k — 1, such that ¢(y;) = ¢(y;+1) = 1. But
in that case, if ¢(z;) = 1 we have a monochromatic triangle and if ¢(z;) = 2 we have an alternating
bichromatic cycle, a contradiction. Consider now the outerplanar graph Hs ; obtained by taking three
disjoint copies of G j, and joining their corresponding z-vertices in a triangle (see Figure 1(c)). At least
one of the z-vertices must be assigned color 2 and thus Hyj cannot be acyclically (77, Dy)-colored.
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Figure 1: Impossibility results for outerplanar graphs.

3. Let ¢ be an acyclic (Dy, Dy)-coloring of the graph G3 depicted in Figure 1(d). We first claim
that we cannot have c¢(x) = 2 and ¢(y;) = 1 for every 4, 1 < i < 4. If this is the case then
c(z1) = ¢(z3) = ¢(z5) = 1, otherwise there would be an alternating bichromatic cycle. Thus vertices
y2 and y3 both have four neighbors with color 1 and we must have ¢(z9) = ¢(z4) = 2 which creates
an alternating bichromatic 6-cycle. Now let H3j be the outerplanar graph obtained by taking k + 1
disjoint copies of G'3 and identifying their corresponding z-vertices into one unique vertex zg (see
Figure 1(e)). Let ¢ be an acyclic (D4, Dy)-coloring of Hsj. We claim that c(xzg) = 1. If not, then at
most k y-vertices have color 2, so that at least one of the k 4+ 1 copies of G5 has all its y-vertices of
color 1, a contradiction as discussed above. Taking five distinct copies of Hjj, we now construct the
outerplanar graph I3 ;, as shown in Figure 1(f). If ¢ is an acyclic (Dy4, D)-coloring of I3 then ¢(yp) = 2,
since otherwise at least one copy of H3; would have a z-vertex with color 2, a contradiction. Finally,
by taking one copy of Hjj, one copy of I and identifying their corresponding zg- and yo-vertices,
we obtain an outerplanar graph that cannot be acyclically (Dy, Dy )-colored. O

The main result of this section is the following:
Theorem 3 O C D5 ® Ds.

An inductive proof of this result can be obtained from a theorem of Borodin and Woodall [3] which
states that every maximal outerplanar graph contains a triangle of a special type. We give here a
more constructive proof from which we can easily derive a linear coloring algorithm.

Proof. Let G be an outerplanar graph. W.l.o.g. we assume that G is maximal outerplanar and
consider a fixed outerplane embedding of G. Let zg be any vertex in G. For every i > 0 let W; be the
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Figure 2: Configurations of Rule R1.

set of vertices which are at distance ¢ from zy in G. If d denotes the maximum distance between xzg
and any other vertex in G then (W, Wy,...,Wy) defines a partition of V(G). For every 7, 0 < < d,
we denote G[W;] by G;. The following simple facts are easy to prove:
Fact 1. For everyi, 0 <1 <d, G; is a union of disjoint paths.
Fact 2. FEach vertex in G; is adjacent to vertices in at most two paths in Giy.
Fact 3. For every i, 2 < i < d, every mazimal path P = apmam—1 ...a1rbiby ... b, in G; (as seen
from xy in clockwise order) is linked to G;—1, G;—o as follows:

G G G

-2 i-1

x @ r

The unique vertex r in P having two neighbors in G;_1 will be called the root of P, the triangle
zyz will be called the basis of P, and the vertex = will be called the head of the basis. For any color
a in {1,2}, we denote by @ the color 3 — . We now inductively define a coloring ¢ of G using the
following rules:

Rule RO. We set c(zg) =1 and ¢(x) = 2 for every z € G;.
Rule R1. Let P =ay,...a1rby ...b, be a maximal path in G;, ¢ > 1, with root r and basis zyz. We
then set:

(a2)

(2) elbe) = ...
(3) c(ar) = c(r) = ¢(x)
(4) ¢(b1) = a where « is the color that appears at most once on the basis.
The different configurations corresponding to Rule R1 are depicted in Figure 2.
We claim that the coloring ¢ thus obtained is such that each color class induces a graph with
maximum degree at most 5 and that ¢ produces no alternating bichromatic cycle. Let a j-neighbor be
a neighbor with color 7 and a j-basis be a basis whose head has color j.

Observe first that by Rule RO, vertex xzy has no 1-neighbor. Now let u be any vertex in Gj,
1 < < d and assume w.l.o.g. that ¢(u) = 1. Let A(u) denote the number of 1-neighbors of u. Observe
first that all the neighbors of u belong to G;_1, G; or G;11. The vertex u has at most two 1-neighbors
in G; (by Fact 1), at most two in G;_1 (by Fact 3) and at most 2 x 2 =4 in G;;1 (by Fact 2 and Rule
R1). Thus A(u) < 8. We now prove that A(u) < 5.

1. If u does not belong to a 2-basis then u has no 1-neighbor in G;1; (by Rule R1) and thus
A(u) < 4.
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2. If u belongs to exactly one 2-basis then it has at most two 1-neighbors on the corresponding
path in G;11 and none on the other path. Moreover, it has at most one 1-neighbor in G;_; and
thus A(u) < 5.

3. Finally, suppose that u belongs to two 2-bases (which means that « has no 1-neighbor in G;_1).
If w has a 2-neighbor in G;, then it has at most two l-neighbors on each path in G;1; and
thus A(u) < 5. If both neighbors of u in G; have color 1 then, by Rule R1, u has at most one
1-neighbor on one path in G and at most two on the other path. Thus A(u) < 5.

Therefore, in each case, A(u) < 5.

Now suppose that G contains an alternating bichromatic cycle C'. From the coloring rules, we first
observe that no three consecutive vertices of C' can belong to the same G;. Thus if iy is minimal such
that G;, and C intersect, then G contains one of the following four configurations:

(@ (b) (©) (d)

But by Rule R1, configurations (a), (b) and (d) cannot occur; and (c) also cannot occur since, if it
did, then by considering the shortest paths from zy to z;, and from zg to ¢ we would see that b did
not lie on the outer face and so G was not outerplanar. Thus G' contains no alternating bichromatic
cycle and ¢ is therefore an acyclic (D, Ds)-coloring of G. O

4 Planar graphs

The result of Borodin [2] states that every planar graph can be acyclically 5-colored. We are thus
interested in acyclic improper colorings of planar graphs that use at most 4 colors.

The following negative result says that in every acyclic improper coloring of a planar graph with
less than five colors in which each color class induces a subgraph with bounded treewidth or bounded
degree, at least one color class has to induce a subgraph with treewidth at least 3. More precisely, we
have:

Theorem 4 There exist planar graphs having no acyclic (P, P2, P3, Py)-partition where for every i,
1§’i§4, Pl=7'2 OTPiZDki,kiZO.

Proof. Consider the planar graph G depicted in Figure 3(a) whose (usual) acyclic chromatic number
is 5. We define the planar graph G,, p > 0, obtained from G' by connecting to every edge zy a path
2123 ... 2y as depicted in Figure 3(b), and let ¢ be an acyclic (P, Pz, P3, P4)-coloring of G,. In the
following, the original vertices of G in G, will be called main vertices.

Observe first that ¢ induces a monochromatic edge linking two main vertices, say zy, with ¢(z) =
¢(y) = i. Now consider the path 2125 ...z, connected to zy. Since c is acyclic, all the colors but ¢ can
be used at most once on this path. Thus, p — 3 vertices of this path have to be of color . If p > 8 then
two consecutive vertices z; and z;11 have color ¢ and the subgraph induced by color 4, which contains
a Ky, has treewidth at least 3. If p > k; 4+ 3 then the subgraph induced by color ¢ has degree at least
k; + 1. This concludes the proof. a

There is a striking dichotomy between Theorem 4 and the result of Borodin [2]: to acyclically color
a planar graph in such a way that each color class induces a graph with bounded degree we have to
use at least five colors, but in that case an acyclic proper coloring can be provided.
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Figure 3: Impossibility results for planar graphs.

Concerning acyclic improper colorings of planar graphs with two colors we can prove the two
following results:

Theorem 5 There exist planar graphs having no acyclic (T3, Ts)-partition.

Proof. Consider again the graph G depicted in Figure 3(a). Since G is 4-regular, G is not a partial
3-tree. Thus every (73, 73)-coloring of G must use two colors. Moreover, in every acyclic (T3, T3)-
coloring of G one of the two colors has to be used exactly once, leading to 4 monochromatic triangles
(or faces).

Consider now the graph G’ obtained from G by inserting into each of the 8 faces of G a triangle
connected to the vertices of the face as depicted by Figure 3(c) (every original face in G becomes in
G’ isomorphic to the graph G itself). Suppose that ¢ is an acyclic (73, T3)-coloring of G'. We still have
4 monochromatic triangles made of vertices originating from G. The second color has thus to be used
on the four triangles included into these faces. It is then easy to check that we have an alternating
bichromatic cycle, a contradiction. a

Theorem 6 For every k > 0, there exist planar graphs having no acyclic (T3, Dy )-partition.

Proof. We consider again the graph G depicted in Figure 3(a). Let G;,, p > 0, be the planar graph
obtained from G by inserting a triangle a1bic; and vertices ca, ..., ¢, into each face of G as depicted
by Figure 3(d). Using the same argument as before, we know that in every acyclic (73, Dy )-partition
of G;, we have 4 monochromatic triangles made of vertices originating from G. We have two cases to
consider:
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Case (i): These j triangles have color 1. For every p > 1, every corresponding inner triangle
a1bic; must use color 2, leading to an alternating bichromatic cycle as in the proof of the previous
theorem.

Case (ii): These 4 triangles have color 2. For every p > k — 1, at least two vertices ¢;, ¢; in each
of these triangles must have color 1, leading again to alternating bichromatic cyles.

We thus get in each case a contradiction, which concludes the proof. a

Some questions concerning planar graphs remain open. Considering our original motivation, that is
the study of oriented chromatic numbers of planar graphs, some questions are particularly challenging:
is it true or not that every planar graph has an acyclic (73, Dy, Dy)-partition ? an acyclic (73, Dy, D1 )-
partition 7 A positive answer would imply that the oriented chromatic number of every planar graph
is at most 72 or 76 respectively.

Acknowledgments. We would like to thank Bruce Reed whose comments allowed us to simplify our
original proof of Theorem 3 and the anonymous referees for their help in improving the first version
of this paper.

References

[1] P. Boiron, E. Sopena and L. Vignal, Acyclic improper colorings of graphs with maximum degree
three, Dimacs Series in Discrete Math. and Theoret. Computer Sci., to appear.

[2] O.V. Borodin, On acyclic colorings of planar graphs, Discrete Math. 25 (1979), 211-236.

[3] O.V. Borodin and D.R. Woodall, Thirteen colouring numbers for outerplane graphs, Bull. Inst.
Comb. Appl. 14 (1995), 87-100.

[4] M. Borowiecki and P. Mihdk, Hereditary properties of graphs, In: V. R. Kulli, editor, Advances
in Graph Theory. Vishwa International Publishers (1991), 41-68.

[5] B. Griinbaum, Acyclic coloring of planar graphs, Israel J. Math. 14 (1973), 390-412.
[6] T.R. Jensen and B. Toft, Graph coloring problems, Wiley Interscience (1995).

[7] A.V. Kostochka, E. Sopena and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J.
Graph Theory 24(4) (1997), 331-340.

[8] A. Raspaud and E. Sopena, Good and semi-strong colorings of oriented planar graphs, Inf. Pro-
cessing Letters 51 (1994), 171-174.

[9] E. Sopena, The chromatic number of oriented graphs, J. Graph Theory 25 (1997), 191-205.

[10] D.R. Woodall, Improper colourings of graphs, in: Graph Colourings (eds. R. Nelson and R.J. Wil-
son), vol. 218 of Pitman Research Notes in Mathematics Series (1990), 45-63.



