
LaBRI Researh Report No. Compiled on April 18, 2001The �nal version of this paper has been published in J. Graph Theory 32 (1999), 97{107.ACYCLIC IMPROPERCOLORINGS OF GRAPHS1P. Boiron, E. Sopena and L. VignalLaBRI, Universit�e Bordeaux 1, 33405 Talene, FraneAbstrat. In this paper, we introdue the new notion of ayli improper olorings of graphs. An improperoloring of a graph is a vertex-oloring in whih adjaent verties are allowed to have the same olor, but eaholor lass Vi satis�es some ondition depending on i. Suh a oloring is ayli if there are no alternating2-olored yles.We prove that every outerplanar graph an be aylially 2-olored in suh a way that eah monohromatisubgraph has degree at most �ve and that this result is best possible. For planar graphs, we prove some negativeresults and state some open problems.Keywords. Ayli oloring, Improper oloring, Planar graph, Outerplanar graph.1 IntrodutionFor every graph G, we denote by V (G) its vertex set and by E(G) its edge set. A k-oloring  :V (G) �! f1; 2; : : : ; kg of a graph G may be equivalently regarded as a partition of V (G) into olorlasses V1; V2; : : : ; Vk where for every i, 1 � i � k, Vi is the set of verties with olor i. In the following,we shall use the term \improper" in order to stress the fat that adjaent verties are not required toget distint olors. Improper olorings are usually de�ned by requiring eah olor lass Vi to satisfysome property depending on i [6, 10℄. In partiular, Borowieki and Mih�ok onsidered in [4℄ improperolorings suh that eah olor lass Vi satis�es a so-alled hereditary property Pi (a property P ishereditary if every subgraph of a graph whih satis�es P also satis�es P).Following their notation, we say that a graph G satis�es the property P1 �P2 � : : : �Pk if there existsa partition (V1; V2; : : : ; Vk) of V (G) suh that for every i, 1 � i � k, the subgraph G[Vi℄ indued by Visatis�es Pi. Suh a partition will be alled a (P1;P2; : : : ;Pk)-partition ofG. If P1 = P2 = : : : = Pk = Pwe denote the property P1 �P2 � : : : �Pk by Pk. By a (P1;P2; : : : ;Pk)-oloring of G we mean a k-oloringsuh that the partition (V1; V2; : : : ; Vk) given by the olor lasses is a (P1;P2; : : : ;Pk)-partition of G.For onveniene, we shall also denote by P the family of graphs satisfying the property P. Weshall onsider in partiular the properties Dk of having degree at most k (Dk0 is thus the propertyof being properly k-olorable), Tk of having treewidth at most k (T1 is thus the property of being aforest) and O of being outerplanar.A proper k-oloring of a graph G is ayli if all the subgraphs indued by any two olors haveno yle [5℄. The ayli hromati number of G is then de�ned as the minimum k suh that G hasan ayli proper k-oloring. We extend this notion to the ase of improper olorings as follows. Let(V1; V2; : : : ; Vk) be a (P1;P2; : : : ;Pk)-partition of G. By an (i; j)-edge we mean an edge linking a vertexin Vi to a vertex in Vj . Suh a partition is said to be ayli if for every pair (i; j), i 6= j, the subgraphindued by all the (i; j)-edges has no yle; G[Vi[Vj℄ may ontain bihromati yles but any suh ylemust ontain at least one monohromati edge. A bihromati yle having no monohromati edgewill be alled an alternating bihromati yle. We say that a graph G has property P1�P2�: : :�Pk ifit admits an ayli (P1;P2; : : : ;Pk)-partition. If P1 = P2 = : : : = Pk = P we will denote the propertyP1 �P2 � : : :�Pk by P(k) (D(k)0 is thus the property of being aylially properly k-olorable).1Part of this work has been supported by the BARRANDE programme no 97-137.1



2 Ayli improper olorings of graphsThe study of ayli improper olorings was motivated by the problem of improving the upperbound for the oriented hromati number of planar graphs [8℄. Oriented olorings and their links withayli improper olorings are introdued in the next Setion. In Setion 3 we onsider the ase ofouterplanar graphs and prove that every outerplanar graph admits an ayli (D5;D5)-partition andthat this result is in some sense optimal. We give some negative results onerning planar graphs inSetion 4 and state some open questions.In a ompanion paper [1℄, ayli improper olorings of graphs with bounded degree are onsidered.2 Ayli improper olorings and oriented oloringsLet ~G be an oriented graph (a digraph without 2-yles). An oriented k-oloring of ~G is a mapping : V ( ~G) �! f1; 2; : : : ; kg suh that (i) for every ar ~xy in E( ~G), (x) 6= (y) (an oriented oloring isthus a proper oloring) and (ii) for every two ars ~xy and ~zt in E( ~G), (x) = (t) =) (y) 6= (z).Intuitively speaking, ondition (ii) means that the olors assigned to any two adjaent verties x andy uniquely determine the orientation of the edge xy. The oriented hromati number ~�( ~G) of ~G isde�ned as the minimum k suh that ~G has an oriented k-oloring. The oriented hromati numbers ofan undireted graph G and a family F of graphs are de�ned by ~�(G) = maxf~�( ~G) : ~G is an orientationof Gg and ~�(F) = maxf~�(G) : G 2 Fg.Oriented hromati numbers of graphs have been studied in [7, 8, 9℄. Raspaud and Sopena provedin [8℄ that every graph with ayli hromati number k has oriented hromati number at mostk�2k�1. A result of Borodin [2℄ states that every planar graph has ayli hromati number at most5. Thus every planar graph has oriented hromati number at most 80. Improving this upper boundseems to be partiularly hallenging. Our initial interest in ayli improper olorings was motivatedby this problem sine we an prove the following extension of Raspaud and Sopena's result:Theorem 1 Let P1;P2; : : : ;Pk be graph properties suh that for every i, 1 � i � k, the family Pi hasoriented hromati number at most �i. Then we have:~�(P1 �P2 � : : : �Pk) � 2k�1 � kXi=1 �i:Proof. Let P = P1 � P2 � : : : � Pk, G be a graph in P, ~G be any �xed orientation of G and(V1; V2; : : : ; Vk) be an ayli (P1;P2; : : : ;Pk)-partition of V (G). For every i, 1 � i � k, let i;i beany oriented �i-oloring of ~G[Vi℄. We assume in the following that for every i; j, 1 � i < j � k, theoriented olorings i;i and j;j use disjoint sets of olors, none of them ontaining olors 1 or 2.For every i; j, 1 � i < j � k, denote by Gi;j the subgraph of G indued by all the (i; j)-edges. Forevery onneted omponent C of Gi;j let xC be any arbitrarily hosen vertex and denote by A0 theset of those xC 's. Let now Am, m � 1 be the set of verties at distane m from A0 in Gi;j (that isat distane m from one vertex in A0). Observe that sine the partition is ayli, the graph Gi;j is aforest and thus every vertex in Am has exatly one neighbor in Am�1. We now indutively de�ne a2-oloring i;j of Gi;j as follows:1. i;j(x0) = 1 for every x0 2 A0,2. for every xm 2 Am, m � 1, with neighbor xm�1 in Am�1, let i;j(xm) = i;j(xm�1) if xm 2 Vi and~xmxm�1 is an ar in ~G or xm 2 Vj and ~xm�1xm is an ar in ~G and let i;j(xm) = 3� i;j(xm�1)otherwise.In other words, two adjaent verties are assigned the same olor if and only if the orresponding arin ~G is direted from the vertex belonging to the subset of lower index towards the vertex belongingto the subset of higher index in the partition.



P. Boiron, E. Sopena and L. Vignal 3We laim that the mapping  de�ned by(x) = (1;i(x); : : : ; i�1;i(x); i;i(x); i;i+1(x); : : : ; i;k(x))for every i and x 2 Vi is an oriented oloring of ~G. From above, we get that this mapping uses exatly2k�1 �Pki=1 �i olors. Now let x 2 Vi and y 2 Vj be two adjaent verties in ~G. If i = j then thede�nition of i;i implies (x) 6= (y), while if i 6= j then (x) and (y) learly di�er on their ith andjth omponents. Finally, let us suppose that there exist two ars ~xy and ~zt in ~G suh that (x) = (t)and (y) = (z). Sine all the i;i's are oriented olorings, these four verties annot belong to thesame Vi. Then w.l.o.g. we have x; t 2 Vi and y; z 2 Vj for some i < j. Thus i;j(x) = i;j(t) andi;j(y) = i;j(z), whih is a ontradition sine the de�nition of i;j implies that i;j(x) = i;j(y) andi;j(z) 6= i;j(t). 2Theorem 1 provides a new way to attak the problem of determining an upper bound for theoriented hromati number of some families of graphs. Our main interest onerns partitions whoseolor lasses indue subgraphs with bounded degree or bounded treewidth sine some upper bounds forthe oriented hromati numbers of these families are known [7, 9℄. Reall that a k-tree is indutivelyde�ned as follows: the omplete graph Kk is a k-tree; if G is a k-tree and x1; x2; : : : ; xk are k vertiesinduing a omplete subgraph in G then the graph obtained from G by adding a new vertex y adjaentto x1; x2; : : : ; xk is also a k-tree. A graph is then said to have treewidth at most k if it is a subgraphof some k-tree.3 Outerplanar graphsAn outerplanar graph is a planar graph that an be drawn in suh a way that every vertex lies on theouter fae. An outerplanar graph is maximal if adding to it one edge makes it no longer outerplanar.Every outerplanar graph has at least two verties with degree two and has treewidth at most two. Byusing an easy indutive argument it an be proved that the ayli hromati number of an outerplanargraph is at most 3. We shall thus onsider ayli partitions with two olor lasses, eah induingeither a forest or a graph with bounded degree. We shall prove that an outerplanar graph admits anayli partition with two olor lasses, eah induing a subgraph with maximum degree at most 5,and that this result is best possible if we require the olor lasses to indue subgraphs having boundeddegree or bounded treewidth.We �rst prove the following negative results:Proposition 21. O �= T1 � T1,2. for every k � 0, O �= T1 �Dk,3. for every k � 0, O �= D4 �Dk.Proof.1. Let G1 be the outerplanar graph shown in Figure 1(a). Suppose that  is an ayli (T1;T1)-oloring of G. The triangle ab must then use 2 olors. Suppose (a) = 2, (b) = () = 1. If(d) = 1 we have a monohromati triangle while if (d) = 2 we have an alternating bihromati yle,a ontradition.2. Let G2;k be the outerplanar graph shown in Figure 1(b). We �rst laim that if  is an ayli(T1;Dk)-oloring of G2;k then (x) = 1. To see that, suppose that (x) = 2. Sine at most k neighborsof x may be assigned olor 2, there exists some i, 1 � i � 2k � 1, suh that (yi) = (yi+1) = 1. Butin that ase, if (zi) = 1 we have a monohromati triangle and if (zi) = 2 we have an alternatingbihromati yle, a ontradition. Consider now the outerplanar graph H2;k obtained by taking threedisjoint opies of G2;k and joining their orresponding x-verties in a triangle (see Figure 1()). At leastone of the x-verties must be assigned olor 2 and thus H2;k annot be aylially (T1;Dk)-olored.
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Figure 1: Impossibility results for outerplanar graphs.3. Let  be an ayli (D4;Dk)-oloring of the graph G3 depited in Figure 1(d). We �rst laimthat we annot have (x) = 2 and (yi) = 1 for every i, 1 � i � 4. If this is the ase then(z1) = (z3) = (z5) = 1, otherwise there would be an alternating bihromati yle. Thus vertiesy2 and y3 both have four neighbors with olor 1 and we must have (z2) = (z4) = 2 whih reatesan alternating bihromati 6-yle. Now let H3;k be the outerplanar graph obtained by taking k + 1disjoint opies of G3 and identifying their orresponding x-verties into one unique vertex x0 (seeFigure 1(e)). Let  be an ayli (D4;Dk)-oloring of H3;k. We laim that (x0) = 1. If not, then atmost k y-verties have olor 2, so that at least one of the k + 1 opies of G3 has all its y-verties ofolor 1, a ontradition as disussed above. Taking �ve distint opies of H3;k, we now onstrut theouterplanar graph I3;k as shown in Figure 1(f). If  is an ayli (D4;Dk)-oloring of I3 then (y0) = 2,sine otherwise at least one opy of H3;k would have a x-vertex with olor 2, a ontradition. Finally,by taking one opy of H3;k, one opy of I3;k and identifying their orresponding x0- and y0-verties,we obtain an outerplanar graph that annot be aylially (D4;Dk)-olored. 2The main result of this setion is the following:Theorem 3 O � D5 �D5.An indutive proof of this result an be obtained from a theorem of Borodin and Woodall [3℄ whihstates that every maximal outerplanar graph ontains a triangle of a speial type. We give here amore onstrutive proof from whih we an easily derive a linear oloring algorithm.Proof. Let G be an outerplanar graph. W.l.o.g. we assume that G is maximal outerplanar andonsider a �xed outerplane embedding of G. Let x0 be any vertex in G. For every i � 0 let Wi be the
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nThe unique vertex r in P having two neighbors in Gi�1 will be alled the root of P , the trianglexyz will be alled the basis of P , and the vertex x will be alled the head of the basis. For any olor� in f1; 2g, we denote by � the olor 3 � �. We now indutively de�ne a oloring  of G using thefollowing rules:Rule R0. We set (x0) = 1 and (x) = 2 for every x 2 G1.Rule R1. Let P = am : : : a1rb1 : : : bn be a maximal path in Gi, i > 1, with root r and basis xyz. Wethen set:(1) (a2) = : : : = (am) = (y)(2) (b2) = : : : = (bn) = (z)(3) (a1) = (r) = (x)(4) (b1) = � where � is the olor that appears at most one on the basis.The di�erent on�gurations orresponding to Rule R1 are depited in Figure 2.We laim that the oloring  thus obtained is suh that eah olor lass indues a graph withmaximum degree at most 5 and that  produes no alternating bihromati yle. Let a j-neighbor bea neighbor with olor j and a j-basis be a basis whose head has olor j.Observe �rst that by Rule R0, vertex x0 has no 1-neighbor. Now let u be any vertex in Gi,1 � i � d and assume w.l.o.g. that (u) = 1. Let �(u) denote the number of 1-neighbors of u. Observe�rst that all the neighbors of u belong to Gi�1, Gi or Gi+1. The vertex u has at most two 1-neighborsin Gi (by Fat 1), at most two in Gi�1 (by Fat 3) and at most 2� 2 = 4 in Gi+1 (by Fat 2 and RuleR1). Thus �(u) � 8. We now prove that �(u) � 5.1. If u does not belong to a 2-basis then u has no 1-neighbor in Gi+1 (by Rule R1) and thus�(u) � 4.



6 Ayli improper olorings of graphs2. If u belongs to exatly one 2-basis then it has at most two 1-neighbors on the orrespondingpath in Gi+1 and none on the other path. Moreover, it has at most one 1-neighbor in Gi�1 andthus �(u) � 5.3. Finally, suppose that u belongs to two 2-bases (whih means that u has no 1-neighbor in Gi�1).If u has a 2-neighbor in Gi, then it has at most two 1-neighbors on eah path in Gi+1 andthus �(u) � 5. If both neighbors of u in Gi have olor 1 then, by Rule R1, u has at most one1-neighbor on one path in Gi+1 and at most two on the other path. Thus �(u) � 5.Therefore, in eah ase, �(u) � 5.Now suppose that G ontains an alternating bihromati yle C. From the oloring rules, we �rstobserve that no three onseutive verties of C an belong to the same Gi. Thus if i0 is minimal suhthat Gi0 and C interset, then G ontains one of the following four on�gurations:
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yBut by Rule R1, on�gurations (a), (b) and (d) annot our; and () also annot our sine, if itdid, then by onsidering the shortest paths from x0 to xi0 and from x0 to  we would see that b didnot lie on the outer fae and so G was not outerplanar. Thus G ontains no alternating bihromatiyle and  is therefore an ayli (D5;D5)-oloring of G. 24 Planar graphsThe result of Borodin [2℄ states that every planar graph an be aylially 5-olored. We are thusinterested in ayli improper olorings of planar graphs that use at most 4 olors.The following negative result says that in every ayli improper oloring of a planar graph withless than �ve olors in whih eah olor lass indues a subgraph with bounded treewidth or boundeddegree, at least one olor lass has to indue a subgraph with treewidth at least 3. More preisely, wehave:Theorem 4 There exist planar graphs having no ayli (P1;P2;P3;P4)-partition where for every i,1 � i � 4, Pi = T2 or Pi = Dki, ki � 0.Proof. Consider the planar graph G depited in Figure 3(a) whose (usual) ayli hromati numberis 5. We de�ne the planar graph Gp, p > 0, obtained from G by onneting to every edge xy a pathz1z2 : : : zp as depited in Figure 3(b), and let  be an ayli (P1;P2;P3;P4)-oloring of Gp. In thefollowing, the original verties of G in Gp will be alled main verties.Observe �rst that  indues a monohromati edge linking two main verties, say xy, with (x) =(y) = i. Now onsider the path z1z2 : : : zp onneted to xy. Sine  is ayli, all the olors but i anbe used at most one on this path. Thus, p�3 verties of this path have to be of olor i. If p � 8 thentwo onseutive verties zj and zj+1 have olor i and the subgraph indued by olor i, whih ontainsa K4, has treewidth at least 3. If p � ki + 3 then the subgraph indued by olor i has degree at leastki + 1. This onludes the proof. 2There is a striking dihotomy between Theorem 4 and the result of Borodin [2℄: to aylially olora planar graph in suh a way that eah olor lass indues a graph with bounded degree we have touse at least �ve olors, but in that ase an ayli proper oloring an be provided.
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Figure 3: Impossibility results for planar graphs.Conerning ayli improper olorings of planar graphs with two olors we an prove the twofollowing results:Theorem 5 There exist planar graphs having no ayli (T3;T3)-partition.Proof. Consider again the graph G depited in Figure 3(a). Sine G is 4-regular, G is not a partial3-tree. Thus every (T3;T3)-oloring of G must use two olors. Moreover, in every ayli (T3;T3)-oloring of G one of the two olors has to be used exatly one, leading to 4 monohromati triangles(or faes).Consider now the graph G0 obtained from G by inserting into eah of the 8 faes of G a triangleonneted to the verties of the fae as depited by Figure 3() (every original fae in G beomes inG0 isomorphi to the graph G itself). Suppose that  is an ayli (T3;T3)-oloring of G0. We still have4 monohromati triangles made of verties originating from G. The seond olor has thus to be usedon the four triangles inluded into these faes. It is then easy to hek that we have an alternatingbihromati yle, a ontradition. 2Theorem 6 For every k � 0, there exist planar graphs having no ayli (T3;Dk)-partition.Proof. We onsider again the graph G depited in Figure 3(a). Let G0p, p > 0, be the planar graphobtained from G by inserting a triangle a1b11 and verties 2; : : : ; p into eah fae of G as depitedby Figure 3(d). Using the same argument as before, we know that in every ayli (T3;Dk)-partitionof G0p we have 4 monohromati triangles made of verties originating from G. We have two ases toonsider:
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