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Abstract

The incidence coloring game has been introduced in [S.D. Andres, The
incidence game chromatic number, Discrete Appl. Math. 157 (2009), 1980–
1987] as a variation of the ordinary coloring game. The incidence game
chromatic number ιg(G) of a graph G is the minimum number of colors for
which Alice has a winning strategy when playing the incidence coloring game
on G.

In [C. Charpentier and É. Sopena, Incidence coloring game and arboricity
of graphs, Proc. IWOCA’2013, Lecture Notes Comput. Sci. 8288 (2013),

106–114], we proved that ιg(G) ≤ ⌊3∆(G)−a
2

⌋ + 8a − 1 for every graph G
with arboricity at most a. In this paper, we extend our previous result
to (a, d)-decomposable graphs – that is graphs whose set of edges can be
partitioned into two parts, one inducing a graph with arboricity at most a,
the other inducing a graph with maximum degree at most d – and prove that
ιg(G) ≤ ⌊3∆(G)−a

2
⌋+ 8a+ 3d− 1 for every (a, d)-decomposable graph G.
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1. Introduction

All the graphs we consider are finite and undirected. For a graph G,
we denote by V (G), E(G) and ∆(G) its vertex set, edge set and maximum
degree, respectively.

The graph coloring game on a graph G is a two-player game introduced
by Brams [10] and rediscovered ten years later by Bodlaender [4]. Given a set
of k colors, Alice and Bob take turns coloring properly an uncolored vertex
of G, Alice having the first move. Alice wins the game if all the vertices of
G are eventually colored, while Bob wins the game whenever, at some step
of the game, all the colors appear in the neighborhood of some uncolored
vertex. The game chromatic number χg(G) of G is then the smallest k for
which Alice has a winning strategy when playing the graph coloring game on
G with k colors.

The problem of determining the game chromatic number of several graph
classes has attracted great interest in recent years [17, 8, 12, 27, 23] , with
a particular focus on planar graphs [28, 16, 29] (see [3] for a comprehensive
survey of this problem). In particular, Faigle et al. [9] proved that the game
chromatic number of every forest is at most 4, and this bound is known to
be tight [4].

An incidence of a graph G is a pair (v, e) where v is a vertex of G and e
an edge incident to v. We denote by I(G) the set of incidences of G. Two
incidences (v, e) and (w, f) are adjacent if either (1) v = w, (2) e = f or (3)
vw = e or f . An incidence coloring of G is a coloring of its incidences in
such a way that adjacent incidences get distinct colors. The smallest number
of colors required for an incidence coloring of G is the incidence chromatic
number of G, denoted by χi(G).

Incidence colorings have been introduced by Brualdi and Massey [6] in
1993. Upper bounds on the incidence chromatic number have been proven for
various classes of graphs [6, 14, 15, 20, 25] (see [24] for an on-line survey). In
particular, Brualdi and Massey proved that the incidence chromatic number
of every forest F is at most ∆(F ) + 1 and that this bound is tight [6].

In [2], Andres introduced the incidence coloring game, as the incidence
version of the graph coloring game, each player, on his turn, coloring an
uncolored incidence of G in a proper way. The incidence game chromatic
number ιg(G) of a graph G is then defined as the smallest k for which Alice
has a winning strategy when playing the incidence coloring game on G with
k colors. Upper bounds on the incidence game chromatic number have been
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proven for k-degenerate graphs [2] (a graph is k-denegerate if all its subgraphs
have minimum degree at most k), and exact values are known for cycles,
stars [2], paths and wheels [18].

Andres observed that the inequalities ⌈3
2
∆(G)⌉ ≤ ιg(G) ≤ 3∆(G) − 1

hold for every graph G [2] and proved the following:

Theorem 1 (Andres, [2]). Let G be a k-degenerated graph. Then we have:

(i) ιg(G) ≤ 2∆(G) + 4k − 2,

(ii) ιg(G) ≤ 2∆(G) + 3k − 1 if ∆(G) ≥ 5k − 1,

(iii) ιg(G) ≤ ∆(G) + 8k − 2 if ∆(G) ≤ 5k − 1.

Since forests are 1-degenerate, outerplanar graphs are 2-degenerate and
planar graphs are 5-degenerate, we get in particular that ιg(G) ≤ 2∆(F )+ 2
whenever G is a forest, ιg(G) ≤ 2∆(F ) + 6 whenever G is outerplanar and
ιg(G) ≤ 2∆(F ) + 18 whenever G is planar.

The arboricity a(G) of a graph G is the minimum number of forests into
which its set of edges can be partitioned. In a companion paper [7], we proved
the following:

Theorem 2 (Charpentier and Sopena, [7]). For every graph G with arboricity

a(G) ≤ a, ιg(G) ≤ ⌊3∆(G)−a
2

⌋+ 8a− 1.

Since for every graph G, we have a(G) = 1 if G is a forest, a(G) ≤ 2 if G is
an outerplanar graph and a(G) ≤ 3 if G is a planar graph (by Nash-Williams
result [22]), we get the following corollary, which improves Theorem 1:

Corollary 3. Let G be a graph,

(i) If G is a forest, then ιg(F ) ≤
⌈
3∆(F )

2

⌉
+ 6.

(ii) If G is an outerplanar graph, then ιg(G) ≤
⌊
3∆(G)

2

⌋
+ 14.

(iii) If G is a planar graph, then ιg(G) ≤
⌈
3∆(G)

2

⌉
+ 21.

In this paper, we extend our previous result to the case of (a, d)-decom-
posable graphs. A decomposition of a graph is a partition of its edges. We
say that a graph G is (a, d)-decomposable if the set of edges of G can be parti-
tioned into two subsets A andD in such a way that the graphGa = (V (G), A)
has arboricity at most a and the graph Gd = (V (G), D) has maximum degree
at most d. We will prove the following:
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Theorem 4. For every (a, d)-decomposable graph G, ιg(G) ≤ ⌊3∆(G)−a
2

⌋ +
8a+ 3d− 1.

Note that this theorem implies Theorem 2 when considering the case
d = 0. Since ιg(G) ≥ ⌈3∆(G)

2
⌉ for every graph G, the difference between our

upper bound and this lower bound only depends on the parameters a and
d. Moreover, we can improve this general upper bound for graphs with large
maximum degree:

Theorem 5. For every (a, d)-decomposable graph G, if ∆(G) ≥ 5a+6d then

ιg(G) ≤ ⌊3∆(G)−a
2

⌋+ 8a+ d− 1.

These results are obtained using a refinement of the winning strategy
proposed in [7]. Several authors have considered the problem of finding
optimal (a, d)-decompositions of planar graphs of given girth (the girth of a
graph G is the length of its shortest cycle) or without cycles of given length.
The main results are summarized in the following:

Theorem 6. Let G be a planar graph with girth g. Then we have:

(i) G is (2, 4)-decomposable (Gonçalves [11]).

(ii) If g ≥ 4, then G is (2, 0)-decomposable (Nash-Williams [22]).

(iii) If G contains no 4-cycles, then G is (1, 5)-decomposable (Borodin et
al. [5]).

(iv) If g ≥ 5, then G is (1, 4)-decomposable (He et al. [13]).

(v) If g ≥ 6, then G is (1, 2)-decomposable (Kleitman [19]).

(vi) If g ≥ 8, then G is (1, 1)-decomposable (Montassier [21]).

(vii) If G is outerplanar, then G is (1, 3)-decomposable (Guan and Zhu [12]).

Using these results, we get the following upper bounds on the incidence
game chromatic number:

Corollary 7. Let G be a planar graph with girth g. Then we have:

(i) If ∆(G) ≥ 34, then ιg(G) ≤
⌊
3∆(G)

2

⌋
+ 18.

(ii) If g ≥ 4, then ιg(G) ≤
⌊
3∆(G)

2

⌋
+ 14.

(iii) If G contains no 4-cycles and ∆(G) ≥ 35, then ιg(G) ≤
⌈
3∆(G)

2

⌉
+ 11.

(iv) If g ≥ 5, then ιg(G) ≤
⌈
3∆(G)

2

⌉
+ 18 and, if ∆(G) ≥ 29, then ιg(G) ≤⌈

3∆(G)
2

⌉
+ 10.

4



(v) If g ≥ 6, then ιg(G) ≤
⌈
3∆(G)

2

⌉
+ 12 and, if ∆(G) ≥ 17, then ιg(G) ≤⌈

3∆(G)
2

⌉
+ 8.

(vi) If g ≥ 8, then ιg(G) ≤
⌈
3∆(G)

2

⌉
+ 9 and, if ∆(G) ≥ 11, then ιg(G) ≤⌈

3∆(G)
2

⌉
+ 7.

(vii) If G is outerplanar, then ιg(G) ≤
⌈
3∆(G)

2

⌉
+ 15 and ∆(G) ≥ 23, then

ιg(G) ≤
⌈
3∆(G)

2

⌉
+ 9.

Note that this improves in particular Corollary 3 for outerplanar and
planar graphs with high maximum degree.

Wang [26] considered (a, d)-decompositions of NC-graphs, that is, graphs
embeddable in surfaces with nonnegative Euler characteristic (e.g. the Eu-
clidian plane, the projective plane, the Klein bottle or the torus):

Theorem 8 (Wang, [26]). Let G be an NC-graph with girth g. Then we
have:

1. If g ≥ 11, then G is (1, 1)-decomposable.

2. If g ≥ 7, then G is (1, 2)-decomposable.

3. If either g ≥ 5 or G contains no 4- and 5-cycles, then G is (1, 4)-
decomposable.

4. If G contains no 4-cycles, then G is (1, 6)-decomposable.

We thus get the following:

Corollary 9. Let G be an NC-graph with girth g. Then we have:

1. If g ≥ 11, then ιg(G) ≤
⌈
3∆(G)

2

⌉
+ 9 and, if ∆(G) ≥ 11, then ιg(G) ≤⌈

3∆(G)
2

⌉
+ 7.

2. If g ≥ 7, then ιg(G) ≤
⌈
3∆(G)

2

⌉
+ 12 and, if ∆(G) ≥ 17, then ιg(G) ≤⌈

3∆(G)
2

⌉
+ 8.

3. If either g(G) ≥ 5 or G contains no 4- and 5-cycles, then ιg(G) ≤⌈
3∆(G)

2

⌉
+ 18 and, if ∆(G) ≥ 29, then ιg(G) ≤

⌈
3∆(G)

2

⌉
+ 10.

4. If G contains no 4-cycles, then ιg(G) ≤
⌈
3∆(G)

2

⌉
+24 and, if ∆(G) ≥ 41,

then ιg(G) ≤
⌈
3∆(G)

2

⌉
+ 12.

5



In [1], Andres proved new upper bounds for the lightness of graphs em-
beddable on surfaces with positive or negative Euler characteristic. This
allows to obtain new results on (a, d)-decompositions of such graphs and,
therefore, new upper bounds for their incidence game chromatic number.

This paper is organised as follows. We introduce the necessary definitions
and notation in Section 2, detail Alice’s strategy in Section 3 and prove
Theorems 4 and 5 in Section 4.

2. Preliminaries

In this section we first give definitions and notations that will be used in
the description of Alice’s strategy. Let G be an (a, d)-decomposable graph
and E(G) = A ∪ D be the associated decomposition. Moreover, let A =
A1 ∪ . . . ∪Aa be a decomposition of A such that each Ai, 1 ≤ i ≤ a, induces
a forest in G.

With G, we associate a mixed graph G⃗ = (V (G), A⃗,D) obtained by giving
an orientation to the edges of A as follows. For every tree T of every forest
Fi = (V (G), Ai) in G, we arbitrarily choose any vertex of T as its root and
orient all the edges of Ai from the root towards the leaves of T .

Let now (u, uv) be an incidence in G. We will say that (u, uv) is a top-

incidence if u⃗v ∈ A⃗, (u, uv) is a down-incidence if v⃗u ∈ A⃗, and (u, uv) is a
medium-incidence if uv ∈ D.

Since in every forest Fi = (V (G), Ai) every vertex is incident to at most
one down-incidence, we easily get the following:

Observation 10. Every vertex in an (a, d)-decomposable graph is incident
to at most a down-incidences.

We will sometimes slightly abuse the notation and denote a top-incidence
by (u, u⃗v), a down-incidence by (u, v⃗u) and a medium-incidence by (u, uv) or
(u, vu) (the notation uv being thus reserved for the edges belonging to D).

If uv is an edge in G such that u⃗v ∈ A⃗, then top(uv) denotes the top-
incidence (u, u⃗v) of uv and down(uv) denotes the down-incidence (v, u⃗v) of
uv. Moreover, for every incidence i = (u, uv) in G with uv ∈ A, we let
top(i) = top(uv) and down(i) = down(uv).

We now give some notation and terminology concerning the different
types of incidences that may “surround” a given incidence i in G. These
definitions are illustrated in Figures 1, 2 and 3 depending on whether the
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considered incidence i is a top-, down- or medium-incidence, respectively. In
these figures, every edge from the set A is drawn as an arc (corresponding to

its orientation in A⃗) and each edge of D as a dashed edge. Top-incidences
are drawn as white squares, down-incidences as black squares and medium-
incidences as grey squares. Note also that some vertices represented as dis-
tinct vertices may be identified but that this does not change the associated
sets of incidences.

Definition 11 (Sons). We denote by tS(i), dS(i) and mS(i) the set of top-
sons, down-sons and medium-sons, respectively, of an incidence i, defined
by

tS(u, u⃗v) = tS(v, u⃗v) = tS(u, uv) = {top(v⃗w) | v⃗w ∈ A⃗},
dS(u, u⃗v) = dS(v, u⃗v) = dS(u, uv) = {down(v⃗w) | v⃗w ∈ A⃗},

mS(u, u⃗v) = mS(v, u⃗v) = {(v, vw) | vw ∈ D}, mS(u, uv) = ∅.
Moreover, we denote by S(i) the set of sons of i, that is S(i) = tS(i)∪dS(i)∪
mS(i).

Definition 12 (Fathers). We denote by tF (i), dF (i) and mF (i) the set of
top-fathers, down-fathers and medium-fathers, respectively, of an incidence i,
defined by

tF (u, u⃗v) = tF (v, u⃗v) = tF (u, uv) = {top(w⃗u) | w⃗u ∈ A⃗, w ̸= v},

dF (u, u⃗v) = dF (v, u⃗v) = dF (u, uv) = {down(w⃗u) | w⃗u ∈ A⃗, w ̸= v},
mF (u, u⃗v) = mF (v, u⃗v) = {(u, uw) | uw ∈ D}, mF (u, uv) = ∅.

Moreover, we denote by F (i) the set of fathers of i, that is F (i) = tF (i) ∪
dF (i) ∪mF (i).

Definition 13 (Brothers). We denote by tB(i) and dB(i) the set of top-
brothers and down-brothers, respectively, of a top- or down- incidence i, de-
fined by

tB(u, u⃗v) = tB(v, u⃗v) = {top(u⃗w) | u⃗w ∈ A⃗, top(u⃗w) ̸= i},

dB(u, u⃗v) = dB(v, u⃗v) = {down(u⃗w) | u⃗w ∈ A⃗, down(u⃗w) ̸= i}.
Moreover, we denote by B(i) the set of brothers of a top- or down-incidence
i, that is B(i) = tB(i) ∪ dB(i), or the set of brothers of a medium-incidence
i, defined in that case by

B(u, uv) = {(u, uw) | uw ∈ D, w ̸= v}.
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i

tS(i)

tB(i)

dB(i)

C(i)
F (i)

dU(i)

mS(i)

Figure 1: Incidences surrounding a top-incidence i.

Definition 14 (Uncles). We denote by tU(i) and dU(i) the set of top-uncles
and down-uncles, respectively, of a top- or down-incidence i, defined by

tU(u, u⃗v) = tB(v, u⃗v) = {top(w⃗v) | w⃗v ∈ A⃗, w ̸= u},

dU(u, u⃗v) = dB(v, u⃗v) = {down(w⃗v) | w⃗v ∈ A⃗, w ̸= u}.

Moreover, we denote by U(i) the set of uncles of a top- or down-incidence
i, that is U(i) = tU(i) ∪ dU(i). (Observe that an “uncle” of i here is not a
brother of a father of i but another father of the sons of i.)

Definition 15 (Nephews). We denote by tN(i), dN(i) and mN(i) the set of
top-nephews, down-nephews and medium-nephews, respectively, of a medium-
incidence i, defined by

tN(u, uv) = {(v, v⃗w) | v⃗w ∈ A⃗},

dN(u, uv) = {(w, v⃗w) | v⃗w ∈ A⃗},

mN(u, uv) = {(v, vw) | vw ∈ D, w ̸= u}.

Moreover, we denote by N(i) the set of nephews of a medium-incidence i,
that is N(i) = tN(i) ∪ dN(i) ∪mN(i).
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U(i)

tB(i)

dB(i)

S(i)

mF (i)

dF (i)

i

C(i)

Figure 2: Incidences surrounding a down-incidence i.

Definition 16 (Cousins). We denote by C(i) the set of cousins of an inci-
dence i, defined by

C(u, u⃗v) = C(u, uv) = {(w,wu) | wu ∈ D}, C(v, u⃗v) = {(w,wv) | wv ∈ D}.

(Observe that if i is a top-incidence, then every cousin of i shares its edge
with a medium-father of i; if i is a down-incidence, then every cousin of i
shares its edge with a medium-son of i; and if i is a medium-incidence, then
every cousin of i shares its edge either with i itself or with a brother of i.)

From the above definitions, we directly get the following:

Observation 17. For every (a, d)-decomposable graph G, the following state-
ments hold:

(i) Every incidence i has at most a top-fathers, as many down-fathers as
top-fathers, and at most d medium-fathers.

(ii) Every incidence i has at most ∆(G) − 1 top- or medium-sons (among
which at most d medium-sons), and as many down-sons as top-sons.

(iii) Every top-incidence i has at most ∆(G) − |tF (i)| − |mF (i)| − 1 top-
brothers and at most ∆(G)− |tF (i)| − |mF (i)| down-brothers.

(iv) Every down-incidence i has at most ∆(G) − |tF (i)| − |mF (i)| top-
brothers and at most ∆(G)− |tF (i)| − |mF (i)| − 1 down-brothers.
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N(i)

S(i)

i

F (i)

B(i)

C(i)
mN(i)

dN(i)

tN(i)

Figure 3: Incidences surrounding a medium-incidence i.

(v) Every medium-incidence i has at most d− 1 brothers.

(vi) Every top- or down-incidence i has at most a − 1 top-uncles and as
many down-uncles as top-uncles.

(vii) Every incidence i has at most d cousins.

(viii) For every top- or down-incidence i, |dU(i)|+|mS(i)|+|tS(i)| ≤ ∆(G)−
1.

3. Alice’s strategy

We now turn to the description of Alice’s strategy which will allow her to
win the incidence coloring game on an (a, d)-decomposable graph G whenever

the number of available colors is at least ⌊3∆(G)−a
2

⌋+8a+3d−1. This strategy
is an extension of the strategy introduced in [7] and uses the concept of
activation strategy [3], often used in the context of the ordinary graph coloring
game.

During the game, each uncolored incidence may be either active (if Alice
activated it) or inactive. When the game starts, every incidence is inactive.
When an active incidence is colored, it is no longer considered as active. For
each set I of incidences, we will denote by Ic the set of colored incidences of
I and by Ia the set of active incidences of I (Ic and Ia are therefore disjoint
for every set of incidences I).

An incidence i of G is said to be neutral is i is neither active nor colored
and either
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(i) i is a down-incidence and all the incidences of dF (i) are colored, or

(ii) i is a medium-incidence and all the incidences of F (i) are colored, or

(iii) i is a top incidence and all the incidences of F (i) ∪ C(i) are colored.

We denote by Φ the set of colors used for the game, by ϕ(i) the color of
an incidence i and, for each set I of incidences, we let ϕ(I) =

∪
i∈I ϕ(i).

Our objective is to bound the cardinality of the sets of forbidden colors of
every uncolored incidence i which, as shown by Figures 1, 2 and 3, are given
by:

• Forb(i) = ϕ(F (i) ∪ B(i) ∪ tS(i) ∪mS(i) ∪ dU(i) ∪ C(i)) if i is a top-
incidence,

• Forb(i) = ϕ(F (i)∪B(i)∪S(i)∪C(i)∪N(i)) if i is a medium-incidence,

• Forb(i) = ϕ(dF (i)∪mF (i)∪ tB(i)∪ S(i)∪U(i)∪C(i)) if i is a down-
incidence.

For every incidence i, an available color for i is any color from Φ \ Forb(i).
If, at some point of the game, the graph G contains no active incidence

and no neutral incidence, then Alice may make what we call a neutral move,
explained below. Let i0 be an incidence which is neither colored, active or
neutral and let i1 be the incidence defined as follows:

• If dF (i0) contains an uncolored incidence i, then we let i1 = i.

• If all the incidences in dF (i0) are colored then, since i0 is not a neu-
tral incidence, i0 cannot be a down-incidence. If tF (i0) contains an
uncolored incidence i, then we let i1 = i.

• If all the incidences of dF (i0)∪ tF (i0) are colored and mF (i0) contains
an uncolored incidence i, then we let i1 = i.

• If all the incidences of F (i0) = dF (i0) ∪ tF (i0) ∪ mF (i0) are colored
then, since i0 is not a neutral incidence, i0 must be a top-incidence and
C(i0) must contain an uncolored incidence i. We then let i1 = i.

Similarly, we define the incidence i2 starting from i1, the incidence i3 starting
from i2 and so on, until we reach an incidence ik already encountered, that
is ik = iℓ for some ℓ < k. We thus construct a “loop” of incidences

(ik = iℓ, iℓ+1, ..., ik),
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such that each incidence in the loop is a father or a cousin of the previous
incidence. A neutral move then consists in arbitrarily choosing any incidence
in this loop, coloring it and activating all other incidences of the loop.

Alice’s strategy uses four rules. The first three rules, (R1), (R2) and (R3)
below, determine which incidence Alice colors at each move. The fourth rule
explains which color she will use when she colors the chosen incidence.

(R1) Alice’s first move.

• If there is some neutral incidence i, then Alice colors the incidence
i.

• Otherwise, Alice makes a neutral move.

(R2) If Bob, on his turn, colored a neutral incidence i then:

• if i is a down-incidence and dB(i) contains an uncolored incidence
j then Alice colors j. (Note that j also is a neutral incidence.)

• Otherwise, if there is a neutral incidence j in G then Alice colors
j.

• Otherwise, Alice makes a neutral move.

(R3) If Bob, on his turn, colored a incidence i which is not neutral then Alice
climbs i. Climbing an incidence i is a recursive procedure described as
follows:

(R3.1) If i is an active incidence (thus uncolored) then Alice colors i.
(R3.2) If i is a neutral incidence (thus uncolored) then Alice colors i.

Otherwise, Alice activates the incidence i if i is uncolored and:

(R3.2.1) If i has an uncolored down-father j, then Alice climbs
j.

(R3.2.2) If all the down-fathers of i are colored, then i is either
a medium- or a top-incidence. If i has an uncolored
top-father j, then Alice climbs j.

(R3.2.3) If all the top- and down-fathers of i are colored, then
i is a top-incidence. If i has an uncolored medium-
father j, then Alice climbs j.

(R3.2.4) If all the fathers of i are colored, then i is a top-
incidence and has an uncolored cousin j. Alice then
climbs j.

(R4) When Alice colors an incidence i, she chooses the color of i as follows:
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• If i is a down-incidence and |ϕ(dB(i))| ≥ 4a+d−1, she chooses an
available color from ϕ(dB(i)). (We will show in Lemma 23 that
this is always possible.)

• Otherwise, she chooses any available color. (We will prove that
this is always possible.)

Observe that the “loop” of incidences we used when defining a neutral
move was in fact obtained by successively climbing the encountered inci-
dences. When Alice makes a neutral move, each incidence of the loop is thus
climbed once.

From the above-defined set of rules, we easily get the following:

Observation 18. Let i be an uncolored incidence. If i is inactive and climbed
by Alice, then i is activated or colored (by Rule R3.2 or by a neutral move). If
i is active and climbed by Alice, then i is colored (by Rule R3.1). Therefore,
every incidence is climbed at most twice by Alice.

Observation 19. Except when she makes a neutral move, Alice only colors
neutral or activated incidences.

Observation 20. Let j be a non-neutral incidence about to be colored. If j
is colored by Bob, then Alice replies by climbing j (Rule R3). If j is colored
by Alice, then either Alice is making a neutral move, and thus climbs j, or j
is an active incidence by Observation 19 and thus has been previously climbed
by Alice.

Before we start with the technical details proving the correctness of this
strategy, we give some intuition about how this strategy works. For an
incidence i, Alice aims to bound the number of its adjacent sons colored
before i, as activation strategies usually do (this is the role of the three first
rules). The main breaktrough made in [7], compared to previous strategies,
is to bound, for any brotherhood of down-incidences, the number of different
colors used to color them (thanks to rule R4). As we will see, when the
number of down-incidences colored in the same brotherhood is large enough,
the strategy ensures that several of these incidences were colored by Alice,
and that Alice was able to color them with a color already used in this
neighbourhood. Finally, the main difference between this strategy and the
one given in [7] is that we have to care about the medium incidences, which
add a whole layer of technical details and minor improvements.
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4. Proof of Theorems 4 and 5

We now prove a series of lemmas from which the proofs of Theorem 4
and Theorem 5 will follow.

Lemma 21. If Alice or Bob is about to color a down-incidence i, then

|Sc(i)|+ |Uc(i)| ≤ 4a− 2. (1)

If Alice or Bob is about to color a medium-incidence i, then

|tSc(i)| ≤ 4a+ d. (2)

If Alice or Bob is about to color a top-incidence i, then

|tSc(i)|+ |mSc(i)| ≤ 4a. (3)

Proof. Let i be a down-incidence about to be colored by Alice or Bob. If
|Sc(i)| = 0, then |Sc(i)|+ |Uc(i)| = |Uc(i)| ≤ |U(i)| ≤ 2a− 2 by Observation
17. Otherwise, let j be an incidence of Sc(i) which was colored before i.
When j was colored, j was not a neutral incidence since i (a father of j)
was not yet colored. Hence, whoever player colored j, j has been climbed by
Alice by Observation 20. When Alice has climbed j for the first time, she
has then climbed either i or an uncolored incidence of dU(i) by Rule R3.2.1
or by a neutral move. By Observation 18, every incidence is climbed at most
twice and, therefore, |Sc(i)| ≤ 2 × (|dU(i)| + 1). Since |dU(i)| ≤ a − 1 by
Observation 17, we have |Sc(i)| ≤ 2a. Therefore, since |Uc(i)| ≤ |U(i)| ≤
2a− 2, Equation (1) holds.

Let now i be a medium-incidence about to be colored by Alice or Bob.
If |tSc(i)| = 0, then Equation (2) obviously holds. Otherwise, let j be an
incidence of tSc(i) which was colored before i. As before, when j was colored,
j was not a neutral incidence since i (a father of j) was not yet colored. Hence,
by Observation 20, j has been climbed by Alice. When Alice has climbed j
for the first time,

• either Alice has climbed an uncolored incidence of dF (i) or tF (i) by
Rule R3.2.1, Rule R3.2.2 or by a neutral move,

• or all the incidences of dF (i) and tF (i) were already colored, and there
is at least an uncolored incidence in mF (j) = {i} ∪ B(i). All the
incidences of mF (j) have the same fathers, namely the incidences of
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dF (i)∪tF (i). Since their fathers are all colored, the incidences ofmF (j)
are all neutral by definition. Alice has thus climbed an incidence of
mF (j) by Rule R3.2.3, and then colored this incidence by Rule R3.2.5.

Hence, by Observation 18, we have |tSc(i)| ≤ 2|F (i)| + |B(i)| + 1. Since
|F (i)| ≤ 2a and |B(i)| ≤ d− 1 by Observation 17, Equation (2) also holds.

Finally, let i be a top-incidence about to be colored by Alice or Bob. If
|tSc(i)| + |mSc(i)| = 0, then Equation (3) obviously holds. Otherwise, let j
be an incidence of tSc(i) or mSc(i) which was colored before i. Again, when
j was colored, j was not a neutral incidence since i (a father of j) was not yet
colored. Hence, by Observation 20, j has been climbed by Alice. When Alice
has climbed j for the first time, she also climbed i, down(i) or an incidence of
U(i). We then have |tSc(i)|+ |mSc(i)| ≤ 2×(|U(i)|+2) ≤ 4a by Observation
17, and Equation (3) holds.

Lemma 22. If Alice or Bob is about to color a medium-incidence i, then
|Nc(i)| ≤ 5a+ 4d− 1.

Proof. Let i be a medium-incidence about to be colored by Alice or Bob. We
have |dNc(i)| ≤ |dN(i)| ≤ a and |mNc(i)| ≤ |mN(i)| ≤ d− 1 by Observation
17. The proof for getting an upper bound of |tNc(i)| is then similar to the
proof of Equation (2) in Lemma 21. Observe first that the incidences of
dN(i) are the fathers of the incidences of tNc(i), and that i is a cousin of the
incidences of tN(i).

If |tNc(i)| = 0 the result is obviously true. Otherwise, let j be an incidence
of tNc(i) which was previously colored. When j was colored, j was not a
neutral incidence since one of its cousins, namely i, was not colored yet.
Hence, by Observation 20, j was climbed by Alice. When Alice has climbed
j for the first time,

• either Alice has climbed an uncolored incidence of dF (j) = dN(i) or
tF (j) by Rule R3.2.1, Rule R3.2.2 or by a neutral move,

• or all the incidences of dF (j) and tF (j) were colored, implying that the
incidences of mF (j) were neutral incidences; Alice has thus climbed
an incidence of mF (j) by Rule R3.2.3 and has colored this neutral
incidence right after by Rule R3.2.

• or all the incidences of F (j) were colored, and Alice has climbed an
incidence of C(j) by Rule R3.2.4.

15



We thus have by Observation 17 |tNc(i)| ≤ 2× (|tF (j)|+ |dF (j)|+ |C(j)|)+
|mF (j)| ≤ 2×(a+a+d)+d = 4a+3d , so that |Nc(i)| = |tNc(i)|+ |dNc(i)|+
|mNc(i)| ≤ 4a+ 3d+ a+ d− 1 = 5a+ 4d− 1 and the result follows.

Lemma 23. When Alice or Bob is about to color a down-incidence i there
exists an available color for i whenever |Φ| ≥ ∆(G) + 4a+ d− 1. Moreover,
if |ϕ(dB(i))| ≥ 4a+ d− 1, then there is an available color for i in ϕ(dB(i)).

Proof. Recall that the set of forbidden colors, since i is a down-incidence, is

Forb(i) = ϕ(dF (i) ∪mF (i) ∪ tB(i) ∪ S(i) ∪ U(i) ∪ C(i)).

Note also that we have:

• |dF (i)|+ |mF (i)|+ |tB(i)| ≤ ∆(G) since i is a down-incidence,

• |Sc(i)|+ |Uc(i)| ≤ 4a− 2 by Lemma 21,

• |C(i)| ≤ d.

Hence, there is an available color for i in Φ whenever |Φ| ≥ ∆(G)+4a+d−1.
Moreover, the colors of ϕ(dF (i)), ϕ(mF (i)) and ϕ(tB(i)) are all distinct

from the colors of ϕ(dB(i)), so that there are at most 4a + d − 2 colors
forbidden for i in ϕ(dB(i)), which concludes the proof.

Lemma 24. If i is a top-incidence, then |ϕ(dB(i))| ≤ 4a+d−1 or |ϕ(dB(i))| ≤⌊
|dB(i)|+d

2

⌋
+ 2a.

Proof. Let i be a top-incidence such that |ϕ(dB(i))| > 4a + d− 1. At some
step in the game, |ϕ(dB(i))| reached the value 4a + d − 1. At that time, at
least 4a + d − 1 incidences dB(i) are colored. By Lemma 21, each time a
down-incidence j is about to be colored, we have |Sc(j)| + |Uc(j)| ≤ 4a− 2,
and thus |Sc(j)| ≤ 4a + d − 2. Hence, the down-fathers of i were already
colored when |ϕ(dB(i))| reached the value 4a+ d− 1, implying all uncolored
incidences of dB(i) were neutral from that moment.

Thus, during the rest of the game, each time Bob colors an incidence
of dB(i), Alice also colors an incidence of dB(i) by Rule R2 if there is an
uncolored one. So, among the |dB(i)| − (4a − d − 1) remaining uncolored

incidences, Bob will color at most
⌈
|dB(i)|−(4a−d−1)

2

⌉
of them. We know by
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Rule R4 and Lemma 23 that when Alice colors an incidence of dB(i) with
|ϕ(dB(i))| > 4a+ d− 1, she chooses a color in ϕ(dB(i)). We thus have

|ϕ(dB(i))| ≤ 4a+ d− 1 +

⌈
|dB(i)| − (4a+ d− 1)

2

⌉
=

⌊
|dB(i)|+ d

2

⌋
+ 2a

and the result follows.

Corollary 25. If i is a medium-incidence, then |ϕ(dS(i))| ≤ 4a + d − 1 or

|ϕ(dS(i))| ≤
⌊
|dS(i)|+d

2

⌋
+ 2a.

Proof. Let i be a medium-incidence having at least one down-son. Clearly i
has then at least one top-son, say j. We thus have dS(i) = dB(j) and the
result follows from Lemma 24.

Lemma 26. When Alice or Bob is about to color a top-incidence i, there is

an available color for i whenever |Φ| ≥
⌊
3∆(G)−a

2

⌋
+ 8a+ d− 1.

Proof. Assume that |Φ| ≥
⌊
3∆(G)−a

2

⌋
+ 8a+ d− 1 and let i be an uncolored

top-incidence. Recall that the set of forbidden colors for i is

Forb(i) = ϕ(F (i) ∪B(i) ∪ tS(i) ∪mS(i) ∪ dU(i) ∪ C(i)).

Note also that we have :

• |dF (i)|+ |mF (i)|+ |tB(i)| ≤ ∆(G)− 1,

• |tSc(i)|+ |mSc(i)| ≤ 4a by Lemma 21,

• |dU(i)| ≤ a− 1,

• |tF (i)| ≤ a,

• |C(i)| ≤ d,

• |tF (i)|+ |C(i)|+ |dB(i)| ≤ ∆(G),

• |ϕ(dB(i))| ≤ 4a+ d− 1 or |ϕ(dB(i))| ≤
⌊
|dB(i)|+d

2

⌋
+ 2a by Lemma 24.
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We can thus find an upper bound for the cardinality of Forb(i) as follows:

|Forb(i)| ≤ ∆(G) + 5a− 2 + (|ϕ(tF (i))|+ |ϕ(C(i))|+ |ϕ(dB(i))|) (4)

|Forb(i)| ≤ 2∆(G) + 5a− 2 (5)

We now consider three cases.

Case 1.
⌈
∆(G)+a

2

⌉
≤ 3a+ d.

Note that we have:⌈
∆(G) + a

2

⌉
= ∆(G)−

⌊
∆(G)− a

2

⌋
≤ 3a+ d

∆(G) ≤
⌊
∆(G)− a

2

⌋
+ 3a+ d

2∆(G) ≤
⌊
3∆(G)− a

2

⌋
+ 3a+ d

2∆(G) + 5a− 2 ≤
⌊
3∆(G)− a

2

⌋
+ 8a+ d− 2

By (5), we thus have at least one available color for i.

Case 2. |ϕ(dB(i))| ≤
⌊
|dB(i)|+d

2

⌋
+ 2a.

Since there are at most

∆(G) + 5a− 2 + (|ϕ(tF (i))|+ |ϕ(C(i))|+ |ϕ(dB(i))|)

forbidden colors for i by (4), and since

|tF (i)|+ |dB(i)|+ |C(i)| ≤ ∆(G),

the number of forbidden colors for i is bounded as follows:

|Forb(i)| ≤ ∆(G) + 5a− 2 + |tF (i)|+ |C(i)|+
⌊
|dB(i)|+ d

2

⌋
+ 2a

≤ ∆(G)+5a−2+|tF (i)|+|C(i)|+
⌊
∆(G)− |tF (i)| − |C(i)|+ d

2

⌋
+2a.

The value of this expression increases when |tF (i)| or |C(i)| in-
creases, and thus

|Forb(i)| ≤ ∆(G) + 5a− 2 + a+ d+

⌊
∆(G)− a− d+ d

2

⌋
+ 2a
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=

⌊
3∆(G)− a

2

⌋
+ 8a+ d− 2.

Hence we have at least one available color for i.

Case 3.
⌈
∆(G)+a

2

⌉
> 3a+ d and |ϕ(dB(i))| ≤ 4a+ d− 1.

By (4), there are at most

∆(G)+5a−2+(|ϕ(tF (i))|+|ϕ(C(i))|+|ϕ(dB(i))|) ≤ ∆(G)+10a+2d−3

forbidden colors for i. Since⌈
∆(G) + a

2

⌉
> 3a+ d

⇒
⌊
∆(G)− a

2

⌋
≥ 2a+ d

⇒
⌊
3∆(G)− a

2

⌋
≥ ∆(G) + 2a+ d

We get ⌊
3∆(G)− a

2

⌋
+ 8a+ d− 3 ≥ ∆(G) + 10a+ 2d− 3

and thus we have at least one available color for i.

Lemma 27. When Alice or Bob is about to color a medium-incidence i,

there is an available color for i whenever |Φ| ≥
⌊
3∆(G)−a

2

⌋
+ 8a + 3d − 1 or

|Φ| ≥
⌊
∆(G)−a

2

⌋
+ 13a+ 7d− 1.

Proof. Recall that the set of forbidden colors for the medium-incidence i is

Forb(i) = ϕ(F (i) ∪B(i) ∪ S(i) ∪ C(i) ∪N(i))

Note also that we have:

• |tF (i)| = |dF (i)| ≤ a,

• |C(i)| ≤ d,
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• |B(i)| ≤ d− 1,

• |tSc(i)| ≤ 4a+ d by Lemma 21,

• |dS(i)|+ |C(i)|+ |dF (i)| ≤ ∆(G),

• |tS(i)|+ |B(i)|+ |tF (i)| ≤ ∆(G)− 1,

• |ϕ(dS(i))| ≤ 4a+d−1 or |ϕ(dS(i))| ≤
⌊
|dS(i)|+d

2

⌋
+2a by Corollary 25.

We then have

|Forb(i)| ≤ ∆(G) + ∆(G)− 1 + |Nc(i)| = 2∆(G)− 1 + |Nc(i)| (6)

and also

|Forb(i)| ≤ |ϕ(dS(i))|+ |C(i)|+ |dF (i)|+ 5a+ 2d− 1 + |Nc(i)| (7)

and thus
|Forb(i)| ≤ |ϕ(dS(i))|+ 6a+ 3d− 1 + |Nc(i)|. (8)

We first prove that the incidence i has at most
⌊
∆(G)−a

2

⌋
+ 8a+ 3d− 1 +

|Nc(i)| forbidden colors. We consider three cases.

Case 1.
⌊
∆(G)−a

2

⌋
< 2a+ d− 1.

We then have ∆(G)− a ≤ 2× (2a+ d− 1) and ∆(G) ≤ 5a+2d− 2.
By (6), there are at most 2∆(G)− 1 + |Nc(i)| forbidden colors for i
and we have: ⌊

∆(G)− a

2

⌋
< 2a+ d− 1⌊

∆(G)− a

2

⌋
+

⌊
∆(G)− a

2

⌋
<

⌊
∆(G)− a

2

⌋
+ 2a+ d− 1

∆(G)− a ≤
⌊
∆(G)− a

2

⌋
+ 2a+ d− 1

2∆(G)− a ≤
⌊
∆(G)− a

2

⌋
+ 7a+ 3d− 3

2∆(G)− 1 + |Nc(i)| ≤
⌊
∆(G)− a

2

⌋
+ 8a+ 3d− 4 + |Nc(i)|

as required.
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Case 2. |ϕ(dS(i))| ≤
⌊
|dS(i)|+d

2

⌋
+ 2a.

Since there are at most

|ϕ(dS(i))|+ |C(i)|+ |dF (i)|+ 5a+ 2d− 1 + |Nc(i)|

forbidden colors for i by (7) and, since

|dS(i)|+ |C(i)|+ |dF (i)| ≤ ∆(G),

the number of forbidden colors for i is at most⌊
|dS(i)|+ d

2

⌋
+ 2a+ |dF (i)|+ |C(i)|+ 5a+ 2d− 1 + |Nc(i)|

=

⌊
∆(G)− |dF (i)| − |C(i)|+ d

2

⌋
+|C(i)|+|dF (i)|+7a+2d−1+|Nc(i)|

The value of this bound increases when |dF (i)| or |B(i)| increases,
and thus

|Forb(i)| ≤
⌊
∆(G)− a− d+ d

2

⌋
+ a+ d+ 7a+ 2d− 1 + |Nc(i)|

=

⌊
∆(G)− a

2

⌋
+ 8a+ 3d− 1 + |Nc(i)|

as required.

Case 3.
⌊
∆(G)−a

2

⌋
≥ 2a+ d− 1 and |ϕ(dS(i))| ≤ 4a+ d− 1.

There are at most |ϕ(dS(i))|+6a+3d− 1+ |Nc(i)| forbidden colors
for i by (8). Since we have

|ϕ(dS(i))|+ 6a+ 3d− 1 + |Nc(i)| ≤ 10a+ 4d− 2 + |Nc(i)|

≤
⌊
∆(G)− a

2

⌋
+ 8a+ 3d− 1 + |Nc(i)|,

there is at least one available color for i.

Therefore, in all cases, there are at most
⌊
∆(G)−a

2

⌋
+8a+3d− 1+ |Nc(i)|

forbidden colors for i.
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Now, since |N(i)| ≤ ∆(G)− 1, there are at most
⌊
3∆(G)−a

2

⌋
+8a+3d− 2

forbidden colors for i, and thus at least one available color for i whenever

|Φ| ≥
⌊
3∆(G)−a

2

⌋
+ 8a+ 3d− 1.

Moreover, since, by Lemma 22, we have |Nc(i)| ≤ 5a + 4d− 1, there are

at most
⌊
∆(G)−a

2

⌋
+ 13a+ 7d− 2 forbidden colors for i and thus the number

of forbidden colors is at most |Φ| ≥
⌊
∆(G)−a

2

⌋
+ 13a+ 7d− 1.

This concludes the proof.

Proof of Theorem 4. When Alice applies the described strategy, every inci-

dence about to be colored has an available color whenever |Φ| ≥
⌊
3∆(G)−a

2

⌋
+

8a + 3d − 1, by Lemma 23 if i is a down-incidence, by Lemma 27 if i is a
medium-incidence, and by Lemma 26 if i is a top-incidence.

Proof of Theorem 5. When Alice applies the described strategy, every inci-

dence about to be colored has an available color whenever |Φ| ≥
⌊
3∆(G)−a

2

⌋
+

8a+ d− 1, by Lemma 23 if i is a down-incidence, and by Lemma 26 if i is a
top-incidence.

By Lemma 27, if i is a medium-incidence then i has an available color

whenever |Φ| ≥
⌊
∆(G)−a

2

⌋
+ 13a + 7d − 1. If ∆(G) ≥ 5a + 6d, we get⌊

3∆(G)−a
2

⌋
+8a+ d− 1 ≥

⌊
∆(G)−a

2

⌋
+13a+7d− 1 and the result follows.
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