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Abstract. The aim of this paper is to outline a combinatorial structure appearing in distributed computing,
namely a directed graph in which a certain family of subsets with k vertices have a successor. It has been
proved that the number of vertices of such a graph is at least 2¥ — 1 and an effective construction has been given
which needs k2F~! vertices. This problem is issued from some questions related to the labeling of processes in a
system for determining the order in which they were created. By modifying some requirements on the distributed
system, we show that there arise other combinatorial structures leading to the construction of solutions whose
size becomes a linear function of the input.
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1 Introduction

Let us first describe in detail the problem of time-stamping. In a system, we consider two kinds of
events, namely the creation and the death of processes. We assume that two such events cannot
occur simultaneously. A global ”scheduler” assigns a time-stamp to any process at the moment of its
creation, according to the actual set of time-stamps assigned to the living processes. Such a time-
stamp cannot be modified during the lifetime of the process. The aim of these time-stamps is the
following: any external observer of the system which looks at any two processes must be able, solely
by considering their two time-stamps, to determine the order of their creation. Note that a simple
solution consists in using the values of a counter as time-stamps, and incrementing it whenever a
process is created. Then, the observer can use the natural order on integers for determining which one
among any two processes was created first. Such a solution needs an unbounded set of time-stamps.

In [9], Israéli and Li proved that, when the number of living processes is assumed to be bounded
by an integer k, a time-stamp system with a finite number of elements may be used. In this case,
when a process P disappears, its time-stamp becomes vacant and can be used by the scheduler for a
newly created process. However, before using this time-stamp, the scheduler has to wait until all the
processes more recent than P have disappeared.

The idea of Israéli and Li is to associate with this problem a directed graph G = (X, F). The
vertices of G are the time-stamps and the arcs encode the precedence relation among them. Thus, the
initial problem consists now in constructing a directed graph satisfying the following condition: for
any sequence of vertices x1,2s,...,x, with k& < p such that for any ¢ < j, (z;,2;) € E, there exists
a vertex y such that (z;,y) € E, 1 < i < p. Hence, the scheduler chooses such a vertex y as a new
time-stamp when z,z9,...,x, correspond to the time-stamps of the living processes. The notation
and a summary of the previously obtained results is given in Section 1.

In other sections, we consider two new problems consisting in building restricted time-stamp sys-
tems and we provide solutions with a set whose size is a linear function of the maximal number k of
living processes. In section 2, we consider the case when only one of the p elder processes can disap-
pear. We call these systems p-resiricted time stamp systems. Using lexicographic product on graphs
we obtain a p-restricted time-stamp system with p2P~1(2k — 2p + 1) elements. The second restriction
is obtained by weakening the information asked from the system. It is assumed that there are always
exactly k living processes (immediately after the death of any process another one is created), and
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only the determination of the latest created process is required, given the set of labels of all living
processes. We call these systems weak time-stamp systems. The determination of weak time-stamp
systems was already considered [12] and a solution with k2 time-stamps was given. We improve this
result by proposing a weak time-stamp system with 2k — 1 elements, and prove this construction to be
optimal. Our construction makes use of a matching from the family of (k—1)-subsets of {1,...,2k—1}
onto the family of its k-subsets. This matching was considered by many authors [1, 3, 10, 14].

2 Time-stamps

In this section, we give the definitions and some combinatorial results on time-stamp systems, most
of them being due to Israéli & Li. Let us begin with notation.
A directed graph is defined as a finite set X of vertices together with a set of arcs which is a subset
E of X x X. If (z,y) is an arc, the vertex y is said to dominate x. The set of all dominators of a
vertex z is denoted by 'g(z).
La(z) ={y | (z,y) € E}

For a subset Y C X, I'¢(Y) denotes the set of vertices which are dominators of all the elements of Y.

Ta(Y)= () Ta).
yey

Throughout the paper we only consider loopless and antisymmetric graphs. They satisfy
Ve,ye X, (r,2) ¢ E and (z,y) € E= (y,z) ¢ E

A sequence (y1,y2,...,Yp) of vertices is an ordered sequence if for any 1 < i < j < p, y; is a dominator
of Yi-

Definition 1 A time-stamp system of order k is a directed graph, in which any ordered sequence
having less than k£ elements has a dominator.

In such a graph, any vertex belongs to an ordered sequence of cardinality k. A related notion
was considered by many authors after Erdos [7, 8, 13], namely, that of a tournament (i.e. a directed
graph in which for any pair of vertices {z,y} one is the dominator of the other) satisfying the so-called
property S(p). For such a tournament, any subset of cardinality p has a dominator. Hence, any
tournament with property S(p) is a time-stamp system of order p+ 1 but the converse is not true. An
example of a tournament which is a time-stamp system of order 4 and which does not satisfy S(3) is
given below. The lower bounds found for the number of vertices a tournament must have in order to
satisfy S(p), are hence not valid for time-stamp systems; however, similar constructions hold.

For any graph G = (X, F) and any vertex z denote by G, the graph whose vertex set is T'¢(z),
and whose edge set is EN (I'g(z) x Tg(x)). We get:

Proposition 2 If G is a time-stamp system of order k, then for any z in X, G, is a time-stamp
system of order k — 1.

Proof. If (yi,ys,...,yp) is an ordered sequence in G, then (z,y1,¥2,...,Yp) is an ordered sequence in
G. If p < k—1, since G is a time-stamp system of order &, the sequence (z,yi,...,yp) has a dominator
which is in T'g(z). O

Corollary 3 The number of vertices of a time-stamp system of order k is not less than 2% — 1.

Proof. We use induction on k. For & = 0, 1 there is nothing to prove. The first non trivial case is k = 2
and the smallest time-stamp system of order 2 is the circuit C3 with 3 vertices. Let G be a time-stamp
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system of order k£ + 1 having n vertices. By the induction hypothesis and by proposition 2 each of the
G.’s has not less than 2¥ — 1 vertices. Hence the number of arcs |E| of G satisfies |E| > n(2F — 1).

(n=1)
2

Since G is antisymmetric and loopless |E| < * and the result follows. a

Note that the converse of proposition 2 holds:

Proposition 4 Let G be an antisymmetric graph such that for any vertex x, G, is a time-stamp
system of order k — 1. Then G is a time-stamp system of order k.

Proof. Let (z1,z9,...,2;), | < k be an ordered sequence in G. Then (zs,...,z;) is an ordered
sequence in G, . By the hypothesis it has a dominator z in G, , and z is a dominator of (z1, z2, ..., z;).
O

The following classical notion in graph theory is useful for building time-stamp systems.

Definition 5 Let G = (X, F) and H = (Y, F) be two directed graphs. The lexicographic product
G ® H has vertex set X x Y and its set of arcs is given by

(«',y") € Tgon(z,y) iff (z,2)€E or (z=2" and (y,y') € F)

Proposition 6 If G and H are time-stamp systems of respective order k and [, then G @ H is a
time-stamp system of order k +1 — 1.

Proof. Let (uy,us,...,u,) be an ordered sequence in G® H, such that m < k+1—1. Let u; = (z;, y;),
then the sequence of z;’s is an ordered sequence in G. Note that the z;’s are not necessarily distinct.
If the number of distinct x;’s is less than k, they have a dominator z in X and for any y € Y, (z,vy) is
a dominator of (uy,us,...,up). If the number of distinct x;’s is not less than k, then the number of
those equal to x, is less than [. Let (y;,...,yn) be such that z; = z,, and z;_1 # z,,. This sequence
is an ordered sequence in H with less than [ elements, thus it has a dominator y and (z,,y) is a
dominator of (u1,ug, ..., Uny). ad

From this proposition follows a method for the construction of time-stamp systems of an arbitrary
order. Using the graph Cjs, it is possible to get a time-stamp system of order k with 3*~1 vertices
[9]. Other time-stamp systems are known; for little values of k the smallest ones are given by the
tournaments satisfying S(p) and for greater values by a construction due to Zielonka [16]. We recall
here these results, one of them being that the Fano plane of order 7 gives a time-stamp system of
order 3. Consider the dominators of vertex 4 as a line L; of this plane. Since a time-stamp system is
loopless and antisymmetric, the lines have to be numbered in such a way that

i¢Li and jeL;=>i¢L;

This can be done for the Fano plane; the numbering is given in Figure 1.

The corresponding graph F¥ is the smallest time-stamp system of order 3, it has 7 vertices and is
given by I'r. (i) = L;. E. & G. Szekeres [13] constructed a tournament satisfying property S(3) with
19 vertices. Note that C3® C3® Cj3 is a time-stamp system of order 4 which is a tournament but which
does not satisfy S(3). The following construction, due to Zielonka [16], yields a time-stamp system
of order k with k2¥~! vertices; for k& > 9 no time-stamp system with a smaller number of vertices is
known.

Consider the subset X}, of {1...%} x{0,1}* consisting of elements (, 1, ..., z;) such that 2, = 0,
as a set of vertices of a graph G = (X, F}) and let E} be such that

Byyis--uk) €Elgloyzr, ... x,) if (o> pandzg#y,) or (a<pfandzg=uy,)
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Ly ={4,5,6} Ls={2,3,6}

Ly ={1,6,7} L¢={3,4,7}

Ly ={1,2,4} L;={1,3,5}

Ly=1{2,57}

Figure 1: The Fano plane.

2k—1

Proposition 7 G is a time-stamp system of order k having k vertices.

Proof. Obviously the number of vertices of G is k2¥~'. Since there are no arcs between two vertices
with the same first component, any ordered sequence U of G must have vertices in which all the first

components are distinct. Now, if U has less than k elements then at least one o € {1,2,...,k} is
available for the first component of a dominator z of U. To finish the proof, it is necessary to define
the other components z1, ..., z; of z. Of course z, = 0; to obtain z3, if there exists an element y € U

with 3 as the first component take
3=y if B<a and 2zg=1—-y,if a<f
If no such element exists, take g = 0. O

Remark. There is no time-stamp system of order 4 with 15 vertices: it is not difficult to see that
any such graph would be a tournament in which each vertex would have exactly 7 dominators, any
pair of vertices 3 dominators and any triplet only 1 dominator. Brown and Reid [2] have shown that
it is not possible to construct such tournaments. A time-stamp system of order 4 with 16 vertices has
recently been constructed by J. Tromp [15].

3 Restricted Time-Stamp Systems

Consider the family & of ordered sequences having k elements in a time-stamp system of order k;
then, for any U and any u; € U, there exists v € X such that U\{u;} U {v} € 3.

Returning to the labeling of processes, this means that when & processes are living and one dies,
a time-stamp can be given to a new process. Let us restrict the set of processes which may die to the
older ones, introducing the following notion.

Definition 8 A p-restricted time-stamp system of order &k is a loopless antisymmetric graph such
that there exists a family & of ordered sequences with k elements satisfying

(2.1) For any vertex z € G, 3U € & such that z € U.

(2.2) If U = (u1,...,ux) and if i <p, Jv such that (uy,...,ui—1,Ujp1,...,0) € S.
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We will first build a 1-restricted time-stamp system of order k, then we will show that for a fixed
p there exists a p-restricted time-stamp system of order k£ with a number of vertices which is a linear
function of k.

Definition 9 Let G}, be the graph with vertex set {1,...,2k — 1} and for each vertex ¢, let I'g, (i) =
{i+1,i+2,...,i+k — 1} where the sums are taken mod(2k — 1).

This graph is a tournament, and moreover each vertex is the dominator of k£ — 1 vertices and has
k — 1 dominators. It is not so difficult to verify that:

Proposition 10 Gy is a 1-restricted time-stamp system of order k.

Proof. Consider the family <& of all ordered sequences having k elements. Any U € < has the form
(i,i4+1,...,i+k—1), where the sums are taken mod(2k—1). Since we are only checking the 1-restricted
property, it is sufficient to find a dominator for (i +1,...,i + k — 1), which is i + k. O

The graph G}, allows us to build p-restricted time-stamp systems for any arbitrary integer p, since
we have:

Proposition 11 Let H = (X, E) be a time-stamp system of order p. Then H ® Gy, is a p-restricted
time-stamp system of order k 4+ p — 1.

Proof. Let us first give some notation. Let Y, denote the set of vertices of G and for any ordered
sequence V = (vy,...,vy) in H ® G, where v; = (z;,v;), let «(V) be the subset of X consisting of
the first components of the v;’s, and let (V') be the subset of Y, consisting of the second components
of the elements whose first component is equal to z,:

a(V) = A{zilu; = (z5,4:)},
BV) = Ayilzi = zm}.

Let & be the family of ordered sequences V having k + p — 1 elements and such that

(1) card(a(V)) <p,
(i) BV)=wy,y+1,...,y+i mod(2k — 1), 1 < k.

Thus, B(V') consists of consecutive elements in Yj.
We first prove that a vertex (z,y) of H ® Gj belongs to at least one element of §. Consider an
ordered sequence U in H of order p and containing x as its last element,

U= (z1,22,...,Tp—1,Tp = T).
Then, the following sequence v is an element of S:

('Ul = (xlayl)aUQ = ($2,y2),---,vp = (xayp)avp-l-l = (%yp+1)a---avp+k—1 = (xayp +k - 1))

where the y;’s, (i =1,...,p) are abitrarily taken in Y.

Let now V = (v1,v9,...,vy) be an element of & where m =p + k — 1, and consider v; € Vi < p.
Since B(V) is an ordered sequence in Gy we have card(8(V)) < k, hence either v; = (z;,y;) is such
that x; # z,, or i =p and (z5,y;) = (Tm,yi +j —i) for j=i+1,...,m.

If 2; = x,, or if B(V') has less than k elements, let v = (2, Ym). Then

(01,02, Vim1, Vig 1y -+ 5 U,y V)

is an element of 3.

If z; # =, and S(V) has k elements, then a(V') has no more than m — k + 1 = p elements and
a(V) \ {v;} has less than p elements. Since H is a time-stamp system of order p there exists z € X
such that a(V) \ {z;} U {z} is an ordered sequence in H with z as the last element. Let v = (z,y)
where y is any element of Y. Then (V = vy, v2,...,0;—1,Vit1,---,VUm,v) is an element of . a
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Corollary 12 There exists a p-restricted time-stamp system of order k with
p2P~1(2k — 2p + 1) wvertices.

4 Weak time-stamp systems

A time-stamp system allows us to compare any pair of stamps. In many applications this strong
request may be weakened to the determination of the latest created process when the whole set of
the k living processes (namely, their time-stamps) is known. This informal requirement may be made
precise by the following definition:

Let X be a finite set and let & be a family of k-subsets of X. Then 3’ denotes the family of
(k — 1)-subsets Y’ of X such that Y € §, Y' C Y.

Definition 13 A weak time-stamp system of order k on the family & is given by two mappings «
and f3:

a : =X
B ¥ =X
satisfying:
VeeX, Y e, z€Y (1)
a(Y)eY and BY')¢Y’ (2)
aY'UB(Y") =B(Y") and B \a(Y)) =a). (3)

Note that the two parts of (3) are equivalent, provided that VY € §, 3 Y’ € §’ such that
Y=Y'UBY')andVY' €S, Y € S such that Y/ =Y \ a(Y).

In the context of processes, «(Y") is the latest created time-stamp where Y is a set of k living
processes, and S(Y”) is the time-stamp which has to be assigned to a new process when the set of
living processes is Y.

According to this definition, it is assumed that there are always k or k — 1 living processes. If the
determination of the latest created process is required for any set of less than k processes, then we
are led to a situation more or less similar to that of ordinary time-stamp systems. To verify this fact
it suffices to consider the algorithm allowing us to compare any pair of time-stamps contained in the
same element Y of & by deleting iteratively the last element of Y until one of the two time-stamps to
be compared to is found.

The following proposition allows us to build weak time-stamp systems:

Proposition 14 There exists a weak time-stamp system on < X, > if and only if (1) is satisfied
and there exists a bijection \ of  onto ' such that

VY €S, MNY)CY. (4)

Proof. Let & be a family of k-subsets of X satisfying (1), and let A be a bijection of & onto §’
satisfying (4). Define o and S by:

oY) = Y\AY),
YY) = XYY"

Clearly, the definitions of a and 8 imply (2). The verification of (3) is straightforward:
aY'UB(Y") =a(A7H(Y") = A7 (Y )\ AATH(Y) = B(Y).

Conversely, let (X, S, a, 8) be a weak time-stamp system and consider A defined by A(Y) =Y \ a(Y)),
it is easy to verify that A’ defined by X' (Y') = Y' U 8(Y’) is the inverse of . O
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Corollary 15 For any weak time-stamp system (X, S, «, ), |X| > 2k — 1.

Proof. Consider the bipartite graph whose vertex set is & U 7, and whose edge set is given by the
pairs {Y,Y'} satisfying Y/ C Y. In this graph, every element Y € & has valency k and any element
Y’ € § has valency at most | X| — k + 1. Thus, if m denotes the cardinality of & we get

km <m(|X|—-k+1)

and the result follows. O

Proposition 16 For any k, there exists a weak time-stamp system of order k with 2k — 1 elements.
Moreover, the computation of the mappings a and B can be done with a number of operations which
1s a linear function of k.

Proof. Let X = {1,...,2k—1} and let S be the family of all k-subsets of X. Then ¥’ is the family of
(k —1)-subsets of X. The existence of a matching from §’ onto S is a classical result of combinatorial
theory. It may be obtained as a consequence of Hall’s theorem, also known as the “marriage theorem”.

The following algorithms allow the computation of «(Y') and 5(Y”); they use a last-in/first-out stack
S.

Algorithm 1 : Determination of a(Y’) Algorithm 2 : Determination of 5(Y”)
. for i :=1 step 1 until 2k — 1 do . for i :=1 step 1 until 2k — 1 do
begin . begin
if i ¢ Y then push(S,i) . if 1 ¢ Y' then push(S,1)
else if notempty(S) . else if notempty(S) then pop(S)
then pop(S) else z : =i . end;
end; . while notempty(S)
aY):=z . do begin z := top(S); pop(S) end;
pY') ==

a

These algorithms can be found in [10] (exercise 1 p 567); they are attributed there to De Bruijn et al.
[3]. Aigner [1] proposed another algorithm using lexicographic order on the k-subsets of {1,2,...,2k —
1} and Trehel [14] has proved that these two algorithms give the same matching.
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