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1 Introduction

Let G be a graph. We denote by dg(u,v) the distance in G from u to v, and by T'y(u) the ball of
radius k centered at u, i.e., I'y(u) = {v € V(G) | dg(u,v) < k}. We extend this notation to every
subset S C V(G), with T';(S) = U,ecs Tr(w). We say that a subset of nodes S C V(G) is k-dominating
set (or, S k-dominates G, or S covers G) if I'y(S) = V(G). Let 7;(G) denote the cardinality of the
smallest k-dominating set of G. Our goal is to bound v;(G) for various planar graphs G and values
of k.

To illustrate the properties of the parameter v, (G), let us consider a tree T of diameter D. Tt is
clear that if k > 1D, then v, (T) = 1. It suffices to consider the center of 7. On the other hand, if
k < D then there exists some n-node tree Ty of diameter D for which ~(Ty) > 2(n — 1)/D. For
instance, consider 7T composed of a star K, with each edge subdivided into ¢ — 1 nodes, where
n=pqg+1, D =2q and v,—1(Ty) = p. Every two leaves of this tree are at distance 2¢, thus p nodes
of Ty are required to (¢ — 1)-dominate all the leaves.

More generally, for k > %D, every n-node graph G of diameter D satisfies 7, (G) < /n(1 4+ Inn).
To see this, we use a dual characterization of a k-dominating set as a set S which hits the collection
{Tk(u) | u € V(G)}, ie., such that SN Ty(u) # 0 for every u € V(G). Now, note that for k > 1D,
Tr(z) NTk(y) # 0 for any two nodes z and y. Thus every set T'y(z) is a k-dominating set for G.
Hence, either there exists a node z such that |['y(z)| < «, where @ = /n(1l + Inn), and we are done,
or |T'x(z)| > « for every node z. In the latter case, the claim follows by a result of Lovasz [6] about
cover sets, which states that there exists a k-dominating set of G of size § < n(1+Inn)/ min, | (z)| <

n(l + Inn).

For planar graphs, it is known that the size of a dominating set (i.e., 1-dominating set) is bounded
by 3 if D =2, and by 10 if D = 3, cf. [7]. Thus, for k > %D, and every planar graph G, v(G) < 3 if
D =2, and v (G) <10 if D = 3.
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A recent result concerns planar triangulations. A triangulation of the plane is a planar graph with
an embedding on the plane such that each face, except maybe the outer-face, is a triangle. In [1] it
is shown that every planar triangulation G in which every internal node (i.e., that does not belong to
the outer face) has degree at least 6, satisfies v,(G) < 2, again for k > 1D.

Section 2 presents our main results. For planar graphs, we show that for every ¢ > 0 and for every
k > (% + €)D, vx(G) = O(1/e). For outerplanar graphs of diameter D, we show that v;(G) < 2 for
k ge%D. We conjecture that vx(G) is bounded by a constant for every planar graph of diameter D
for k > %D.

The motivation for studying this parameter stems from the design of routing schemes with compact
data structures. In particular, it is shown in Section 3 that for every graph G of diameter D and every
k > 0, G has an interval routing scheme [8, 11] with dilation (i.e., the length of the longest route) at
most D + k and compactness (i.e., the number of intervals by arc) at most $7;(G) + 1. Moreover, the
compactness upper bound can be reduced to tvx(G) + o(vk(G)), if v4(G)/logn — +o0. This result
improves (by a multiplicative factor) and generalizes compactness vs. dilation trade-offs of [5] and
of [10]. Our result also implies that for every constant e > 0, every planar graph of diameter D has

an interval routing scheme with dilation at most [(% + e)D-I and constant compactness.

2 Plane Graphs

2.1 Preliminaries

Hereafter, we assume that G is of diameter D. The following basic property is important for the
remaining of the paper.

Proposition 1 Let S C V(G), let k > %(D — 1), and let u,v & Tk(S). Then, every shortest path
between u and v does not cross any node of S.

Proof. Assume that there is some shortest path from u to v that contains a node w € S. Then,
da(u,v) = dg(u,w) + dg(w,v). Since u,v & T(S), u,v ¢ Tr(w), thus dg(u,w) > k + 1 and
dg(v,w) > k + 1 that implies that dg(u,v) > 2k +2 > D + 1, a contradiction. O

Let (€£,d) be a metric space (i.e., with d satisfying the triangle inequality). A subset S C & is
connected if there exists a path between any two pair of points of S. A separator of a space (€,d) is a
subset S C & such that £\ S is composed of two or more connected components. A separator in the
graph G is a separator of the space (V(G),dg).

Property 1 as an immediate corollary, keeping in mind that every path joining two nodes of different
connected components in G \ S, for some separator S, has to cross S.

Corollary 2 Let k > $(D — 1), let S be a separator of G, and let U = V(G) \ Ty (S). Then, there
exists a connected component C of G\ S such that U C V(C).

2.2 Outerplanar Graphs

Recall that a graph H is a minor of a graph G if H can be obtained from G by a sequence of zero or
more node deletions, edge deletions or edge contractions. Let us denote by K, , the complete bipartite
graph with p nodes in one partition and ¢ nodes in the other one.

We prove the following:

Theorem 3 If G is a graph with diameter D such that G contains no Kz 11 as a minor then v (G) <
t, for every k > %D.
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Proof. Let v and v be any two nodes in G with dg(u,v) = D. Let V; = {z € V(Q) | dg(u,z) =i}
for every i, 0 < i < D. We call the level of any node z, denoted by I(x), the (unique) subscript i such
that z € V;. Let M be the set of nodes z € V}, such that there exists a path zzizs...zpv from z to v
satisfying [(x;) > k for every i, 1 <i < /.

We first claim that the set M has cardinality at most £. Indeed, if M contains ¢ + 1 distinct nodes
then G contains K> ;1 as a minor, a contradiction. Consider the graph H composed of the £+1 nodes
and the 2(¢ + 1) paths linking M to u, v, delete the edges and nodes of G\ H. Then it is easy to see
that by contractions we will obtain a Kg 1.

Let now P = uujus ... u,v be any path linking v and v and denote by ¢ the largest subscript such
that [(uy) = k. Clearly, l(u;) > k for every i, ¢ < ¢ < p, and thus u, € M. Hence every path linking
u and v crosses the set M which, therefore, is a separator in G. (In particular, u and v belong to
different connected components of G\ M).

Suppose that there exists a node x in G such that dg(z, M) > k. As observed above, either u and
z, or v and z do not belong to the same connected component of G\ M. In the former case, we get

da(u,z) > dg(u, M) +dg(x,M) > 2k > D
and in the latter case,
dag(v,z) > dg(v,M)+dg(z,M) > D—-k+k=D .

Therefore, either dg(u,x) or dg(v,x) is strictly greater than D, a contradiction.
We thus get that M k-dominates G, which concludes the proof. O

Since every outerplanar graph does not contain K 3 as a minor, we get in particular the following:

Corollary 4 If G is an outerplanar graph of diameter D then v¢(G) < 2, for every k > %D.

2.3 Planar Graphs

We assume from now that G is a plane graph, that is a planar graph with an embedding in R?. More
precisely, the nodes are points of R? and edges are simple curves that can cross or meet on the nodes
only. A connected subset of R? is called a region of the plane. Given a subgraph H of G and a point
w ¢ H (i.e., the point w € R? does not belong to an edge or a node of H), we denote by reg(w, H) the
unique region of R? \ H containing w. Note that if H is a tree, R?\ H consists of one region only. If
R?\ H is composed of exactly two non-empty regions, we denote by Teg(w, H) the other region such
that R? = reg(w, H) Uteg(w, H) U H.

Given an integer p > 3, a p-gon w.r.t. G and k is a subgraph H of G defined by a sequence
(z1,...,zp) of pairwise distinct nodes, and a sequence (Q1, . .., Q) of paths such that the four following
conditions hold:

1. @; is a shortest path from z; t0 T(; mod p)+1, for every i € {1,...,p};
2. R%\ H is composed of at most two non-empty regions;
3. 2y TH(Q1 U UQp-2);

4. d(Zi, T(; mod py+1) > k, for every i € {1,...,p}.

Roughly speaking, a p-gon consists of p shortest paths of length at least £ + 1 possibly sharing
some edges. Fig. 1 represents a 4-gon H for a plane graph G of diameter D = 4 and with k£ = 2. Note
that the z;’s may belong to different regions induced by H.

Given a path P and two nodes of P, u and v, we denote by P[uv] the subpath of P between u and
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X

Figure 1: A plane graph G with a 4-gon H for k = 2 (bold edges).

Let Q1,...,Qp be a set of shortest paths, and, for each ¢ € {1,...,p}, let (z{,,z%l) be the
sequence of nodes of P N Q; encountered in this order along a walk on P from u to v (possibly ¢; = 0
it PNQ; =0). The simplified path of P on Q1 U---UQ, is the path define by

S = P[uz%] U Ql[z%ztll] U P[ztllz%] U---u Qz[z{zil] U P[zéiziﬂ] U---u Qp[zfzfp] U P[zfpv] .

Roughly speaking, S uses shortcuts of P on @1, then shortcuts of P on (03, and so on. Note that if
P is a shortest path, then S is also a shortest path between u and v. (If ¢; = 0 for all i, then S = P.)
Fig. 2 shows the simplified path S of P on Q1 U Q2. Note that S is unique, but other shortcuts are
possible: for instance Q1[uzi] U P[z22] U Qa[22v)].

Figure 2: The simplified path S of P on Q1 U Qs.

For notation conveniences, we use I'y(H) where H is a graph instead of I'y(V (H)).
The next lemma shows an important property of p-gons.

Lemma 5 Let H be a p-gon of G with p < 4, and with k > (D — 1). Then, for every w ¢ Ty(H):
1. there exists a shortest path A from w to x, wholly contained in reg(w, H) U H;

2. there exists a shortest path B from w to x;, i < p, wholly contained in reg(w, H) U H.

Moreover, A and B can be chosen such that the graph Hi = BU (Q; U Qiy1U---UQp—1) UA and
the graph Hy = BU(Q;—1UQ;—2U---UQp)UA form respectively a (p — i+ 2)-gon and an (i +2)-gon
of G.

Proof. Note that to prove Lemma 5 it suffices to construct a shortest path A from w to z,, and a
shortest path B from w to x;, ¢ < p, that are wholly contained in reg(w, H) U H. Indeed, to form the
gons Hy and Hs we consider the simplified path S of B on A, and replace B by S. Then we check
that H; and H, induced each at most two regions of R?, and the four conditions of the definition of
p-gons follows.

W.l.o.g. we assume that R?\ H is composed of two non-empty regions. Indeed, if Teg(w, H) = 0,
then every shortest from w to x; is wholly contains in reg(w, H) U H = R2.
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Let P be a shortest path from w to z,. Let u be the closest node of H from w, and assume that
u€ Qp If L e {p,p—1}, then A = Plwz] U Qpluz,] C reg(w, H) U H, and we are done for A. So, in
order to prove Point 1 assume that £ ¢ {p,p — 1}. Consider S = Uf;f Q;. Note that @, is contained
in S. Now, w ¢ T'x(S) and z, ¢ I';(S) (Condition 3 of the definition). By Proposition 1, P between
w and x, cannot intersect S: a contradiction since 1 < ¢ < p — 2. Thus the path A = P exists, and
this completes the proof of Point 1.

To prove Point 2, we proceed by induction on p. We need the following definition: a p-gon H is
said weak the conditions 3 and 4 does not necessary hold. The eztremity of a p-gon (weak or not) is
the point z,. For simplicity, a weak 3-gon is called hereafter a triangle.

Claim 6 Let T be a triangle defined by the nodes (r1,x2,23) and the shortest paths (Q1,Q2,Q3).
For every shortest path P between w ¢ T and w' € reg(w,T) UT, the simplified path S of P on
Q1 U Q2 U Qs, is such that: either S C reg(w,T) UT, or SNT contains two nodes u,u’ such that
Slwu] C reg(w,T) UT, Sluu'] C Teg(w, T) UT, and S[u'w'] C reg(w,T) UT. Moreover, if w' = x;,
then u € Qi mod p)+1 and S[uu'] induces at most two regions of Teg(w, T).

Proof. Let P be a shortest path between w and w' simplified on T = Q,UQ2UQs3. If P C reg(w, T)UT,
we are done with P. Assume that P intersects Teg(w,T), and let z € R? be the closest point from w
that belongs to Teég(w,T). Let u be the node of T just before z from w. By construction, Plwu] C
reg(w,T) U T is a shortest path. Similarly, define 2’ € R? as the closest point from w’ that belongs
to Teg(w, T'), and v’ the node of T just before 2’ from w'. By construction, P[w'u'] C reg(w, T)UT is
a shortest path. Since Puu'] is simplified on T', then we can check that P[uu'] does not intersect any
point of reg(w, T), hence Pluu] C Teg(w, T)UT. Now, assume that w' = ;. If u € (Q;UQ(i—1) mod p)>
then P would be wholly contained in reg(w,T)UT: a contradiction. Thus u € Q(; mod p)+1- Moreover,
if Pluu’] induces more than two regions of Teg(w, T'), then P[uu'] is not simplified on 7. O

Claim 7 Let T be a triangle defined by the nodes (x1,x2,3) and the shortest paths (Q1,Q2,Q3).
Then, for every w ¢ T, there exists a shortest path wholly contained in reg(w,T) U T between w and
x1, or between w and xo.

Proof. Assume that no shortest paths between w to z; or x9 is wholly contained in reg(w,T) U T.
For i € {1,2}, let P; = P;jwu;] U P;[u;z;] be a shortest path between w and z; as described in
Claim 6, i.e., such that Pjlwu;] C reg(w,T) U T and Pjlu;z;] C Teg(w,T) U T. By assumption, P;
and P, are not wholly contained in reg(w,T) UT. The paths P;[uiz1] and P[usxs] must intersect
in z € Teg(w,T) UT. Thus the shortest paths Pj[wz] and P»[wz] have the same length, and the
shortest paths P[u1z] U Py[zz1] and Qo[uizi] as well. Thus Pj[wui] U Q2uiz1] is a shortest path
wholly contained in reg(w,T) UT: a contradiction. |

The construction of the path B for a 3-gon H follows from Claim 7. So, let us prove Point 2 for
p = 4. Let X be a shortest path between z; and z3. Let u € X N(Q1UQ4) be the farest node from x;.
Consider Let z € R? be the point of X just after u. Note that z ¢ H. Let v’ € X N (Q1 U Q3) be the
farest node from z3. Note that the path X[u'u'] C reg(z, H). The path Qo = X [z1u]UX [uu']U X [u'z3]
is a shortest path between z1 and z3 that is wholly contained in reg(z, H) U H.

Consider the triangle T' defines by the points (x1, 22, z3) and the shortest paths (Q1, Q2, Qo). By
Claim 7, there exists a shortest path P; between w and x; or x3 wholly contained in reg(w,T) UT.
W.lLo.g. assume that this path is between w and x1. (The other case is symetric exchanging the role
of z1 and z3.) However, we have two cases to consider.

Case 1: Qq is in reg(w, H) U H, i.e., reg(z, H) = reg(w, H).

Observe that reg(w,T) C reg(w, H). Thus P; is also wholly contained in reg(w, H) U H. We complete
the proof setting B = P;.
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Case 2: Qg is in Teg(w, H) U H, i.e., reg(z, H) = Teg(w, H).
Consider the triangle 7" defines by (z1,z3,24). W.Lo.g. assume that P; is simplified on 7". (Indeed,
since Py C reg(w, T)UT, the simplified path of P, on T" is also wholly in reg(w, T)UT.) If Py is wholly
contained in reg(w, H) U H, then we are done setting B = P;. By Claim 6, there exists a € P; such
that Pi[wa] C reg(w, H) U H, and Pi[az1] C reg(w,T") UT’. Now consider the triangle 7" defined by
(z2,%3,21) that T by changing its extremity. By Claim 7 there exists a shortest path between w and
z9 of z3 wholly contained in reg(w,T") UT"”. W.lLo.g. we assume that the path is simplified with H,
and is not wholly contained in reg(w, H) U H.

Case 2.1: The path is between w and x2, denoted by Ps.
Let u,u’ be the two nodes defined by Claim 6 when applied between on P, w.r.t. the triangle 7".
Assume u' € @3, and consider the closed curve C' = Pp[wu'] U Q3[u'a] U Paw]. The path P contains
some points in reg(z2,C’) U C' and some points in Teg(zq, C') U C, thus must intersects C' in b. Note
that b ¢ Py[wu'], since P is a shortest path. Note also that b ¢ Q3[u’a], since Py is simplified with
Q3. Thus P, intersects P; in a. Depending on whether v’ € Q3[z4a] or not, the path P[wa]U Py[axs]
or the path Pj[wa] U Qslau] U Pe[u'z9] is a shortest path between w and zo wholly contained in
reg(w, H) U H. Remains the case, v’ € Q4. We have to consider the shortest path P3 between w and
x3, that is also assumed not wholly contained in reg(w, H) U H, and simplified on H. By Claim 6, let
v be the node of T" when considering the triangle 7" and the shortest path P;. The path P3 and P,
must intersects, and let S the closest intersection from w. Depending on whether v € Q4[z4u] or not,
the path P3[wv] U Q4[vu] U Pyluxs] or the path Ps[w/f] U Py[Bzs] is a shortest path between w and zo
wholly contained in reg(w, H) U H.

Case 2.2: The path is between w and x3, denoted by Ps.
The case is similar.

Therefore, in all the cases, we have constructed a shortest path between w and some z;, 7 < p,
that completes the proof. a

Before proving the main result of the paper, we will also need the following easy lemma.

Lemma 8 Let Q be a path of q nodes. For every A > 0, vA(Q) = [q/(2X + 1)].

Proof. Let A be A-dominating set of ) of minimal cardinatily. Since a node of A dominates at most
2) + 1 nodes, we have 7,(Q) > ¢/(2X 4+ 1). On the other hand; it is possible to split the ¢ nodes of @
into [q/(2X + 1)] segments of 2)\ + 1 consecutive nodes, the last segment may have less nodes. O

2.4 Main Result

The main result we want to prove is:

Theorem 9 For every planar graph G of diameter D, and for every k > (% + €)D, for every € > 0,
7(G) < 3/e + 6.

Actually, Theorem 9 derives from the following important result:

Theorem 10 For every planar graph G of diameter D, and for every k > %D — 1, there exists a
connected subgraph H of G such that V(H) is a k-dominating set of G, H is composed of at most 6
shortest paths of G, and such that |V (H)| < 6D — 1.

The proof of Theorem 10 will be given after the short proof of Theorem 9. Indeed, using Theo-
rem 10, it suffices to construct a [eD]-dominating set for H of size O(1/e).

Proof. The connected subgraph H constructed in Theorem 10 is a family of at most 6 shortest paths,
each one of length at most D, and is a k-dominating set for G for k > %D— 1. Choosing a A-dominating
for each path, we obtain a (k + A)-dominating set for G, say B. By Lemma 8, |B| < 6 [D/(2XA 4+ 1)].
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Let us set A = [eD]. B is therefore a k’-dominating set for G for every k' > [?D-I +[eD] > (2+¢€)D.
We have for € > 0,

D 6D 6D 3
Bl < 6 ———+6 — 46 -+6
1Bl < {2)&-1} SofeDj 41 S 2eprr PO T
that completes the proof of Theorem 9. |

Proof of Theorem 10. Here we present a constructive proof, implying a polynomial algorithm for
construction of such k-dominating sets. The construction is composed of three steps. W.lo.g. we
assume hereafter that & < D, the result clearly holds for £ = D.

Step 1: We start assuming that k& > %(D—l). Let 21 and z2 be two nodes such that dg(x1,z2) > k,
and let H be any shortest path connecting them. If V(H) is a k-dominating then we are done: H
is connected and |V (H)| < D. Otherwise, let us show that G has a 3-gon. Let z3 ¢ I'y(H), and let
A (resp. B) be a shortest path between x3 and 7 (resp. between z3 and z3). A and B are chosen
such that A U H U B induces at most two regions of R?. This can be done by making that for every
t € AN B, Alzst] = Blzst], and for every t € AN H (resp. t' € BN H), Alz1t'] = H[z1t'] (resp.
Alxot'] = H[zot]). Assigning Q1 = H, Q2 = B, and Q3 = A, and because z3 ¢ T'x(Q1), we check that
Q1 UQ2UQ3 is a 3-gon of G. We can go to Step 2.

Step 2: G has a 3-gon, say H.

If V(H) is a k-dominating set, then we are done: H is connected and |V (H)| < 3D. Otherwise, let
w ¢ I'y(H). By Lemma 5, G has a (3 —4 + 2)-gon and a (i + 2)-gon. Since 1 < < 3, G has a 4-gon,
and we can go to Step 3.

Step 3: G has a 4-gon, say H.

If V(H) is a k-dominating set, then we are done: H is connected and |V(H)| < 4D. Let m =
|[V(G) \ Tx(H)| be the number of nodes not covered by V(H), m > 0. Let w ¢ T'y(H). Assume
that H is defined by the nodes (x1,...,24) and the shortest paths (Q1,...,Q4). By Lemma 5, let
A be the shortest path between w and z4 that is wholly contained in reg(w, H) U H, and let B be
the second shortest path between w and z;, i < 4, that is wholly contained in reg(w, H) U H. Let
Hy=BUQ;U---UQR3UA be the (6 —i)-gon and let Hy = BUQ;—1U---UQ4U A be the (i + 2)-gon.
H, and Hy are 3, 4, or 5-gon.

Let H' = Hy U Hy. If V(H') is a k-dominating set, then we are done: H' is connected and
[V(H")] < 6D —1. Let m' = |V(G) \Tx(H")|, m' > 0, and let w' ¢ 'y(H'). Note that m’ <m —1
because V(H') covers T'y,(H) and also w (V(H) C V(H')). H; and Hy defines at most three regions:
reg(w, H), and reg(w, H) that is split by Hs in two sub-regions: R; = reg(z, Ha) \ (teg(w,H) U H)
and Ry = Teg(z, Ha), where z € V(H;) \ V(H2) (such a node exists). See Fig. 3. On this picture,
i = 2, H; is drawn with bold edges, and Hs is obtained by following the path w, zs, z3, 24, w. Note
that on Fig. 3 two incident paths (like A and B) may be partially merged. The proof anyway is not
based on this particular example.

By Corollary 2, and considering H, w' ¢ Teg(w, H), since w and w’ must belong to the same region.
So, assume that w' € R;, for j =1 or 2. Note that R; = reg(w', H;).

Case 1: H; is a 3-gon or a 4-gon.

In this case, we prove that I'y(H;) = I'y(H'). Clearly, I'y(H;) C T'y(H'). By Corollary 2 H; covers
(and thus H' as well since H; C H') all the points of Teg(w’, Hj). Assume there is w” € R; such
that w” € Ty(H') but w" ¢ T\(H;). This implies that there exists v € V(H') \ V(H;) such that
w" € T'y(u). Any shortest path from u to w” must intersect H; in a node v because H; is a separator.
Thus w” € T'(v), proving that w” € T'y(H;): a contradiction. Thus T'y(H;) = T'y(H'), and thus the
number of nodes uncovered by H; is m' < m — 1. Depending on whether H; is a 3-gon or a 4-gon we
can go to Step 2 or Step 4, and by induction the number of uncovered nodes will decrease up to 0.

Case 2: Hj is a 5-gon.

Note that in this case the shortest path B is between w and x| or z3, otherwise H; would be a 3-gon
or a 4-gon. W.lLo.g. assume B is between w and z; (the other case is symmetric by exchanging
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Figure 3: A node w' ¢ 'y (H') has to belong to R; or Ry.

node names z; and z3). Assume there is a path B’ between w and z5 that is wholly contains in
reg(w, H) U H. Then, we can remove the path B constructed while applying Lemma 5, and rename
B' into B. Then the resulting gons H; and Hs when new simplified paths A and B are considered
consists of 4-gons, and we can conclude by Case 1. Similarly, if there is a path A’ between w and z3
that is wholly contains in reg(w, H) U H, then we can remove path A and rename A’ into A. The
resulting 4-gons resulting when considering new simplified paths A and B, allow to go again to Case
1.

We are left when all shortest paths from w to zs and from w to x3 are not wholly contained in
reg(w, H) U H.

Let X be a shortest from w to zo, and let Y be a shortest from w to z3 (W.l.o.g. we assume that
X and Y are simplified on H). Thus X and Y are not wholly contained in reg(w, H) U H. So, X
must intersect @3 or Q4, and Y must intersect Q1 or Q4. Let u be the farest node from w such that
u € X N (Q3UQ4), and let v be the farest node from w such that v € Y N (Q1 U Qy4).

Case 2.1: u ¢ Qq or v ¢ Q4.
Similarly to the proof of Lemma 5, X and Y intersects a € Teg(w, H). Assume u ¢ Q4. Then, X[wu]
is wholly contained in reg(w, H) U H and intersects Q3 leading to z3. Thus X[wu] U Qs[uzs] is a
shortest path wholly contained in reg(w, H) U H: a contradiction with the definition of Y. The case
v ¢ Q4 is symmetric: the path Y[wo] U Q1[vze] is a shortest path wholly contained in reg(w, H) U H:
a contradiction with the definition of X. Thus Case 2.1 is not possible.

Case 2.2: u,v € (4.
Then we are left with a configuration similar to the one depicted on Fig. 4.

% X3

Figure 4: The final configuration.

We now assume that k > 2D — 1. Let a = dg(z1,u), b= dg(v,24), and ¢ = dg(u,v). W.Lo.g. we
assume that a < b. Note that since a + ¢+ b < D, we have a < %(D —¢). Note also that we have
dg(u,z2) < D —k —1and dg(v,z3) < D —k — 1 because w ¢ I'y(u) and w ¢ T'x(v).
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If ¢ > %D, then

1
da(z1,72) < a+dg(u,z2) < §(D—C)+D—k—1 (1)
1 1 ) )
- |\D-=-D D—-—-D+1—-1 = Z-D. 2
< 2( - >+ =D+ - (2)

It follows that dg; (21, 22) < 2D < k+1: a contradiction since H is a 4-gon, forcing to have dg(z1, 22) >
k.

Ifec< %D, then
1
dg(ze,z3) < dg(ze,u) +c+dg(v,z3) < 2D—2k—2+?D (3)

5 | 5
oD-2(°D-1)—2+:D = 2D . 4
< (7 ) t7 7 (4)

It follows that dg (z2, x3) < %D < k+1: a contradiction since H is a 4-gon, forcing to have dg(z2, 23) >
k.

Hence the Case 2.2 is impossible. Therefore, we have proved Theorem 10. a

2.5 Conjecture and Worst-Case

Note that Theorem 10 allows to show:

Corollary 11 For planar graph G of diameter D, and every k > %D,

Proof. As already mentioned in the introduction, the two first results come from [7]. Note that there
is a planar graph G of diameter 2 with v;(G) = 3. Actually, the case D = 3 comes from the fact
(proved in [7]) that v;(G) < 10.

Theorem 10 gives 7 (G) < 6D — 1 for every k > 2D — 1. For D =4, k> 2D —1 = 2. Thus that
72(G) < 23.

Now, consider D = 7. Remark that in the proof of Theorem 10, either the Case 2.2 does not occur,
and the result is proved for k > (D — 1) = 3 (thus proving that v3(G) < 6D — 1 = 41), or the Case
2.2 does occur. In the latter case, Eq. (1) and (3) imply that dg(z1,22) or dg(22,23) < 2D, that is
dg(z1,x2) or dg(ze,z3) < 4. Since dg(z1,r2) and dg(ze,z3) must be > k, we get a contradiction
from k = 4. Thus 14(G) < 6D — 1 = 41 as required. O

We leave open the problem to bound ~,(G) for k& > %D, and we conjecture:

Conjecture 12 For every planar graph G of diameter D, and for every k > %D, there exists a
constant ¢y such that v(G) < cp.

Here we show that ¢y > 4.

Theorem 13 For every even diameter D > 8, there exists a planar graph G of diameter D, such that
for vp 2(G) = 4.
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Proof. Let D = 2t, t > 4. The graph denoted by G; is composed of: (1) two nodes A and B called
poles; (2) 2t disjoint paths Py, ..., Py called meridians, each of length 2¢, joining A to B; (3) a cycle
C of length 2t, called equator, joining the middle nodes of each meridians and with exactly one node
of degree two between two consecutive meridians. (See Fig. 5 for ¢ = 4).

We recall that for a cycle Cy; of length 2¢, vp /2(C2t) = 2. Hence taking the nodes A,B, it is clear
that all the nodes of the meridians are covered, but the 2-nodes of the equator are note covered. To
complete, we have to take two opposite nodes u, v of the equator. {A, B, u,v} is then a D/2-dominating
set of Giy. It follows that yp/o(Gy) < 4.

Now if we take two opposite nodes different from A and B belonging to two distinct meridians we
will not cover all the nodes of the 2¢ meridians. In this case we will need more than 4 nodes (¢ > 4)
to cover all the nodes of the meridians. This completes the proof.

Figure 5: The planar graph embedded on a sphere for D = 8 such that v4(G) = 4.

3 Application to Routing with Compact Tables

A point-to-point communication network is modeled as a graph G = (V, E), where the set of nodes
represent the processors of the network and every pair of two opposite arcs represents a bidirectional
communication link. A routing scheme R is a distributed algorithm whose role is to deliver messages
between nodes of the network. The routing scheme consists of certain distributed data structures in
the network, and a delivery protocol, which can be invoked in any node u with two parameters: a
routing label L(v) of the destination node v, and the message’s information field. The message is
delivered to v via a sequence of transmissions determined uniquely by the distributed data structure,
i.e., at each intermediate node along the route, the routing scheme decides the next neighbor to which
the message should be forwarded. The length of the route traversed by a message from u to v in the
graph G according to the routing scheme R is denoted by pr(u,v). The dilation of a routing scheme
R is the maximal route length of a path traversed by a message, formally max,.,{pr(u,v)}.

An interval routing scheme R on G is a routing scheme consisting of a pair (£,Z), generated
in the preprocessing step, where £ is a node-labeling, L : V' — {1,...,n}, and Z is an arc-labeling,
T : E — 280V) | that satisfy the following condition. For any node u, the collection of sets that label
all the outgoing arcs of u forms a partition of the name range (possibly excluding u itself). Formally,
for every u € V' (hereafter E, denotes the set of arcs incident to u),

L. Ueep, I(e) U L(u) = {1,...,n},

2. Z(e1) NI(ez) = 0 for every two distinct arcs ey, es € Fy.
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The delivery protocol is defined as follows. Given a destination node v, set the first header to be
h = L(v). Also, for every node u, receiving a message with header h, first check if £(u) = h, and end
the routing protocol if equality (the message is arrived at destination). If not, then send the message
and the same header h on the output port corresponding to the unique arc (u, w) such that h € Z(u,v).
Namely, the message is sent on the arc which is labeled by a set that contains the destination label.

Note that any interval routing scheme can be implemented by classical routing tables. The main
difference is in the coding of the table.

Given an integer n and a subset I C {1,...,n}, define the compactness of I w.r.t. n, denoted
cn(I), as the smallest integer k such that I can be represented by the union of k intervals [a,b] of
consecutive integers from {1,...,n}, with n and 1 being considered as consecutive (cyclically). The
compactness of an interval routing scheme R = (£,Z) on G is the maximum, over all arcs e € E, of
the compactness ¢, (Z(e)) of the set Z(e) labeling e. The total compactness is the sum .. cn(Z(e)).

Because interval routing schemes can be implemented by routing tables, we deal with the com-
pactness of a routing table. Intuitively, smaller compactness and degrees imply smaller routing tables.
The interval routing strategy presented in [8], based on routing on a minimum spanning tree, has
compactness 1 (for every graph of diameter D) and dilation at most 2D. It is known that there are
worst-case graphs for which every routing table of compactness 1 has dilation at least 2D — 3 [9]. It
is also known that every graph has routing table of compactness vnInn + O(1) with dilation at most
[1.5D] [5], whereas there are worst-case graphs for which every routing table of compactness k has
dilation at least [1.5D] — 1 for every k = Q(W) [2]. Other results can be found on the recent
survey [3].

Here we show a trade-off between dilation and compactness.

Theorem 14 Let G be a graph of diameter D with n nodes and m edges. Let k > 0, and let t = y,(G).
Then, G has a routing table with dilation at most D + k, compactness at most %t + 1, and total
compactness at most tn + 2m. Moreover, if t/logn — 400, then the compactness can be reduced to
1

Lt +o(t).

1

Proof. Let {z1,...,z;} be a k-dominating set in G of minimal cardinality ¢ = 7;(G). Construct a
partition of the graph nodes into ¢ pairwise disjoint connected regions R; C I'y(z;) around each z;,
such that each region R; consists of nodes closest to z; (breaking tie arbitrarily) and the union of the
regions covers all the nodes. Obviously the radius of each region is at most k.

For every z;, construct a shortest path spanning tree T; for G. Let T; be the restriction of T} to
the region R;, i.e., TZ =T;NR;.

Partition the range of integers [1,n] into ¢ contiguous intervals I; of size |R;|, for i € {1,...,t}.
For each region R;, assign each node v € R; a distinct label £(v) from the range I;, in DFS order,
starting at z;. Use these labels to define an interval routing scheme on 7T} as in [8]. The compactness
is 2 (instead of 1) because a cyclic interval in I; has to be represented by two sub-intervals of I;. For
every two nodes u,w € R;, this scheme yields a shortest route on T; (albeit perhaps not shortest in
G).

In addition, for every 1 < i < ¢ and for every node w ¢ R;, add the interval I; to the arc connecting
w to its parent in T;.

As the regions are disjoint, it is easy to verify that for every node v, all the intervals assigned to
the arcs of v are pairwise disjoint. Overall, at most %t + 1 intervals were assigned to each arc because
every subset of at most ¢ intervals has no more than %t non contiguous intervals (one more sub-interval
is required for the own region of v). In fact, exactly ¢+ deg(v) intervals altogether (deg(v)+1 intervals
for R; and ¢t — 1 for all the others) are assigned to the arcs of a node v of degree deg(v). Thus the
total compactness is in + 2m.

Observe that the resulting route between nodes belonging to the same region has length at most
2k < D +k. As for routing from a node u € R; to a node w € Rj, j # %, note that the first segment of
the route, until reaching R;, proceeds along a shortest path from u to z;, and once entering R;, the
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remaining segment of the route follows a shortest path. Hence the total length of the route cannot
exceed dg(u,z;) + da(r;,w) < D + k.

Actually, the bound on the compactness can be slightly reduced to %t + o(t), for ¢ large enough,
using the result of [4]. This result shows that, for every ¢, there exists a permutation 7 of {1,...,t}
such that the compactness of every set F' of a family F of subsets of {1,...,t}, with |F| < exp(t/2)/t,
satisfies:

a(n(F)) < %t-l-i 2t In(|F|n)

where 7(F') denotes the set {m(z) | = € F}. Let Z(e) be the set of labels assigned to arc e by
the previous interval routing scheme. Set F = {F(e) | e € E(G)}, where F(e) = {i | I; C Z(e)}
corresponds to the set of region’s indices contained in Z(e). Note that the range of labels of each
region is wholly contained in Z(e) (excepted for v’s region). Since U§:1 I; = [1,n], we have that
cn(Z(e)) < e(F(e)) + 1. Observe that the relative order of the ranges can be chosen arbitrary: all the
labels of some I; can be chosen larger or smaller than all the label of any other range. So, indices of
I;’s ranges can be permuted by some permutation 7 of [1,¢] in order to decrease ¢;(7(F(e))). By [4],
if | 7| < exp(o(t))/t, there exists my such that c¢;(mo(F(e))) < 1t + o(t), for every F(e) € F. Note that
| F| = 2m. So, the condition |F| < exp(o(t))/t can be replaced by t/logn — +o00, as m = O(n?). O

This result can be seen as a generalization of [5], originally proved for k = [%D-I In this paper

it was showed that every graph G satisfies 7;x(G) < [vnlnn |, and the compactness they derived
was [Vnlnn] 4+ 1. Thus Theorem 14 improves by an asymptotic factor 4 the compactness bound
obtained by [5]. The same kind of construction has been also implicitly used in [10]. Precisely, it is
shown in [10] that every graph G satisfies v;(G) < \/n for k > 2D. Thus, every graph has routing

table of compactness at $/n + o(y/n) for dilation %D-I (The original compactness result of [10] was

[Vn1+1.)

Combining Theorem 9 and Theorem 14, we obtain:

Corollary 15 Let e > 0 be an arbitrary constant. FEvery planar graph has a routing table with dilation
at most [(% + e)D-I, and constant compactness.

Note that Conjecture 12 for ¢y = 4 implies that every planar graphs of diameter D enjoys a routing
table with dilation at most [1.5D] and compactness at most 3.
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