
LaBRI Researh Report No. Compiled on April 18, 2001k-DOMINATING SETS INPLANAR GRAPHS WITHAPPLICATIONSCyril Gavoille,LaBRI, Universit�e Bordeaux I, 351, ours de la Lib�eration, 33405 Talene Cedex, FraneDavid Peleg,Department of Computer Siene and Applied Mathematis, The Weizmann Institute of Siene, Re-hovot, 76100 IsraelAndr�e Raspaud and �Eri SopenaLaBRI, Universit�e Bordeaux I, 351, ours de la Lib�eration, 33405 Talene Cedex, FraneAbstrat. A subset of nodes S in a graph G is alled k-dominating if, for every node u of the graph, thedistane from u to S is at most k. We onsider the parameter k(G) de�ned as the smallest integer r suhthat G has a k-dominating set of ardinality r. For planar graphs, we show that for every � > 0 and for everyk � ( 57 + �)D, k(G) = O(1=�). For several lasses of planar graphs of diameter D, we show that k(G) isbounded by a onstant for k � 12D. We onjeture that the same result holds for every planar graph. Thisproblem is motivated by the design of routing shemes with ompat data strutures.Keywords. Dominating sets, Planar graphs, Compat routing tables.1 IntrodutionLet G be a graph. We denote by dG(u; v) the distane in G from u to v, and by �k(u) the ball ofradius k entered at u, i.e., �k(u) = fv 2 V (G) j dG(u; v) � kg. We extend this notation to everysubset S � V (G), with �k(S) = Su2S �k(u). We say that a subset of nodes S � V (G) is k-dominatingset (or, S k-dominates G, or S overs G) if �k(S) = V (G). Let k(G) denote the ardinality of thesmallest k-dominating set of G. Our goal is to bound k(G) for various planar graphs G and valuesof k.To illustrate the properties of the parameter k(G), let us onsider a tree T of diameter D. It islear that if k � 12D, then k(T ) = 1. It suÆes to onsider the enter of T . On the other hand, ifk < 12D then there exists some n-node tree T0 of diameter D for whih k(T0) � 2(n � 1)=D. Forinstane, onsider T0 omposed of a star K1;p with eah edge subdivided into q � 1 nodes, wheren = pq + 1, D = 2q and q�1(T0) = p. Every two leaves of this tree are at distane 2q, thus p nodesof T0 are required to (q � 1)-dominate all the leaves.More generally, for k � 12D, every n-node graph G of diameter D satis�es k(G) < pn(1 + lnn).To see this, we use a dual haraterization of a k-dominating set as a set S whih hits the olletionf�k(u) j u 2 V (G)g, i.e., suh that S \ �k(u) 6= ; for every u 2 V (G). Now, note that for k � 12D,�k(x) \ �k(y) 6= ; for any two nodes x and y. Thus every set �k(x) is a k-dominating set for G.Hene, either there exists a node x suh that j�k(x)j < �, where � = pn(1 + lnn), and we are done,or j�k(x)j � � for every node x. In the latter ase, the laim follows by a result of Lov�asz [6℄ aboutover sets, whih states that there exists a k-dominating set of G of size � < n(1+lnn)=minx j�k(x)j �pn(1 + lnn).For planar graphs, it is known that the size of a dominating set (i.e., 1-dominating set) is boundedby 3 if D = 2, and by 10 if D = 3, f. [7℄. Thus, for k � 12D, and every planar graph G, k(G) � 3 ifD = 2, and k(G) � 10 if D = 3. 1



2 k-Dominating sets in planar graphs with appliationsA reent result onerns planar triangulations. A triangulation of the plane is a planar graph withan embedding on the plane suh that eah fae, exept maybe the outer-fae, is a triangle. In [1℄ itis shown that every planar triangulation G in whih every internal node (i.e., that does not belong tothe outer fae) has degree at least 6, satis�es k(G) � 2, again for k � 12D.Setion 2 presents our main results. For planar graphs, we show that for every � > 0 and for everyk � (57 + �)D, k(G) = O(1=�). For outerplanar graphs of diameter D, we show that k(G) � 2 fork ge12D. We onjeture that k(G) is bounded by a onstant for every planar graph of diameter Dfor k � 12D.The motivation for studying this parameter stems from the design of routing shemes with ompatdata strutures. In partiular, it is shown in Setion 3 that for every graph G of diameter D and everyk � 0, G has an interval routing sheme [8, 11℄ with dilation (i.e., the length of the longest route) atmost D+ k and ompatness (i.e., the number of intervals by ar) at most 12k(G) + 1. Moreover, theompatness upper bound an be redued to 14k(G) + o(k(G)), if k(G)= log n ! +1. This resultimproves (by a multipliative fator) and generalizes ompatness vs. dilation trade-o�s of [5℄ andof [10℄. Our result also implies that for every onstant � > 0, every planar graph of diameter D hasan interval routing sheme with dilation at most l(127 + �)Dm and onstant ompatness.2 Plane Graphs2.1 PreliminariesHereafter, we assume that G is of diameter D. The following basi property is important for theremaining of the paper.Proposition 1 Let S � V (G), let k � 12 (D � 1), and let u; v 62 �k(S). Then, every shortest pathbetween u and v does not ross any node of S.Proof. Assume that there is some shortest path from u to v that ontains a node w 2 S. Then,dG(u; v) = dG(u;w) + dG(w; v). Sine u; v 62 �k(S), u; v 62 �k(w), thus dG(u;w) � k + 1 anddG(v; w) � k + 1 that implies that dG(u; v) � 2k + 2 � D + 1, a ontradition. 2Let (E ; d) be a metri spae (i.e., with d satisfying the triangle inequality). A subset S � E isonneted if there exists a path between any two pair of points of S. A separator of a spae (E ; d) is asubset S � E suh that E n S is omposed of two or more onneted omponents. A separator in thegraph G is a separator of the spae (V (G); dG).Property 1 as an immediate orollary, keeping in mind that every path joining two nodes of di�erentonneted omponents in G n S, for some separator S, has to ross S.Corollary 2 Let k � 12(D � 1), let S be a separator of G, and let U = V (G) n �k(S). Then, thereexists a onneted omponent C of G n S suh that U � V (C).2.2 Outerplanar GraphsReall that a graph H is a minor of a graph G if H an be obtained from G by a sequene of zero ormore node deletions, edge deletions or edge ontrations. Let us denote by Kp;q the omplete bipartitegraph with p nodes in one partition and q nodes in the other one.We prove the following:Theorem 3 If G is a graph with diameter D suh that G ontains no K2;t+1 as a minor then k(G) �t, for every k � 12D.



C. Gavoille, D. Peleg, A. Raspaud and E. Sopena 3Proof. Let u and v be any two nodes in G with dG(u; v) = D. Let Vi = fx 2 V (G) j dG(u; x) = igfor every i, 0 � i � D. We all the level of any node x, denoted by l(x), the (unique) subsript i suhthat x 2 Vi. Let M be the set of nodes x 2 Vk suh that there exists a path xx1x2 : : : x`v from x to vsatisfying l(xi) > k for every i, 1 � i � `.We �rst laim that the set M has ardinality at most t. Indeed, if M ontains t+1 distint nodesthen G ontains K2;t+1 as a minor, a ontradition. Consider the graph H omposed of the t+1 nodesand the 2(t+ 1) paths linking M to u; v, delete the edges and nodes of G nH. Then it is easy to seethat by ontrations we will obtain a K2;t+1.Let now P = uu1u2 : : : upv be any path linking u and v and denote by q the largest subsript suhthat l(uq) = k. Clearly, l(ui) > k for every i, q < i � p, and thus uq 2 M . Hene every path linkingu and v rosses the set M whih, therefore, is a separator in G. (In partiular, u and v belong todi�erent onneted omponents of G nM).Suppose that there exists a node x in G suh that dG(x;M) > k. As observed above, either u andx, or v and x do not belong to the same onneted omponent of G nM . In the former ase, we getdG(u; x) � dG(u;M) + dG(x;M) > 2k � Dand in the latter ase, dG(v; x) � dG(v;M) + dG(x;M) > D � k + k = D :Therefore, either dG(u; x) or dG(v; x) is stritly greater than D, a ontradition.We thus get that M k-dominates G, whih onludes the proof. 2Sine every outerplanar graph does not ontain K2;3 as a minor, we get in partiular the following:Corollary 4 If G is an outerplanar graph of diameter D then k(G) � 2, for every k � 12D.2.3 Planar GraphsWe assume from now that G is a plane graph, that is a planar graph with an embedding in R2. Morepreisely, the nodes are points of R2 and edges are simple urves that an ross or meet on the nodesonly. A onneted subset of R2 is alled a region of the plane. Given a subgraph H of G and a pointw =2 H (i.e., the point w 2 R2 does not belong to an edge or a node of H), we denote by reg(w;H) theunique region of R2 nH ontaining w. Note that if H is a tree, R2 nH onsists of one region only. IfR2 nH is omposed of exatly two non-empty regions, we denote by reg(w;H) the other region suhthat R2 = reg(w;H) [ reg(w;H) [H.Given an integer p � 3, a p-gon w.r.t. G and k is a subgraph H of G de�ned by a sequene(x1; : : : ; xp) of pairwise distint nodes, and a sequene (Q1; : : : ; Qp) of paths suh that the four followingonditions hold:1. Qi is a shortest path from xi to x(i mod p)+1, for every i 2 f1; : : : ; pg;2. R2 nH is omposed of at most two non-empty regions;3. xp 62 �k(Q1 [ � � � [Qp�2);4. d(xi; x(i mod p)+1) > k, for every i 2 f1; : : : ; pg.Roughly speaking, a p-gon onsists of p shortest paths of length at least k + 1 possibly sharingsome edges. Fig. 1 represents a 4-gon H for a plane graph G of diameter D = 4 and with k = 2. Notethat the xi's may belong to di�erent regions indued by H.Given a path P and two nodes of P , u and v, we denote by P [uv℄ the subpath of P between u andv.
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Figure 1: A plane graph G with a 4-gon H for k = 2 (bold edges).Let Q1; : : : ; Qp be a set of shortest paths, and, for eah i 2 f1; : : : ; pg, let (zi1; : : : ; ziti) be thesequene of nodes of P \Qi enountered in this order along a walk on P from u to v (possibly ti = 0if P \Qi = ;). The simpli�ed path of P on Q1 [ � � � [Qp is the path de�ne byS = P [uz11 ℄ [Q1[z11z1t1 ℄ [ P [z1t1z21 ℄ [ � � � [Qi[zi1ziti ℄ [ P [zitizi+11 ℄ [ � � � [Qp[zp1zptp ℄ [ P [zptpv℄ :Roughly speaking, S uses shortuts of P on Q1, then shortuts of P on Q2, and so on. Note that ifP is a shortest path, then S is also a shortest path between u and v. (If ti = 0 for all i, then S = P .)Fig. 2 shows the simpli�ed path S of P on Q1 [ Q2. Note that S is unique, but other shortuts arepossible: for instane Q1[uz12 ℄ [ P [z12z21 ℄ [Q2[z21v℄.
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1u=Figure 2: The simpli�ed path S of P on Q1 [Q2.For notation onvenienes, we use �k(H) where H is a graph instead of �k(V (H)).The next lemma shows an important property of p-gons.Lemma 5 Let H be a p-gon of G with p � 4, and with k � 12(D � 1). Then, for every w =2 �k(H):1. there exists a shortest path A from w to xp wholly ontained in reg(w;H) [H;2. there exists a shortest path B from w to xi, i < p, wholly ontained in reg(w;H) [H.Moreover, A and B an be hosen suh that the graph H1 = B [ (Qi [Qi+1 [ � � � [Qp�1)[A andthe graph H2 = B [ (Qi�1 [Qi�2 [ � � � [Qp)[A form respetively a (p� i+2)-gon and an (i+2)-gonof G.Proof. Note that to prove Lemma 5 it suÆes to onstrut a shortest path A from w to xp, and ashortest path B from w to xi, i < p, that are wholly ontained in reg(w;H) [H. Indeed, to form thegons H1 and H2 we onsider the simpli�ed path S of B on A, and replae B by S. Then we hekthat H1 and H2 indued eah at most two regions of R2, and the four onditions of the de�nition ofp-gons follows.W.l.o.g. we assume that R2 nH is omposed of two non-empty regions. Indeed, if reg(w;H) = ;,then every shortest from w to xi is wholly ontains in reg(w;H) [H = R2.



C. Gavoille, D. Peleg, A. Raspaud and E. Sopena 5Let P be a shortest path from w to xp. Let u be the losest node of H from w, and assume thatu 2 Q`. If ` 2 fp; p� 1g, then A = P [wx℄ [Q`[uxp℄ � reg(w;H) [H, and we are done for A. So, inorder to prove Point 1 assume that ` =2 fp; p� 1g. Consider S = Sp�2i=1 Qi. Note that Q` is ontainedin S. Now, w =2 �k(S) and xp =2 �k(S) (Condition 3 of the de�nition). By Proposition 1, P betweenw and xp annot interset S: a ontradition sine 1 � ` � p� 2. Thus the path A = P exists, andthis ompletes the proof of Point 1.To prove Point 2, we proeed by indution on p. We need the following de�nition: a p-gon H issaid weak the onditions 3 and 4 does not neessary hold. The extremity of a p-gon (weak or not) isthe point xp. For simpliity, a weak 3-gon is alled hereafter a triangle.Claim 6 Let T be a triangle de�ned by the nodes (x1; x2; x3) and the shortest paths (Q1; Q2; Q3).For every shortest path P between w =2 T and w0 2 reg(w; T ) [ T , the simpli�ed path S of P onQ1 [ Q2 [ Q3, is suh that: either S � reg(w; T ) [ T , or S \ T ontains two nodes u; u0 suh thatS[wu℄ � reg(w; T ) [ T , S[uu0℄ � reg(w; T ) [ T , and S[u0w0℄ � reg(w; T ) [ T . Moreover, if w0 = xi,then u 2 Q(i mod p)+1 and S[uu0℄ indues at most two regions of reg(w; T ).Proof. Let P be a shortest path between w and w0 simpli�ed on T = Q1[Q2[Q3. If P � reg(w; T )[T ,we are done with P . Assume that P intersets reg(w; T ), and let z 2 R2 be the losest point from wthat belongs to reg(w; T ). Let u be the node of T just before z from w. By onstrution, P [wu℄ �reg(w; T ) [ T is a shortest path. Similarly, de�ne z0 2 R2 as the losest point from w0 that belongsto reg(w; T ), and u0 the node of T just before z0 from w0. By onstrution, P [w0u0℄ � reg(w; T ) [ T isa shortest path. Sine P [uu0℄ is simpli�ed on T , then we an hek that P [uu0℄ does not interset anypoint of reg(w; T ), hene P [uu0℄ � reg(w; T )[T . Now, assume that w0 = xi. If u 2 (Qi[Q(i�1) mod p),then P would be wholly ontained in reg(w; T )[T : a ontradition. Thus u 2 Q(i mod p)+1. Moreover,if P [uu0℄ indues more than two regions of reg(w; T ), then P [uu0℄ is not simpli�ed on T . 2Claim 7 Let T be a triangle de�ned by the nodes (x1; x2; x3) and the shortest paths (Q1; Q2; Q3).Then, for every w =2 T , there exists a shortest path wholly ontained in reg(w; T ) [ T between w andx1, or between w and x2.Proof. Assume that no shortest paths between w to x1 or x2 is wholly ontained in reg(w; T ) [ T .For i 2 f1; 2g, let Pi = Pi[wui℄ [ Pi[uixi℄ be a shortest path between w and xi as desribed inClaim 6, i.e., suh that Pi[wui℄ � reg(w; T ) [ T and Pi[uixi℄ � reg(w; T ) [ T . By assumption, P1and P2 are not wholly ontained in reg(w; T ) [ T . The paths P1[u1x1℄ and P2[u2x2℄ must intersetin z 2 reg(w; T ) [ T . Thus the shortest paths P1[wz℄ and P2[wz℄ have the same length, and theshortest paths P1[u1z℄ [ P2[zx1℄ and Q2[u1x1℄ as well. Thus P1[wu1℄ [ Q2[u1x1℄ is a shortest pathwholly ontained in reg(w; T ) [ T : a ontradition. 2The onstrution of the path B for a 3-gon H follows from Claim 7. So, let us prove Point 2 forp = 4. Let X be a shortest path between x1 and x3. Let u 2 X\ (Q1[Q4) be the farest node from x1.Consider Let z 2 R2 be the point of X just after u. Note that z =2 H. Let u0 2 X \ (Q1 [Q3) be thefarest node from x3. Note that the path X[u0u0℄ � reg(z;H). The path Q0 = X[x1u℄[X[uu0℄[X[u0x3℄is a shortest path between x1 and x3 that is wholly ontained in reg(z;H) [H.Consider the triangle T de�nes by the points (x1; x2; x3) and the shortest paths (Q1; Q2; Q0). ByClaim 7, there exists a shortest path P1 between w and x1 or x3 wholly ontained in reg(w; T ) [ T .W.l.o.g. assume that this path is between w and x1. (The other ase is symetri exhanging the roleof x1 and x3.) However, we have two ases to onsider.Case 1: Q0 is in reg(w;H) [H, i.e., reg(z;H) = reg(w;H).Observe that reg(w; T ) � reg(w;H). Thus P1 is also wholly ontained in reg(w;H)[H. We ompletethe proof setting B = P1.



6 k-Dominating sets in planar graphs with appliationsCase 2: Q0 is in reg(w;H) [H, i.e., reg(z;H) = reg(w;H).Consider the triangle T 0 de�nes by (x1; x3; x4). W.l.o.g. assume that P1 is simpli�ed on T 0. (Indeed,sine P1 � reg(w; T )[T , the simpli�ed path of P1 on T 0 is also wholly in reg(w; T )[T .) If P1 is whollyontained in reg(w;H) [H, then we are done setting B = P1. By Claim 6, there exists a 2 P1 suhthat P1[wa℄ � reg(w;H) [H, and P1[ax1℄ � reg(w; T 0)[ T 0. Now onsider the triangle T 00 de�ned by(x2; x3; x1) that T by hanging its extremity. By Claim 7 there exists a shortest path between w andx2 of x3 wholly ontained in reg(w; T 00) [ T 00. W.l.o.g. we assume that the path is simpli�ed with H,and is not wholly ontained in reg(w;H) [H.Case 2.1: The path is between w and x2, denoted by P2.Let u; u0 be the two nodes de�ned by Claim 6 when applied between on P2 w.r.t. the triangle T 0.Assume u0 2 Q3, and onsider the losed urve C = P2[wu0℄ [Q3[u0a℄ [ P[aw℄. The path P2 ontainssome points in reg(x2; C) [ C and some points in reg(x2; C) [ C, thus must intersets C in b. Notethat b =2 P2[wu0℄, sine P2 is a shortest path. Note also that b =2 Q3[u0a℄, sine P2 is simpli�ed withQ3. Thus P2 intersets P1 in �. Depending on whether u0 2 Q3[x4a℄ or not, the path P1[w�℄[P2[�x2℄or the path P1[wa℄ [ Q3[au0℄ [ P2[u0x2℄ is a shortest path between w and x2 wholly ontained inreg(w;H) [H. Remains the ase, u0 2 Q4. We have to onsider the shortest path P3 between w andx3, that is also assumed not wholly ontained in reg(w;H) [H, and simpli�ed on H. By Claim 6, letv be the node of T 0 when onsidering the triangle T 0 and the shortest path P3. The path P3 and P2must intersets, and let � the losest intersetion from w. Depending on whether v 2 Q4[x4u℄ or not,the path P3[wv℄ [Q4[vu℄ [ P2[ux2℄ or the path P3[w�℄ [ P2[�x2℄ is a shortest path between w and x2wholly ontained in reg(w;H) [H.Case 2.2: The path is between w and x3, denoted by P3.The ase is similar.Therefore, in all the ases, we have onstruted a shortest path between w and some xi, i < p,that ompletes the proof. 2Before proving the main result of the paper, we will also need the following easy lemma.Lemma 8 Let Q be a path of q nodes. For every � � 0, �(Q) = dq=(2�+ 1)e.Proof. Let A be �-dominating set of Q of minimal ardinatily. Sine a node of A dominates at most2�+ 1 nodes, we have �(Q) � q=(2�+1). On the other hand; it is possible to split the q nodes of Qinto dq=(2�+ 1)e segments of 2�+ 1 onseutive nodes, the last segment may have less nodes. 22.4 Main ResultThe main result we want to prove is:Theorem 9 For every planar graph G of diameter D, and for every k � (57 + �)D, for every � > 0,k(G) < 3=�+ 6.Atually, Theorem 9 derives from the following important result:Theorem 10 For every planar graph G of diameter D, and for every k > 57D � 1, there exists aonneted subgraph H of G suh that V (H) is a k-dominating set of G, H is omposed of at most 6shortest paths of G, and suh that jV (H)j � 6D � 1.The proof of Theorem 10 will be given after the short proof of Theorem 9. Indeed, using Theo-rem 10, it suÆes to onstrut a d�De-dominating set for H of size O(1=�).Proof. The onneted subgraph H onstruted in Theorem 10 is a family of at most 6 shortest paths,eah one of length at most D, and is a k-dominating set for G for k > 57D�1. Choosing a �-dominatingfor eah path, we obtain a (k + �)-dominating set for G, say B. By Lemma 8, jBj � 6 dD=(2� + 1)e.



C. Gavoille, D. Peleg, A. Raspaud and E. Sopena 7Let us set � = d�De. B is therefore a k0-dominating set forG for every k0 � l57Dm+d�De � (57+�)D.We have for � > 0,jBj � 6 � D2�+ 1� < 6D2 d�De+ 1 + 6 < 6D2�D + 1 + 6 < 3� + 6that ompletes the proof of Theorem 9. 2Proof of Theorem 10. Here we present a onstrutive proof, implying a polynomial algorithm foronstrution of suh k-dominating sets. The onstrution is omposed of three steps. W.l.o.g. weassume hereafter that k < D, the result learly holds for k = D.Step 1: We start assuming that k � 12(D�1). Let x1 and x2 be two nodes suh that dG(x1; x2) > k,and let H be any shortest path onneting them. If V (H) is a k-dominating then we are done: His onneted and jV (H)j � D. Otherwise, let us show that G has a 3-gon. Let x3 62 �k(H), and letA (resp. B) be a shortest path between x3 and x1 (resp. between x3 and x2). A and B are hosensuh that A [H [B indues at most two regions of R2. This an be done by making that for everyt 2 A \ B, A[x3t℄ = B[x3t℄, and for every t0 2 A \ H (resp. t0 2 B \ H), A[x1t0℄ = H[x1t0℄ (resp.A[x2t0℄ = H[x2t0℄). Assigning Q1 = H, Q2 = B, and Q3 = A, and beause x3 =2 �k(Q1), we hek thatQ1 [Q2 [Q3 is a 3-gon of G. We an go to Step 2.Step 2: G has a 3-gon, say H.If V (H) is a k-dominating set, then we are done: H is onneted and jV (H)j � 3D. Otherwise, letw =2 �k(H). By Lemma 5, G has a (3� i+ 2)-gon and a (i+ 2)-gon. Sine 1 � i < 3, G has a 4-gon,and we an go to Step 3.Step 3: G has a 4-gon, say H.If V (H) is a k-dominating set, then we are done: H is onneted and jV (H)j � 4D. Let m =jV (G) n �k(H)j be the number of nodes not overed by V (H), m > 0. Let w =2 �k(H). Assumethat H is de�ned by the nodes (x1; : : : ; x4) and the shortest paths (Q1; : : : ; Q4). By Lemma 5, letA be the shortest path between w and x4 that is wholly ontained in reg(w;H) [ H, and let B bethe seond shortest path between w and xi, i < 4, that is wholly ontained in reg(w;H) [ H. LetH1 = B [Qi [ � � � [Q3 [A be the (6� i)-gon and let H2 = B [Qi�1 [ � � � [Q4 [A be the (i+2)-gon.H1 and H2 are 3, 4, or 5-gon.Let H 0 = H1 [ H2. If V (H 0) is a k-dominating set, then we are done: H 0 is onneted andjV (H 0)j � 6D � 1. Let m0 = jV (G) n �k(H 0)j, m0 > 0, and let w0 =2 �k(H 0). Note that m0 � m � 1beause V (H 0) overs �k(H) and also w (V (H) � V (H 0)). H1 and H2 de�nes at most three regions:reg(w;H), and reg(w;H) that is split by H2 in two sub-regions: R1 = reg(z;H2) n (reg(w;H) [ H)and R2 = reg(z;H2), where z 2 V (H1) n V (H2) (suh a node exists). See Fig. 3. On this piture,i = 2, H1 is drawn with bold edges, and H2 is obtained by following the path w; x2; x3; x4; w. Notethat on Fig. 3 two inident paths (like A and B) may be partially merged. The proof anyway is notbased on this partiular example.By Corollary 2, and onsideringH, w0 =2 reg(w;H), sine w and w0 must belong to the same region.So, assume that w0 2 Rj, for j = 1 or 2. Note that Rj = reg(w0;Hj).Case 1: Hj is a 3-gon or a 4-gon.In this ase, we prove that �k(Hj) = �k(H 0). Clearly, �k(Hj) � �k(H 0). By Corollary 2 Hj overs(and thus H 0 as well sine Hj � H 0) all the points of reg(w0;Hj). Assume there is w00 2 Rj suhthat w00 2 �k(H 0) but w00 =2 �k(Hj). This implies that there exists u 2 V (H 0) n V (Hj) suh thatw00 2 �k(u). Any shortest path from u to w00 must interset Hj in a node v beause Hj is a separator.Thus w00 2 �k(v), proving that w00 2 �k(Hj): a ontradition. Thus �k(Hj) = �k(H 0), and thus thenumber of nodes unovered by Hj is m0 � m� 1. Depending on whether Hj is a 3-gon or a 4-gon wean go to Step 2 or Step 4, and by indution the number of unovered nodes will derease up to 0.Case 2: Hj is a 5-gon.Note that in this ase the shortest path B is between w and x1 or x3, otherwise Hj would be a 3-gonor a 4-gon. W.l.o.g. assume B is between w and x1 (the other ase is symmetri by exhanging
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AFigure 3: A node w0 62 �k(H 0) has to belong to R1 or R2.node names x1 and x3). Assume there is a path B0 between w and x2 that is wholly ontains inreg(w;H) [H. Then, we an remove the path B onstruted while applying Lemma 5, and renameB0 into B. Then the resulting gons H1 and H2 when new simpli�ed paths A and B are onsideredonsists of 4-gons, and we an onlude by Case 1. Similarly, if there is a path A0 between w and x3that is wholly ontains in reg(w;H) [ H, then we an remove path A and rename A0 into A. Theresulting 4-gons resulting when onsidering new simpli�ed paths A and B, allow to go again to Case1. We are left when all shortest paths from w to x2 and from w to x3 are not wholly ontained inreg(w;H) [H.Let X be a shortest from w to x2, and let Y be a shortest from w to x3 (W.l.o.g. we assume thatX and Y are simpli�ed on H). Thus X and Y are not wholly ontained in reg(w;H) [ H. So, Xmust interset Q3 or Q4, and Y must interset Q1 or Q4. Let u be the farest node from w suh thatu 2 X \ (Q3 [Q4), and let v be the farest node from w suh that v 2 Y \ (Q1 [Q4).Case 2.1: u =2 Q4 or v =2 Q4.Similarly to the proof of Lemma 5, X and Y intersets � 2 reg(w;H). Assume u =2 Q4. Then, X[wu℄is wholly ontained in reg(w;H) [ H and intersets Q3 leading to x3. Thus X[wu℄ [ Q3[ux3℄ is ashortest path wholly ontained in reg(w;H) [H: a ontradition with the de�nition of Y . The asev =2 Q4 is symmetri: the path Y [wv℄ [Q1[vx2℄ is a shortest path wholly ontained in reg(w;H) [H:a ontradition with the de�nition of X. Thus Case 2.1 is not possible.Case 2.2: u; v 2 Q4.Then we are left with a on�guration similar to the one depited on Fig. 4.
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Figure 4: The �nal on�guration.We now assume that k > 57D � 1. Let a = dG(x1; u), b = dG(v; x4), and  = dG(u; v). W.l.o.g. weassume that a � b. Note that sine a +  + b � D, we have a � 12(D � ). Note also that we havedG(u; x2) � D � k � 1 and dG(v; x3) � D � k � 1 beause w =2 �k(u) and w =2 �k(v).



C. Gavoille, D. Peleg, A. Raspaud and E. Sopena 9If  � 17D, then dG(x1; x2) � a+ dG(u; x2) � 12(D � ) +D � k � 1 (1)< 12 �D � 17D�+D � 57D + 1� 1 = 57D : (2)It follows that dG(x1; x2) < 57D < k+1: a ontradition sineH is a 4-gon, foring to have dG(x1; x2) >k. If  � 17D, thendG(x2; x3) � dG(x2; u) + + dG(v; x3) � 2D � 2k � 2 + 17D (3)< 2D � 2�57D � 1�� 2 + 17D = 57D : (4)It follows that dG(x2; x3) < 57D < k+1: a ontradition sineH is a 4-gon, foring to have dG(x2; x3) >k. Hene the Case 2.2 is impossible. Therefore, we have proved Theorem 10. 22.5 Conjeture and Worst-CaseNote that Theorem 10 allows to show:Corollary 11 For planar graph G of diameter D, and every k � 12D,� If D = 2, k(G) � 3 (tight);� If D = 3, k(G) � 10;� If D = 4, k(G) � 23;� If D = 7, k(G) � 41.Proof. As already mentioned in the introdution, the two �rst results ome from [7℄. Note that thereis a planar graph G of diameter 2 with 1(G) = 3. Atually, the ase D = 3 omes from the fat(proved in [7℄) that 1(G) � 10.Theorem 10 gives k(G) � 6D � 1 for every k > 57D� 1. For D = 4, k > 57D� 1 = 137 . Thus that2(G) � 23.Now, onsider D = 7. Remark that in the proof of Theorem 10, either the Case 2.2 does not our,and the result is proved for k � 12 (D � 1) = 3 (thus proving that 3(G) � 6D � 1 = 41), or the Case2.2 does our. In the latter ase, Eq. (1) and (3) imply that dG(x1; x2) or dG(x2; x3) < 57D, that isdG(x1; x2) or dG(x2; x3) � 4. Sine dG(x1; x2) and dG(x2; x3) must be > k, we get a ontraditionfrom k = 4. Thus 4(G) � 6D � 1 = 41 as required. 2We leave open the problem to bound k(G) for k � 12D, and we onjeture:Conjeture 12 For every planar graph G of diameter D, and for every k � 12D, there exists aonstant 0 suh that k(G) � 0.Here we show that 0 � 4.Theorem 13 For every even diameter D � 8, there exists a planar graph G of diameter D, suh thatfor D=2(G) = 4.



10 k-Dominating sets in planar graphs with appliationsProof. Let D = 2t, t � 4. The graph denoted by Gt is omposed of: (1) two nodes A and B alledpoles; (2) 2t disjoint paths P1; : : : ; P2t alled meridians, eah of length 2t, joining A to B; (3) a yleC of length 2t, alled equator, joining the middle nodes of eah meridians and with exatly one nodeof degree two between two onseutive meridians. (See Fig. 5 for t = 4).We reall that for a yle C2t of length 2t, D=2(C2t) = 2. Hene taking the nodes A,B, it is learthat all the nodes of the meridians are overed, but the 2-nodes of the equator are note overed. Toomplete, we have to take two opposite nodes u; v of the equator. fA;B; u; vg is then aD=2-dominatingset of Gt. It follows that D=2(Gt) � 4.Now if we take two opposite nodes di�erent from A and B belonging to two distint meridians wewill not over all the nodes of the 2t meridians. In this ase we will need more than 4 nodes (t � 4)to over all the nodes of the meridians. This ompletes the proof.

Figure 5: The planar graph embedded on a sphere for D = 8 suh that 4(G) = 4. 23 Appliation to Routing with Compat TablesA point-to-point ommuniation network is modeled as a graph G = (V;E), where the set of nodesrepresent the proessors of the network and every pair of two opposite ars represents a bidiretionalommuniation link. A routing sheme R is a distributed algorithm whose role is to deliver messagesbetween nodes of the network. The routing sheme onsists of ertain distributed data strutures inthe network, and a delivery protool, whih an be invoked in any node u with two parameters: arouting label L(v) of the destination node v, and the message's information �eld. The message isdelivered to v via a sequene of transmissions determined uniquely by the distributed data struture,i.e., at eah intermediate node along the route, the routing sheme deides the next neighbor to whihthe message should be forwarded. The length of the route traversed by a message from u to v in thegraph G aording to the routing sheme R is denoted by �R(u; v). The dilation of a routing shemeR is the maximal route length of a path traversed by a message, formally maxu6=vf�R(u; v)g.An interval routing sheme R on G is a routing sheme onsisting of a pair (L;I), generatedin the preproessing step, where L is a node-labeling, L : V ! f1; : : : ; ng, and I is an ar-labeling,I : E ! 2L(V ), that satisfy the following ondition. For any node u, the olletion of sets that labelall the outgoing ars of u forms a partition of the name range (possibly exluding u itself). Formally,for every u 2 V (hereafter Eu denotes the set of ars inident to u),1. Se2Eu I(e) [ L(u) = f1; : : : ; ng,2. I(e1) \ I(e2) = ; for every two distint ars e1; e2 2 Eu.



C. Gavoille, D. Peleg, A. Raspaud and E. Sopena 11The delivery protool is de�ned as follows. Given a destination node v, set the �rst header to beh = L(v). Also, for every node u, reeiving a message with header h, �rst hek if L(u) = h, and endthe routing protool if equality (the message is arrived at destination). If not, then send the messageand the same header h on the output port orresponding to the unique ar (u;w) suh that h 2 I(u; v).Namely, the message is sent on the ar whih is labeled by a set that ontains the destination label.Note that any interval routing sheme an be implemented by lassial routing tables. The maindi�erene is in the oding of the table.Given an integer n and a subset I � f1; : : : ; ng, de�ne the ompatness of I w.r.t. n, denotedn(I), as the smallest integer k suh that I an be represented by the union of k intervals [a; b℄ ofonseutive integers from f1; : : : ; ng, with n and 1 being onsidered as onseutive (ylially). Theompatness of an interval routing sheme R = (L;I) on G is the maximum, over all ars e 2 E, ofthe ompatness n(I(e)) of the set I(e) labeling e. The total ompatness is the sum Pe2E n(I(e)).Beause interval routing shemes an be implemented by routing tables, we deal with the om-patness of a routing table. Intuitively, smaller ompatness and degrees imply smaller routing tables.The interval routing strategy presented in [8℄, based on routing on a minimum spanning tree, hasompatness 1 (for every graph of diameter D) and dilation at most 2D. It is known that there areworst-ase graphs for whih every routing table of ompatness 1 has dilation at least 2D � 3 [9℄. Itis also known that every graph has routing table of ompatness pn lnn+O(1) with dilation at mostd1:5De [5℄, whereas there are worst-ase graphs for whih every routing table of ompatness k hasdilation at least b1:5D � 1 for every k = 
( nD log(n=D) ) [2℄. Other results an be found on the reentsurvey [3℄.Here we show a trade-o� between dilation and ompatness.Theorem 14 Let G be a graph of diameter D with n nodes and m edges. Let k � 0, and let t = k(G).Then, G has a routing table with dilation at most D + k, ompatness at most 12 t + 1, and totalompatness at most tn + 2m. Moreover, if t= log n ! +1, then the ompatness an be redued to14 t+ o(t).Proof. Let fx1; : : : ; xtg be a k-dominating set in G of minimal ardinality t = k(G). Construt apartition of the graph nodes into t pairwise disjoint onneted regions Ri � �k(xi) around eah xi,suh that eah region Ri onsists of nodes losest to xi (breaking tie arbitrarily) and the union of theregions overs all the nodes. Obviously the radius of eah region is at most k.For every xi, onstrut a shortest path spanning tree Ti for G. Let T̂i be the restrition of Ti tothe region Ri, i.e., T̂i = Ti \Ri.Partition the range of integers [1; n℄ into t ontiguous intervals Ii of size jRij, for i 2 f1; : : : ; tg.For eah region Ri, assign eah node v 2 Ri a distint label L(v) from the range Ii, in DFS order,starting at xi. Use these labels to de�ne an interval routing sheme on T̂i as in [8℄. The ompatnessis 2 (instead of 1) beause a yli interval in Ii has to be represented by two sub-intervals of Ii. Forevery two nodes u;w 2 Ri, this sheme yields a shortest route on T̂i (albeit perhaps not shortest inG). In addition, for every 1 � i � t and for every node w =2 Ri, add the interval Ii to the ar onnetingw to its parent in Ti.As the regions are disjoint, it is easy to verify that for every node v, all the intervals assigned tothe ars of v are pairwise disjoint. Overall, at most 12 t+1 intervals were assigned to eah ar beauseevery subset of at most t intervals has no more than 12 t non ontiguous intervals (one more sub-intervalis required for the own region of v). In fat, exatly t+deg(v) intervals altogether (deg(v)+1 intervalsfor Ri and t � 1 for all the others) are assigned to the ars of a node v of degree deg(v). Thus thetotal ompatness is tn+ 2m.Observe that the resulting route between nodes belonging to the same region has length at most2k � D+k. As for routing from a node u 2 Ri to a node w 2 Rj , j 6= i, note that the �rst segment ofthe route, until reahing Rj, proeeds along a shortest path from u to xj , and one entering Rj, the



12 k-Dominating sets in planar graphs with appliationsremaining segment of the route follows a shortest path. Hene the total length of the route annotexeed dG(u; xj) + dG(xj ; w) � D + k.Atually, the bound on the ompatness an be slightly redued to 14 t + o(t), for t large enough,using the result of [4℄. This result shows that, for every t, there exists a permutation � of f1; : : : ; tgsuh that the ompatness of every set F of a family F of subsets of f1; : : : ; tg, with jFj < exp(t=2)=t,satis�es: t(�(F )) < 14 t+ 14q2t ln(jFjn)where �(F ) denotes the set f�(x) j x 2 Fg. Let I(e) be the set of labels assigned to ar e bythe previous interval routing sheme. Set F = fF (e) j e 2 E(G)g, where F (e) = fi j Ii � I(e)gorresponds to the set of region's indies ontained in I(e). Note that the range of labels of eahregion is wholly ontained in I(e) (exepted for v's region). Sine Stj=1 Ij = [1; n℄, we have thatn(I(e)) � t(F (e)) +1. Observe that the relative order of the ranges an be hosen arbitrary: all thelabels of some Ij an be hosen larger or smaller than all the label of any other range. So, indies ofIj 's ranges an be permuted by some permutation � of [1; t℄ in order to derease t(�(F (e))). By [4℄,if jFj < exp(o(t))=t, there exists �0 suh that t(�0(F (e))) < 14 t+ o(t), for every F (e) 2 F . Note thatjFj = 2m. So, the ondition jFj < exp(o(t))=t an be replaed by t= log n! +1, as m = O(n2). 2This result an be seen as a generalization of [5℄, originally proved for k = l12Dm. In this paperit was showed that every graph G satis�es k(G) � dpn lnn e, and the ompatness they derivedwas dpn lnn e + 1. Thus Theorem 14 improves by an asymptoti fator 4 the ompatness boundobtained by [5℄. The same kind of onstrution has been also impliitly used in [10℄. Preisely, it isshown in [10℄ that every graph G satis�es k(G) � pn for k � 23D. Thus, every graph has routingtable of ompatness at 14pn+ o(pn) for dilation l53Dm. (The original ompatness result of [10℄ wasdpn e+ 1.)Combining Theorem 9 and Theorem 14, we obtain:Corollary 15 Let � > 0 be an arbitrary onstant. Every planar graph has a routing table with dilationat most l(127 + �)Dm, and onstant ompatness.Note that Conjeture 12 for 0 = 4 implies that every planar graphs of diameter D enjoys a routingtable with dilation at most d1:5De and ompatness at most 3.Referenes[1℄ Chepoi, V. and Vaxes, Y., On overing bridged plane triangulations with balls, Preprint (2000).[2℄ Gavoille, C., On the Dilation of Interval Routing, The Computer Journal 43-1 (2000), 1{7.[3℄ Gavoille, C., A Survey On Interval Routing, Theoret. Computer Si. 245-2 (2000), 217{253.[4℄ Gavoille, C. and Peleg, D., The Compatness of Interval Routing, SIAM J. Disrete Math. 12-4(1999), 459{473.[5℄ Kr�a�lovi�, R., Ru�zi�ka, P. and �Stefankovi�, D., The Complexity of Shortest Path and DilationBounded Interval Routing, Theoret. Computer Si. 234 (2000), 85{107.[6℄ Lov�asz, L., On the ratio of optimal integral and frational overs, Disrete Math. 13 (1975),383{390.[7℄ MaGillivray, G. and Sey�arth, K., Domination Numbers of Planar Graphs, J. Graph Theory22-3 (1996), 213{229.
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