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eAbstra
t. A subset of nodes S in a graph G is 
alled k-dominating if, for every node u of the graph, thedistan
e from u to S is at most k. We 
onsider the parameter 
k(G) de�ned as the smallest integer r su
hthat G has a k-dominating set of 
ardinality r. For planar graphs, we show that for every � > 0 and for everyk � ( 57 + �)D, 
k(G) = O(1=�). For several 
lasses of planar graphs of diameter D, we show that 
k(G) isbounded by a 
onstant for k � 12D. We 
onje
ture that the same result holds for every planar graph. Thisproblem is motivated by the design of routing s
hemes with 
ompa
t data stru
tures.Keywords. Dominating sets, Planar graphs, Compa
t routing tables.1 Introdu
tionLet G be a graph. We denote by dG(u; v) the distan
e in G from u to v, and by �k(u) the ball ofradius k 
entered at u, i.e., �k(u) = fv 2 V (G) j dG(u; v) � kg. We extend this notation to everysubset S � V (G), with �k(S) = Su2S �k(u). We say that a subset of nodes S � V (G) is k-dominatingset (or, S k-dominates G, or S 
overs G) if �k(S) = V (G). Let 
k(G) denote the 
ardinality of thesmallest k-dominating set of G. Our goal is to bound 
k(G) for various planar graphs G and valuesof k.To illustrate the properties of the parameter 
k(G), let us 
onsider a tree T of diameter D. It is
lear that if k � 12D, then 
k(T ) = 1. It suÆ
es to 
onsider the 
enter of T . On the other hand, ifk < 12D then there exists some n-node tree T0 of diameter D for whi
h 
k(T0) � 2(n � 1)=D. Forinstan
e, 
onsider T0 
omposed of a star K1;p with ea
h edge subdivided into q � 1 nodes, wheren = pq + 1, D = 2q and 
q�1(T0) = p. Every two leaves of this tree are at distan
e 2q, thus p nodesof T0 are required to (q � 1)-dominate all the leaves.More generally, for k � 12D, every n-node graph G of diameter D satis�es 
k(G) < pn(1 + lnn).To see this, we use a dual 
hara
terization of a k-dominating set as a set S whi
h hits the 
olle
tionf�k(u) j u 2 V (G)g, i.e., su
h that S \ �k(u) 6= ; for every u 2 V (G). Now, note that for k � 12D,�k(x) \ �k(y) 6= ; for any two nodes x and y. Thus every set �k(x) is a k-dominating set for G.Hen
e, either there exists a node x su
h that j�k(x)j < �, where � = pn(1 + lnn), and we are done,or j�k(x)j � � for every node x. In the latter 
ase, the 
laim follows by a result of Lov�asz [6℄ about
over sets, whi
h states that there exists a k-dominating set of G of size � < n(1+lnn)=minx j�k(x)j �pn(1 + lnn).For planar graphs, it is known that the size of a dominating set (i.e., 1-dominating set) is boundedby 3 if D = 2, and by 10 if D = 3, 
f. [7℄. Thus, for k � 12D, and every planar graph G, 
k(G) � 3 ifD = 2, and 
k(G) � 10 if D = 3. 1



2 k-Dominating sets in planar graphs with appli
ationsA re
ent result 
on
erns planar triangulations. A triangulation of the plane is a planar graph withan embedding on the plane su
h that ea
h fa
e, ex
ept maybe the outer-fa
e, is a triangle. In [1℄ itis shown that every planar triangulation G in whi
h every internal node (i.e., that does not belong tothe outer fa
e) has degree at least 6, satis�es 
k(G) � 2, again for k � 12D.Se
tion 2 presents our main results. For planar graphs, we show that for every � > 0 and for everyk � (57 + �)D, 
k(G) = O(1=�). For outerplanar graphs of diameter D, we show that 
k(G) � 2 fork ge12D. We 
onje
ture that 
k(G) is bounded by a 
onstant for every planar graph of diameter Dfor k � 12D.The motivation for studying this parameter stems from the design of routing s
hemes with 
ompa
tdata stru
tures. In parti
ular, it is shown in Se
tion 3 that for every graph G of diameter D and everyk � 0, G has an interval routing s
heme [8, 11℄ with dilation (i.e., the length of the longest route) atmost D+ k and 
ompa
tness (i.e., the number of intervals by ar
) at most 12
k(G) + 1. Moreover, the
ompa
tness upper bound 
an be redu
ed to 14
k(G) + o(
k(G)), if 
k(G)= log n ! +1. This resultimproves (by a multipli
ative fa
tor) and generalizes 
ompa
tness vs. dilation trade-o�s of [5℄ andof [10℄. Our result also implies that for every 
onstant � > 0, every planar graph of diameter D hasan interval routing s
heme with dilation at most l(127 + �)Dm and 
onstant 
ompa
tness.2 Plane Graphs2.1 PreliminariesHereafter, we assume that G is of diameter D. The following basi
 property is important for theremaining of the paper.Proposition 1 Let S � V (G), let k � 12 (D � 1), and let u; v 62 �k(S). Then, every shortest pathbetween u and v does not 
ross any node of S.Proof. Assume that there is some shortest path from u to v that 
ontains a node w 2 S. Then,dG(u; v) = dG(u;w) + dG(w; v). Sin
e u; v 62 �k(S), u; v 62 �k(w), thus dG(u;w) � k + 1 anddG(v; w) � k + 1 that implies that dG(u; v) � 2k + 2 � D + 1, a 
ontradi
tion. 2Let (E ; d) be a metri
 spa
e (i.e., with d satisfying the triangle inequality). A subset S � E is
onne
ted if there exists a path between any two pair of points of S. A separator of a spa
e (E ; d) is asubset S � E su
h that E n S is 
omposed of two or more 
onne
ted 
omponents. A separator in thegraph G is a separator of the spa
e (V (G); dG).Property 1 as an immediate 
orollary, keeping in mind that every path joining two nodes of di�erent
onne
ted 
omponents in G n S, for some separator S, has to 
ross S.Corollary 2 Let k � 12(D � 1), let S be a separator of G, and let U = V (G) n �k(S). Then, thereexists a 
onne
ted 
omponent C of G n S su
h that U � V (C).2.2 Outerplanar GraphsRe
all that a graph H is a minor of a graph G if H 
an be obtained from G by a sequen
e of zero ormore node deletions, edge deletions or edge 
ontra
tions. Let us denote by Kp;q the 
omplete bipartitegraph with p nodes in one partition and q nodes in the other one.We prove the following:Theorem 3 If G is a graph with diameter D su
h that G 
ontains no K2;t+1 as a minor then 
k(G) �t, for every k � 12D.



C. Gavoille, D. Peleg, A. Raspaud and E. Sopena 3Proof. Let u and v be any two nodes in G with dG(u; v) = D. Let Vi = fx 2 V (G) j dG(u; x) = igfor every i, 0 � i � D. We 
all the level of any node x, denoted by l(x), the (unique) subs
ript i su
hthat x 2 Vi. Let M be the set of nodes x 2 Vk su
h that there exists a path xx1x2 : : : x`v from x to vsatisfying l(xi) > k for every i, 1 � i � `.We �rst 
laim that the set M has 
ardinality at most t. Indeed, if M 
ontains t+1 distin
t nodesthen G 
ontains K2;t+1 as a minor, a 
ontradi
tion. Consider the graph H 
omposed of the t+1 nodesand the 2(t+ 1) paths linking M to u; v, delete the edges and nodes of G nH. Then it is easy to seethat by 
ontra
tions we will obtain a K2;t+1.Let now P = uu1u2 : : : upv be any path linking u and v and denote by q the largest subs
ript su
hthat l(uq) = k. Clearly, l(ui) > k for every i, q < i � p, and thus uq 2 M . Hen
e every path linkingu and v 
rosses the set M whi
h, therefore, is a separator in G. (In parti
ular, u and v belong todi�erent 
onne
ted 
omponents of G nM).Suppose that there exists a node x in G su
h that dG(x;M) > k. As observed above, either u andx, or v and x do not belong to the same 
onne
ted 
omponent of G nM . In the former 
ase, we getdG(u; x) � dG(u;M) + dG(x;M) > 2k � Dand in the latter 
ase, dG(v; x) � dG(v;M) + dG(x;M) > D � k + k = D :Therefore, either dG(u; x) or dG(v; x) is stri
tly greater than D, a 
ontradi
tion.We thus get that M k-dominates G, whi
h 
on
ludes the proof. 2Sin
e every outerplanar graph does not 
ontain K2;3 as a minor, we get in parti
ular the following:Corollary 4 If G is an outerplanar graph of diameter D then 
k(G) � 2, for every k � 12D.2.3 Planar GraphsWe assume from now that G is a plane graph, that is a planar graph with an embedding in R2. Morepre
isely, the nodes are points of R2 and edges are simple 
urves that 
an 
ross or meet on the nodesonly. A 
onne
ted subset of R2 is 
alled a region of the plane. Given a subgraph H of G and a pointw =2 H (i.e., the point w 2 R2 does not belong to an edge or a node of H), we denote by reg(w;H) theunique region of R2 nH 
ontaining w. Note that if H is a tree, R2 nH 
onsists of one region only. IfR2 nH is 
omposed of exa
tly two non-empty regions, we denote by reg(w;H) the other region su
hthat R2 = reg(w;H) [ reg(w;H) [H.Given an integer p � 3, a p-gon w.r.t. G and k is a subgraph H of G de�ned by a sequen
e(x1; : : : ; xp) of pairwise distin
t nodes, and a sequen
e (Q1; : : : ; Qp) of paths su
h that the four following
onditions hold:1. Qi is a shortest path from xi to x(i mod p)+1, for every i 2 f1; : : : ; pg;2. R2 nH is 
omposed of at most two non-empty regions;3. xp 62 �k(Q1 [ � � � [Qp�2);4. d(xi; x(i mod p)+1) > k, for every i 2 f1; : : : ; pg.Roughly speaking, a p-gon 
onsists of p shortest paths of length at least k + 1 possibly sharingsome edges. Fig. 1 represents a 4-gon H for a plane graph G of diameter D = 4 and with k = 2. Notethat the xi's may belong to di�erent regions indu
ed by H.Given a path P and two nodes of P , u and v, we denote by P [uv℄ the subpath of P between u andv.
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Figure 1: A plane graph G with a 4-gon H for k = 2 (bold edges).Let Q1; : : : ; Qp be a set of shortest paths, and, for ea
h i 2 f1; : : : ; pg, let (zi1; : : : ; ziti) be thesequen
e of nodes of P \Qi en
ountered in this order along a walk on P from u to v (possibly ti = 0if P \Qi = ;). The simpli�ed path of P on Q1 [ � � � [Qp is the path de�ne byS = P [uz11 ℄ [Q1[z11z1t1 ℄ [ P [z1t1z21 ℄ [ � � � [Qi[zi1ziti ℄ [ P [zitizi+11 ℄ [ � � � [Qp[zp1zptp ℄ [ P [zptpv℄ :Roughly speaking, S uses short
uts of P on Q1, then short
uts of P on Q2, and so on. Note that ifP is a shortest path, then S is also a shortest path between u and v. (If ti = 0 for all i, then S = P .)Fig. 2 shows the simpli�ed path S of P on Q1 [ Q2. Note that S is unique, but other short
uts arepossible: for instan
e Q1[uz12 ℄ [ P [z12z21 ℄ [Q2[z21v℄.
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1u=Figure 2: The simpli�ed path S of P on Q1 [Q2.For notation 
onvenien
es, we use �k(H) where H is a graph instead of �k(V (H)).The next lemma shows an important property of p-gons.Lemma 5 Let H be a p-gon of G with p � 4, and with k � 12(D � 1). Then, for every w =2 �k(H):1. there exists a shortest path A from w to xp wholly 
ontained in reg(w;H) [H;2. there exists a shortest path B from w to xi, i < p, wholly 
ontained in reg(w;H) [H.Moreover, A and B 
an be 
hosen su
h that the graph H1 = B [ (Qi [Qi+1 [ � � � [Qp�1)[A andthe graph H2 = B [ (Qi�1 [Qi�2 [ � � � [Qp)[A form respe
tively a (p� i+2)-gon and an (i+2)-gonof G.Proof. Note that to prove Lemma 5 it suÆ
es to 
onstru
t a shortest path A from w to xp, and ashortest path B from w to xi, i < p, that are wholly 
ontained in reg(w;H) [H. Indeed, to form thegons H1 and H2 we 
onsider the simpli�ed path S of B on A, and repla
e B by S. Then we 
he
kthat H1 and H2 indu
ed ea
h at most two regions of R2, and the four 
onditions of the de�nition ofp-gons follows.W.l.o.g. we assume that R2 nH is 
omposed of two non-empty regions. Indeed, if reg(w;H) = ;,then every shortest from w to xi is wholly 
ontains in reg(w;H) [H = R2.



C. Gavoille, D. Peleg, A. Raspaud and E. Sopena 5Let P be a shortest path from w to xp. Let u be the 
losest node of H from w, and assume thatu 2 Q`. If ` 2 fp; p� 1g, then A = P [wx℄ [Q`[uxp℄ � reg(w;H) [H, and we are done for A. So, inorder to prove Point 1 assume that ` =2 fp; p� 1g. Consider S = Sp�2i=1 Qi. Note that Q` is 
ontainedin S. Now, w =2 �k(S) and xp =2 �k(S) (Condition 3 of the de�nition). By Proposition 1, P betweenw and xp 
annot interse
t S: a 
ontradi
tion sin
e 1 � ` � p� 2. Thus the path A = P exists, andthis 
ompletes the proof of Point 1.To prove Point 2, we pro
eed by indu
tion on p. We need the following de�nition: a p-gon H issaid weak the 
onditions 3 and 4 does not ne
essary hold. The extremity of a p-gon (weak or not) isthe point xp. For simpli
ity, a weak 3-gon is 
alled hereafter a triangle.Claim 6 Let T be a triangle de�ned by the nodes (x1; x2; x3) and the shortest paths (Q1; Q2; Q3).For every shortest path P between w =2 T and w0 2 reg(w; T ) [ T , the simpli�ed path S of P onQ1 [ Q2 [ Q3, is su
h that: either S � reg(w; T ) [ T , or S \ T 
ontains two nodes u; u0 su
h thatS[wu℄ � reg(w; T ) [ T , S[uu0℄ � reg(w; T ) [ T , and S[u0w0℄ � reg(w; T ) [ T . Moreover, if w0 = xi,then u 2 Q(i mod p)+1 and S[uu0℄ indu
es at most two regions of reg(w; T ).Proof. Let P be a shortest path between w and w0 simpli�ed on T = Q1[Q2[Q3. If P � reg(w; T )[T ,we are done with P . Assume that P interse
ts reg(w; T ), and let z 2 R2 be the 
losest point from wthat belongs to reg(w; T ). Let u be the node of T just before z from w. By 
onstru
tion, P [wu℄ �reg(w; T ) [ T is a shortest path. Similarly, de�ne z0 2 R2 as the 
losest point from w0 that belongsto reg(w; T ), and u0 the node of T just before z0 from w0. By 
onstru
tion, P [w0u0℄ � reg(w; T ) [ T isa shortest path. Sin
e P [uu0℄ is simpli�ed on T , then we 
an 
he
k that P [uu0℄ does not interse
t anypoint of reg(w; T ), hen
e P [uu0℄ � reg(w; T )[T . Now, assume that w0 = xi. If u 2 (Qi[Q(i�1) mod p),then P would be wholly 
ontained in reg(w; T )[T : a 
ontradi
tion. Thus u 2 Q(i mod p)+1. Moreover,if P [uu0℄ indu
es more than two regions of reg(w; T ), then P [uu0℄ is not simpli�ed on T . 2Claim 7 Let T be a triangle de�ned by the nodes (x1; x2; x3) and the shortest paths (Q1; Q2; Q3).Then, for every w =2 T , there exists a shortest path wholly 
ontained in reg(w; T ) [ T between w andx1, or between w and x2.Proof. Assume that no shortest paths between w to x1 or x2 is wholly 
ontained in reg(w; T ) [ T .For i 2 f1; 2g, let Pi = Pi[wui℄ [ Pi[uixi℄ be a shortest path between w and xi as des
ribed inClaim 6, i.e., su
h that Pi[wui℄ � reg(w; T ) [ T and Pi[uixi℄ � reg(w; T ) [ T . By assumption, P1and P2 are not wholly 
ontained in reg(w; T ) [ T . The paths P1[u1x1℄ and P2[u2x2℄ must interse
tin z 2 reg(w; T ) [ T . Thus the shortest paths P1[wz℄ and P2[wz℄ have the same length, and theshortest paths P1[u1z℄ [ P2[zx1℄ and Q2[u1x1℄ as well. Thus P1[wu1℄ [ Q2[u1x1℄ is a shortest pathwholly 
ontained in reg(w; T ) [ T : a 
ontradi
tion. 2The 
onstru
tion of the path B for a 3-gon H follows from Claim 7. So, let us prove Point 2 forp = 4. Let X be a shortest path between x1 and x3. Let u 2 X\ (Q1[Q4) be the farest node from x1.Consider Let z 2 R2 be the point of X just after u. Note that z =2 H. Let u0 2 X \ (Q1 [Q3) be thefarest node from x3. Note that the path X[u0u0℄ � reg(z;H). The path Q0 = X[x1u℄[X[uu0℄[X[u0x3℄is a shortest path between x1 and x3 that is wholly 
ontained in reg(z;H) [H.Consider the triangle T de�nes by the points (x1; x2; x3) and the shortest paths (Q1; Q2; Q0). ByClaim 7, there exists a shortest path P1 between w and x1 or x3 wholly 
ontained in reg(w; T ) [ T .W.l.o.g. assume that this path is between w and x1. (The other 
ase is symetri
 ex
hanging the roleof x1 and x3.) However, we have two 
ases to 
onsider.Case 1: Q0 is in reg(w;H) [H, i.e., reg(z;H) = reg(w;H).Observe that reg(w; T ) � reg(w;H). Thus P1 is also wholly 
ontained in reg(w;H)[H. We 
ompletethe proof setting B = P1.



6 k-Dominating sets in planar graphs with appli
ationsCase 2: Q0 is in reg(w;H) [H, i.e., reg(z;H) = reg(w;H).Consider the triangle T 0 de�nes by (x1; x3; x4). W.l.o.g. assume that P1 is simpli�ed on T 0. (Indeed,sin
e P1 � reg(w; T )[T , the simpli�ed path of P1 on T 0 is also wholly in reg(w; T )[T .) If P1 is wholly
ontained in reg(w;H) [H, then we are done setting B = P1. By Claim 6, there exists a 2 P1 su
hthat P1[wa℄ � reg(w;H) [H, and P1[ax1℄ � reg(w; T 0)[ T 0. Now 
onsider the triangle T 00 de�ned by(x2; x3; x1) that T by 
hanging its extremity. By Claim 7 there exists a shortest path between w andx2 of x3 wholly 
ontained in reg(w; T 00) [ T 00. W.l.o.g. we assume that the path is simpli�ed with H,and is not wholly 
ontained in reg(w;H) [H.Case 2.1: The path is between w and x2, denoted by P2.Let u; u0 be the two nodes de�ned by Claim 6 when applied between on P2 w.r.t. the triangle T 0.Assume u0 2 Q3, and 
onsider the 
losed 
urve C = P2[wu0℄ [Q3[u0a℄ [ P[aw℄. The path P2 
ontainssome points in reg(x2; C) [ C and some points in reg(x2; C) [ C, thus must interse
ts C in b. Notethat b =2 P2[wu0℄, sin
e P2 is a shortest path. Note also that b =2 Q3[u0a℄, sin
e P2 is simpli�ed withQ3. Thus P2 interse
ts P1 in �. Depending on whether u0 2 Q3[x4a℄ or not, the path P1[w�℄[P2[�x2℄or the path P1[wa℄ [ Q3[au0℄ [ P2[u0x2℄ is a shortest path between w and x2 wholly 
ontained inreg(w;H) [H. Remains the 
ase, u0 2 Q4. We have to 
onsider the shortest path P3 between w andx3, that is also assumed not wholly 
ontained in reg(w;H) [H, and simpli�ed on H. By Claim 6, letv be the node of T 0 when 
onsidering the triangle T 0 and the shortest path P3. The path P3 and P2must interse
ts, and let � the 
losest interse
tion from w. Depending on whether v 2 Q4[x4u℄ or not,the path P3[wv℄ [Q4[vu℄ [ P2[ux2℄ or the path P3[w�℄ [ P2[�x2℄ is a shortest path between w and x2wholly 
ontained in reg(w;H) [H.Case 2.2: The path is between w and x3, denoted by P3.The 
ase is similar.Therefore, in all the 
ases, we have 
onstru
ted a shortest path between w and some xi, i < p,that 
ompletes the proof. 2Before proving the main result of the paper, we will also need the following easy lemma.Lemma 8 Let Q be a path of q nodes. For every � � 0, 
�(Q) = dq=(2�+ 1)e.Proof. Let A be �-dominating set of Q of minimal 
ardinatily. Sin
e a node of A dominates at most2�+ 1 nodes, we have 
�(Q) � q=(2�+1). On the other hand; it is possible to split the q nodes of Qinto dq=(2�+ 1)e segments of 2�+ 1 
onse
utive nodes, the last segment may have less nodes. 22.4 Main ResultThe main result we want to prove is:Theorem 9 For every planar graph G of diameter D, and for every k � (57 + �)D, for every � > 0,
k(G) < 3=�+ 6.A
tually, Theorem 9 derives from the following important result:Theorem 10 For every planar graph G of diameter D, and for every k > 57D � 1, there exists a
onne
ted subgraph H of G su
h that V (H) is a k-dominating set of G, H is 
omposed of at most 6shortest paths of G, and su
h that jV (H)j � 6D � 1.The proof of Theorem 10 will be given after the short proof of Theorem 9. Indeed, using Theo-rem 10, it suÆ
es to 
onstru
t a d�De-dominating set for H of size O(1=�).Proof. The 
onne
ted subgraph H 
onstru
ted in Theorem 10 is a family of at most 6 shortest paths,ea
h one of length at most D, and is a k-dominating set for G for k > 57D�1. Choosing a �-dominatingfor ea
h path, we obtain a (k + �)-dominating set for G, say B. By Lemma 8, jBj � 6 dD=(2� + 1)e.



C. Gavoille, D. Peleg, A. Raspaud and E. Sopena 7Let us set � = d�De. B is therefore a k0-dominating set forG for every k0 � l57Dm+d�De � (57+�)D.We have for � > 0,jBj � 6 � D2�+ 1� < 6D2 d�De+ 1 + 6 < 6D2�D + 1 + 6 < 3� + 6that 
ompletes the proof of Theorem 9. 2Proof of Theorem 10. Here we present a 
onstru
tive proof, implying a polynomial algorithm for
onstru
tion of su
h k-dominating sets. The 
onstru
tion is 
omposed of three steps. W.l.o.g. weassume hereafter that k < D, the result 
learly holds for k = D.Step 1: We start assuming that k � 12(D�1). Let x1 and x2 be two nodes su
h that dG(x1; x2) > k,and let H be any shortest path 
onne
ting them. If V (H) is a k-dominating then we are done: His 
onne
ted and jV (H)j � D. Otherwise, let us show that G has a 3-gon. Let x3 62 �k(H), and letA (resp. B) be a shortest path between x3 and x1 (resp. between x3 and x2). A and B are 
hosensu
h that A [H [B indu
es at most two regions of R2. This 
an be done by making that for everyt 2 A \ B, A[x3t℄ = B[x3t℄, and for every t0 2 A \ H (resp. t0 2 B \ H), A[x1t0℄ = H[x1t0℄ (resp.A[x2t0℄ = H[x2t0℄). Assigning Q1 = H, Q2 = B, and Q3 = A, and be
ause x3 =2 �k(Q1), we 
he
k thatQ1 [Q2 [Q3 is a 3-gon of G. We 
an go to Step 2.Step 2: G has a 3-gon, say H.If V (H) is a k-dominating set, then we are done: H is 
onne
ted and jV (H)j � 3D. Otherwise, letw =2 �k(H). By Lemma 5, G has a (3� i+ 2)-gon and a (i+ 2)-gon. Sin
e 1 � i < 3, G has a 4-gon,and we 
an go to Step 3.Step 3: G has a 4-gon, say H.If V (H) is a k-dominating set, then we are done: H is 
onne
ted and jV (H)j � 4D. Let m =jV (G) n �k(H)j be the number of nodes not 
overed by V (H), m > 0. Let w =2 �k(H). Assumethat H is de�ned by the nodes (x1; : : : ; x4) and the shortest paths (Q1; : : : ; Q4). By Lemma 5, letA be the shortest path between w and x4 that is wholly 
ontained in reg(w;H) [ H, and let B bethe se
ond shortest path between w and xi, i < 4, that is wholly 
ontained in reg(w;H) [ H. LetH1 = B [Qi [ � � � [Q3 [A be the (6� i)-gon and let H2 = B [Qi�1 [ � � � [Q4 [A be the (i+2)-gon.H1 and H2 are 3, 4, or 5-gon.Let H 0 = H1 [ H2. If V (H 0) is a k-dominating set, then we are done: H 0 is 
onne
ted andjV (H 0)j � 6D � 1. Let m0 = jV (G) n �k(H 0)j, m0 > 0, and let w0 =2 �k(H 0). Note that m0 � m � 1be
ause V (H 0) 
overs �k(H) and also w (V (H) � V (H 0)). H1 and H2 de�nes at most three regions:reg(w;H), and reg(w;H) that is split by H2 in two sub-regions: R1 = reg(z;H2) n (reg(w;H) [ H)and R2 = reg(z;H2), where z 2 V (H1) n V (H2) (su
h a node exists). See Fig. 3. On this pi
ture,i = 2, H1 is drawn with bold edges, and H2 is obtained by following the path w; x2; x3; x4; w. Notethat on Fig. 3 two in
ident paths (like A and B) may be partially merged. The proof anyway is notbased on this parti
ular example.By Corollary 2, and 
onsideringH, w0 =2 reg(w;H), sin
e w and w0 must belong to the same region.So, assume that w0 2 Rj, for j = 1 or 2. Note that Rj = reg(w0;Hj).Case 1: Hj is a 3-gon or a 4-gon.In this 
ase, we prove that �k(Hj) = �k(H 0). Clearly, �k(Hj) � �k(H 0). By Corollary 2 Hj 
overs(and thus H 0 as well sin
e Hj � H 0) all the points of reg(w0;Hj). Assume there is w00 2 Rj su
hthat w00 2 �k(H 0) but w00 =2 �k(Hj). This implies that there exists u 2 V (H 0) n V (Hj) su
h thatw00 2 �k(u). Any shortest path from u to w00 must interse
t Hj in a node v be
ause Hj is a separator.Thus w00 2 �k(v), proving that w00 2 �k(Hj): a 
ontradi
tion. Thus �k(Hj) = �k(H 0), and thus thenumber of nodes un
overed by Hj is m0 � m� 1. Depending on whether Hj is a 3-gon or a 4-gon we
an go to Step 2 or Step 4, and by indu
tion the number of un
overed nodes will de
rease up to 0.Case 2: Hj is a 5-gon.Note that in this 
ase the shortest path B is between w and x1 or x3, otherwise Hj would be a 3-gonor a 4-gon. W.l.o.g. assume B is between w and x1 (the other 
ase is symmetri
 by ex
hanging
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x1

x2

x4

x3

w,Hreg(       )H1

R2

w

z

R1

H

B
AFigure 3: A node w0 62 �k(H 0) has to belong to R1 or R2.node names x1 and x3). Assume there is a path B0 between w and x2 that is wholly 
ontains inreg(w;H) [H. Then, we 
an remove the path B 
onstru
ted while applying Lemma 5, and renameB0 into B. Then the resulting gons H1 and H2 when new simpli�ed paths A and B are 
onsidered
onsists of 4-gons, and we 
an 
on
lude by Case 1. Similarly, if there is a path A0 between w and x3that is wholly 
ontains in reg(w;H) [ H, then we 
an remove path A and rename A0 into A. Theresulting 4-gons resulting when 
onsidering new simpli�ed paths A and B, allow to go again to Case1. We are left when all shortest paths from w to x2 and from w to x3 are not wholly 
ontained inreg(w;H) [H.Let X be a shortest from w to x2, and let Y be a shortest from w to x3 (W.l.o.g. we assume thatX and Y are simpli�ed on H). Thus X and Y are not wholly 
ontained in reg(w;H) [ H. So, Xmust interse
t Q3 or Q4, and Y must interse
t Q1 or Q4. Let u be the farest node from w su
h thatu 2 X \ (Q3 [Q4), and let v be the farest node from w su
h that v 2 Y \ (Q1 [Q4).Case 2.1: u =2 Q4 or v =2 Q4.Similarly to the proof of Lemma 5, X and Y interse
ts � 2 reg(w;H). Assume u =2 Q4. Then, X[wu℄is wholly 
ontained in reg(w;H) [ H and interse
ts Q3 leading to x3. Thus X[wu℄ [ Q3[ux3℄ is ashortest path wholly 
ontained in reg(w;H) [H: a 
ontradi
tion with the de�nition of Y . The 
asev =2 Q4 is symmetri
: the path Y [wv℄ [Q1[vx2℄ is a shortest path wholly 
ontained in reg(w;H) [H:a 
ontradi
tion with the de�nition of X. Thus Case 2.1 is not possible.Case 2.2: u; v 2 Q4.Then we are left with a 
on�guration similar to the one depi
ted on Fig. 4.

x3

x4x1

x2

w

u v

a c b

Figure 4: The �nal 
on�guration.We now assume that k > 57D � 1. Let a = dG(x1; u), b = dG(v; x4), and 
 = dG(u; v). W.l.o.g. weassume that a � b. Note that sin
e a + 
 + b � D, we have a � 12(D � 
). Note also that we havedG(u; x2) � D � k � 1 and dG(v; x3) � D � k � 1 be
ause w =2 �k(u) and w =2 �k(v).
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 � 17D, then dG(x1; x2) � a+ dG(u; x2) � 12(D � 
) +D � k � 1 (1)< 12 �D � 17D�+D � 57D + 1� 1 = 57D : (2)It follows that dG(x1; x2) < 57D < k+1: a 
ontradi
tion sin
eH is a 4-gon, for
ing to have dG(x1; x2) >k. If 
 � 17D, thendG(x2; x3) � dG(x2; u) + 
+ dG(v; x3) � 2D � 2k � 2 + 17D (3)< 2D � 2�57D � 1�� 2 + 17D = 57D : (4)It follows that dG(x2; x3) < 57D < k+1: a 
ontradi
tion sin
eH is a 4-gon, for
ing to have dG(x2; x3) >k. Hen
e the Case 2.2 is impossible. Therefore, we have proved Theorem 10. 22.5 Conje
ture and Worst-CaseNote that Theorem 10 allows to show:Corollary 11 For planar graph G of diameter D, and every k � 12D,� If D = 2, 
k(G) � 3 (tight);� If D = 3, 
k(G) � 10;� If D = 4, 
k(G) � 23;� If D = 7, 
k(G) � 41.Proof. As already mentioned in the introdu
tion, the two �rst results 
ome from [7℄. Note that thereis a planar graph G of diameter 2 with 
1(G) = 3. A
tually, the 
ase D = 3 
omes from the fa
t(proved in [7℄) that 
1(G) � 10.Theorem 10 gives 
k(G) � 6D � 1 for every k > 57D� 1. For D = 4, k > 57D� 1 = 137 . Thus that
2(G) � 23.Now, 
onsider D = 7. Remark that in the proof of Theorem 10, either the Case 2.2 does not o

ur,and the result is proved for k � 12 (D � 1) = 3 (thus proving that 
3(G) � 6D � 1 = 41), or the Case2.2 does o

ur. In the latter 
ase, Eq. (1) and (3) imply that dG(x1; x2) or dG(x2; x3) < 57D, that isdG(x1; x2) or dG(x2; x3) � 4. Sin
e dG(x1; x2) and dG(x2; x3) must be > k, we get a 
ontradi
tionfrom k = 4. Thus 
4(G) � 6D � 1 = 41 as required. 2We leave open the problem to bound 
k(G) for k � 12D, and we 
onje
ture:Conje
ture 12 For every planar graph G of diameter D, and for every k � 12D, there exists a
onstant 
0 su
h that 
k(G) � 
0.Here we show that 
0 � 4.Theorem 13 For every even diameter D � 8, there exists a planar graph G of diameter D, su
h thatfor 
D=2(G) = 4.
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ationsProof. Let D = 2t, t � 4. The graph denoted by Gt is 
omposed of: (1) two nodes A and B 
alledpoles; (2) 2t disjoint paths P1; : : : ; P2t 
alled meridians, ea
h of length 2t, joining A to B; (3) a 
y
leC of length 2t, 
alled equator, joining the middle nodes of ea
h meridians and with exa
tly one nodeof degree two between two 
onse
utive meridians. (See Fig. 5 for t = 4).We re
all that for a 
y
le C2t of length 2t, 
D=2(C2t) = 2. Hen
e taking the nodes A,B, it is 
learthat all the nodes of the meridians are 
overed, but the 2-nodes of the equator are note 
overed. To
omplete, we have to take two opposite nodes u; v of the equator. fA;B; u; vg is then aD=2-dominatingset of Gt. It follows that 
D=2(Gt) � 4.Now if we take two opposite nodes di�erent from A and B belonging to two distin
t meridians wewill not 
over all the nodes of the 2t meridians. In this 
ase we will need more than 4 nodes (t � 4)to 
over all the nodes of the meridians. This 
ompletes the proof.

Figure 5: The planar graph embedded on a sphere for D = 8 su
h that 
4(G) = 4. 23 Appli
ation to Routing with Compa
t TablesA point-to-point 
ommuni
ation network is modeled as a graph G = (V;E), where the set of nodesrepresent the pro
essors of the network and every pair of two opposite ar
s represents a bidire
tional
ommuni
ation link. A routing s
heme R is a distributed algorithm whose role is to deliver messagesbetween nodes of the network. The routing s
heme 
onsists of 
ertain distributed data stru
tures inthe network, and a delivery proto
ol, whi
h 
an be invoked in any node u with two parameters: arouting label L(v) of the destination node v, and the message's information �eld. The message isdelivered to v via a sequen
e of transmissions determined uniquely by the distributed data stru
ture,i.e., at ea
h intermediate node along the route, the routing s
heme de
ides the next neighbor to whi
hthe message should be forwarded. The length of the route traversed by a message from u to v in thegraph G a

ording to the routing s
heme R is denoted by �R(u; v). The dilation of a routing s
hemeR is the maximal route length of a path traversed by a message, formally maxu6=vf�R(u; v)g.An interval routing s
heme R on G is a routing s
heme 
onsisting of a pair (L;I), generatedin the prepro
essing step, where L is a node-labeling, L : V ! f1; : : : ; ng, and I is an ar
-labeling,I : E ! 2L(V ), that satisfy the following 
ondition. For any node u, the 
olle
tion of sets that labelall the outgoing ar
s of u forms a partition of the name range (possibly ex
luding u itself). Formally,for every u 2 V (hereafter Eu denotes the set of ar
s in
ident to u),1. Se2Eu I(e) [ L(u) = f1; : : : ; ng,2. I(e1) \ I(e2) = ; for every two distin
t ar
s e1; e2 2 Eu.
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ol is de�ned as follows. Given a destination node v, set the �rst header to beh = L(v). Also, for every node u, re
eiving a message with header h, �rst 
he
k if L(u) = h, and endthe routing proto
ol if equality (the message is arrived at destination). If not, then send the messageand the same header h on the output port 
orresponding to the unique ar
 (u;w) su
h that h 2 I(u; v).Namely, the message is sent on the ar
 whi
h is labeled by a set that 
ontains the destination label.Note that any interval routing s
heme 
an be implemented by 
lassi
al routing tables. The maindi�eren
e is in the 
oding of the table.Given an integer n and a subset I � f1; : : : ; ng, de�ne the 
ompa
tness of I w.r.t. n, denoted
n(I), as the smallest integer k su
h that I 
an be represented by the union of k intervals [a; b℄ of
onse
utive integers from f1; : : : ; ng, with n and 1 being 
onsidered as 
onse
utive (
y
li
ally). The
ompa
tness of an interval routing s
heme R = (L;I) on G is the maximum, over all ar
s e 2 E, ofthe 
ompa
tness 
n(I(e)) of the set I(e) labeling e. The total 
ompa
tness is the sum Pe2E 
n(I(e)).Be
ause interval routing s
hemes 
an be implemented by routing tables, we deal with the 
om-pa
tness of a routing table. Intuitively, smaller 
ompa
tness and degrees imply smaller routing tables.The interval routing strategy presented in [8℄, based on routing on a minimum spanning tree, has
ompa
tness 1 (for every graph of diameter D) and dilation at most 2D. It is known that there areworst-
ase graphs for whi
h every routing table of 
ompa
tness 1 has dilation at least 2D � 3 [9℄. Itis also known that every graph has routing table of 
ompa
tness pn lnn+O(1) with dilation at mostd1:5De [5℄, whereas there are worst-
ase graphs for whi
h every routing table of 
ompa
tness k hasdilation at least b1:5D
 � 1 for every k = 
( nD log(n=D) ) [2℄. Other results 
an be found on the re
entsurvey [3℄.Here we show a trade-o� between dilation and 
ompa
tness.Theorem 14 Let G be a graph of diameter D with n nodes and m edges. Let k � 0, and let t = 
k(G).Then, G has a routing table with dilation at most D + k, 
ompa
tness at most 12 t + 1, and total
ompa
tness at most tn + 2m. Moreover, if t= log n ! +1, then the 
ompa
tness 
an be redu
ed to14 t+ o(t).Proof. Let fx1; : : : ; xtg be a k-dominating set in G of minimal 
ardinality t = 
k(G). Constru
t apartition of the graph nodes into t pairwise disjoint 
onne
ted regions Ri � �k(xi) around ea
h xi,su
h that ea
h region Ri 
onsists of nodes 
losest to xi (breaking tie arbitrarily) and the union of theregions 
overs all the nodes. Obviously the radius of ea
h region is at most k.For every xi, 
onstru
t a shortest path spanning tree Ti for G. Let T̂i be the restri
tion of Ti tothe region Ri, i.e., T̂i = Ti \Ri.Partition the range of integers [1; n℄ into t 
ontiguous intervals Ii of size jRij, for i 2 f1; : : : ; tg.For ea
h region Ri, assign ea
h node v 2 Ri a distin
t label L(v) from the range Ii, in DFS order,starting at xi. Use these labels to de�ne an interval routing s
heme on T̂i as in [8℄. The 
ompa
tnessis 2 (instead of 1) be
ause a 
y
li
 interval in Ii has to be represented by two sub-intervals of Ii. Forevery two nodes u;w 2 Ri, this s
heme yields a shortest route on T̂i (albeit perhaps not shortest inG). In addition, for every 1 � i � t and for every node w =2 Ri, add the interval Ii to the ar
 
onne
tingw to its parent in Ti.As the regions are disjoint, it is easy to verify that for every node v, all the intervals assigned tothe ar
s of v are pairwise disjoint. Overall, at most 12 t+1 intervals were assigned to ea
h ar
 be
auseevery subset of at most t intervals has no more than 12 t non 
ontiguous intervals (one more sub-intervalis required for the own region of v). In fa
t, exa
tly t+deg(v) intervals altogether (deg(v)+1 intervalsfor Ri and t � 1 for all the others) are assigned to the ar
s of a node v of degree deg(v). Thus thetotal 
ompa
tness is tn+ 2m.Observe that the resulting route between nodes belonging to the same region has length at most2k � D+k. As for routing from a node u 2 Ri to a node w 2 Rj , j 6= i, note that the �rst segment ofthe route, until rea
hing Rj, pro
eeds along a shortest path from u to xj , and on
e entering Rj, the
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ationsremaining segment of the route follows a shortest path. Hen
e the total length of the route 
annotex
eed dG(u; xj) + dG(xj ; w) � D + k.A
tually, the bound on the 
ompa
tness 
an be slightly redu
ed to 14 t + o(t), for t large enough,using the result of [4℄. This result shows that, for every t, there exists a permutation � of f1; : : : ; tgsu
h that the 
ompa
tness of every set F of a family F of subsets of f1; : : : ; tg, with jFj < exp(t=2)=t,satis�es: 
t(�(F )) < 14 t+ 14q2t ln(jFjn)where �(F ) denotes the set f�(x) j x 2 Fg. Let I(e) be the set of labels assigned to ar
 e bythe previous interval routing s
heme. Set F = fF (e) j e 2 E(G)g, where F (e) = fi j Ii � I(e)g
orresponds to the set of region's indi
es 
ontained in I(e). Note that the range of labels of ea
hregion is wholly 
ontained in I(e) (ex
epted for v's region). Sin
e Stj=1 Ij = [1; n℄, we have that
n(I(e)) � 
t(F (e)) +1. Observe that the relative order of the ranges 
an be 
hosen arbitrary: all thelabels of some Ij 
an be 
hosen larger or smaller than all the label of any other range. So, indi
es ofIj 's ranges 
an be permuted by some permutation � of [1; t℄ in order to de
rease 
t(�(F (e))). By [4℄,if jFj < exp(o(t))=t, there exists �0 su
h that 
t(�0(F (e))) < 14 t+ o(t), for every F (e) 2 F . Note thatjFj = 2m. So, the 
ondition jFj < exp(o(t))=t 
an be repla
ed by t= log n! +1, as m = O(n2). 2This result 
an be seen as a generalization of [5℄, originally proved for k = l12Dm. In this paperit was showed that every graph G satis�es 
k(G) � dpn lnn e, and the 
ompa
tness they derivedwas dpn lnn e + 1. Thus Theorem 14 improves by an asymptoti
 fa
tor 4 the 
ompa
tness boundobtained by [5℄. The same kind of 
onstru
tion has been also impli
itly used in [10℄. Pre
isely, it isshown in [10℄ that every graph G satis�es 
k(G) � pn for k � 23D. Thus, every graph has routingtable of 
ompa
tness at 14pn+ o(pn) for dilation l53Dm. (The original 
ompa
tness result of [10℄ wasdpn e+ 1.)Combining Theorem 9 and Theorem 14, we obtain:Corollary 15 Let � > 0 be an arbitrary 
onstant. Every planar graph has a routing table with dilationat most l(127 + �)Dm, and 
onstant 
ompa
tness.Note that Conje
ture 12 for 
0 = 4 implies that every planar graphs of diameter D enjoys a routingtable with dilation at most d1:5De and 
ompa
tness at most 3.Referen
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