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Abstract. In this paper we generalize classical 3-set theorem related to stable partitions of arbitrary mappings
due to Erdds-de Bruijn, Katétov and Kasteleyn. We consider a structural generalization of this result to
partitions preserving sets of inequalities and characterize all finite sets of such inequalities which can be preserved
by a “small” coloring. These results are also related to graph homomorphisms and (oriented) colorings.
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1 Introduction

Given a mapping f: X — X without fixpoints, there exists a partition X = X; U X5 U X3 such that
for every 1 = 1,2,3, f(X;) N X; = 0. This is a particular case of the celebrated 3-set theorem of Erdds
and de Bruijn [2] which has been rediscovered in a different context (set topology) by M. Katétov [8]
and Kasteleyn (as quoted by Katétov). This discovery led Z. Frolik to a surprisingly easy proof of
non-homogeneity of Stone-Cech Compactification B(IN) [4, 5]. In the topological setting this result
has a remarkable history, see e.g. [1, 5, 9].

However, Erd6s and de Bruijn were motivated in their paper by a pure combinatorial problem:
given a relation R C X x X which has no loops (for every z € X, (z,z) ¢ R) and is such that the
out-degree d*(z) = |{y;(z,y) € R}| of every vertex z is bounded by some fixed k, determine the
chromatic number x(X, R). In doing so they rediscovered the compactness property of the chromatic
number and proved:

Theorem 1 ([2]) For every loopless relation (X, R) all of whose vertices have k-bounded out-degree,
the inequality x(X, R) < 2k + 1 holds.

By considering a loopless relation whose corresponding graph is a tournament on 2k + 1 vertices
with out-degree £ it can be seen that this bound is tight.

A relation (X, R) is said to be k-bounded if d*(z) < k for every z € X. We can clearly consider
every k-bounded relation (X, R) either as a (multi) mapping f: X — P(X) where for every z, f(r)
is a subset of X of size at most k, or as a union of k partial mappings f;: X — X,i=1,2,...,k.
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On the other hand, the 3-set theorem can be interpreted as a homomorphism ¢ of the relation
(X, R) into a complete (loopless) relation with 3 elements. Recall that a homomorphism ¢ of a relation
(X, R) to a relation (T,S) is a mapping ¢ : X — T which preserves the relations: (p(z),p(y)) € S
whenever (z,y) € R.

Denote by R,, the complete antireflexive relation on the set {1,2,...,n}. The 3-set theorem can
then be rephrased by saying that for every mapping f : X — X there exists a homomorphism
¢: (X, f) = Rs. Similarly, Theorem 1 may be rephrased by saying that for every k-bounded relation
(X, R) there exists a homomorphism ¢ : (X, R) = Rogt1.

As we are assuming that both (X, f) and (X, R) have no loops we can also say that the homomor-
phism ¢ preserves the inequality f(z) # z, that is f(z) # 2 = ¢(f(z)) # ©(z). In this paper we are
motivated by this approach and we completely characterize the inequalities which can be preserved
by homomorphisms to a target bounded side.

It appears that the inqualities which can be preserved are exactly all initial inequalities which are
defined as follows:

Let fi, fo,..., fr be partial mappings from X to X. A (p,#)-initial inequality ,p > ¢ > 0, is any
inequality of the form

fiyofi,yo...0fi(z) # fi,ofi_,o...0fi(z)

where z € X and iy,...7, are (not necessary distinct) indices 1,...,k. For £ = 0 this should be
understood as inequality
fi, 0...0 fiyo fi(x) # =

Thus for k =2,/ =1 (2, 1)-inequalities are

fio filz) # fi(z), fao fi(z) # fi(z)

fro fa(z) # fa(@), f20 fo(z) # falz) (for I=1)

and (2, 0)-initial inequalities include for example fi o fo(x) # =z, fa o f1(z) # .
We say that a homomorphism ¢ preserves an initial inequality if for every x € X we have

fiy0...0fiyo fi(z) # fi,0...0 fi, o fi,(2)

= so(fip 0...0 fiQ ° fll(w)) # QO(fi[ ©...0 fi2 °© f“(l'))
We prove the following:

Theorem 2 Given k and p there exists a relation (T, S) with |T| < 1+ 2k-E=L (or |T| <2p+ 1 if
k =1), such that for every k partial mappings f1, fa,-.., fx from X to X, there exists a homorphism
o (X, 1UfoU...Ufk) = (T, S) such that ¢ preserves all the (p', £)-initial inequalities, p > p' > £ > 0.

We shall see that this is a consequence of Theorem 1. What is perhaps more interesting is that a sim-
ilar theorem does not hold for other than initial inequalities. This will be stated below as Theorem 3
(after introducing necessary notions).

This bound on the size of T is tight for arbitrary & and p = 1 (as shown by regular tournament
with 2k 4+ 1 vertices) and for arbitrary p and k = 1 (as shown by the odd cycle of length 2p + 1). For
other values this seems to be a difficult combinatorial problem similar to oriented Moore graphs see
e.g. [11] and proceedings [12].

In fact we can demand somewhat stronger property, namely that the homomorphism ¢ : (X, f; U
foU...U fr) = (T,S) not only preserves the inequalities but that S itself satisfies these forbidden
inequalities. More precisely we have:

Theorem 3 For every p,k > 0 there exists t(k,p) with the following property :
if f1, fo,. .., fx are partial mappings from X to X such that for every x € X and every £, 0 < £ < p,

fip Ofipfl ... Ofil(x) 7é fi[ Ofi[_l 6...0 fil(x)a
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then there exists a set T, |T| < t(k,p), and partial mappings gi,92,...,9q from T to T and a homo-
morphism
o: (X,F=fiUufou...Ufr) = (T,S=g1UgaU...Ugg), such that:

1. ¢ preserves all inequalities

fip Ofipfl o... Ofil(x) # fi[ Ofi[_l ... Ofil(x)
for every £, 0 < £ < p.

2. For every t € T, every choice of indexes ji,...,Jp and every £, 0 < £ < p, holds
i © Gip—1 © -+ © Gjs (t) 7 gj, © Gje_y © -+ 095, (£).

In the proof of the second statement of Theorem 2 we shall exhibit specific relations (X, F') which
also satisfy the requirements of Theorem 3. This proves that for Theorem 3 also, no other type of
inequalities can be preserved.

After introducing the necessary notions in Section 2, the theorems will be proved in Section 3. In
Section 4 we provide some further strengthenings and open questions.

2 Preliminaries and statement of results

Let f1, f2,..., fr be partial mappings from X to X (we think of f; as a subset of X x X). We denote
by F the set F = U¥_, f; (this is a union of relations). We say that the mappings fi, fo, ..., fx satisfy
the inequality (i1,%2,...,%) # (J1,72,---,Jq) if for every z € X we have

fipo"'ofi2 Ofil(x) #qu O"'ij2 ijl(x)'

Moreover, we say that the mappings f1, fa, ..., fx satisfy the inequality (i1, i2,...,4p) # € if for every
x € X we have

fipo"'ofhofil(w) # .

If o : (X,F) — (T,S) is a homomorphism then we say that ¢ preserves the inequality
(i1,12,...,0p) # (J1,J2,-..,Jq) if for every z € X we have

fipo---ofi2 Ofil(x) #quo___oszofjl(x)
= (P(fip ... Ofiz Ofil(x)) 76 (P(qu ... ij2 ijl(x))'

Similarly, we say that ¢ preserves the inequality (i1,12,...,1,) 7 € if for every € X we have

fiyo...0fiyo fi(z) #x = @(fi,0...0 fi o fi, (%)) # o(x).

All this notation will be preserved in the sequel.
Clearly (i1,12,...,ip) # (i1,i2,...,4) for every £, 0 < £ < p, is an initial (p,[)-inequality introduced
in section 1.

The Erd6s-de Bruijn result Theorem 1 may be now formulated as follows:

Theorem 1’ For every k > 0, there exists a relation (T,S) such that for every loopless relation
(X,F), F=Uk_ fi, there exists a homomorphism ¢ : (X, F) — (T, S) which preserves the inequalities
(1) # € for every i, 1 <i < k. Moreover, we have |T| < 2k + 1.

Observe that in this new setting we do no longer need to assume that the relation (X, F) has
no fixpoint. Theorem 1’ still holds for relations (X, F') having fixpoints by simply taking as a target
relation the reflexive closure of (T, S).

We shall prove the following lemmas :
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Lemma 4 For every k > 0, p > 0, there exists a finite relation (Tj p, S) with |Tj,| < 14 2k - kkp__ll
(or |Tepl < 2p+ 1 if k = 1), such that for every (X,F), F = UF_, fi, there exists a homomorphism

¢ : (X, F) = (Typ, S) which preserves the initial (p',1)-inequalities 0 < £ < p" < p.

Lemma 5 Let (i1,42,...,1p) # (J1,72,---,Jq) be any non-initial inequality. Then for every n > 0 and
k > 2, there exist partial mappings f1, fo, ..., [, such that any relation (T,S) with a homomorphism
¢:(X,F)— (T,S), F = UE_, f;, which preserves the inequality (i1, iz, ... ,ip) # (1,2, - - - , Jq) Satisfies
|T| > n.

These results thus characterize all the inequalities which can be demanded to be preserved into
finite targets relations. Lemmas 4 and 5 together clearly imply our Theorems 2,3.

A result similar to our Lemma 4 has been proved in [10]. Using our terminology, it states the
following: if we assume that the relation (X, F') satisfies all inequalities (i1,12) # ¢ then for every p > 0
there exists a relation (T} ,,S") which also satisfies all inequalities (i1,i2) # ¢ and a homomorphism
¢ (X,F) — (T},,5") which preserves all inequalities (i1,da,...,ip) # (i1,%2,...,i¢) for every ¢,
0<?l<p.

The upper bound in Lemma 4 is tight either for £ = 1 (and p arbitrary) as shown by oriented
cycle of length 2p + 1 or for p = 1 (and k arbitrary) as shown by Erdds and de Bruijn (by the regular
tournament with 2k + 1 vertices). For the remaining cases the tightness of the bound in Lemma 4 is
a difficult combinatorial problem.

For proving Theorem 3 it seems more convenient to deal with the (directed) graphs of the relations.
In this setting, our Theorem 3 can be rephrased as follows:

Theorem 3’ For every k > 0, p > 0, there exists a digraph Hy, , with no directed cycle of length less
than p + 1 such that every digraph G with out-degree at most k and with no directed cycle of length
less than p +1 homomorphically maps to Hy, p.

Related results and extensions of this theorem (in the context of A-mote graphs) are given in [7].

For k > 2, our proof will be an adaptation of a proof given in [6] and [3] where it is shown that for
every fixed finite family of connected graphs (or digraphs) A, there exists a graph (or digraph) H 4
such that (i) there is no homomorphism of a member of A to H4 and (7i) every graph (or digraph)
G with degree at most b, and such that there is no homomorphism of a member of A4 to G, maps
homomorphically to H 4. Our result thus states that if the family A is the family of directed cycles of
length at most p then it suffices to consider out-degrees only.

3 Proof of Theorems

We start by proving Lemmas 4 and 5 which together imply Theorem 2.

Proof of Lemma 4. We first observe that a homomorphism preserves all inequalities (i1, 2, ... ,7p) #
(41,12, ...,1) forevery £, 0 < £ < p' < p, if and only if it preserves all inequalities (ip11,p12,...,%p) # €
for every ¢, 0 < ¢ < p' < p. From (X, F), we define a new relation (X, Fy) given by (z,y) € F, if
and only if y = fi, o fi,0...0 f; () for some p’, 0 < p’ < p. Every element z has out-degree at
most ¢ = k% (or ¢ = pif K = 1) in F,. Therefore, F,, can be viewed as the union of ¢ partial
mappings g;, 1 <14 < q. By Theorem 1’ we know that there exists a relation (7,5) with |T| < 2¢ + 1
and a homomorphism ¢ : (X,F,) — (7,S5) which preserves the inequalities (i) # ¢ for every 1,
1 <4 < q. Clearly, @ is also a homomorphism from (X, F') to (T, S) which preserves all inequalities
(te41,0042,...,10p) # € for every £, 0 </ < p, as required. O

Proof of Lemma 5. Let (i1,%2,...,%,) # (j1,J2,...,J¢) be any non-initial inequality. Explicitely,
p,q > 1 and there exists £, 1 < £ < min(p, q), such that i, # j, while i,,, = jp, for every m, 1 < m < £.
We assume without loss of generality that ¢ > p. Let
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X = {z,22,...2,}
U {yg’b 1 <a< b < n, cc {7:177:27- .. 77:;D7jéaj£+17 v 7jq}}'

(y»* are supposed to be mutually distinct and distinct from elements z;).

Elements z1, xo, . .., z, will be called main elements. We then define the partial mappings f1, fo, ..., fx
as follows. For every a,b, 1 <a<b<mn,ac{l,2,...,p—1}, p€{1,2,...,q— 1}, let

b b
o fi(yi) =yil .

Fiswi) =yt i B <1,

b b
sz(yz“ll ) = y;_zl“,

b b
iy =i B = 041,
b
b fip(yzt'lp ) = Tq,
a,b
o f]q(yjq ) = xb'

In other words, for every two main elements x, and xp, a < b, there is an element y?l’b such that

b
fiyo fiy_1 0. 0 fi,(Ul") = x4

and
b
qu ) qu—l ©0...0 f]l (y;ll ) = Tp.

Therefore, if there exists a relation (7, S) and a homomorphism ¢ : (X, F) — (T, S) which preserves
the inequality (i1,12,...,1p) # (j1,72,---,Jq) then all the main elements have to be mapped to distinct
elements of T and thus |T'| > n. O

Before the proof of Theorem 3’ let us introduce the key construction. For any digraph G' we denote
by Jg(x, y) the oriented distance of z to y in G, that is the minimal length of a directed path from x
to y (provided that such a path exists).

Assume that k > 2. The digraph Hy, , is constructed as follows. Let V' be a fixed set of 2kp;_lfl -1
elements. The vertices of Hy , are all possible tuples of the form (a; A1, As, ..., Ap), such that:

(1) a €V,
(17) A; CV \ {a} for every i, 1 <i <p.

If (a;A1,A42,...,Ap) and (b; By, By,...,B,) are two vertices in Hy, then there is an arc from
(a; A1, Az, ..., Ap) to (b; B1, By, ..., B,) if and only if:

(idd) b € Ay,
(iv) B; C Ajyq for every i, 1 < i <p.

We now prove that the digraph H} , satisfies the required property:

Lemma 6 The digraph Hy ), contains no directed cycle of length less than p + 1.

Proof. Suppose that (a'; A}, AL, ... ,Azl)), o (a9 A, AT , Al), (a'; AL, AL ,All,) is a directed
cycle in Hy, of length ¢ < p. By condition (i) we have a' € A{ and by condition (iv) we have

Al C Ag_l C...C Aé. We thus get a! € Aé, in contradiction to condition (7). O
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We can now prove Theorem 3.

Proof of Theorem 3'. If k > 2 we use the digraph Hy, previously constructed. Let G be any
digraph with out-degree at most k£ and no directed cycle of length less than p + 1. The p-th power
GP of G is the digraph with same vertex set as G and such that there is an arc from z to y in GP
if and only if 0 < Jg(z,y) < p. The digraph GP has out-degree at most t = kp,ifl — 1 and its
underlying undirected graph Und(GP) is therefore (2t + 1)-colorable (to see that, simply observe that
every subgraph of Und(GP) has to contain a vertex of degree at most 2¢). Let us denote by ¢ such a
(2t 4 1)-coloring.

We now define a homomorphism ¢ : G — Hy, as follows: for every z € V(G), let p(z) =
(e(x); X1, X2,...,X,) where for every i, 1 <i < p, X, is the set of all colors ¢(y;) such that there is a
directed path in G from z to y; of length 7. From the definition of ¢ we get that c(z) ¢ X; for every i,
1 <i < p. Therefore p(z) is indeed a vertex in Hy,,. Moreover, if (z,y) is an arc in G, (p(x), p(y)) is
clearly an arc in H}, , since every directed path of length ¢ starting at y can be extended to a directed
path of length ¢ 4 1 starting at z.

If £ = 1, every digraph G with out-degree at most 1 and no directed cycle of length less than
p+1 has clearly a homomorphism to the digraph Tj , obtained from a collection of p directed cycles
of respective lengths p + 1, p+ 2, ..., 2p + 1, containing respectively a vertex z,i1, Tpy2, ..., Top+1,
by identifying these vertices into a unique vertex z. a

4 Discussion

The bound we gave in Theorem 2 is tight. For Theorem 3, our construction leads to a value of the
bound #(k,p) of order kP x 2kp2. It would be interesting to have a better estimation of this upper
bound.

Our Theorem 2 says that there exists a relation (7,5 = Ug-:lgj) such that for every relation
(X, F = UE_| f;) there exists a homomorphism ¢ from (X, F') to (T, S) such that every initial inequality
is preserved by ¢ whenever it is satisfied by F. Here, the relation (7,.S) cannot be required itself to
satisfy the initial inequalities. Our Theorem 3 says that if we only consider relations (X, F') that
satisfy all the initial inequalities then one can construct a target relation (7', S) which also satisfies
these inequalities. In fact, by slightly modifying the proof of Theorem 3’, one can in some sense
generalize Theorem 2 by constructing a target relation (7', S) such that for every k-bounded relation
(X, F) there exists a homomorphism ¢ : (X, F') — (T, S) such that if all initial inequalities are satisfied
by F at some z € X then they are also satisfied by S at ¢(z). More formally we have:

Theorem 7 Let f1, fa,..., fr be partial mappings from X to X. For every p > 0, there exist a finite
set T, partial mappings g1, g2, - .. ,gq from T to T, and a homomorphism ¢ : (X, F = fiUfaU...Ufg) —
(T,S =¢g1UgaU...Ugy) such that

1. ¢ preserves all (p',£)-initial inequalities for every ¢, 0 < £ < p' <p,
2. for every x € X, if we have
fipo fipoyo-..ofiy(x) # fi,ofi, o...0fi(z)
for every £, 0 < £ < p, then we also have
Gjy © Yjp_1 © -+ ° Gj; (x) # Gjy © Gjy_, © - O Gy (7)
for every ¢/, 0 < ' < p.

To see that, it suffices to replace the condition (i7) in the definition of the target graph Hj , by
the following condition:
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(ir') A; CV for every i, 1 <i <p,and a ¢ A;.

We then get a new target graph H llv,p having short cycles.  More explicitly, every vertex
(a; A1, Ay, ..., Ap) of H,’C’p belongs to a directed cycle of length ¢ < p if and only if a € A;. Therefore
the homomorphism ¢ we used in the proof of Theorem 3 is such that every vertex not belonging to
a directed cycle of length £ is mapped to a vertex not belonging to a directed cycle of length 2.

One can also consider several variations of this problem. One of them is the following: given
disjoint mappings f,g : X — X, considered as relations, can we find disjoint finite relations Ry and
R, on some set T and a mapping ¢ : X — T which is a homomorphism for both (X, f) = (T, Ry)
and (X,g) — (T, Ry). The answer to this question is no as provided by the following example. Let
X =NU (ﬂ;), f(i,7) =i and g(i,7j) = j whenever i < j. Then every homomorphism ¢ : X — Y
satisfies that ¢ restricted to IN is injective. This is a particular example involved in the proof of
Lemma 5.

Another variant of the problem is obtained if we allow inverse mappings (even in inequalities). Also
in this case the answers become very quickly negative. For suppose that f, g are mappings from (]1;) to
IN defined as above. Put (X, R) where R = f Ug . Clearly RN R~! = (). Then any homomorphism
¢ :(X,R) — (T,S) where SN S~! = () satisfies that ¢ restricted to IN is injective.
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