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2 Three-and-more set theoremsOn the other hand, the 3-set theorem an be interpreted as a homomorphism ' of the relation(X;R) into a omplete (loopless) relation with 3 elements. Reall that a homomorphism ' of a relation(X;R) to a relation (T; S) is a mapping ' : X ! T whih preserves the relations: ('(x); '(y)) 2 Swhenever (x; y) 2 R.Denote by Rn the omplete antireexive relation on the set f1; 2; : : : ; ng. The 3-set theorem anthen be rephrased by saying that for every mapping f : X ! X there exists a homomorphism' : (X; f)!R3. Similarly, Theorem 1 may be rephrased by saying that for every k-bounded relation(X;R) there exists a homomorphism ' : (X;R)!R2k+1.As we are assuming that both (X; f) and (X;R) have no loops we an also say that the homomor-phism ' preserves the inequality f(x) 6= x, that is f(x) 6= x =) '(f(x)) 6= '(x). In this paper we aremotivated by this approah and we ompletely haraterize the inequalities whih an be preservedby homomorphisms to a target bounded side.It appears that the inqualities whih an be preserved are exatly all initial inequalities whih arede�ned as follows:Let f1; f2; : : : ; fk be partial mappings from X to X. A (p; `)-initial inequality ,p > ` � 0, is anyinequality of the form fip Æ fip�1 Æ : : : Æ fi1(x) 6= fi` Æ fi`�1 Æ : : : Æ fi1(x)where x 2 X and i1; : : : ip are (not neessary distint) indies 1; : : : ; k. For ` = 0 this should beunderstood as inequality fip Æ : : : Æ fi2 Æ fi1(x) 6= x:Thus for k = 2; ` = 1 (2; 1)-inequalities aref1 Æ f1(x) 6= f1(x), f2 Æ f1(x) 6= f1(x)f1 Æ f2(x) 6= f2(x), f2 Æ f2(x) 6= f2(x) (for l = 1)and (2; 0)-initial inequalities inlude for example f1 Æ f2(x) 6= x, f2 Æ f1(x) 6= x:We say that a homomorphism ' preserves an initial inequality if for every x 2 X we havefip Æ : : : Æ fi2 Æ fi1(x) 6= fi` Æ : : : Æ fi2 Æ fi1(x)=) '(fip Æ : : : Æ fi2 Æ fi1(x)) 6= '(fi` Æ : : : Æ fi2 Æ fi1(x)):We prove the following:Theorem 2 Given k and p there exists a relation (T; S) with jT j � 1 + 2k � kp�1k�1 (or jT j � 2p+ 1 ifk = 1), suh that for every k partial mappings f1; f2; : : : ; fk from X to X, there exists a homorphism' : (X; f1[f2[: : :[fk)! (T; S) suh that ' preserves all the (p0; `)-initial inequalities, p � p0 > ` � 0.We shall see that this is a onsequene of Theorem 1. What is perhaps more interesting is that a sim-ilar theorem does not hold for other than initial inequalities. This will be stated below as Theorem 3(after introduing neessary notions).This bound on the size of T is tight for arbitrary k and p = 1 (as shown by regular tournamentwith 2k + 1 verties) and for arbitrary p and k = 1 (as shown by the odd yle of length 2p+ 1). Forother values this seems to be a diÆult ombinatorial problem similar to oriented Moore graphs seee.g. [11℄ and proeedings [12℄.In fat we an demand somewhat stronger property, namely that the homomorphism ' : (X; f1 [f2 [ : : : [ fk) ! (T; S) not only preserves the inequalities but that S itself satis�es these forbiddeninequalities. More preisely we have:Theorem 3 For every p; k > 0 there exists t(k; p) with the following property :if f1; f2; : : : ; fk are partial mappings from X to X suh that for every x 2 X and every `, 0 � ` < p,fip Æ fip�1 Æ : : : Æ fi1(x) 6= fi` Æ fi`�1 Æ : : : Æ fi1(x);



P. Hell, J. Ne�set�ril, A. Raspaud and E. Sopena 3then there exists a set T , jT j � t(k; p), and partial mappings g1; g2; : : : ; gq from T to T and a homo-morphism' : (X;F = f1 [ f2 [ : : : [ fk)! (T; S = g1 [ g2 [ : : : [ gq), suh that:1. ' preserves all inequalitiesfip Æ fip�1 Æ : : : Æ fi1(x) 6= fi` Æ fi`�1 Æ : : : Æ fi1(x)for every `, 0 � ` < p.2. For every t 2 T , every hoie of indexes j1; : : : ; jp and every `, 0 � ` < p, holdsgjp Æ gjp�1 Æ : : : Æ gj1(t) 6= gj` Æ gj`�1 Æ : : : Æ gj1(t):In the proof of the seond statement of Theorem 2 we shall exhibit spei� relations (X;F ) whihalso satisfy the requirements of Theorem 3. This proves that for Theorem 3 also, no other type ofinequalities an be preserved.After introduing the neessary notions in Setion 2, the theorems will be proved in Setion 3. InSetion 4 we provide some further strengthenings and open questions.2 Preliminaries and statement of resultsLet f1; f2; : : : ; fk be partial mappings from X to X (we think of fi as a subset of X �X). We denoteby F the set F = [ki=1fi (this is a union of relations). We say that the mappings f1; f2; : : : ; fk satisfythe inequality (i1; i2; : : : ; ip) 6= (j1; j2; : : : ; jq) if for every x 2 X we havefip Æ : : : Æ fi2 Æ fi1(x) 6= fjq Æ : : : Æ fj2 Æ fj1(x):Moreover, we say that the mappings f1; f2; : : : ; fk satisfy the inequality (i1; i2; : : : ; ip) 6= " if for everyx 2 X we have fip Æ : : : Æ fi2 Æ fi1(x) 6= x:If ' : (X;F ) ! (T; S) is a homomorphism then we say that ' preserves the inequality(i1; i2; : : : ; ip) 6= (j1; j2; : : : ; jq) if for every x 2 X we havefip Æ : : : Æ fi2 Æ fi1(x) 6= fjq Æ : : : Æ fj2 Æ fj1(x)=) '(fip Æ : : : Æ fi2 Æ fi1(x)) 6= '(fjq Æ : : : Æ fj2 Æ fj1(x)):Similarly, we say that ' preserves the inequality (i1; i2; : : : ; ip) 6= " if for every x 2 X we havefip Æ : : : Æ fi2 Æ fi1(x) 6= x =) '(fip Æ : : : Æ fi2 Æ fi1(x)) 6= '(x):All this notation will be preserved in the sequel.Clearly (i1; i2; : : : ; ip) 6= (i1; i2; : : : ; i`) for every `, 0 � ` < p, is an initial (p; l)-inequality introduedin setion 1.The Erd}os-de Bruijn result Theorem 1 may be now formulated as follows:Theorem 10 For every k > 0, there exists a relation (T; S) suh that for every loopless relation(X;F ), F = [ki=1fi, there exists a homomorphism ' : (X;F )! (T; S) whih preserves the inequalities(i) 6= " for every i, 1 � i � k. Moreover, we have jT j � 2k + 1.Observe that in this new setting we do no longer need to assume that the relation (X;F ) hasno �xpoint. Theorem 10 still holds for relations (X;F ) having �xpoints by simply taking as a targetrelation the reexive losure of (T; S).We shall prove the following lemmas :



4 Three-and-more set theoremsLemma 4 For every k > 0, p > 0, there exists a �nite relation (Tk;p; S) with jTk;pj � 1 + 2k � kp�1k�1(or jTk;pj � 2p + 1 if k = 1), suh that for every (X;F ), F = [ki=1fi, there exists a homomorphism' : (X;F )! (Tk;p; S) whih preserves the initial (p0; l)-inequalities 0 � ` < p0 � p.Lemma 5 Let (i1; i2; : : : ; ip) 6= (j1; j2; : : : ; jq) be any non-initial inequality. Then for every n > 0 andk � 2, there exist partial mappings f1; f2; : : : ; fk, suh that any relation (T; S) with a homomorphism' : (X;F )! (T; S), F = [ki=1fi, whih preserves the inequality (i1; i2; : : : ; ip) 6= (j1; j2; : : : ; jq) satis�esjT j � n.These results thus haraterize all the inequalities whih an be demanded to be preserved into�nite targets relations. Lemmas 4 and 5 together learly imply our Theorems 2,3.A result similar to our Lemma 4 has been proved in [10℄. Using our terminology, it states thefollowing: if we assume that the relation (X;F ) satis�es all inequalities (i1; i2) 6= " then for every p > 0there exists a relation (T 0k;p; S0) whih also satis�es all inequalities (i1; i2) 6= " and a homomorphism' : (X;F ) ! (T 0k;p; S0) whih preserves all inequalities (i1; i2; : : : ; ip) 6= (i1; i2; : : : ; i`) for every `,0 � ` < p.The upper bound in Lemma 4 is tight either for k = 1 (and p arbitrary) as shown by orientedyle of length 2p+ 1 or for p = 1 (and k arbitrary) as shown by Erd}os and de Bruijn (by the regulartournament with 2k + 1 verties). For the remaining ases the tightness of the bound in Lemma 4 isa diÆult ombinatorial problem.For proving Theorem 3 it seems more onvenient to deal with the (direted) graphs of the relations.In this setting, our Theorem 3 an be rephrased as follows:Theorem 30 For every k > 0, p > 0, there exists a digraph Hk;p with no direted yle of length lessthan p + 1 suh that every digraph G with out-degree at most k and with no direted yle of lengthless than p+ 1 homomorphially maps to Hk;p.Related results and extensions of this theorem (in the ontext of A-mote graphs) are given in [7℄.For k � 2, our proof will be an adaptation of a proof given in [6℄ and [3℄ where it is shown that forevery �xed �nite family of onneted graphs (or digraphs) A, there exists a graph (or digraph) HAsuh that (i) there is no homomorphism of a member of A to HA and (ii) every graph (or digraph)G with degree at most b, and suh that there is no homomorphism of a member of A to G, mapshomomorphially to HA. Our result thus states that if the family A is the family of direted yles oflength at most p then it suÆes to onsider out-degrees only.3 Proof of TheoremsWe start by proving Lemmas 4 and 5 whih together imply Theorem 2.Proof of Lemma 4. We �rst observe that a homomorphism preserves all inequalities (i1; i2; : : : ; ip) 6=(i1; i2; : : : ; i`) for every `, 0 � ` < p0 � p, if and only if it preserves all inequalities (i`+1; i`+2; : : : ; ip) 6= "for every `, 0 � ` < p0 � p. From (X;F ), we de�ne a new relation (X;Fp) given by (x; y) 2 Fp ifand only if y = fi1 Æ fi2 Æ : : : Æ fip0 (x) for some p0, 0 < p0 � p. Every element x has out-degree atmost q = k kp�1k�1 (or q = p if k = 1) in Fp. Therefore, Fp an be viewed as the union of q partialmappings gi, 1 � i � q. By Theorem 10 we know that there exists a relation (T; S) with jT j � 2q + 1and a homomorphism ' : (X;Fp) ! (T; S) whih preserves the inequalities (i) 6= " for every i,1 � i � q. Clearly, ' is also a homomorphism from (X;F ) to (T; S) whih preserves all inequalities(i`+1; i`+2; : : : ; ip) 6= " for every `, 0 � ` < p, as required. 2Proof of Lemma 5. Let (i1; i2; : : : ; ip) 6= (j1; j2; : : : ; jq) be any non-initial inequality. Expliitely,p; q � 1 and there exists `, 1 � ` � min(p; q), suh that i` 6= j` while im = jm for every m, 1 � m < `.We assume without loss of generality that q � p. Let



P. Hell, J. Ne�set�ril, A. Raspaud and E. Sopena 5X = fx1; x2; : : : xng[ fya;b : 1 � a < b � n;  2 fi1; i2; : : : ; ip; j`; j`+1; : : : ; jqgg.(ya;b are supposed to be mutually distint and distint from elements xi).Elements x1; x2; : : : ; xn will be alledmain elements. We then de�ne the partial mappings f1; f2; : : : ; fkas follows. For every a; b, 1 � a < b � n, � 2 f1; 2; : : : ; p� 1g, � 2 f1; 2; : : : ; q � 1g, let� fi�(ya;bi� ) = ya;bi�+1 ,� fj�(ya;bi� ) = ya;bi�+1 if � � `� 1,� fj`(ya;bi` ) = ya;bj`+1,� fj�(ya;bj� ) = ya;bj�+1 if � � `+ 1,� fip(ya;bip ) = xa,� fjq(ya;bjq ) = xb.In other words, for every two main elements xa and xb, a < b, there is an element ya;bi1 suh thatfip Æ fip�1 Æ : : : Æ fi1(ya;bi1 ) = xaand fjq Æ fjq�1 Æ : : : Æ fj1(ya;bi1 ) = xb:Therefore, if there exists a relation (T; S) and a homomorphism ' : (X;F ) ! (T; S) whih preservesthe inequality (i1; i2; : : : ; ip) 6= (j1; j2; : : : ; jq) then all the main elements have to be mapped to distintelements of T and thus jT j � n. 2Before the proof of Theorem 30 let us introdue the key onstrution. For any digraph G we denoteby ~dG(x; y) the oriented distane of x to y in G, that is the minimal length of a direted path from xto y (provided that suh a path exists).Assume that k � 2. The digraph Hk;p is onstruted as follows. Let V be a �xed set of 2kp+1�1k�1 �1elements. The verties of Hk;p are all possible tuples of the form (a;A1; A2; : : : ; Ap), suh that:(i) a 2 V ,(ii) Ai � V n fag for every i, 1 � i � p.If (a;A1; A2; : : : ; Ap) and (b;B1; B2; : : : ; Bp) are two verties in Hk;p then there is an ar from(a;A1; A2; : : : ; Ap) to (b;B1; B2; : : : ; Bp) if and only if:(iii) b 2 A1,(iv) Bi � Ai+1 for every i, 1 � i < p.We now prove that the digraph Hk;p satis�es the required property:Lemma 6 The digraph Hk;p ontains no direted yle of length less than p+ 1.Proof. Suppose that (a1;A11; A12; : : : ; A1p), : : :, (aq;Aq1; Aq2; : : : ; Aqp), (a1;A11, A12; : : : ; A1p) is a diretedyle in Hk;p of length q � p. By ondition (iii) we have a1 2 Aq1 and by ondition (iv) we haveAq1 � Aq�12 � : : : � A1q. We thus get a1 2 A1q, in ontradition to ondition (ii). 2



6 Three-and-more set theoremsWe an now prove Theorem 30.Proof of Theorem 30. If k � 2 we use the digraph Hk;p previously onstruted. Let G be anydigraph with out-degree at most k and no direted yle of length less than p + 1. The p-th powerGp of G is the digraph with same vertex set as G and suh that there is an ar from x to y in Gpif and only if 0 < ~dG(x; y) � p. The digraph Gp has out-degree at most t = kp+1�1k�1 � 1 and itsunderlying undireted graph Und(Gp) is therefore (2t+1)-olorable (to see that, simply observe thatevery subgraph of Und(Gp) has to ontain a vertex of degree at most 2t). Let us denote by  suh a(2t+ 1)-oloring.We now de�ne a homomorphism ' : G ! Hk;p as follows: for every x 2 V (G), let '(x) =((x);X1;X2; : : : ;Xp) where for every i, 1 � i � p, Xi is the set of all olors (yi) suh that there is adireted path in G from x to yi of length i. From the de�nition of  we get that (x) =2 Xi for every i,1 � i � p. Therefore '(x) is indeed a vertex in Hk;p. Moreover, if (x; y) is an ar in G, ('(x); '(y)) islearly an ar in Hk;p sine every direted path of length i starting at y an be extended to a diretedpath of length i+ 1 starting at x.If k = 1, every digraph G with out-degree at most 1 and no direted yle of length less thanp+1 has learly a homomorphism to the digraph T1;p obtained from a olletion of p direted ylesof respetive lengths p+ 1, p+ 2, : : :, 2p + 1, ontaining respetively a vertex xp+1, xp+2, : : :, x2p+1,by identifying these verties into a unique vertex x. 24 DisussionThe bound we gave in Theorem 2 is tight. For Theorem 3, our onstrution leads to a value of thebound t(k; p) of order kp � 2kp2 . It would be interesting to have a better estimation of this upperbound.Our Theorem 2 says that there exists a relation (T; S = [qj=1gj) suh that for every relation(X;F = [ki=1fi) there exists a homomorphism ' from (X;F ) to (T; S) suh that every initial inequalityis preserved by ' whenever it is satis�ed by F . Here, the relation (T; S) annot be required itself tosatisfy the initial inequalities. Our Theorem 3 says that if we only onsider relations (X;F ) thatsatisfy all the initial inequalities then one an onstrut a target relation (T; S) whih also satis�esthese inequalities. In fat, by slightly modifying the proof of Theorem 3', one an in some sensegeneralize Theorem 2 by onstruting a target relation (T; S) suh that for every k-bounded relation(X;F ) there exists a homomorphism ' : (X;F )! (T; S) suh that if all initial inequalities are satis�edby F at some x 2 X then they are also satis�ed by S at '(x). More formally we have:Theorem 7 Let f1; f2; : : : ; fk be partial mappings from X to X. For every p > 0, there exist a �niteset T , partial mappings g1; g2; : : : ; gq from T to T , and a homomorphism ' : (X;F = f1[f2[: : :[fk)!(T; S = g1 [ g2 [ : : : [ gq) suh that1. ' preserves all (p0; `)-initial inequalities for every `, 0 � ` < p0 � p,2. for every x 2 X, if we havefip Æ fip�1 Æ : : : Æ fi1(x) 6= fi` Æ fi`�1 Æ : : : Æ fi1(x)for every `, 0 � ` < p, then we also havegjp Æ gjp�1 Æ : : : Æ gj1(x) 6= gj`0 Æ gj`0�1 Æ : : : Æ gj1(x)for every `0, 0 � `0 < p.To see that, it suÆes to replae the ondition (ii) in the de�nition of the target graph Hk;p bythe following ondition:



P. Hell, J. Ne�set�ril, A. Raspaud and E. Sopena 7(ii0) Ai � V for every i, 1 � i � p, and a =2 A1.We then get a new target graph H 0k;p having short yles. More expliitly, every vertex(a;A1; A2; : : : ; Ap) of H 0k;p belongs to a direted yle of length ` � p if and only if a 2 A`. Thereforethe homomorphism ' we used in the proof of Theorem 30 is suh that every vertex not belonging toa direted yle of length ` is mapped to a vertex not belonging to a direted yle of length `.One an also onsider several variations of this problem. One of them is the following: givendisjoint mappings f; g : X ! X, onsidered as relations, an we �nd disjoint �nite relations Rf andRg on some set T and a mapping ' : X ! T whih is a homomorphism for both (X; f) ! (T;Rf )and (X; g) ! (T;Rg). The answer to this question is no as provided by the following example. LetX = IN [ �IN2 �, f(i; j) = i and g(i; j) = j whenever i < j. Then every homomorphism ' : X ! Ysatis�es that ' restrited to IN is injetive. This is a partiular example involved in the proof ofLemma 5.Another variant of the problem is obtained if we allow inverse mappings (even in inequalities). Alsoin this ase the answers beome very quikly negative. For suppose that f; g are mappings from �IN2 � toIN de�ned as above. Put (X;R) where R = f [ g�1. Clearly R \R�1 = ;. Then any homomorphism' : (X;R)! (T; S) where S \ S�1 = ; satis�es that ' restrited to IN is injetive.Aknowledgement. We thank P. Simon for his help with some of the non-ombinatorial referenes.Referenes[1℄ Y.A. Abramovih, E.L. Arenson and A. Kitover. Banah C(K)-modules and operations preservingdisjointness, Berkeley Report no MSRI 05808-91 (1991).[2℄ N.G. de Bruijn and P. Erd}os. A olour problem for in�nite graphs and a problem in the theoryof relations, Indagationes math. 13 (1951), 371{373.[3℄ P. Dreyer, Ch. Malon, J. Ne�set�ril. Universal H-olorable graphs without a given on�guration,KAM-DIMATIA Series 99-428, Disrete Math. (to appear).[4℄ Z. Frol��k. Fixed points of maps of �(IN), Bull. Amer. Math. So. 74 (1968), 187{191.[5℄ Z. Frol��k. Fixed points of maps of extremally disonneted spaes and omplete Boolean algebras,Bull. Aad. Polon. Si. Ser. Si. Math. Astronom. Phys. 16 (1968), 269{275.[6℄ R. H�aggkvist and P. Hell. Universality of A-mote graphs, Europ. J. Combinatoris 14 (1993),21{27.[7℄ P. Hell and J. Ne�set�ril. Oriented A-mote graphs, to appear.[8℄ M. Kat�etov. A theorem on mappings. Comment. Math. Univ. Carolinae 8-3 (1967), 431{433.[9℄ A. Krawzyk and J. Stepra�ns. Continuous olorings of losed graphs, Topology and its Appl. 51(1993), 13{26.[10℄ J. Ne�set�ril, E. Sopena and L. Vignal. T-preserving homomorphisms of oriented graphs, Comment.Math. Univ. Carolinae 38-1 (1997), 125{136.[11℄ S. P�erennes. A proof of Jean de Rumeur's onjeture. Disrete Appl. Math. 74, No.3, 295-299(1997).[12℄ J. Rumeur. Communiations dans les r�eseaux de proesseurs. Masson 1994.


