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tionGiven a mapping f : X ! X without �xpoints, there exists a partition X = X1 [X2 [X3 su
h thatfor every i = 1; 2; 3, f(Xi)\Xi = ;. This is a parti
ular 
ase of the 
elebrated 3-set theorem of Erd}osand de Bruijn [2℄ whi
h has been redis
overed in a di�erent 
ontext (set topology) by M. Kat�etov [8℄and Kasteleyn (as quoted by Kat�etov). This dis
overy led Z. Frol��k to a surprisingly easy proof ofnon-homogeneity of Stone-�Ce
h Compa
ti�
ation �(IN) [4, 5℄. In the topologi
al setting this resulthas a remarkable history, see e.g. [1, 5, 9℄.However, Erd}os and de Bruijn were motivated in their paper by a pure 
ombinatorial problem:given a relation R � X � X whi
h has no loops (for every x 2 X, (x; x) =2 R) and is su
h that theout-degree d+(x) = jfy; (x; y) 2 Rgj of every vertex x is bounded by some �xed k, determine the
hromati
 number �(X;R). In doing so they redis
overed the 
ompa
tness property of the 
hromati
number and proved:Theorem 1 ([2℄) For every loopless relation (X;R) all of whose verti
es have k-bounded out-degree,the inequality �(X;R) � 2k + 1 holds.By 
onsidering a loopless relation whose 
orresponding graph is a tournament on 2k + 1 verti
eswith out-degree k it 
an be seen that this bound is tight.A relation (X;R) is said to be k-bounded if d+(x) � k for every x 2 X. We 
an 
learly 
onsiderevery k-bounded relation (X;R) either as a (multi) mapping f : X ! P(X) where for every x, f(x)is a subset of X of size at most k, or as a union of k partial mappings fi : X ! X, i = 1; 2; : : : ; k.1Support of the National S
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2 Three-and-more set theoremsOn the other hand, the 3-set theorem 
an be interpreted as a homomorphism ' of the relation(X;R) into a 
omplete (loopless) relation with 3 elements. Re
all that a homomorphism ' of a relation(X;R) to a relation (T; S) is a mapping ' : X ! T whi
h preserves the relations: ('(x); '(y)) 2 Swhenever (x; y) 2 R.Denote by Rn the 
omplete antire
exive relation on the set f1; 2; : : : ; ng. The 3-set theorem 
anthen be rephrased by saying that for every mapping f : X ! X there exists a homomorphism' : (X; f)!R3. Similarly, Theorem 1 may be rephrased by saying that for every k-bounded relation(X;R) there exists a homomorphism ' : (X;R)!R2k+1.As we are assuming that both (X; f) and (X;R) have no loops we 
an also say that the homomor-phism ' preserves the inequality f(x) 6= x, that is f(x) 6= x =) '(f(x)) 6= '(x). In this paper we aremotivated by this approa
h and we 
ompletely 
hara
terize the inequalities whi
h 
an be preservedby homomorphisms to a target bounded side.It appears that the inqualities whi
h 
an be preserved are exa
tly all initial inequalities whi
h arede�ned as follows:Let f1; f2; : : : ; fk be partial mappings from X to X. A (p; `)-initial inequality ,p > ` � 0, is anyinequality of the form fip Æ fip�1 Æ : : : Æ fi1(x) 6= fi` Æ fi`�1 Æ : : : Æ fi1(x)where x 2 X and i1; : : : ip are (not ne
essary distin
t) indi
es 1; : : : ; k. For ` = 0 this should beunderstood as inequality fip Æ : : : Æ fi2 Æ fi1(x) 6= x:Thus for k = 2; ` = 1 (2; 1)-inequalities aref1 Æ f1(x) 6= f1(x), f2 Æ f1(x) 6= f1(x)f1 Æ f2(x) 6= f2(x), f2 Æ f2(x) 6= f2(x) (for l = 1)and (2; 0)-initial inequalities in
lude for example f1 Æ f2(x) 6= x, f2 Æ f1(x) 6= x:We say that a homomorphism ' preserves an initial inequality if for every x 2 X we havefip Æ : : : Æ fi2 Æ fi1(x) 6= fi` Æ : : : Æ fi2 Æ fi1(x)=) '(fip Æ : : : Æ fi2 Æ fi1(x)) 6= '(fi` Æ : : : Æ fi2 Æ fi1(x)):We prove the following:Theorem 2 Given k and p there exists a relation (T; S) with jT j � 1 + 2k � kp�1k�1 (or jT j � 2p+ 1 ifk = 1), su
h that for every k partial mappings f1; f2; : : : ; fk from X to X, there exists a homorphism' : (X; f1[f2[: : :[fk)! (T; S) su
h that ' preserves all the (p0; `)-initial inequalities, p � p0 > ` � 0.We shall see that this is a 
onsequen
e of Theorem 1. What is perhaps more interesting is that a sim-ilar theorem does not hold for other than initial inequalities. This will be stated below as Theorem 3(after introdu
ing ne
essary notions).This bound on the size of T is tight for arbitrary k and p = 1 (as shown by regular tournamentwith 2k + 1 verti
es) and for arbitrary p and k = 1 (as shown by the odd 
y
le of length 2p+ 1). Forother values this seems to be a diÆ
ult 
ombinatorial problem similar to oriented Moore graphs seee.g. [11℄ and pro
eedings [12℄.In fa
t we 
an demand somewhat stronger property, namely that the homomorphism ' : (X; f1 [f2 [ : : : [ fk) ! (T; S) not only preserves the inequalities but that S itself satis�es these forbiddeninequalities. More pre
isely we have:Theorem 3 For every p; k > 0 there exists t(k; p) with the following property :if f1; f2; : : : ; fk are partial mappings from X to X su
h that for every x 2 X and every `, 0 � ` < p,fip Æ fip�1 Æ : : : Æ fi1(x) 6= fi` Æ fi`�1 Æ : : : Æ fi1(x);



P. Hell, J. Ne�set�ril, A. Raspaud and E. Sopena 3then there exists a set T , jT j � t(k; p), and partial mappings g1; g2; : : : ; gq from T to T and a homo-morphism' : (X;F = f1 [ f2 [ : : : [ fk)! (T; S = g1 [ g2 [ : : : [ gq), su
h that:1. ' preserves all inequalitiesfip Æ fip�1 Æ : : : Æ fi1(x) 6= fi` Æ fi`�1 Æ : : : Æ fi1(x)for every `, 0 � ` < p.2. For every t 2 T , every 
hoi
e of indexes j1; : : : ; jp and every `, 0 � ` < p, holdsgjp Æ gjp�1 Æ : : : Æ gj1(t) 6= gj` Æ gj`�1 Æ : : : Æ gj1(t):In the proof of the se
ond statement of Theorem 2 we shall exhibit spe
i�
 relations (X;F ) whi
halso satisfy the requirements of Theorem 3. This proves that for Theorem 3 also, no other type ofinequalities 
an be preserved.After introdu
ing the ne
essary notions in Se
tion 2, the theorems will be proved in Se
tion 3. InSe
tion 4 we provide some further strengthenings and open questions.2 Preliminaries and statement of resultsLet f1; f2; : : : ; fk be partial mappings from X to X (we think of fi as a subset of X �X). We denoteby F the set F = [ki=1fi (this is a union of relations). We say that the mappings f1; f2; : : : ; fk satisfythe inequality (i1; i2; : : : ; ip) 6= (j1; j2; : : : ; jq) if for every x 2 X we havefip Æ : : : Æ fi2 Æ fi1(x) 6= fjq Æ : : : Æ fj2 Æ fj1(x):Moreover, we say that the mappings f1; f2; : : : ; fk satisfy the inequality (i1; i2; : : : ; ip) 6= " if for everyx 2 X we have fip Æ : : : Æ fi2 Æ fi1(x) 6= x:If ' : (X;F ) ! (T; S) is a homomorphism then we say that ' preserves the inequality(i1; i2; : : : ; ip) 6= (j1; j2; : : : ; jq) if for every x 2 X we havefip Æ : : : Æ fi2 Æ fi1(x) 6= fjq Æ : : : Æ fj2 Æ fj1(x)=) '(fip Æ : : : Æ fi2 Æ fi1(x)) 6= '(fjq Æ : : : Æ fj2 Æ fj1(x)):Similarly, we say that ' preserves the inequality (i1; i2; : : : ; ip) 6= " if for every x 2 X we havefip Æ : : : Æ fi2 Æ fi1(x) 6= x =) '(fip Æ : : : Æ fi2 Æ fi1(x)) 6= '(x):All this notation will be preserved in the sequel.Clearly (i1; i2; : : : ; ip) 6= (i1; i2; : : : ; i`) for every `, 0 � ` < p, is an initial (p; l)-inequality introdu
edin se
tion 1.The Erd}os-de Bruijn result Theorem 1 may be now formulated as follows:Theorem 10 For every k > 0, there exists a relation (T; S) su
h that for every loopless relation(X;F ), F = [ki=1fi, there exists a homomorphism ' : (X;F )! (T; S) whi
h preserves the inequalities(i) 6= " for every i, 1 � i � k. Moreover, we have jT j � 2k + 1.Observe that in this new setting we do no longer need to assume that the relation (X;F ) hasno �xpoint. Theorem 10 still holds for relations (X;F ) having �xpoints by simply taking as a targetrelation the re
exive 
losure of (T; S).We shall prove the following lemmas :



4 Three-and-more set theoremsLemma 4 For every k > 0, p > 0, there exists a �nite relation (Tk;p; S) with jTk;pj � 1 + 2k � kp�1k�1(or jTk;pj � 2p + 1 if k = 1), su
h that for every (X;F ), F = [ki=1fi, there exists a homomorphism' : (X;F )! (Tk;p; S) whi
h preserves the initial (p0; l)-inequalities 0 � ` < p0 � p.Lemma 5 Let (i1; i2; : : : ; ip) 6= (j1; j2; : : : ; jq) be any non-initial inequality. Then for every n > 0 andk � 2, there exist partial mappings f1; f2; : : : ; fk, su
h that any relation (T; S) with a homomorphism' : (X;F )! (T; S), F = [ki=1fi, whi
h preserves the inequality (i1; i2; : : : ; ip) 6= (j1; j2; : : : ; jq) satis�esjT j � n.These results thus 
hara
terize all the inequalities whi
h 
an be demanded to be preserved into�nite targets relations. Lemmas 4 and 5 together 
learly imply our Theorems 2,3.A result similar to our Lemma 4 has been proved in [10℄. Using our terminology, it states thefollowing: if we assume that the relation (X;F ) satis�es all inequalities (i1; i2) 6= " then for every p > 0there exists a relation (T 0k;p; S0) whi
h also satis�es all inequalities (i1; i2) 6= " and a homomorphism' : (X;F ) ! (T 0k;p; S0) whi
h preserves all inequalities (i1; i2; : : : ; ip) 6= (i1; i2; : : : ; i`) for every `,0 � ` < p.The upper bound in Lemma 4 is tight either for k = 1 (and p arbitrary) as shown by oriented
y
le of length 2p+ 1 or for p = 1 (and k arbitrary) as shown by Erd}os and de Bruijn (by the regulartournament with 2k + 1 verti
es). For the remaining 
ases the tightness of the bound in Lemma 4 isa diÆ
ult 
ombinatorial problem.For proving Theorem 3 it seems more 
onvenient to deal with the (dire
ted) graphs of the relations.In this setting, our Theorem 3 
an be rephrased as follows:Theorem 30 For every k > 0, p > 0, there exists a digraph Hk;p with no dire
ted 
y
le of length lessthan p + 1 su
h that every digraph G with out-degree at most k and with no dire
ted 
y
le of lengthless than p+ 1 homomorphi
ally maps to Hk;p.Related results and extensions of this theorem (in the 
ontext of A-mote graphs) are given in [7℄.For k � 2, our proof will be an adaptation of a proof given in [6℄ and [3℄ where it is shown that forevery �xed �nite family of 
onne
ted graphs (or digraphs) A, there exists a graph (or digraph) HAsu
h that (i) there is no homomorphism of a member of A to HA and (ii) every graph (or digraph)G with degree at most b, and su
h that there is no homomorphism of a member of A to G, mapshomomorphi
ally to HA. Our result thus states that if the family A is the family of dire
ted 
y
les oflength at most p then it suÆ
es to 
onsider out-degrees only.3 Proof of TheoremsWe start by proving Lemmas 4 and 5 whi
h together imply Theorem 2.Proof of Lemma 4. We �rst observe that a homomorphism preserves all inequalities (i1; i2; : : : ; ip) 6=(i1; i2; : : : ; i`) for every `, 0 � ` < p0 � p, if and only if it preserves all inequalities (i`+1; i`+2; : : : ; ip) 6= "for every `, 0 � ` < p0 � p. From (X;F ), we de�ne a new relation (X;Fp) given by (x; y) 2 Fp ifand only if y = fi1 Æ fi2 Æ : : : Æ fip0 (x) for some p0, 0 < p0 � p. Every element x has out-degree atmost q = k kp�1k�1 (or q = p if k = 1) in Fp. Therefore, Fp 
an be viewed as the union of q partialmappings gi, 1 � i � q. By Theorem 10 we know that there exists a relation (T; S) with jT j � 2q + 1and a homomorphism ' : (X;Fp) ! (T; S) whi
h preserves the inequalities (i) 6= " for every i,1 � i � q. Clearly, ' is also a homomorphism from (X;F ) to (T; S) whi
h preserves all inequalities(i`+1; i`+2; : : : ; ip) 6= " for every `, 0 � ` < p, as required. 2Proof of Lemma 5. Let (i1; i2; : : : ; ip) 6= (j1; j2; : : : ; jq) be any non-initial inequality. Expli
itely,p; q � 1 and there exists `, 1 � ` � min(p; q), su
h that i` 6= j` while im = jm for every m, 1 � m < `.We assume without loss of generality that q � p. Let



P. Hell, J. Ne�set�ril, A. Raspaud and E. Sopena 5X = fx1; x2; : : : xng[ fya;b
 : 1 � a < b � n; 
 2 fi1; i2; : : : ; ip; j`; j`+1; : : : ; jqgg.(ya;b
 are supposed to be mutually distin
t and distin
t from elements xi).Elements x1; x2; : : : ; xn will be 
alledmain elements. We then de�ne the partial mappings f1; f2; : : : ; fkas follows. For every a; b, 1 � a < b � n, � 2 f1; 2; : : : ; p� 1g, � 2 f1; 2; : : : ; q � 1g, let� fi�(ya;bi� ) = ya;bi�+1 ,� fj�(ya;bi� ) = ya;bi�+1 if � � `� 1,� fj`(ya;bi` ) = ya;bj`+1,� fj�(ya;bj� ) = ya;bj�+1 if � � `+ 1,� fip(ya;bip ) = xa,� fjq(ya;bjq ) = xb.In other words, for every two main elements xa and xb, a < b, there is an element ya;bi1 su
h thatfip Æ fip�1 Æ : : : Æ fi1(ya;bi1 ) = xaand fjq Æ fjq�1 Æ : : : Æ fj1(ya;bi1 ) = xb:Therefore, if there exists a relation (T; S) and a homomorphism ' : (X;F ) ! (T; S) whi
h preservesthe inequality (i1; i2; : : : ; ip) 6= (j1; j2; : : : ; jq) then all the main elements have to be mapped to distin
telements of T and thus jT j � n. 2Before the proof of Theorem 30 let us introdu
e the key 
onstru
tion. For any digraph G we denoteby ~dG(x; y) the oriented distan
e of x to y in G, that is the minimal length of a dire
ted path from xto y (provided that su
h a path exists).Assume that k � 2. The digraph Hk;p is 
onstru
ted as follows. Let V be a �xed set of 2kp+1�1k�1 �1elements. The verti
es of Hk;p are all possible tuples of the form (a;A1; A2; : : : ; Ap), su
h that:(i) a 2 V ,(ii) Ai � V n fag for every i, 1 � i � p.If (a;A1; A2; : : : ; Ap) and (b;B1; B2; : : : ; Bp) are two verti
es in Hk;p then there is an ar
 from(a;A1; A2; : : : ; Ap) to (b;B1; B2; : : : ; Bp) if and only if:(iii) b 2 A1,(iv) Bi � Ai+1 for every i, 1 � i < p.We now prove that the digraph Hk;p satis�es the required property:Lemma 6 The digraph Hk;p 
ontains no dire
ted 
y
le of length less than p+ 1.Proof. Suppose that (a1;A11; A12; : : : ; A1p), : : :, (aq;Aq1; Aq2; : : : ; Aqp), (a1;A11, A12; : : : ; A1p) is a dire
ted
y
le in Hk;p of length q � p. By 
ondition (iii) we have a1 2 Aq1 and by 
ondition (iv) we haveAq1 � Aq�12 � : : : � A1q. We thus get a1 2 A1q, in 
ontradi
tion to 
ondition (ii). 2



6 Three-and-more set theoremsWe 
an now prove Theorem 30.Proof of Theorem 30. If k � 2 we use the digraph Hk;p previously 
onstru
ted. Let G be anydigraph with out-degree at most k and no dire
ted 
y
le of length less than p + 1. The p-th powerGp of G is the digraph with same vertex set as G and su
h that there is an ar
 from x to y in Gpif and only if 0 < ~dG(x; y) � p. The digraph Gp has out-degree at most t = kp+1�1k�1 � 1 and itsunderlying undire
ted graph Und(Gp) is therefore (2t+1)-
olorable (to see that, simply observe thatevery subgraph of Und(Gp) has to 
ontain a vertex of degree at most 2t). Let us denote by 
 su
h a(2t+ 1)-
oloring.We now de�ne a homomorphism ' : G ! Hk;p as follows: for every x 2 V (G), let '(x) =(
(x);X1;X2; : : : ;Xp) where for every i, 1 � i � p, Xi is the set of all 
olors 
(yi) su
h that there is adire
ted path in G from x to yi of length i. From the de�nition of 
 we get that 
(x) =2 Xi for every i,1 � i � p. Therefore '(x) is indeed a vertex in Hk;p. Moreover, if (x; y) is an ar
 in G, ('(x); '(y)) is
learly an ar
 in Hk;p sin
e every dire
ted path of length i starting at y 
an be extended to a dire
tedpath of length i+ 1 starting at x.If k = 1, every digraph G with out-degree at most 1 and no dire
ted 
y
le of length less thanp+1 has 
learly a homomorphism to the digraph T1;p obtained from a 
olle
tion of p dire
ted 
y
lesof respe
tive lengths p+ 1, p+ 2, : : :, 2p + 1, 
ontaining respe
tively a vertex xp+1, xp+2, : : :, x2p+1,by identifying these verti
es into a unique vertex x. 24 Dis
ussionThe bound we gave in Theorem 2 is tight. For Theorem 3, our 
onstru
tion leads to a value of thebound t(k; p) of order kp � 2kp2 . It would be interesting to have a better estimation of this upperbound.Our Theorem 2 says that there exists a relation (T; S = [qj=1gj) su
h that for every relation(X;F = [ki=1fi) there exists a homomorphism ' from (X;F ) to (T; S) su
h that every initial inequalityis preserved by ' whenever it is satis�ed by F . Here, the relation (T; S) 
annot be required itself tosatisfy the initial inequalities. Our Theorem 3 says that if we only 
onsider relations (X;F ) thatsatisfy all the initial inequalities then one 
an 
onstru
t a target relation (T; S) whi
h also satis�esthese inequalities. In fa
t, by slightly modifying the proof of Theorem 3', one 
an in some sensegeneralize Theorem 2 by 
onstru
ting a target relation (T; S) su
h that for every k-bounded relation(X;F ) there exists a homomorphism ' : (X;F )! (T; S) su
h that if all initial inequalities are satis�edby F at some x 2 X then they are also satis�ed by S at '(x). More formally we have:Theorem 7 Let f1; f2; : : : ; fk be partial mappings from X to X. For every p > 0, there exist a �niteset T , partial mappings g1; g2; : : : ; gq from T to T , and a homomorphism ' : (X;F = f1[f2[: : :[fk)!(T; S = g1 [ g2 [ : : : [ gq) su
h that1. ' preserves all (p0; `)-initial inequalities for every `, 0 � ` < p0 � p,2. for every x 2 X, if we havefip Æ fip�1 Æ : : : Æ fi1(x) 6= fi` Æ fi`�1 Æ : : : Æ fi1(x)for every `, 0 � ` < p, then we also havegjp Æ gjp�1 Æ : : : Æ gj1(x) 6= gj`0 Æ gj`0�1 Æ : : : Æ gj1(x)for every `0, 0 � `0 < p.To see that, it suÆ
es to repla
e the 
ondition (ii) in the de�nition of the target graph Hk;p bythe following 
ondition:



P. Hell, J. Ne�set�ril, A. Raspaud and E. Sopena 7(ii0) Ai � V for every i, 1 � i � p, and a =2 A1.We then get a new target graph H 0k;p having short 
y
les. More expli
itly, every vertex(a;A1; A2; : : : ; Ap) of H 0k;p belongs to a dire
ted 
y
le of length ` � p if and only if a 2 A`. Thereforethe homomorphism ' we used in the proof of Theorem 30 is su
h that every vertex not belonging toa dire
ted 
y
le of length ` is mapped to a vertex not belonging to a dire
ted 
y
le of length `.One 
an also 
onsider several variations of this problem. One of them is the following: givendisjoint mappings f; g : X ! X, 
onsidered as relations, 
an we �nd disjoint �nite relations Rf andRg on some set T and a mapping ' : X ! T whi
h is a homomorphism for both (X; f) ! (T;Rf )and (X; g) ! (T;Rg). The answer to this question is no as provided by the following example. LetX = IN [ �IN2 �, f(i; j) = i and g(i; j) = j whenever i < j. Then every homomorphism ' : X ! Ysatis�es that ' restri
ted to IN is inje
tive. This is a parti
ular example involved in the proof ofLemma 5.Another variant of the problem is obtained if we allow inverse mappings (even in inequalities). Alsoin this 
ase the answers be
ome very qui
kly negative. For suppose that f; g are mappings from �IN2 � toIN de�ned as above. Put (X;R) where R = f [ g�1. Clearly R \R�1 = ;. Then any homomorphism' : (X;R)! (T; S) where S \ S�1 = ; satis�es that ' restri
ted to IN is inje
tive.A
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