
On the oriented chromatic number of graphs

with given excess

Mohammad HOSSEINI DOLAMA

Department of Mathematics, Urmia University, Urmia, Iran

Éric SOPENA ∗
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Abstract

The excess of a graph G is defined as the minimum number of edges that must be
deleted from G in order to get a forest. We prove that every graph with excess at
most k has chromatic number at most 1

2(3 +
√

1 + 8k) and that this bound is tight.
Moreover, we prove that the oriented chromatic number of any graph with excess k

is at most k+3, except for graphs having excess 1 and containing a directed cycle on
5 vertices which have oriented chromatic number 5. This bound is tight for k ≤ 4.
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1 Introduction

For every graph G, we denote by V (G) the set of vertices of G, by E(G) the
set of edges or arcs of G, by v(G) the number of vertices of G, by e(G) the
number of edges of G and by c(G) the number of connected components of
G. The number v(G) will be called the order of G. All the graphs we consider
have no multiple edges and no loops. An oriented graph is a digraph having
no opposite arcs. An oriented graph may be thought of as an orientation of
the underlying undirected graph obtained by giving to each edge one of the
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two possible orientations. Therefore, we shall denote by ~G an oriented graph
which is an orientation of some undirected graph G.

Let G be an undirected graph. We shall denote by dG(u) the degree of the
vertex u in G. This notation will be shortened to d(u) whenever the graph G

is clear from the context. A directed path in an oriented graph ~G is an oriented
path such that all its arcs have the same direction. Similarly, a directed cycle
will be an oriented cycle such that all its arcs have the same direction. The
number of edges (or arcs) of a path (resp. a cycle) is called the length of this
path (resp. cycle).

A graph G is said to be biconnected if it is connected and the deletion of
any vertex in G preserves the connectivity. A biconnected component in G is a
maximal biconnected subgraph of G. A graph G is said to be 2-edge-connected
if it is connected and the deletion of any edge in G preserves the connectivity.
A 2-edge-connected component in G is a maximal 2-edge-connected subgraph
of G.

Let ~G be a oriented graph. An oriented k-coloring of ~G is a mapping c of V ( ~G)
to a set C of k elements, called colors, satisfying:

(i) ∀ uv ∈ E( ~G), c(u) 6= c(v),

(ii) ∀ uv, wt ∈ E( ~G), c(u) = c(t) =⇒ c(v) 6= c(w).

Note that condition (ii) implies in particular that if xyz is a directed path in
~G, then c(x) 6= c(y) 6= c(z) 6= c(x). For instance, any oriented coloring of the

directed cycle ~C5 of length five must use 5 colors.

Let ~G and ~H be two oriented graphs. A homomorphism of ~G to ~H is a mapping
f from V ( ~G) to V ( ~H) such that for every arc xy in E( ~G), f(x)f(y) is an arc

in E( ~H). We shall write ~G −→ ~H whenever there exists a homomorphism

of ~G to ~H . In that case, we shall say that ~G is ~H-colorable and that the
homomorphism f is a ~H-coloring of ~G.

It is not difficult to observe that a ~H-coloring of an oriented graph ~G is an
oriented k-coloring of ~G where k = v( ~H). Similarly, every oriented k-coloring
using a set C of colors can be viewed as a homomorphism to some oriented
graph having the set C as set of vertices. Therefore, the target graph ~H will
often be referred to as a color-graph and its vertices as colors. In the following,
we shall indifferently speak about k-colorings or ~H-colorings depending on the
context.

The oriented chromatic number of an oriented graph ~G, denoted by ~χ( ~G), is

defined as the smallest k such that ~G has an oriented k-coloring or, equiv-
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alently, as the minimum order of an oriented graph ~H such that ~G −→ ~H .
This notion is extended to undirected graphs as follows: the oriented chro-
matic number of an undirected graph G, denoted by ~χ(G), is defined as the
maximum of the oriented chromatic numbers of its orientations. Similary, the
oriented chromatic number of a family of graphs (or oriented graphs) is defined
as the maximum of the oriented chromatic numbers of its members.

Oriented colorings have been first considered by Courcelle [3] as a tool for
encoding graph orientations by means of vertex labels. Since then, oriented
colorings have attracted very much attention and have been studied by several
authors (see [2,4–6,8] or [7] for a general overview). In particular, it has been
proved in [5] that the family of planar graphs has oriented chromatic number
at most 80 and in [8] that there exist oriented planar graphs with oriented
chromatic number at least 16. In [6], it has been proved that the family of
graphs with degree at most 2 (that is paths and cycles) has oriented chromatic
number at most 5. It is not difficult to observe that the family of forests has
oriented chromatic number at most 3 (see Section 3).

In this paper, we study the oriented chromatic number of graphs according to
the following parameter: the excess of a graph G, denoted by ex(G), is defined
as the minimum number of edges we have to delete in G in order to get a
forest. Therefore, ex(G) = e(G)−v(G)+c(G). This parameter corresponds to
the dimension of the cycle space of G and is sometimes called in the litterature
the cyclomatic number [1] or the Betti number of G.

We shall denote by ξk the family of graphs with excess k. For instance, the
family ξ0 corresponds to the family of forests. Since every graph with excess
k−1 is a subgraph of some graph with excess k, we clearly have ~χ(ξk) ≥ ~χ(ξk−1)
for every k > 0. It has been proved in [2] that by adding one arc to some
oriented graph, its oriented chromatic number may be increased by 2 (more

precisely, it is proved that for every p, there exists an oriented graph ~Hp such

that deleting any arc in ~Hp decreases its oriented chromatic number by 2

and deleting any vertex in ~Hp decreases its oriented chromatic number by p).
Therefore, since the family of forests has oriented chromatic number at most
3, we get ~χ(ξk) ≤ 2k + 3 for every k ≥ 0.

Our main result shows that this bound can be decreased to k + 3 except for
orientations of graphs with excess 1 containing a directed cycle on 5 vertices
which have oriented chromatic number 5.

This paper is organised as follows. In Section 2 we prove that the (usual)
chromatic number of graphs with excess k is at most 1

2
(3+

√
1 + 8k) and that

this bound is tight. In Section 3, the oriented chromatic number of graphs
with excess at most 2 is considered, while the oriented chromatic number of
graphs with excess k, k ≥ 3, is considered in Section 4. Finally, we prove in
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Section 5 that our bound is tight for graphs with excess at most 4 and give
some general lower bound for the oriented chromatic number of graphs with
excess k, k > 4.

2 The undirected case

We consider in this section the problem of determining the (usual) chromatic
number of graphs with given excess. We prove the following:

Theorem 1 If G is an undirected graph with excess k then χ(G) ≤ 1
2
(3 +√

1 + 8k) and this bound is tight.

Proof. Let G be a graph with excess k, minimal with respect to the number
of vertices, such that χ(G) > 1

2
(3 +

√
1 + 8k). We obviously have

v(G) >
1

2
(3 +

√
1 + 8k). (1)

If there exists a vertex u ∈ V (G) with d(u) ≤ 1
2
(3 +

√
1 + 8k) − 1 = 1

2
(1 +√

1 + 8k) then, according to the minimality of G, there exists a coloring of
G − u using 1

2
(3 +

√
1 + 8k) colors and this coloring can be extended to G, a

contradiction. Therefore,

∀ u ∈ V (G), d(u) >
1

2
(1 +

√
1 + 8k). (2)

Finally, consider k = ex(G) = e(G) − v(G) + 1. From (2) we get

k >
1

2
(
1

2
(1 +

√
1 + 8k))v(G) − v(G) + 1

= 1 +
1

4
(
√

1 + 8k − 3)v(G)

and from (1)

k > 1 +
1

4
(
√

1 + 8k − 3) × 1

2
(3 +

√
1 + 8k)

=
1

8
(1 + 8k − 9) + 1 = k,

a contradiction. Therefore, every graph with excess k has chromatic number
at most 1

2
(3 +

√
1 + 8k).

To see that this bound is tight, consider the complete graph Kn on n vertices
with n = 1

2
(3 +

√
1 + 8k). This graph has chromatic number 1

2
(3 +

√
1 + 8k)
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and excess

ex(Kn) =
1

2
n(n − 1) − n + 1 =

1

2
(n2 − 3n + 2)

=
1

8
(3 +

√
1 + 8k)2 − 3

4
(3 +

√
1 + 8k) + 1

=
1

8
(9 + 1 + 8k + 6

√
1 + 8k) − 9

4
− 3

4

√
1 + 8k + 1

=
10

8
+ k +

6

8

√
1 + 8k − 9

4
− 3

4

√
1 + 8k + 1 = k.

This concludes the proof.

3 Oriented graphs with excess k ≤ 2

In this section, we consider the problem of determining the oriented chromatic
number of graphs with excess 0, 1 and 2.

For a graph G, we define the pruned graph of G, denoted by P (G), as the
(unique, up to isomorphism) graph obtained from G by repetedly deleting
isolated vertices and vertices of degree 1 until the obtained graph is an isolated
vertex or a graph with minimum degree 2. The pruned graph of an oriented
graph is defined in a similar way. Note that both the initial graph and its
pruned graph have the same excess.

An oriented graph will be called a good oriented graph if it has no source
nor sink (that is every vertex has at least one incoming arc and at least one
outcoming arc). The next observation will be extensively used in the sequel:

Observation 2 Let ~G be an oriented graph. If ~H is a good oriented graph
such that P ( ~G) −→ ~H, then ~G −→ ~H.

To see that, let v1, v2, . . . , vℓ denote the ordered sequence of vertices that have
been deleted from ~G in order to get P ( ~G) and let f be a homomorphism of

P ( ~G) to ~H. One can extend f to a homomophism of ~G to ~H by mapping

vertices vℓ, vℓ−1, . . . , v1 (in that order) to vertices of ~H as follows: an isolated

vertex is mapped to any vertex of ~H, a vertex of degree 1 is mapped according
to the image of its unique neighbor, which is always possible since ~H is good.

A graph with excess 0 is clearly a forest and its pruned graph is thus an
isolated vertex. Since the smallest good oriented graph is the directed cycle ~C3

on 3 vertices and since the directed path on 3 vertices has oriented chromatic
number 3, we get:

Theorem 3 [6] ~χ(ξ0) = 3. Moreover, every oriented graph with excess 0 has

a homomorphism to ~C3.
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A graph with excess 1 is a graph whose pruned graph is a cycle. Let ~T5 be
the tournament defined by V (~T5) = {0, 1, . . . , 4} and ij ∈ E(~T5) if and only

if j − i ≡ 1 or 2 (mod 5). The tournament ~T5 is clearly vertex-transitive

and has the following property: for every oriented path ~P = uvw of length 2
and any two distinct vertices a and b in V (~T5) there exists a homomorphism

ϕ : ~P −→ ~T5 with ϕ(u) = a and ϕ(w) = b [6]. The following has been proved
in [6]:

Proposition 4 [6] Every oriented cycle has a homomorphism to the tour-

nament ~T5.

This result can be strenghtened as follows:

Proposition 5 Every oriented cycle except the directed cycle on 5 vertices
has oriented chromatic number at most 4.

Proof. Let u1u2 . . . un denote the vertices of an oriented cycle ~C on n vertices.

Suppose first that ~C is not a directed cycle. Without loss of generality, we can
then suppose that u1u2 and u1un are two arcs in ~C. By Theorem 3, we know
that the oriented path u2u3 . . . un has a homomorphism to ~C3. By assigning
to u1 a fourth color, we get a homomorphism of ~C to some oriented graph on
4 vertices.

Suppose now that ~C is the directed cycle on n 6= 5 vertices. The result is
obvious for n ≤ 4. For n ≥ 6, we can partition the cycle into directed paths
of length 3 or 4 since every such n can be expressed as a sum of 3’s and 4’s.
By coloring 1, 2, 3 the paths of length 3 and 1, 2, 3, 4 the paths of length 4 we
obtain a homomorphism of ~C to the oriented graph on four vertices {1, 2, 3, 4}
with arcs 12, 23, 34, 31 and 41. Hence, the oriented chromatic number of ~C is
at most 4.

It is not difficult to observe that in the proof of Proposition 5 one can obtain in
each case a homomorphism to some good tournament of order 4. (The target
graphs all contain a directed 3-cycle and a fourth vertex of degree at most 2,
so that one can add some arc to get the desired tournament). Therefore we
get, considering that the directed cycle on 5 vertices has oriented chromatic
number 5:

Theorem 6 ~χ(ξ1) = 5. Moreover, every oriented graph with excess 1 has

a homomorphism to ~T5 and every oriented graph with excess 1 containing
no directed 5-cycle has oriented chromatic number at most 4 and admits a
homomorphism to some good tournament on 4 vertices.

We now consider the case of graphs with excess 2 and prove the following:
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Theorem 7 ~χ(ξ2) = 5. Moreover, every oriented graph with excess 2 admits
a homomorphism to some good tournament of order 5.

Proof. Let G be a graph with excess 2 and ~G be any orientation of G. Ac-
cording to Observation 2, it is enough to consider the case when G = P (G).
We have three cases to consider, according to the form of the graph G:

(1) G has two connected components, each being a cycle.

Both cycles are ~T5-colorable by Proposition 4 so that ~G is ~T5-colorable.
(2) G is connected and made of two cycles C1 and C2 linked by a path of

length ℓ ≥ 0.
Let u denote the vertex of C2 belonging to the path. The graph ~G −

~C2 + u has excess 1 and, by Theorem 6, is ~T5-colorable. Let f be a
homomorphism of ~G − ~C2 + u to ~T5 and g be a homomorphism of ~C2 to
~T5 (such a homomorphism exists by Proposition 4). Since ~T5 is vertex-
transitive, the homomorphism g can be chosen such that f(u) = g(u).

Combining f and g, we get a homomorphism of ~G to ~T5.
(3) G is connected and made of two cycles C1 and C2 having t consecutive

edges in common, t ≥ 1.
Let u denote one of the two vertices of G with degree 3. The graph

~G − u is a tree and, by Theorem 3, has a homomorphism to ~C3. Denote
by f such a homomorphism and by u1, u2 and u3 the 3 neighbors of u in
~G. If all arcs linking u to its neighbors have the same direction, we assign
u some fourth color, thus extending f to a homomorphism of ~G to some
oriented graph on 4 vertices. Otherwise, one arc linking u to some ui has
a direction opposite to the two others. In that case, we can extend f by
assigning u some fourth color and recoloring ui with some fifth color. We
thus get some homomorphism of ~G to some oriented graph on 5 vertices.
In both cases, the target graph can be completed in order to get some
good oriented graph.

In each case, G has a homomorphism to some good oriented graph of order at
most 5, which concludes the proof.

4 Oriented graphs with excess k ≥ 3

In this section, we consider the problem of determining the oriented chromatic
number of graphs with excess k, k ≥ 3. We start by two useful lemmas.

Lemma 8 Let G be a 2-edge-connected graph with excess k. For every u ∈
V (G), ex(G − u) ≤ k − ⌈d(u)

2
⌉.
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Proof. Let d = d(u) and A = {x1, x2, . . . , xd} be the set of all neighbours of
u in G. For every xi ∈ A there exists at least some xj ∈ A, j 6= i such that xi

and xj belong to the same connected component of G − u. Therefore G − u
has at most ⌊d

2
⌋ connected components. Then:

ex(G − u) = e(G) − d − v(G) + 1 + c(G − u)

≤ e(G) − v(G) + 1 − (d − ⌊d

2
⌋) = k − ⌈d

2
⌉.

Lemma 9 Let G be a 2-edge-connected graph with ex(G) > 1.

(a) If there is a cycle in G containing exactly one vertex with degree at least 3
and if all other cycles in G contain at least two vertices of degree at least 3,
then G contains a vertex u of degree at least 3 such that G−u is connected.

(b) If every cycle in G contains at least two vertices of degree at least 3, then G
contains two distinct vertices u1 and u2 of degree at least 3 such that G−u1

and G − u2 are both connected.

Proof. Let G be a graph satisfying the conditions of the lemma. Since ex(G) >
1, G contains at least two vertices of degree at least 3. If the graph G is
biconnected, then every vertex u in G is such that G−u is connected and the
result follows.

Otherwise, consider the graph B(G), whose vertices are the blocks (that is the
biconnected components) of G and such that there is an edge linking two such
blocks if and only if they share a common vertex. It is well-known that the
graph B(G) is a tree. Since G is 2-edge-connected, every leaf of B(G) contains
a cycle. Since G is not biconnected, B(G) contains at least two leaves.

In case (a), there is at least one leaf in B(G), say B0, containing a cycle having
at least two vertices of degree at least 3. Let b0 denote the unique vertex of B0

belonging to some other block. We can therefore choose a vertex u of degree
at least 3, u 6= b0, such that G − u is connected.

In case (b), every leaf in B(G) has the same property as B0. Since B(G) has
at least two leaves, we can find two distinct vertices u1 and u2 of degree at
least 3 such that both G − u1 and G − u2 are connected.

We are now able to prove our main result:

Theorem 10 ∀ k ≥ 2, ~χ(ξk) ≤ k + 3. Moreover, every oriented graph with
excess k ≥ 2 admits a homomorphism to some good tournament of order k+3.
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Proof. We prove the theorem by indution on k. By Theorem 7, the result
holds for k = 2. Suppose now that the result holds for every ℓ, 2 ≤ ℓ ≤ k − 1
and let G be a graph with excess k > 2. According to Observation 2 it is
enough to consider the case when G = P (G).

Let ~G be any orientation of G. We consider five cases (for every case i, we
assume that none of the cases 1, 2, . . . , i − 1 occurs):

(1) ~G contains a cycle with a vertex u of degree 2 having either two incoming
arcs or two outcoming arcs.

We clearly have ex(G − u) = k − 1. Therefore, by the induction hy-

pothesis, ~G − u has a homomorphism f to some good tournament of
order k + 2. By assigning u some (k + 3)-th color, we can extend f to a

homomorphism of ~G to some good tournament of order k + 3.
(2) ~G contains a cycle with a vertex u of degree 2 having one incoming arc

and one outcoming arc. Moreover, the 2 neighbors of u are linked by a
directed path of length 1 or 2 which does not contain the vertex u.

Again we have ex(G−u) = k−1. Therefore, by the induction hypoth-

esis, ~G − u has a homomorphism f to some good tournament of order
k + 2. Since the two neighbors of u, say r and s, are linked by a directed
path of length 1 or 2, we have f(r) 6= f(s). Therefore, by assigning u

some (k +3)-th color, we can extend f to a homomorphism of ~G to some
good tournament of order k + 3.

(3) ~G has a cycle containing an induced directed path uu1u2u3v of length 4

(vertices u1, u2 and u3 have degree 2 in ~G).

By deleting the vertices u1, u2 and u3, we get a graph ~G′ with excess
k − 1 which has a homomorphism f to some good tournament ~Hk+2 of
order k + 2. Let f(u) = x and f(v) = y. We have three subcases to
consider. In each subcase, we show how to extend f to a homomorphism
of ~G to some good tournament of order k + 3 by using a (k + 3)-th color
α.

3.1. x = y. The mapping f can be extended by setting f(u1) = z, f(u2) = α

and f(u3) = z′, where xz, z′x ∈ E( ~Hk+2).

3.2. x 6= y and xy ∈ E( ~Hk+2). The mapping f can be extended by setting

f(u1) = y, f(u2) = z and f(u3) = α where yz ∈ E( ~Hk+2).

3.3. x 6= y and yx ∈ E( ~Hk+2). If there exists two vertices z and w in ~Hk+2

such that w 6= y and xz, zw ∈ E( ~Hk+2), f can be extended by setting

f(u1) = z, f(u2) = w and f(u3) = α. Otherwise, since ~Hk+2 has at

least 4 vertices, there exists two vertices z and w′ in ~Hk+2 such that
xz, w′z ∈ E( ~Hk+2) and w′ /∈ {x, y, z}. In that case, f can be extended

by setting f(u1) = α, f(u2) = w′ and f(u3) = z, with zy ∈ E( ~Hk+2).
In all these three subcases, f has a homomorphism to some color graph
that can clearly be completed to obtain a good tournament of order k+3.

(4) G contains a vertex u of odd degree, d(u) = 2t + 1, such that all edges
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incident to u in G are contained in some cycle.
We have two subcases to consider:

4.1. ex(G − u) 6= 1 or ~G − u does not contain the circuit ~C5 as a subgraph.
Since u has degree 2t+1 and all the edges incident to u are contained

in some cycle, u belongs to at least t + 1 cycles. Now by deleting u, the
excess decreases by at least t+1 and so we have ex(G−u) ≤ k− t− 1.

According to the induction hypothesis we thus have ~χ( ~G−u) ≤ k+2−t.

Let f be a homomorphism of ~G− u to some good tournament of order
k + 2 − t. Note that in order to extend f to a homomorphism of ~G to
some good tournament of order k +3 we have k+3− (k +2− t) = t+1
free colors.

It is not difficult to see that the configuration that requires the largest
number of new colors is the following (the undirected edge may be
oriented in any direction):

t t

t

t t t

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

A
A
A
A
A
A
A
A

S
S

S
S

S
S

S
S

C
C
C
C
C
C
C
C�

��
A

AK

�
�

�
�

�
��/

C
C
C
C
C
C
CW

........

u

x1 y1 xt yt xt+1

where for every i, 1 ≤ i ≤ t, f(xi) = f(yi) and for every i, j, 1 ≤ i <
j ≤ t + 1, f(xi) 6= f(xj).

In that case, we can extend f by recoloring the vertices y1, y2, . . . , yt

with t distinct new colors and by assigning to u the (t+1)-th free color.
The so-obtained color graph can clearly be completed to obtain a good
tournament of order k + 3.

4.2. ex(G − u) = 1 and ~G − u contains a directed cycle ~C5.
We consider two cases according to the degree of the vertex u:

4.2.1. d(u) = 3.
In this case only one of the two following configurations is pos-

sible (an undirected edge stands for any oriented path, a dashed
edge for an optional oriented path), the other possibilities having
been considered in the previous cases:
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(a) d(v1) = 3, d(v3) = 3 or 4
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(b) d(v1) = d(v2) = d(v3) = 3

A
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A
A
A

�
�

�
�

�
�

Configuration (a). Consider the graph ~G−v1 and let w denote the
third neighbour of v1 (we may have w = u). This graph has excess
1 and, by Proposition 4, has a homomorphism f to T5. Since the
vertices v2 and v5 have degree 1 in ~G − v1, the homomorphism f
can be chosen such that f(v2) 6= f(v5) 6= f(w) if v1w is an arc in
~G or f(v5) 6= f(v2) 6= f(w) if wv1 is an arc in ~G (recall that every
vertex in T5 has 2 successors and 2 predecessors). By assigning to

v1 some 6-th color, f can be extended to a homomorphism of ~G to
some oriented graph of order 6.
Configuration (b). The graph ~G contains 3 cycles that cannot be
alltogether directed cycles. Therefore, there is at least one vertex
vi, 1 ≤ i ≤ 3, such that ~G − vi has no ~C5. By choosing such a vi

instead of u, we go back to case 4.1.
4.2.2. d(u) ≥ 5.

In this case, ex(G) ≥ 4. If G − u is connected, then d(u) − 2 ≥
⌈d(u)

2
⌉ colors are free so that one can extend any oriented coloring

of ~G − u to an oriented coloring of ~G as it was done in case 4.1.
Otherwise, there exists some vertex v in ~C5 such that d(v) ≥ 3,
G − v is connected and ex(G − v) > 1. By choosing v instead of
u, we again go back to case 4.1.

(5) Suppose now that none of the previous cases occurs. Since G is not a
forest, there exists in G a 2-edge-connected component G∗ such that G∗

and G−G∗ are linked by at most one edge. If G∗ is a connected component
of G, or if G itself is 2-edge-connected (in that case G∗ = G), then there
is no edge linking G∗ and G−G∗. Otherwise, we denote by w the unique
vertex of G∗ adjacent to some vertex of G − G∗.

We first claim that ex(G∗) > 1. Suppose to the contrary that ex(G∗) =
1, which means that G∗ is a cycle (recall that we have G = P (G)). Since

case 1 does not occur, ~G∗ must be a directed cycle. Since case 2 does not
occur, ~G∗ must be a directed cycle of length at least 5 but, in that case,
case 3 necessarily occurs, a contradiction.

We now claim that G∗ is an even graph (that is every vertex in G∗ has
an even degree). Since case 4 does not occur, the only vertex that can
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have an odd degree in G is the vertex w. Since every graph has an even
number of vertices with an odd degree, the vertex w has necessarily an
even degree in G∗ and we are done.

We finally claim that if w exists and dG∗(w) = 2, then all cycles in G∗

contain at least two vertices of degree at least 4, except possibly one cycle
containing w which, in that case, contains a vertex of degree at least 4,
otherwise all cycles in G∗ contain at least two vertices of degree at least 4.
Suppose to the contrary that G∗ contains a cycle of length ℓ having ℓ− 1
vertices (distinct from w if it exists) of degree 2. As discussed before, this

cycle must be a directed cycle in ~G∗ since case 1 does not occur. Since
case 2 does not occur we necessarily have ℓ ≥ 5 and, since case 3 does
not occur, ℓ < 4, a contradiction.

Therefore, by applying Lemma 9 to G∗, we get that G∗ contains at
least one vertex u of degree at least 4, u 6= w if w exists, such that G∗−u
is connected. Clearly, G and G − u have the same number of connected
components. Therefore,

ex(G − u) = e(G − u) − v(G − u) + c(G − u)

= e(G) − d(u) − v(G) + 1 + c(G) = ex(G) − d(u) + 1.

We have now two cases to consider:
5.1. ex(G − u) 6= 1 or ~G − u does not contain a directed cycle ~C5.

According to the induction hypothesis, we have ~χ( ~G−u) ≤ k−d(u)+

4. Then every homomorphism of ~G − u to some good tournament of
order k − d(u) + 4 can be extended to a homomorphism of ~G to some
good tournament of order k + 3 by using the same technique as in case
4.1, since we have d(u) − 1 > ⌈d(u)

2
⌉ free colors.

5.2. ex(G − u) = 1 and ~G − u contains a directed cycle ~C5.
We then consider two subcases:

5.2.1. d(u) = 4.
In that case, ex(G) = 4. It is not difficult to check that either

one can choose the vertex u among the vertices of ~C5 in such a
way that this situation does not happen, or ~G has the following
form (an undirected edge may be oriented in any direction):
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(a) An oriented graph with excess 3

and oriented chromatic number 6
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(b) An oriented graph with excess 4

and oriented chromatic number 7

Fig. 1. Proof of Proposition 11

In that case, we know by Theorem 6 that G − u has a homomor-
phism f to the good tournament ~T5. We then have two free colors,
say α and β. If a and b are respectively the colors of vertices v
and w, one can extend f to a homomorphism of ~G to some good
tournament on 7 vertices by coloring the vertex u with some color
c ∈ V (~T5), distinct from a and b, and recoloring the vertices ui,

1 ≤ i ≤ 4, by α (resp. β) if (u, ui) ∈ E( ~G) (resp. if (ui, u) ∈ E( ~G)).
Note that the paths uv and uw are directed and that the vertices
v′ and w′ can be recolored with some color in V (~T5) distinct from
c (there exist two choices for coloring these two vertices by a color

in V (~T5) [6]).
5.2.2. d(u) ≥ 6.

In this case, ex(G) ≥ 6. Every homomorphism of ~G−u to ~T5 can

be extended to a homomorphism of ~G to some good tournament
of order d(u) + 3 by using the same technique as in case 4.1, since

we have d(u) − 2 > ⌈d(u)
2
⌉ free colors.

This concludes the proof.

5 Lower bounds

We have given in Theorems 3, 6 and 7 tight bounds for the oriented chromatic
number of graphs with excess 0, 1 and 2. We prove first that the bounds given
by Theorem 10 are also tight for graphs with excess 3 and 4:

Proposition 11 There exist graphs with excess 3 (resp. 4) and oriented chro-
matic number 6 (resp. 7).

Proof. Examples of such graphs are depicted in Figure 1 (in both cases, any
two vertices are linked by a directed path of length at most 2, so that the
oriented chromatic number equals the number of vertices).
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Concerning a general lower bound for graphs with excess k, we have the fol-
lowing:

Theorem 12 For every n ≥ 1 and every k, k ≥ 3.2n−1(2n − 3) + 4, ~χ(ξk) ≥
3.2n − 1.

Proof. Let ~G1 = ~C5 and ~Gn, n ≥ 2, be the oriented graph obtained by taking
two disjoint copies of ~Gn−1 and a new vertex un linked by adding all the arcs
from the vertices of the first copy towards un and all the arcs from un towards
the vertices of the second copy.

This sequence of oriented graphs satisfies:











ex( ~G1) = 1 and ~χ( ~G1) = 5

∀ n ≥ 2, ex( ~Gn) = 2(ex( ~Gn−1) + ~χ( ~Gn−1) − 1) and ~χ( ~Gn) = 2~χ( ~Gn−1) + 1

Solving this system, we obtain:

ex( ~Gn) = 3.2n−1(2n − 3) + 4, n ≥ 1, and ~χ( ~Gn) = 3.2n − 1.

Therefore :
∀ k ≥ 3.2n−1(2n − 3) + 4, ~χ(ξk) ≥ 3.2n − 1.
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