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We prove that the incidence chromatic number of eedegenerated graph is at mostA(G) + 4. Itis known that
the incidence chromatic number of every gra&plwith maximum average degreead(G) < 3 is at mostA(G) + 3.
We show that wher\ (G) > 5, this bound may be decreasedAdG) + 2. Moreover, we show that for every graph
G with mad(G) < 22/9 (resp. withmad(G) < 16/7 andA(G) > 4), this bound may be decreasedA¢G) + 2
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1 Introduction

The concept of incidence coloring was introduced by Bruatdi Massey (3) in 1993. L&t = (V(G), E(G))
be a graph. Anncidencein G is a pair(v, e) with v € V(G), e € E(G), such thab ande are incident.
We denote by (G) the set of all incidences id. For every vertex, we denote by, the set of incidences
of the form(v, vw) and by A, the set of incidences of the forfw, wv). Two incidencegv, ) and(w, f)
areadjacentf one of the following holds{(%) v = w, (i7) e = f or (ii7) the edgeyw equals or f.

A k-incidence coloringf a graphG is a mappings of I(G) to a setC' of k colors such that adjacent
incidences are assigned distinct colors. Ti@Edence chromatic numbey;(G) of G is the smallest
such thatz admits ak-incidence coloring.

For a graplG, let A(G), 6(G) denote the maximum and minimum degre&bfespectively. It is easy
to observe that for every graggh we havey;(G) > A(G) + 1 (for a vertexv of degreeA(G) we must
useA(G) colors for coloringl, and at least one additional color for coloridg). Brualdi and Massey
proved the following upper bound:
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Theorem 1 (3) For every graphG, x;(G) < 2A(G).

Guiduli (4) showed that the concept of incidence coloring marticular case of directed star arboricity,
introduced by Algor and Alon (1). Following an example frot),(Guiduli proved that there exist graphs
G with x;(G) > A(G) + Q(log A(G)). He also proved that For every graph x;(G) < A(G) +
O(log A(GQ)).

Concerning the incidence chromatic number of special elag§graphs, the following is known:

e Foreveryn > 2, yv;(K,) =n=A(K,)+1(3).

o Foreverym >n > 2, xi(Kmn) =m+2=A(Kpn) +2(3).

e Forevery tred’ of ordern > 2, x,;(T) = A(T) + 1 (3).

e For every Halin grapldz with A(G) > 5, x:(G) = A(G) + 1 (8).

o For everyk-degenerated gragh, x;(G) < A(G) + 2k — 1 (5).

e For everyK -minor free graplG, x;(G) < A(G) + 2 and this bound is tight (5).
e For every cubic grapty, x;(G) < 5 and this bound is tight (6).

e Forevery planar grap@¥, x;(G) < A(G) + 7 (5).

The maximum average degreé a graphG, denoted bynad(G), is defined as the maximum of the
average degreesi(H) = 2 - |E(H)|/|V (H)| taken over all the subgraplit of G.

In this paper we consider the class tlegenerated graphs (recall that a grépls k-degenerated
if 6(H) < k for every subgrapt of G), which includes for instance the class of triangle-freznpr
graphs and the class of graphs with maximum average degreesat3. More precisely, we shall prove
the following:

1. If G is a3-degenerated graph, then(G) < A(G) + 4 (Theorem 2).

2. If Gis a graph withnad(G) < 3, theny;(G) < A(G) + 3 (Corollary 5).

3. If G agraph withmad(G) < 3 andA(G) > 5, theny;(G) < A(G) + 2 (Theorem 8).

4. If G is a graph withmad(G) < 22/9, thenyx;(G) < A(G) + 2 (Theorem 11).

5. If Gis a graph withnad(G) < 16/7 andA(G) > 4, theny;(G) = A(G) + 1 (Theorem 13).

In fact we shall prove something stronger, namely that omeccastruct for these classes of graphs
incidence colorings such that for every veriexhe number of colors that are used on the incidences of
the form(w, wv) is bounded by some fixed constant not depending on the maxuhegnee of the graph.

More precisely, we define g, ¢)-incidence coloringof a graphG as ak-incidence coloringr of G
such that for every vertex € V(G), |o(Ay)| < L.

We end this section by introducing some notation that wel sisalin the rest of the paper.

Let G be a graph. Ib is a vertex inG andvw is an edge iz, we denote byV (v) the set of neighbors
of v, by dg(v) = |N¢(v)| the degree of, by G \ v the graph obtained fror¥ by deleting the vertex
and byG \ vw the graph obtained fro& by deleting the edgew.
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Let G be a graph and’ apartial incidence coloring of7, that is an incidence coloring only defined on
some subsef of 1(G). For every uncolored incidence, vw) € I(G) \ I, we denote byg (v, vw) the
set offorbidden colorf (v, vw), that is:

Fg (v,0w) = o' (Ay) Ud'(I,) Ud' (I).

We shall often say that we extend such a partial incidena@icgjo’ to some incidence coloring of
G. Inthat case, it should be understood that wer$etvw) = o’ (v, vw) for every incidencév, vw) € 1.
We shall make extensive use of the fact that eyéry)-incidence coloring may be viewed agi, ¢)-
incidence coloring for any’ > k.
Drawing convention. In a figure representing a forbidden configuration, all thigimeors of “black” or
“grey” vertices are drawn, whereas “white” vertices maydather neighbors in the graph.

2 3-degenerated graphs

In this section, we prove the following :

Theorem 2 Every 3-degenerated graghadmits a(A(G)+4, 3)-incidence coloring. Thereforg,; (G) <
A(G) + 4.

Proof: Let G be a 3-degenerated graph. Observe first that(iff) < 3 then, by Theorem 1y;(G) <
2A(G) < A(G) +4 < 7 and every(A(G) + 4)-incidence coloring of7 is obviously a(A(G) + 4, 3)-
incidence coloring.

Therefore, we assum&(G) > 4 and we prove the theorem by induction on the number of vestice
of G. If G has at most 5 vertices the® C K5. Since for everyk > 0, x;(K,) = n, we obtain
xi(G) < x:i(K5) = A(K5) + 1 = 5, and eveng-incidence coloring of7 is obviously a(A(G) + 4, 3)-
incidence coloring. We assume now tldahasn + 1 vertices,n > 5, and that the theorem is true for all
3-degenerated graphs with at mastertices.

Let v be a vertex ofG with minimum degree. Sincé&' is 3-degenerated, we havg:(v) < 3. We
consider three cases accordingito(v) :

1. dg(v) = 1.
Letw denote the unique neighboroin G (see Figure 11)). Due to the induction hypothesis, the
graphG’ = G \ v admits a(A(G) + 4, 3)-incidence coloring’. We extend:’ to a(A(G) + 4, 3)-
incidence coloring of5. Since|Fg (w, wv)| = |0’ (I,) Uo’(Ay)] < A(G) —1+3 = A(G) +2,
there is a colon such that ¢ FZ (w,wv). We then set(w, wv) = a anda (v, vw) = b, for any
colorbin o’(Ay).

2. dg(’l)) = 2.

Let u, w be the two neighbors af in G (see Figure 12)). Due to the induction hypothesis, the
graphG’ = G \ v admits a({A(G) + 4, 3)-incidence coloring’. We extendr’ to a(A(G) + 4, 3)-
incidence coloringr of G as follows. We first set (v, vu) = a for a colora € o(A,,) (if dg(u) =

1, we have the casB. Now, if |0’ (A,,)| > 2, thereis a colob € ¢’/ (A,,)\{a} andif|o’(A4,)| = 1,
since|Fg(v,vw)| = |0/ (I,) U {a}| < A(G) —1+1 = A(G), there is a colob distinct froma
suchthab ¢ FZ(v,vw). We setr (v, vw) = b.
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Fig. 1: Configurations for the proof of Theorem 2

We still have to color the two incidencds, uv) and (w,wv). Sincea € o'(4,), we have
|Fg(u, uv)| = |0’ (I,)Uo'(Ay) U{a, b} < A(G)—1+3+2—1= A(G)+3. Therefore, there is
acolorc such that ¢ Fg(u,uv). Similarly, sinceb € o(A,,), we have FZ(w,wv)| < A(G) +3
and there exists a coldrsuch that! ¢ Fg(w,wv). We can extend’ to a(A(G) + 4, 3)-incidence
coloringo of G by settingo (u, uv) = ¢ ando (w, wv) = d.

. dg(v) = 3.

Letus, uy andug be the three neighbors ofin G (see Figure 13)). Due to the induction hypoth-
esis, the grapli’ = G \ v admits a A(G) + 4, 3)-incidence coloring’.

Observe first that for every; 1 < i < 3, since|Fg (v,vu;)| < A(G) — 1 and since we have
A(G) + 4 colors, we have at least five colors which are noF}Jﬁ' (v,vu;). Moreover, if| A,,| < 3
then any of these five colors may be assigned to the incidgnee;) whereas we have only three

possible choices (among these five)Af,,| = 3. In the following, we shall see that having only
three available colors is enough, and therefore assumétliat,,, )| = 3 for everyi, 1 < i < 3.

We define the set® andB; ; as follows :
-Vi,5,1<4,5 <3,i# j, Bij:= (0'(1y;) Uo'(Ay,)) N0’ (Ay,)

-B:= Ulgi,jSS Bi,jv ) 7& _j
We consider now four subcases according to the degrees of andus; :

@ Vi, 1<i<3,dg(ui) < A(G).
In this case, since we have 3 colors for the in/cide(m;@ui) for everyi, 1 < ¢ < 3, we can
find 3 distinct colorsay, as, a3 such that,; ¢ Fg (v,vu;). We seto (v, vu;) = a; for everyi,
1 <4 <3,
We still have to color the three incidendes, u;v), 1 < i < 3. Sincea; € o(A,,), we have

i

|[F&(ui, uv)| = |o(Iy, )Uo(Ay, )U{ar1, a2, a3}| < A(G)—2+3+3—1 = A(G)+3 for every
i, 1 < i < 3. So, there exist three colobs, b2, b3 such tha; ¢ Fg(u;,uv), 1 <1 < 3.
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(b)

()

We can extend’ to a(A(G) + 4, 3)-incidence coloring of G by settingo (u;, u;v) = b; for
everys, 1 <14 < 3.

Only one of the vertices; is of degree) (G).

We can suppose without loss of generality that(u;), da(u2) < A(G) anddg(us) =
A(G).

Since|o’ (I, )Uo’ (Au,)| = A(G)—143 = A(G)+2and|o’ (A, )| = 3, we haveB; 1 # 0.
Leta, € Bs 1. Since|o’(A,,)| = 3 for everyi, 1 < i < 3, there exist two distinct colors,
andas distinct froma, such thats € o/(A,,) andas € o'(A,, ). We seto (v, vu;) = a; for
everys, 1 <14 < 3.

We still have to color the three incidences of fofmy, u;v). Sincea; € Bz, andas €
o'(Ay,) we have :

|FG (us, ugv)| = |0” (Iuy) U 0(Au,) U {a1, a2, as}|
<AG)-1+3+3-1-1=A+3
and since:; € o'(A,,) for everyi = 1,2 we have :
|FE (ui,uiv)] = |0’ (1) U o' (Au,) U {a, az, as}|
<AG)-2+34+3-1=A+3.
Therefore, there exist three colaxs b2, bs such thab; ¢ F&(u,, u;v)U{a1,a2,a3},1 <@ <
3. We can extend’ to a(A(G) + 4, 3)-incidence coloringr of G by settingo (u;, u;v) = b;
foreveryi, 1 <i < 3.
Only one vertex among the's is of degree less thaf\(G).
We can suppose without loss of generality tHa{u,) < A(G) anddg(uz2) = dg(uz) =
A(G).
Similarly to the previous case, we haigg ; # () andBs » # (). We consider two cases :
i BQJ 7& 3372.
Leta; € Ba1, a2 € B3o\ {a1} andas € o' (Ay,) \ {a1,a2}. We seto (v, vu;) = a; for
everyi, 1 <14 <3.
We still have to color the three incidencgs, u;v), 1 < i < 3. Sincea; € o'(A,,) we
have :
| FG (ur, urv)| = |0’ (I, ) U o(Ay, ) U {a1, a2, as}|
<AG)-2+3+3-1=A(G)+3

and sincey; € By 1, fori =1,2anda; € 0'(Ay,) for j = 2,3, we have :
|FE (uiyuiv)| = |0/ (Iu;) U o (Au;) U{ar, az, as}|

<AG)-1434+43-1-1=A(G)+3.

Therefore, there exist three coldrs by, bs such thab; ¢ FZ(u;, uv), 1 <i < 3. We
can extendr’ to a (A(G) + 4, 3)-incidence coloringr of G by settingo (u;, u;v) = b;
foreveryi, 1 <i < 3.
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ii. BQJ = 3372.
Leta; € BQJ = Bg_]g, as € U/(Au2> \ {al} andag € OJ(AUS) \ {0,1,(12}. We set
o(v,vu;) = a; foreveryi, 1 <14 < 3.
We still have to color the three incidendes, u;v), 1 < i < 3. Sincea; € o’'(A4,,) we
have :

|FG (ur, urv)| = |0’ (I, ) U 0(Auy ) U {a1, az, as}|
<AG)—2+43+3-1=A(G)+3

and sinceu; € By 1 = B3 anda; € o'(A,y;) for j = 2,3, we have :
|FG (uis uiv)| = |o" (Tu,) U o (Ay,) U{a1, a2, as}|

<AG)-143+43-1-1=A(G)+3.
Therefore, there exist three coldrs bs, b3 such thab, ¢ FZ(u;, uwv), 1 <1i < 3. We
can extendr’ to a (A(G) + 4, 3)-incidence coloringr of G by settingo (u;, u;v) = b;
foreveryi, 1 <i < 3.
(d) da(u1) = da(u2) = da(us) = A(G).
Similarly to the cas¢b) we haveB, ; # () for everyi andj, 1 < 4,j < 3 and thugB| > 1.

We prove first that in this casé3| > 2. Suppose thatB| = |{z}| = 1 ; in other words,
((0'(Iu;) U A,,) N A,)) = {«} foreveryi andj, 1 <4, j < 3. Thus we have :

lo'(Ay, ) U o' (I,) Uo'(Au,) Uo' (Au,) | = A(G) —14+3+3+3—-1-1

= A(G) + 6. Q)
But the relation (1) is in contradiction with the fact thaltis a (A(G) + 4, 3)-incidence
coloring and we then géB| > 2.
Let a; anday be two distinct colors inB. We can suppose without loss of generality that
ay € BQJ andas € Bgﬁg.
We consider the two following subcases :
i 3173 \ {al, ag} 7é @

Letas be a colorinB; 3 \ {a1,az2}. We seto (v, vu;) = a; foreveryi, 1 < i < 3.

Sincea; € Bj; = (0'(Ly;) Uo'(Ay;)) No'(Ay,), j =i +1mod3, anda; € o'(Ay,)

for everyi, 1 <i < 3, we have :

[F&(ui,uv)| = |0 (Iu,) U o' (Au,) U{a1, az, as}|
<AG)—1+434+3-1—1=A(G)+3.
Therefore, there exist three coldrs by, bs such thab; ¢ FZ(u;, uv), 1 <i < 3. We

can extendr’ to a(A(G) + 4, 3)-incidence coloringr of G by settingo (u;, u;v) = b;
foreveryi, 1 <i < 3.
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ii. BLg \ {(11, (IQ} = @
Since B3 # 0 we can suppose without loss of generality thate B; 5. Letas €
0'(Au,) \ {a1,a2}. We sets (v, vu;) = a; foreveryi, 1 <i < 3.
Sincea; € Bj; = (0'(Ly;) Uo'(Ay;)) No'(Ay,), j =i+ 1mod3, anda; € o'(Ay,)
fori =1,2, we have:

|FG (ui, uiv)| = |o"(Tu,) U o’ (Au,) U {a1, a2, as}|

<AG)-1434+43-1-1=A(G)+3

and sinceu; € o'(I,,) Uo'(A4,,) anda; € o’ (A — uy) we have :
| FG (u1,urv)| = |0’ (I, ) U0’ (Au, ) U {a1, a2, as}|

<SAG) -1+343-1-1=A(G)+3.

Therefore, there exist three coldrs§ b, bs such thab; ¢ FZ(u;,uv), 1 <1< 3. We
can extendr’ to a (A(G) + 4, 3)-incidence coloringr of G by settingo (u;, u;v) = b;
foreveryi, 1 <14 < 3.

It is easy to check that in all cases we obtaidG) + 4, 3)-incidence coloring o7 and the theorem is

proved. O
Since every triangle free planar grapiislegenerated, we have :

Corallary 3 For every triangle free planar grap®&, x:(G) < A(G) + 4.

3 Graphs with bounded maximum average degree

In this section we study the incidence chromatic number aphs with bounded maximum average
degree. The following result has been proved in (5).

Theorem 4 Everyk-degenerated grapty admits a(A(G) + 2k — 1, k)-incidence coloring.
Since every grapty with mad(G) < 3 is 2-degenerated, we get the following:

Corollary 5 Every graphG with mad(G) < 3 admits a(A(G) + 3, 2)-incidence coloring. Therefore,
xi(G) < A(G) + 3.

Concerning planar graphs, we have the following :
Observation 6 (2) For every planar graplG with girth at leasty, mad(G) < 2g/(g — 2).

Hence, we obtain :
Corollary 7 Every planar graphG with girth ¢ > 6 admits a(A(G) + 3, 2)-incidence coloring. There-
fore, x:(G) < A(G) + 3.
Proof: By Observation 6 we havead(G) < 2g/(g — 2) < (2 x 6)/(6 —2) = 3 and we get the result
from Corollary 5. i

If the graph has maximum degree at least 5, the previous iesube improved :



8 Mohammad Hosseini Dolama and Eric Sopena

v

w w1 w9

(1) dg(v) =1 (2) de(ws) < 5

Fig. 2: Forbidden configurations for the proof of Theorem 8

Theorem 8 Every graphG with mad(G) < 3andA(G) > 5 admits a(A(G)+2, 2)-incidence coloring.
Thereforex;(G) < A(G) + 2.

Proof: Suppose that the theorem is false anddebe a minimal counter-example (with respect to the
number of vertices). We first show th@tmust avoid all the configurations depicted in Fig. 2.

1. Configuratiorn(1).

Let w denote the unique neighbor ofin G. Due to the minimality ofG, the graph’ = G \ v
admits a(A(G) + 2, 2)-incidence coloring”’. We extendr’ to a(A(G) + 2, 2)-incidence coloring
o of G. Since|F&(w,wv)| = |0/ (1) U’ (Aw)| < A(G) — 142 = A(G) + 1, there is a colot
such that ¢ Fg&(w,wv). We setr(w, wv) = a ando (v, vw) = b, for any colorb in o’ (A,,).

2. Configuration(2).

Let w;, wo denote the two neighbors ofin G. Due to the minimality of7, the graphtG’ = G \ v
admits a(A(G) + 2, 2)-incidence coloring”’. We extendr’ to a(A(G) + 2, 2)-incidence coloring
o of G.

Since|FZ (w1, wiv)| = |0/ (Tw,) U 0’ (Aw,)| < A(G) — 142 = A(G) + 1 and since we have
A(G) + 2 possible colors, there is a colersuch tha ¢ F& (w1, wiv). We seto(w, wiv) = a.
If |0/(Aw,) \ {a}| > 1 then there is a colob € ¢'(Ay,) \ {a} and if 6'(A,,) = {a}, since
|F&(v,vws)| = |0'(Iw,) U {a}| < 3+1 =4 < A(G) — 1, there is a colob such thath ¢
FZ(v,vws). We seto (v, vws) = b.

Now, if |0’(Aw,) \ {b}| > 1 then thereis a colar € ¢/(A,,) \ {b} and ifo'(A,,) = {b}, since
|F&(v,vwi)| = |o(lw, ) U{b}| < A(G) + 1, there is a colot such that ¢ FZ (v, vw;). We set
o(v,vwy) = c.

Since|Fg(wa, wav)| = |0/ (Iw,) Uo(Aw,) U{c} <34+2+1=6<A(G)+ 1, there is a color
d suchthaid ¢ FZ(ws,wov) and we set (ws, wov) = d.

3. Configuration(3).

Letu;, 1 < i < 5, denote the five neighbors efandw; denote the other neighbor af in G (see
Figure 2(3)). Due to the minimality of7, the graphG’ = G \ v admits a(A(G) + 2, 2)-incidence
colorings’. We extends’ to a(A(G) + 2, 2)-incidence coloringr of G.
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Leta;, = o' (w;, wiu;), 1 < i < 5. Since we havé\(G) + 2 > 7 colors, there is a color distinct
from a; for everyi, 1 <i <'5.

Since|Fg (us, uiw;)| = |0’ (L, )] < A(G) we have two possible colors for the inciderog, u;w;)
for everyi, 1 < i < 5. So, we can suppose that(u;, u;w;) # « for everyi, 1 < i < 5. We set
o(u;,u;v) = x foreveryi, 1 <4 <5.

SinceFg(v,vu;) = {z, 0’ (u;, u;w;)} for everyi, 1 < i < 5, and since we have at ledstolors,
there is5 distinct colorsey, ¢z ..., ¢5 such that; ¢ {x, o’ (u;,u;w;)}, 1 < 4 < 5, and we set
o(v,vu;) = ¢; foreveryi, 1 <i <5.

It is easy to check that in every case we have obtainell(@) + 2, 2)-incidence coloring of7, which
contradicts our assumption.

We now associate with each vertexof G an initial chargel(v) = de(v), and we use the following
discharging procedure : each vertex of degree at flegstes1/2 to each of it2-neighbors.

We shall prove that the modernized degdéeof each vertex of7 is at least3 which contradicts the
assumptionmad(G) < 3 (since) o d"(u) = >, cod(u)). Letv be a vertex ofG ; we consider
the possible cases for old degrée(v) of v (sinceG does not contain the configuratiofl2, we have
dg(v) 2 2):

1. dg(v) =2.

SinceG does not contain the configuratiof22 the two neighbors of are of degree at least
Thereforep receivesl /2 from each of its neighbors so thédit(v) =2+ 1/2+1/2 = 3.
2. 3 S dg(v) S 4.

In this case we havé* (v) = dg(v) > 3.

3. dg(v) = 5.
SinceG does not contain the configuratiof32 at least one of the neighbors ofis of degree at
least3 andv gives at mostt x 1/2 = 2. We obtaind*(v) > 5—2 = 3.

4. dg(v) =k > 6.
In this casev gives at mosk x (1/2) so thatd*(v) > k — k/2=k/2 > 6/2 = 3.

Therefore, every vertex i@ gets a modernized degree of at leasind the theorem is proved. O

Remark 9 The previous result also holds for graphs with maximum de@rand for graphs with maxi-
mum degree 3 (by the result from (6)) but the question ren@es for graphs with maximal degree 4.

As previously, for planar graphs we obtain :

Corallary 10 Every planar graph of girth g > 6 with A(G) > 5 admits a(A(G) + 2, 2)-incidence
coloring. Thereforex;(G) < A(G) + 2.

For graphs with maximum average degree less than 22/9, vee:hav

Theorem 11 Every graphG withmad(G) < 22/9 admits a(A(G)+2, 2)-incidence coloring. Therefore,
xi(G) < A(G) + 2.
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v (%
u u
1 2 U3
aq a9 as
U w1 Wa w3

(3)

Fig. 3: Forbidden configurations for the proof of Theorem 11

Proof:

It is enough to consider the case of graphs with maximum @egtenost4, since for graphs with
maximum degree at leaStthe theorem follows from Theorem 8. Suppose that the theisdaise and
let G be a minimal counter-example (with respect to the numbeedfces and edges). Observe first that
we haveA(G) > 3 since otherwise we obtain by Theorem 1 thatG) < 2A(G) < A(G) +2 and every
(A(G) + 2)-incidence coloring ofi is obviously a(A(G) + 2, 2)-incidence coloring.

We first show thatz cannot contain any of the configurations depicted in Figure 3

1. Configuration(1).

This case is similar to case 1 of Theorem 8.

2. Configuration(2).

Letx (resp.y) denote the other neighbor of(resp.v) in G. Due to the minimality of+, the graph
G’ = G\ wv admits a(A(G) + 2, 2)-incidence colorings’. We extendv’ to a (A(G) + 2,2)-
incidence coloring of G.

Suppose’ (u, ux) = a, o’ (v,vy) = b, o' (x, zu) = cando’(y, yv) = d.
Suppose first thdf{a, b, ¢, d}| = 4. In that case, we set(u, uv) = d ando (v, vu) = c.
Now, if [{a, b, ¢, d}| < 3, we seto(u, uv) = e ando (v, vu) = f foranye, f ¢ {a,b,c,d}.

3. Configuration(3).

Let uq, us andus denote the three neighbors ofandw; denotes the other neighbor of, 1 <
i < 3,in G. Due to the minimality of7, the graphG’ = G \ v admits a(A(G) + 2, 2)-incidence
coloringo’. We extends’ to a(A(G) + 2, 2)-incidence coloring of G.

Suppose that;, = o’ (w;, w;u;), 1 <i < 3. Since we havé\(G) + 2 > 5 colors, there is a colar
distinct froma; for everyi, 1 < < 3.

Since|Fg (ui, uiw;)| = |0’ (I,,)| < A(G) we have at least two colors for the inciderteg, u;w;)
for everyi, 1 < i < 3. Thus, we can supposé(u;, u;w;) # x for everyi, 1 <14 < 3. We then set
o(u;,u;v) = x foreveryi, 1 <14 < 3.
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SinceFZ (v, vu;) = {z, o’ (u;, ujw;) } for everyi, 1 < ¢ < 3, and since we have at ledstolors,
there are3 distinct colorscy, ¢ etes such thate; ¢ {z, o' (u;, usw;)}, 1 < i < 3. We then set
o(v,vu;) = ¢; foreveryi, 1 < i < 3.

Therefore, in all cases we obtain(a(G) + 2, 2)-incidence coloring of&, which contradicts our
assumption.

We now associate with each vertexof G an initial chargei(v) = dg(v), and we use the following
discharging procedure : each vertex of degree at egstes2/9 to each of it2-neighbors.

We shall prove that the modernized degi#eof each vertex of7 is at least22/9 which contradicts
the assumptiomad(G) < 22/9. Letv be a vertex of5 ; we consider the possible cases for old degree
de(v) of v (sinceG does not contain the configuratio(l3, we haveis(v) > 2) :

1. dg(v) = 2.
SinceG does not contain the configuratiori23 the two neighbors of are of degree at least
Thereforep receives the/9 from each of its neighbors so théit(v) = 2 +2/9 4+ 2/9 = 22/9.
2. dg(U) = 3.
SinceG does not contain the configuratio(83, v is adjacent to at most twvertices and gives
at most2 x 2/9 = 4/9. We obtaind*(v) >3 —4/9 = 23/9 > 22/9.
3. dg(v) = 4.
In this casep gives at most x 2/9 = 8/9 so thatd*(v) >4 — 8/9 = 28/9 > 22/9.

Therefore, every vertex i@ gets a modernized degree of at leasind the theorem is proved. O

By considering cycles of length 0 (mod 3), we get that the upper bound of Theorem 11 is tight.
As previously, for planar graphs we obtain :

Coroallary 12 Every planar graph= of girth g > 11 admits a(A(G) + 2, 2)-incidence coloring. There-
fore, x:(G) < A(G) + 2.

Finally, for graphs with maximum average degree less thdn, & have :

Theorem 13 Every graphG with mad(G) < 16/7 and A(G) > 4 admits a(A(G) + 1, 1)-incidence
coloring. Thereforex;(G) = A(G) + 1.

Proof:

Since for every grapl?, x;(G) > A(G) + 1, it is enough to prove tha¥ admits a(A(G) + 1,1)-
incidence coloring. Suppose that the theorem is false an@ lee a minimal counter-example (with
respect to the number of vertices). We first show tHaiannot contain any of the configurations depicted
in Figure 4.

1. Configuration(1).

This case is similar to case 1 of Theorem 8.
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v O
\‘ 2
b d
(1) dg(v) = 1 (2) da (w1) < A(G) (3) de(w2) = de(ws) = 3

Fig. 4: Forbidden configurations for the proof of Theorem 13

2. Configuration(2).

Letu;, i = 1,2, be the two neighbors af andw; denote the other neighbor af in G. Due to the
minimality of G, the graphG’ = G \ v admits a(A(G) + 1, 1)-incidence coloring’. We extend
o’ to a(A(G) + 1, 1)-incidence coloring of G.

Suppose that' (w1, wiu1) = a, o' (ur,urwy) = b, o' (w2, wouz) = ¢ ando’ (ug, usws) = d.
Since|Fg, (w1, wiur) U{c}| = o' (Lw,) \{a} U0 (Aw,) U{c} < A(G) —2+1+1=A(G),
we can suppose that# c. We then set (v, vuy) = a ando (v, vuz) = c.

Now, sinceFg (ui, u1v) U F&(u2,ugv) = {a,b,c,d} and since we have at lea&{G) +1 > 5
colors, there is a color such that: ¢ {a, b, ¢,d}. We then seb(u1, ui1v) = o(ug, ugv) = .

. Configuration(3).

Letu;, 1 < i < 3 be the three neighbors of z; denote the other neighbor of andw; denote the
other neighbor of; in G. Due to the minimality of7, the grapiG’ = G\ {v, u1, u2, ug} admits a
(A(G) + 1, 1)-incidence coloring”’. We extendr’ to a(A(G) + 1, 1)-incidence coloring of G.
Suppose that’ (w;, w;z;) = a; ando’ (z;, x;w;) = b; foreveryi, 1 <i < 3. Since|Fg' (w;, wix; )U
{b1}] = |0/ (Tw;) \ {a:i} U {b;,b1}| < 2+ 2 =4fori = 2,3, and since we havA(G) +1 > 5
colors, we can suppose that # b; # a3. We then set (u;, u;z;) = a; ando(u;, u;v) = by for
everyi, 1 << 3.

SinceFg(v,vu;) U F&(xj, xju;) = {b1,b;,a;} for j = 2,3, there are two distinct colors and
c3 such thatj ¢ {bl, bj, aj},j =2,3. We seta(v,vuj) = O’(l’j,l’ju]‘) = Cj,j =2,3.

Now, sinceFg (v, vu1) U Fg (x1,z1u1) = {a1,b1, ¢, c3} and since we have at leastolors,
there is a color; such that; ¢ {a1,b1,ca,c3}. We then set (v, vu1) = o(x1, z1u1) = c1.

Therefore, in all cases we obtain(a(G) + 1, 1)-incidence coloring of&, which contradicts our

assumption.

We now associate with each vertexof G an initial chargel(v) = de(v), and we use the following

discharging procedure :

(R1) each vertex of degrelegives2/7 to each of it2-neighbors which has a 2-neighbor adjacent to a

3-vertex and gives 1/7 to its other 2-neighbors.
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(R2) each vertex of degree at least 4 gives 2/7 to each ofritsighbors and gives 1/7 to each 2-vertex
which is adjacent to one of its 2-neighbors.

We shall prove that the modernized degdé®f each vertex ofy is at leasti6 /7 which contradicts the
assumptionnad(G) < 16/7. Letv be a vertex of7, we consider the possible cases for old dedie@)
of v (sinceG does not contain the configuratiofi4, we haveig(v) > 2) :

1. dg(v) = 2. In this case we consider five subcases :

(a) v has two 2-neighbors, say andz,. Lety; be the other neighbor af, i = 1,2, in G. Since
G does not contain the configuratio24, y; is of degreeA(G) > 4 for i = 1,2. Eachy;,
i=1,2,givesl/7tovsothatd*(v) =2+ 1/7+1/7=16/7.

(b) v is adjacent to &-vertexz; and a2-vertex which is itself adjacent todvertex. In this case
v receive/7 from z; and we havel*(v) = 2 +2/7 = 16/7.

(c) vis adjacentto @-vertexz; and a2-vertex which is itself adjacent to a vertexof degree at
leastd. In this case receivesl /7 from z; and1/7 from z; so thatd* (v) =2+ 1/74+1/7 =
16/7.

(d) v is adjacent to tw@-vertices that both givelk/7 to v so thatd* (v) =2+ 1/7+1/7 = 16/7.

(e) One of the two neighbors ofis of degree at leadt In this case receives at lea®/7 so that
d*(v) >2+2/7=16/7.

2. dg(v) = 3.
Letuq, ue andug be the three neighbors of We consider two subcases according to the degrees
of u;’s.

(a) One of theu;'s is of degree at least, sayu;. In this casey gives at mos®/7 to uy and2/7
to us so thatd*(v) >3 —2/7—-2/7=17/7 > 16/7.
(b) Allthe u;'s are of degre@. Letz; be the other neighbor of; in G, 1 < i < 3.
i. One of thex;’s is of degree at leas}, sayz; . In this casey gives1/7 to uy, at most2/7
to u; and at mose/7 to uz. We then have*(v) >3 —-1/7—-2/7—2/7=16/7.
ii. Allthe z;'s are of degre@. Letw; be the other neighbor of; in G, 1 < i < 3. Since
G does not contain the configuratiof®4 we haved;(w;) > 3 for everyi, 1 < ¢ < 3,
and sinceZ does not contain the configuratio(34, at most one of they;’s, 1 <1 < 3,
can be of degre8. Thus, we can suppose without loss of generality thatw;) and
dge(w2) > 4. In this caseyp gives1/7 tows, 1/7 to wy and at mos2/7 to ws. We then
haved*(v) >3 -1/7—-1/7-2/7=17/7 > 16/7.

3. dg(v) =k > 4.
In this casep gives at mosk: x (2/7+41/7) = 3k/7 so thatd* (v) > k — 3k/7 = 4k/7 > 16/7.
Therefore, every vertex i¥ gets a modernized degree of at lebst7 and the theorem is proved.O

Considering the lower bound discussed in Section 1, we gétthie upper bound of Theorem 13 is
tight.
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Remark 14 For every graplt7, thesquareof G, denoted byG?, is the graph obtained fro by linking
any two vertices at distance at most 2. Itis easy to obseatetbviding ak, 1)-incidence coloring o7

is the same as providing a propewertex-colouring of52, for everyk (by identifying for every vertex
the color ofA4, in G with the color ofv in G2). By considering the cycl€; on 4 four vertices (note that
C? = K,) we get that the previous result cannot be extended to tiee/cas 2. Consider now the graph
H obtained from the cycl€’; on five vertices by adding one pending edge with a new vertigce372
contains a subgraph isomorphicAg, we similarly get that the previous result cannot be extdrid¢he
caseA = 3.

As previously, for planar graphs we obtain :

Coroallary 15 Every planar graphG of girth ¢ > 16 and withA(G) > 4 admits a(A(G) + 1,1)-
incidence coloring. Thereforg;; (G) = A(G) + 1.
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