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LaBRI, Université Bordeaux 1, 351 cours de la Libération

33405 Talence Cedex, France

E-mail: sopena@labri.fr

March 4, 2005

Abstract

An oriented k-coloring of an oriented graph G is a mapping c : V (G) →
{1, 2, . . . , k} such that (i) if xy ∈ E(G) then c(x) 6= c(y) and (ii) if xy, zt ∈ E(G)
then c(x) = c(t) =⇒ c(y) 6= c(z). The oriented chromatic number ~χ(G) of an ori-
ented graph G is defined as the smallest k such that G admits an oriented k-coloring.
We prove in this paper that every Halin graph has oriented chromatic number at
most 9, improving a previous bound proposed by Vignal.

AMS Subject Classification: 05C15.
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1 Introduction

We consider oriented graphs, that is digraphs having no loops and no opposite arcs. If G
is an oriented graph, we denote by V (G) its set of vertices and by E(G) its set of arcs. If
xy is an arc in E(G), we say that y is a successor of x and that x is a predecessor of y.

An oriented k-coloring of an oriented graph G is a mapping c : V (G) → {1, 2, . . . , k}
such that (i) if xy ∈ E(G) then c(x) 6= c(y) and (ii) if xy, zt ∈ E(G) then c(x) = c(t) =⇒
c(y) 6= c(z).

With every oriented k-coloring c of G one can associate a digraph Hc, called the
colour-graph of c, with vertex set V (Hc) = {c(x) | x ∈ V (G)} and arc set E(Hc) =
{c(x)c(y) | xy ∈ E(G)}. Thanks to conditions (i) and (ii), Hc is an oriented graph. The
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oriented k-coloring c can then be viewed as a homomorphism (that is an arc-preserving
vertex mapping) from G to Hc. Similarly, every homomorphism of G to an oriented graph
H on k vertices can be viewed as a k-coloring of G, using the vertices of H as colours. The
oriented coloring problem has been extensively studied these last years [1, 2, 3, 4, 5, 6].

The oriented chromatic number ~χ(G) of an oriented graph G is defined as the smallest
k such that G admits an oriented k-coloring or, equivalently, as the minimum number of
vertices in an oriented graph H such that G has a homomorphism to H .

From the definition of oriented k-coloring, we get that if xyz is a directed 2-path in
G (xy, yz ∈ E(G)) then c(x) 6= c(y) 6= c(z) 6= c(x) for every oriented k-coloring of G. In
other words, any two vertices that are linked in G by a directed path of length 1 or 2
must be assigned distinct colours.

Let H be a planar graph and F be its face set. If all the edges on the boundary of
some face F0 (whose vertices are all of degree 3) of F are deleted and a tree with at least
three leaves is obtained, then the graph H is called a Halin graph. The vertices on F0 are
called exterior vertices of H , and the remaining vertices are called interior vertices of H .

In [8] Vignal proved that every oriented Halin graph has oriented chromatic number
at most 11. She conjectured that the oriented chromatic number of every oriented Halin
graph is at most 8. We are going to prove that every oriented Halin graph has oriented
chromatic number at most 9, which improves the upper bound obtained by Vignal.

We now introduce some oriented graphs that are used as target graphs in the proof of
our main result : the tournament QR7 constructed from the non zero quadratic residues of
7, defined by V (QR7) = {0, 1, . . . , 6} and E(QR7) = {ij | j − i ≡ 1, 2 or 4 (mod 7)}, the
tournament T5 defined by V (T5) = {0, 1, . . . , 4} and E(T5) = {ij | j−i ≡ 1 or 2 (mod 5)},

the circuit on three vertices ~C3 with vertices 1, 2, 3 and arcs 12, 23, 31 and the oriented
graph G9 constructed as follows. Let Cx, Cy and Cz be three circuits on 3 vertices
with vertex sets {x1, x2, x3}, {y1, y2, y3}, {z1, z2, z3} and with arc sets {x1x2, x2x3, x3x1},
{y1y2, y2y3, y3y1}, {z1z2, z2z3, z3z1} respectively. The graph G9 is obtained from Cx, Cy

and Cz by adding all arcs from every vertex of Cx towards all vertices of Cy, all arcs from
every vertex of Cz towards all vertices of Cx, the arc xiyi+1 (mod 3) and the arc yixi+1

(mod 3) for every i = 1, 2, 3 (see Figure 1).

Definition 1 An orientation vector of size n is a sequence α = (α1, α2, . . . , αn) in {0, 1}n ;
let G be an oriented graph and X = (x1, x2, . . . , xn) be a sequence of pairwise distinct
vertices of G. A vertex y of G is said to be an α-successor of X if for every i, 1 ≤ i ≤ n,
we have αi = 1 =⇒ xiy ∈ E(G) and αi = 0 =⇒ yxi ∈ E(G).

Definition 2 We say that a color-graph C satisfies property Pk for some k > 0 if for
every oriented n-clique subgraph (c1, c2, . . . , cn) in C with 1 ≤ n ≤ k, and every orientation
vector α = (α1, α2, . . . , αn) of size n, there exists a color c in V (C) which is an α-successor
of (c1, c2, . . . , cn).

Note that every color-graph satisfying property Pk also satisfies property Pk′ for every
k′ < k. Then we have :

Proposition 3 [7] The tournement QR7 satisfies property P2.
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Figure 1: The graph G9

Proposition 4 [7] Every oriented tree is C3-colorable.

Proposition 5 [7] Every oriented cycle has a homomorphism to the tournament T5.

2 Halin graphs

In this section, we prove that the oriented chromatic number of every oriented Halin
graph is at most 9, and that there exists oriented Halin graphs with oriented chromatic
number 8.

Theorem 6 For every oriented Halin graph H, ~χ(H) ≤ 9.

Proof. Let H be an oriented Halin graph with extrior face F0. We denote by C(H) =
(f1, f2, . . . , fn), n ≥ 3, the cycle induced by the exterior vertices of H , and by T the tree
induced by the interior vertices of H . Let pi denote the father of fi for every i, 1 ≤ i ≤ n.

Thanks to Proposition 4, T is Cx-colorable. Let h′ be a homomorphism from T to Cx.
We are going to extend h′ to a homomorphism h from H to an oriented graph G having
at most 9 vertices, containing Cx as an induced subgraph.

We consider two cases according to n :

1. n ≤ 6.

Let G be the oriented graph obtained from Cx with V (G) = {x1, x2, x3, y1, y2, . . . yn}
and A(G) = A(Cx) ∪ {yiyj | fifj ∈ A(H), 1 ≤ i, j ≤ n} ∪ {h′(pi)yi | pifi ∈ A(H)} ∪
{yjh

′(pj) | fjpj ∈ A(H)}.

It is easy to check that the mapping h : V (H) −→ V (G) defined by
{

h(x) = h′(x) for all x ∈ V (T ),
h(fi) = yi for all i, 1 ≤ i ≤ n
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(1) (2)

Figure 2: Configurations for the case 2.(b)

is a homomorphism. So, ~χ(H) ≤ |G| ≤ 9.

2. n ≥ 7.

We consider three sub-cases :

(a) For every i, 1 ≤ i ≤ n, pifi ∈ A(H) or for every i, 1 ≤ i ≤ n, fipi ∈ A(H).

Since C(H) is a cycle, by Proposition 4 C(H) is T5-colorable. Let g be a
homomorphism from C(H) to T5. We consider the mapping h : V (H) −→
V (G), defined by :

h(x) =

{

h′(x) if x ∈ V (T ),
g(x) if x ∈ V (C(H))

where G is the oriented graph obtained from Cx and T5 by adding all the arcs
from every vertex of Cx towards every vertex of T5, if pifi ∈ A(H) for every i,
1 ≤ i ≤ n, and all the arcs from every vertex of T5 towards every vertex of Cx,
if fipi ∈ A(H) for every i, 1 ≤ i ≤ n.

In both cases h is clearly a homomorphism from H to G. Therefore, ~χ(H) ≤
|G| = 8.

(b) H contains one of the configurations depicted in Figure 2 (in the configura-
tions (3) and (4) of Figure 2 the edge pifi can be oriented in any direction).

Since C(H) \ fi is a path, according to Proposition 4 there exists a homo-

morphism g from C(H) \ fi to the circuit ~C3. We consider the mapping
h : V (H \ fi) → V (G9) defined by











h(x) = h′(x) if x ∈ V (T ),
h(fj) = yg(fj) if j 6= i and pjfj ∈ A(H),
h(fj) = zg(fj) if j 6= i and fjpj ∈ A(H).

It is easy to check that h is a homomorphism from H \ fi to G9. Let xi and x′

i

be the unique successor and the unique predecessor of h′(pi) in Cx respectively.
By setting h(fi) = xi (respectively h(fi) = x′

i) if pifi ∈ A(H) (respectively if
fipi ∈ A(H)), h can be extended to a homomorphism from H to G9.

(c) n is even and for every i, 1 ≤ i ≤ n/2, p2i−1f2i−1, f2ip2i ∈ A(H).

Two subcases arise :

i. There exists an i such that fi−1fi, fi+1fi ∈ A(H) or fifi−1, fifi+1 ∈ A(H).
We can suppose without loss of generality that pifi ∈ A(H).
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Since C(H) \ fi is a path, there exists a homomorphism g of C(H) \ fi to
~C3 such that g(fi+1) = 1. We consider the mapping h : V (H \fi) → V (G9)
defined by











h(x) = h′(x) if x ∈ V (T ),
h(fj) = yg(fj) if j 6= i and pjfj ∈ A(H),
h(fj) = zg(fj) if j 6= i and fjpj ∈ A(H).

It is easy to check that h is a homomorphism H \ fi to G9.
We suppose first that fi−1fi, fi+1fi ∈ A(H). Let xi be the unique suc-
cessor of h′(pi) in Cx. By setting h(fi) = xi, h can be extended to a
homomorphism from H to G9.
We now suppose that fifi−1, fifi+1 ∈ A(H). In this case, since we have
h(fi+1) = z1. If h(fi−1) = z1 by setting h(fi) = y3, h can be extended to
a homomorphism from H to G9. If h(fi−1) = z2 by setting h(fi) = y1, h
can be extended to a homomorphism from H to G9 + y1z1. If h(fi−1) = z3

by setting h(fi) = y3, h can be extended to a homomorphism from H to
G9 + y3z3.

ii. C(H) is a circuit.
Let us suppose that fifi+1 ∈ A(H) for every i, 1 ≤ i ≤ n. We consider
three subcases according to n :

A. n ≡ 0 (mod 3). The mapping g : V (C(H)) → V ( ~C3) defined by
g(fi) = i (mod 3) for all fi, 1 ≤ i ≤ n, is clearly a homomorphism and
it is easy to check that the mapping h : H → G9 defined by











h(x) = h′(x) if x ∈ V (T ),
h(fi) = yg(fi) if pifi ∈ A(H),
h(fi) = zg(fi) if fipi ∈ A(H),

is a homomorphism.

B. n ≡ 1 (mod 3). In this case, the mapping defined by g(fi) = i (mod

3) for all fi, 1 ≤ i ≤ n − 1, is a homomorphism from C(H) \ fn to ~C3

and it is easy to check that the mapping h defined by










h(x) = h′(x) if x ∈ V (T ),
h(fi) = yg(fj) if i 6= n and pjfj ∈ A(H),
h(fj) = zg(fj) if i 6= n and fjpj ∈ A(H),

is a homomorphism from H \ fn to G9 such that h(f1) = y1 and
h(fn−1) = y3. By setting h(fn) = z1, h can be extended to a homo-
morphism from H to G9 + z1y1.

C. n ≡ 2 (mod 3). In this case, the mapping g defined by g(fi) = i
(mod 3) for every fi, 1 ≤ i ≤ n − 5, is a homomorphism from C(H) \

{fn−4, fn−3, fn−2, fn−1, fn} to ~C3 and it is easy to checked that the
mapping h defined by











h(x) = h′(x) if x ∈ V (T ),
h(fi) = yg(fi) if pjfj ∈ A(H) and 1 ≤ i ≤ n − 5,
h(fj) = zg(fj) if fjpj ∈ A(H) and 1 ≤ i ≤ n − 5,
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is a homomorphism from H\{fn−4, fn−3, fn−2, fn−1, fn} to G9 such that
h(f1) = y1 and h(fn−5) = y3. By setting h(fn−4) = z1, h(fn−3) = y1,
h(fn−2) = z2, h(fn−1) = y2 et h(fn) = z3, h can be extended to a
homomorphism from H to G9 + {z1y1, z2y2}.

(d) There exists an i, 1 ≤ i ≤ n, such that fi−1pi−1, pifi, pi+1fi+1 ∈ A(H) or
pi−1fi − 1, fipi, fi+1pi+1 ∈ A(H).

We can suppose without loss of generality that for some i, 1 ≤ i ≤ n, fi−1pi−1,
pifi, pi+1fi+1 ∈ A(H) and we get i = 1. So, we suppose fnpn, p1f1, p2f2 ∈
A(H).

Since C(H) \ f1 is a path, there exists a homomorphism g from C(H) \ fi to
C3 such that g(f2) = 1. We consider the mapping h : V (H \ f1) → G9 defined
by











h(x) = h′(x) if x ∈ V (T ),
h(fj) = yg(fj) if j 6= 1 and pjfj ∈ A(H),
h(fj) = zg(fj) if j 6= 1 and fjpj ∈ A(H).

It is easy to check that h is a homomorphism H \f1 to G9 such that h(f2) = y1.
Since fnpn ∈ A(H), h(fn) ∈ V (Cz).

We have four subcases according to the orientation of the edges fnf1 and f1f2 :

i. fnf1, f1f2 ∈ A(H).
In this case, H contains the Configuration (1) of Figure 2.

ii. f1fn, f2f1 ∈ A(H).
If h(fn) = z3 ; by setting h(f1) = y2, h can be extended to a homomorphism
from H to G9.
If h(fn) = z2 ; by setting h(f1) = y2, h can be extended to a homomorphism
from H to G9 + y2z2.
If h(fn) = z1 ; let j, 2 ≤ j ≤ n − 1, be the largest integer such that pifi ∈
A(H) for every i, 1 ≤ i ≤ j. In this case, we can suppose that for every
i, 2 ≤ i ≤ j, fifi−1 ∈ A(H) (otherwise H contains the configuration (3) of
Figure 2). We consider now the edge fjfj+1 ; if fj+1fj ∈ A(H), we have the
configuration (1) of Figure 2 (take fi = fj , fi+1 = fj−1 and fi−1 = fj+1),
which corresponds to case 2.(b). If fjfj+1 ∈ A(H), let h(fj) = yk ; by
setting h(fj+1) = zk and h(fm) = yg(fm)−1 (respectively h(fm) = zg(fm)−1)
if pmfm ∈ A(H) (respectively, if fmpm ∈ A(H)), j + 2 ≤ m ≤ n, we
can have h(fn) = z3. By setting h(f1) = y2, h can be extended to a
homomorphism from H to G9 + ykzk.

iii. f1fn, f1f2 ∈ A(H).
If h(fn) = z1 ; by setting h(f1) = y3, h can be extended to a homomorphism
from H to G9.
If h(fn) = z3 ; by setting h(f1) = y3, h can be extended to a homomorphism
from H to G9 + y3z3.
If h(fn) = z2 ; let j, 2 ≤ j ≤ n−1, the largest integer such that pifi ∈ A(H)
for every i, 1 ≤ i ≤ j. We consider two subcases :

A. There exists an integer r, 3 ≤ r ≤ j, such that frfr−1 ∈ A(H).
In this case, we have fifi−1 ∈ A(H) for every i, r+1 ≤ i ≤ j (otherwise
H contains the configuration (3) of Figure 2). We consider now the
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edge fjfj+1 ; if fj+1fj ∈ A(H), we have the configuration (1) of Figure 2
(take fi = fj, fi+1 = fj−1 and fi−1 = fj+1), which corresponds to
case 2.(b). If fjfj+1 ∈ A(H), let h(fj) = yk ; by setting h(fj+1) = zk

and h(fm) = yg(fm)−1 (respectively h(fm) = zg(fm)−1) if pmfm ∈ A(H)
(respectively, if fmpm ∈ A(H)), j + 2 ≤ m ≤ n, we get h(fn) = z1. By
setting h(f1) = y3, h can be extended to a homomorphism from H to
G9 + ykzk.

B. For all r, 2 ≤ r ≤ j, fr−1fr ∈ A(H).
We consider the edge fjfj+1 ; if fjfj+1 ∈ A(H), let h(fj) = yk ;
by setting h(fj+1) = zk and h(fm) = yg(fm)−1 (respectively h(fm) =
zg(fm)−1) if pmfm ∈ A(H) (respectively, if fmpm ∈ A(H)), j +2 ≤ m ≤
n, we get h(fn) = z1. By setting h(f1) = y3, h can be extended to a
homomorphism from H to G9 + ykzk. If fj+1fj ∈ A(H) we consider
the two following subcases :

• There exists an integer s, j + 2 ≤ s ≤ n − 1 such that fs−1ps−1,
psfs ∈ A(H).
Since fs−1ps−1 ∈ A(H), h(fs−1) ∈ V (Cz) ; let h(fs−1) = zk, we
then set h(fs) = yk. We consider now the edge fs−1fs. If fs−1fs ∈
A(H), by setting h(fm) = yg(fm)−1 (respectively h(fm) = zg(fm)−1)
if pmfm ∈ A(H) (respectively, if fmpm ∈ A(H)), s + 1 ≤ m ≤ n
we get h(fn) = z1. By setting h(f1) = y3, h can be extended to a
homomorphism from H to G9+{zkyk}. If fsfs−1 ∈ A(H), by setting
h(fm) = yg(fm)+1 (respectively h(fm) = zg(fm)+1) if pmfm ∈ A(H)
(respectively, if fmpm ∈ A(H)), s + 1 ≤ m ≤ n we get h(fn) = z3.
By setting h(f1) = y3, h can be extended to a homomorphism from
H to G9 + {ykzk, y3z3}.

• For all s, j + 1 ≤ s ≤ n, fsps ∈ A(H).
We consider the edge fj+1fj+2. We suppose first that fj+2fj+1 ∈
A(H) ; in that case, we have the configuration (2) of Figure 2
(take fi = fj+1, fi−1 = fj+2 and fi+1 = fj), which corresponds
to case 2.(b). We suppose now that fj+1fj+2 ∈ A(H). We have
fmfm+1 ∈ A(H) for every m, j + 1 ≤ m ≤ n − 1 (otherwise, H
contains the configuration (4) of Figure 2). In fact, we have in that
case : pifi ∈ A(H) for i = 1, 2, . . . , j, fipi ∈ A(H) for i = j+1, . . . , n,
fifi+1 ∈ A(H) for i ∈ {1, . . . , n−1}\ j and fj+1fj , f1fn ∈ A(H) (see
Figure 3).
We first show that the graph H ′ = H \ {fj} is QR7-colorable. Since
the tournament QR7 contains the circuit Cx as a subgraph, the tree
T + {fnpn} is QR7-colorable. Let h be a homomorphism from T +
{fnpn} to QR7. Since every vertex of QR7 has three predecessors
and three successors, we can suppose that h(fn) 6= h(p1). Since
h(fn) 6= h(p1), thanks to Proposition 3 there exists a color in V (QR7)
for f1. We now color successively the vertices f2, . . . , fj. Every
vertex fi, 1 ≤ i ≤ j, has two neighbors, fi−1 and pi, which are
already QR7-colored (they can have the same color). Since fi−1fi

and pifi ∈ A(H), thanks to Proposition 3, there always exists a color
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Figure 3: Configuration for the subcase 2.(d).iii.B

in QR7 for fi. We now color successively the vertices fn−1, . . . , fj+2.
Every vertex fi, j + 2 ≤ i ≤ n − 1, has two neighbors, fi+1 et pi,
which are already QR7-colored (they can have the same color). Since
fifi+1 and fipi ∈ A(H), thanks to Proposition 3, there exists a color
in QR7 for fi.
Hence, there exists a QR7-coloring h of H ′. By setting h(fj+1) = c8

for an additional color c8, we get ~χ(H) ≤ 9.

iv. f1fn, f2f1 ∈ A(H).
If h(fn) = z1, by setting h(f1) = y2, h can be extended to a homomorphism
from H to G9.
If h(fn) = z2, by setting h(f1) = y2, h can be extended to a homomorphism
from H to G9 + z2y2.
If h(fn) = z3, let j, 2 ≤ j ≤ n − 1, be the largest integer such that for
every i, 1 ≤ i ≤ j, pifi ∈ A(H). In this case, we can suppose that fifi−1 ∈
A(H) for all i, 2 ≤ i ≤ j (otherwise H contains the configuration (3)
of Figure 2). We consider now the edge fjfj+1 ; if fj+1fj ∈ A(H), we
have the configuration (1) of Figure 2 (take fi = fj , fi+1 = fj−1 and
fi−1 = fj+1), which corresponds to case 2.(b) and if fjfj+1 ∈ A(H), we
have the case 2.(d).iii (take f1 = fj , f2 = fj−1 and fn = fj+1).

We thus found in all cases a homomorphism from H to some oriented graph with at most
9 vertices. Thus, ~χ(H) ≤ 9.

Concerning the lower bound of the oriented chromatic number of the family of Halin
graphs, we have :

Proposition 7 There exists oriented Halin graphs with oriented chromatic number at

least 8.
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Figure 4: A Halin graph with oriented chromatic number 8

Proof. We consider the graph H depicted on Figure 4. We show that ~χ(H) = 8.

Let c be an oriented k-coloring of H . Let us first notice that for all i, j, 1 ≤ i < j ≤ 7,
the two vertices xi and xj are linked by a directed path of length at most 2. Thus, for all
i, j, 1 ≤ i < j ≤ 7, the vertices xi and xj must be colored with two distinct colors. So, we
have k ≥ 7. Let i = c(xi), i = 1, 2, . . . , 7. If k = 7, we necessarily have c(u) = 7 ( there is
a directed path of length at most 2 linking u and each of x1, x2, . . . , x6). Similarly there
is a directed path of length at most 2 linking v to each of x2, x3, . . . , x7 and thus c(v) = 1.
By considering the arcs vx7 and ux1, we get a contradiction and thus k ≥ 8.
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