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Abstract

We prove that the incidence coloring number of every k-degenerated graph G is
at most A(G) + 2k — 1. For Ky -minor free graphs (k = 2), we decrease this bound
to A(G) + 2, which is tight. For planar graphs (k = 5), we decrease this bound to
A(G) +T7.
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1 Introduction

All the graphs we consider are finite and simple. For a graph G, we respectively denote
by V(G), E(G), 6(G) and A(G) its vertex set, edge set, minimum degree and maximum
degree. For a vertex v in G we denote by Ng(v) the set of its neighbors and by dg(v) =
|Ng(v)| its degree. A vertex of degree k will be called a k-verte.

*Supported in part by the National Science Council of ROC under grant NSC91-2115-M-110-004



An incidence in G is a pair (v,e) with v € V(G), e € E(G), such that v and e are
incident. We denote by I(G) the set of all incidences in G. For every vertex v, we denote
by I, the set of incidences of the form (v, vw) and by A, the set of incidences of the form
(w,wv). Two incidences (v,e) and (w, f) are adjacent if one of the following holds: (7)
v=w, (17) e = f or (iii) the edge vw equals e or f.

A k-incidence coloring of a graph G is a mapping o of I(G) to a set C' of k colors such
that adjacent incidences are assigned distinct colors. The incidence chromatic number
Xi(G) of G is the smallest k£ such that G admits a k-incidence coloring.

Incidence colorings have been introduced by Brualdi and Massey [3] in 1993. It is easy
to see that for every graph G with at least one edge, x;(G) > A(G) + 1. Brualdi and
Massey proved the following upper bound:

Theorem 1 [3] For every graph G, x;(G) < 2A(G).

In [6], Guiduli observed that the concept of incidence coloring is a particular case of
directed star arboricity, introduced by Algor and Alon [1]. Following an example from [1],
Guiduli proved that there exist graphs G with x;(G) > A(G) + Q(log A(G)). He also

proved the following upper bound:
Theorem 2 [6] For every graph G, x:(G) < A(G) + O(log A(G)).

Concerning the incidence chromatic number of special classes of graphs, the following
is known:

For every n > 2, x;(K,) =n = A(K,) + 1 [3].

For every m > n > 2, xi(Kmn) = m+2 = A(K,,) +2 [3].

e For every tree T of order n > 2, x;(T) = A(T) + 1 [3].

For every Halin graph G with A(G) > 5, x;(G) = A(G) + 1 [5].
e For every outerplanar graph G with A(G) > 4, x;(G) = A(G) + 1 [5].

In [4], Chen, Lam and Shiu proposed the following:
Conjecture 3 [4] If G is a cubic graph then x;(G) < A(G) + 2.

They proved that this conjecture is true for some classes of cubic graphs, for instance
the class of Hamiltonian cubic graphs.

In view of these results we are interested in classes of graphs for which the incidence
chromatic number is bounded by the maximum degree plus some fixed constant not
depending on the maximum degree of the graph. We consider in particular the class
of k-degenerated graphs (recall that a graph G is k-degenerated if 6(H) < k for every
subgraph H of G), which includes for instance the classes of partial k-trees or of graphs
embeddable on a surface of given genus. More precisely, we shall prove in this paper the
following:



1. If G is a k-degenerated graph, then y;(G) < A(G) + 2k — 1.
2. If G is a Ky-minor free graph, then y;(G) < A(G) + 2, and this bound is tight.
3. If G is a planar graph, then x;(G) < A(G) + 7.

In fact we shall prove something stronger, namely that one can construct for these
classes of graphs incidence colorings such that for every vertex v, the number of colors
that are used on the incidences of the form (w,wv) is bounded by some fixed constant
not depending on the maximum degree of the graph.

More precisely, we define a (k, £)-incidence coloring of a graph G as a k-incidence
coloring o of G such that for every vertex v € V(G), |o(A,)| < L.

We end this section by introducing some notation that we shall use in the rest of the
paper.

Let G be a graph. If v is a vertex in G and vw is an edge in G, we denote by G\ v the
graph obtained from G by deleting the vertex v and by G \ vw the graph obtained from
G by deleting the edge vw. If vx is not an edge in GG, we denote by G + vx the graph
obtained from G by adding the edge vz.

Let G be a graph and ¢’ a partial incidence coloring of GG, that is an incidence coloring
only defined on some subset I of I(G). For every uncolored incidence (v,vw) € I(G) \ I,
we denote by FZ (v, vw) the set of forbidden colors of (v,vw), that is:

FZ (v,ow) = o'(A) Ud'(1,) Ud'(Ly).

We shall often say that we extend such a partial incidence coloring ¢’ to some incidence
coloring o of G. In that case, it should be understood that we set o(v,vw) = o'(v, vw)
for every incidence (v,vw) € I.

Finally, we shall make extensive use of the fact that every (k,/)-incidence coloring
may be viewed as a (£, £)-incidence coloring for any k' > k.

2 k-degenerated graphs
The aim of this section is to prove the following:

Theorem 4 FEvery k-degenerated graph G admits a (A(G)+2k —1, k)-incidence coloring.

Proof. Suppose to the contrary that the theorem is false and let G be a minimal counter-
example. We can assume without loss of generality that GG is connected. Let v be a ¢t-vertex
in G, t <k, with Ng(v) = {z1,...,2;} and let G' = G \ v. Due to the minimality of
G, there exists a (A(G) + 2k — 1, k)-incidence coloring o’ of G'. We shall extend o' to a
(A(G) + 2k — 1, k)-incidence coloring o of G. We start by proving the following:

CLAIM. For every i, 1 < i < t, there exists a color a; such that a; ¢ Fg' (v,vx;) U
{a1,...,a; 1} and |0'(A;,) U{a;}| < k.



Consider first i = 1. If 0'(A;,) # 0 then a; can be any color in 0'(A,,), otherwise
(that is if dg(z1) = 1) ay can be any color. Suppose now that we have obtained i — 1
colors ay,...,a;—1, i — 1 < t, satisfying the claim. If |0'(4,,)| = k, we take any a; €
o'(Az) \ {ay,...,a;_1} (recall that i < k). Otherwise, |Fg (v,vz;) U {ay,...,a;1}| <
da(z;)) —1+i—1<A(G) +i—2 < A(G) + k — 2. Therefore, one can choose some color
a; ¢ FG (v,vz;) U{ai,...,a; 1} and the claim is proved.

Thanks to the above claim, we can set (v, vz;) = a; for every i, 1 <i <t.
Now, since for every i, 1 <i <, we have |0'(A;,) U{a;}| < k, we get that the number
of forbidden colors for the incidence (z;, z;v) satisfies |0'(I,) U o'(A;,) U {a,...,a;}| <

AG)—14+k+t—1<A(G)+ 2k — 2. Hence for every i, 1 <i < t, there exists one free
color b; ¢ Fg (s, 7v) U {ay,...,a;} and we can set o(z;, 2;0) = b;.

The so-obtained coloring o is clearly a (A(G) + 2k — 1, k)-incidence coloring of G. We
thus get a contradiction and the theorem is proved. i

Since K4-minor free graphs are 2-degenerated, we get in particular that every K-minor
free graph G admits a (A(G) + 3, 2)-incidence coloring. This result will be improved in
Section 3.

Similarly, since planar graphs are 5-degenerated, we get that every planar graph G
admits a (A(G) + 9, 5)-incidence coloring. This result will be improved in Section 4.

3 K, ,-minor free graphs

We shall make use of the following structural lemma due to Lih, Wang and Zhu [7]. For
a graph G and a vertex v € V(G), we denote by Dg(v) the cardinality of the set

{u € V(G) | [dg(u) > 3 and uwv € E(G)] or [Fw € V(G), de(w) =2, uw,wv € E(G)]}.

Then we have:
Lemma 5 [7] Let G be a Ky-minor free graph. Then one of the following holds:
(1) 6(G) < 1;

(2) There exist two adjacent 2-vertices;
(3) There ezists a vertex u with dg(u) > 3 such that Dg(u) < 2.

We can now prove the main result of this section:
Theorem 6 FEvery K,-minor free graph G admits a (A(G) + 2,2)-incidence coloring.

Proof. Suppose that the theorem is false and let G be a minimal counter-example. We
can assume without loss of generality that G is connected. According to lemma 5, we
have three cases to consider.

1. ¢ contains a 1-vertex v.



Let w denote the unique neighbor of v in G. Due to the minimality of G, there
exists a (A(G) + 2,2)-incidence coloring ¢’ of G' = G \ v. Since |Fg (w,wv)| =
lo'(I,) U o' (Ay)| < dg(w) —1+2 < A(G) + 1, there exists a color a such that
a ¢ FZ (w,wv). We can then extend o' to a (A(G) + 2,2)-incidence coloring o of
G by setting o(w,wv) = a and o(v,vw) = b for some b € o¢'(A,,) (if G' has no edge
we simply take b # a).

. 0(G) > 1 and G contains two adjacent 2-vertices v and w.

If A(G) =2 then x;(G) < 4 by Theorem 1. Moreover, every 4-incidence coloring of
a cycle is clearly a (4,2)-incidence coloring.

Therefore, A(G) > 3. Let G’ = G \ vw. Denote by v' the unique neighbor of v
and by w' the unique neighbor of w in G'. Due to the minimality of GG, there exists
a (A(G) + 2,2)-incidence coloring ¢’ of G'. Let a = o'(w',w'w), b = o' (w, ww'),
c=o0'(v,v'v) and d = o' (v, v0").

Suppose first that |{a,b,c,d}| = 4. We can extend o' to a (A(G) + 2, 2)-incidence
coloring o of G by setting (v, vw) = a and o(w, wv) = c.

Now, if [{a,b,c,d}| = 3, we can extend ¢’ to a (A(G) + 2, 2)-incidence coloring o
of G by setting o(v,vw) = e and o(w,wv) = f for any e, f ¢ {a,b,c,d}, since
A(G) +2>5.

. None of the two previous cases occurs. In that case, G’ contains a vertex v with
dg(v) > 3 and Dg(v) < 2.

Suppose first that Dg(v) = 1 and denote by xy,...,x; the 2-neighbors of v. We
clearly have ¢ > 2 and all these 2-vertices are linked to a k-vertex w, k > 3 (recall
that G has no 1-vertex and no pair of adjacent 2-vertices). Moreover, if ¢ = 2 then
G necessarily contains the edge vw since dg(v) > 3. We consider the following two
subcases.

(a) vw € E(QG).

Let G' = G\vz; and let ¢’ be a (A(G)+2, 2)-incidence coloring of G'. Moreover,
let a = o'(v,ow) and b = o'(w,wwv). Note that a is a legal color for the
incidence (z1,zyw). Thus by a recoloring if necessary, we may assume that
o'(xy,zyw) = a. We can extend o’ to a (A(G) + 2,2)-incidence coloring o of
G as follows. We first set o(zy,z;v) = b. Now, since |FZ(v,vzy)| = |o'(I, \
(v,vm1)) U0’ (Ay)| < dg(v) —14+2 < A(G) + 1, there exists a color ¢ such that
c ¢ Fg (v,vr;) and we set o(v,vr)) = c.

(b) vw ¢ E(G).

In that case, we have ¢t > 3. Let G’ = G \ v and let ¢’ be a (A(G) + 2,2)-
incidence coloring of G'. Observe that the color o'(zy,z;w) can be used for
coloring all the incidences (z;, z;w), 2 < i < t. Therefore, we can choose o' in
such a way that o'(z;, z;w) = a for every i, 1 < i <t¢. We can extend o’ to a
(A(G) + 2, 2)-incidence coloring o of G as follows. Since for every i, 1 <i <,
Fg (z;,2v) = o' (I,) U {a} and dg(w) < A(G), there exists one free color, say
b, for coloring the incidences (z;, z;v). We then set o(z;, z;v) =b, 1 < i <t
Finally, only the two colors a and b are forbidden for coloring the ¢ incidences
of the form (v, vx;) by distinct colors. Since t < A(G) this can be done.
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t>1,r>1 t>1,r>1landt+r >3

(b) (c)

Figure 1: Configurations for the proof of Theorem 6

Suppose now that Dg(v) = 2. We have four subcases to consider, according to the
four configurations depicted in Figure 1.

(a)

()

Let G' = G \ vz; and let ¢’ be a (A(G) + 2,2)-incidence coloring of G'. As
above, we can choose ¢’ in such a way that o'(y;, y;w') = a and o'(y;, y;v) =
o'(w',w'v) = b for every i, 1 < i < t. Moreover, let ¢ = o'(v,vw), d =
o'(w,wv), e = o'(x1,xyw) and f = o'(w, wxy).

We can extend o' to a (A(G) + 2,2)-incidence coloring o of G as follows.
We first set o(xy,z1w) = ¢ and o(xy,z1v) = d. Now, since |F&(v,vxy)| =
o' (I, \ (v,vz1)) Uo'(Ay)| < dg(v) —1+2 < A(G) + 1, there exists a color g
such that g ¢ FZ(v,vz;) and we set o(v,vxy) = g.

This case is solved as in the previous case, except that we do not need to
consider the incidence (v, vw’).

Let G' = G\ v and let ¢’ be a (A(G) + 2, 2)-incidence coloring of G'. Since
we have at least two possibilities for choosing o'(z;, z;w), 1 < i < r, and
o' (yj,y;w'), 1 < j <t, o' can be chosen in such a way that o'(z;, z;w) = a for
every i, 1 <i <, o'(y;,y;w') = b for every j, 1 < j <t, and a # b.
We can extend o’ to a (A(G)+2, 2)-incidence coloring o of G as follows. We first
set o(v,vx;) = b and o(v,vy;) = a. Since r < dg(v) < A(G), there exists a
color ¢ ¢ {a,b} U {o'(w,wx;) : 1 < i < r}. Similarly, since t < dg(v) < A(G),
there exists a color d ¢ {a,b} U {o'(w',w'y;) : 1 < j < t}. We then set
o(z;,zv) = ¢, 1 <i <r, and o(y;,y;v) = d, 1 < j < t. Finally, we need
r 4+t — 2 colors distinct from a, b, ¢ and d for coloring the incidences (v, vx;),
2 <i<r,and (v,vy;),2 < j <t. This can be done since r+t = du(v) < A(G).
We consider two subcases, according to the degree of v in G.
i. dg(v) < A(G).
Let G = G\ {vx; : 1 <i < r} and let o' be a (A(G) + 2,2)-incidence
coloring of G'. As in case (a), o' can be chosen in such a way that
o'(x;, z;w) = a, 1 <i < r. Moreover, let b = o' (w', w'v) and ¢ = o' (v, vw').
We can extend o’ to a (A(G) + 2, 2)-incidence coloring o of G as follows.
Let ' = U, FZ (z;,7,v) = {a} U {0’ (w,wz;) : 1 < i < r}; since r <
da(v) < A(G), we can set o(z;, z;v) = d for every i, 1 < i < r, with
d ¢ F. Finally, we need r colors distinct from a, b, ¢ and d for coloring
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the incidences (v, vx;), 1 < i < r. This can be done since r < dg(v) — 1 <
A(G) —2.
ii. dg(v) = A(G).

Let G' = G\{z;, 1 <i <r}andlet o’ bea (A(G)+2,2)-incidence coloring
of G'. Let a = o'(w',w'v) and b = o' (v,vw'), b # a. If dg(w) = A(G) — 1,
then Dg(w) = 1, which is a case covered already. Thus we may assume
that dg(w) = A(G).

Let v" be the unique neighbor of w in G'. Let ¢ = o'(v,v'w) and d =
o'(w,wv"), d # ¢. We set o(z;,z;w) = ¢, 1 < i < r. Now, if a #

¢, we set o(x;,x;v) = a for every i, 1 < i < r, and, if a = ¢, we set
oz, xw) = 2z, 1 < i < r, for some z ¢ {a,b,d}. Tt is easy to verify
that in both cases |Uj_, F&(v,vzg)| = |Uiey F&(w,wxg)| = 3. Since

r =dg(w) —1 = A(G) — 1, we can color the incidences (v,vx;) and the
incidences (w,wzx;), 1 <i <.

Therefore, we get in each case a (A(G)+2, 2)-incidence coloring of G, which contradicts
our assumption, and the theorem is proved. | |

The following proposition shows that the bound given in Theorem 6 is tight:

Proposition 7 For every k > 1, there exist infinitely many K4-minor free graphs with
mazimum degree k and incidence chromatic number k + 2.

Proof. Let G be the K4-minor free graph obtained by linking two vertices v and v by k
distinct paths of length 2 whose inner 2-vertices are denoted respectively by wq, ws, . . ., wg.
We clearly have A(Gy) = k. Suppose to the contrary that G admits a (k + 1)-incidence
coloring. Since we need k distinct colors for coloring [, all the incidences of the form
(w;, wyu) are assigned the same color, say a. Similarly, since we need £ distinct colors for
coloring I, all the incidences of the form (w;, w;v) are assigned the same color, say b. But
the color b has to be distinct from a and from the k colors assigned to I,,, a contradiction.

Finally, every K4-minor free graph with maximum degree k& and containing Gy as a
subgraph has incidence chromatic number £+42. (Such graphs can be obtained for instance
by linking distinct paths of arbitrary length to intermediate vertices wy, wa, ..., wy). N

4 Planar graphs
We shall use the following structural lemma which follows from Euler’s formula [2]:

Lemma 8 Let G be a planar graph. Then one of the following holds:
(1) 6(G) < 2;

(2) There ezists an edge vw in G with dg(v) = 3 and dg(w) <1
(3) There ezists an edge vw in G with dg(v) =4 and dg(w) < 8
(4) There ezists an edge vw in G with dg(v) =5 and dg(w) < 6

0;

)



We can now prove the main result of this section:
Theorem 9 FEvery planar graph G admits a (A(G) + 7,7)-incidence coloring.

Proof. Suppose that the theorem is false and let GG be a minimal counter-example. We can
assume without loss of generality that G is connected. Observe first that we necessarily
have A(G) > 8 since otherwise we get by Theorem 1 that x;(G) < 2A(G) < A(G)+7 and
every (A(G) + 7)-incidence coloring of G is obviously a (A(G) + 7, 7)-incidence coloring.

We consider five cases, according to Lemma 8 (for each case, we assume that none of
the previous cases occur).

1. ¢ contains a 1-vertex v.

Let w denote the unique neighbor of v in G. Due to the minimality of G, the
graph G' = G\ v admits a (A(G) + 7, 7)-incidence coloring o'. We extend ¢’ to a
(A(G) + 7, 7)-incidence coloring o of G as follows. Since |Fg (w,wv)| = |o’'(I,) U
o'(Ay)| < A(G) =1+ 7 = A(G) + 6, there is a free color, say a, that can be
assigned to the incidence (w,wv) and we thus set o(w,wv) = a. Now, it suffices to
set o(v,vw) = b for any color b in o'(Ay).

2. (G contains a 2-vertex v.

Let w and w' denote the two neighbors of v in G. Suppose first that ww' is an edge
in G. Due to the minimality of G, the graph G’ = G \ v admits a (A(G) + 7,7)-
incidence coloring ¢’. Let a = o'(w, ww') and b = o' (w', w'w). We extend o’ to a
(A(G) + 7,7)-incidence coloring o of G as follows. We first set o(v,vw) = b and
o(v,vw’) = a. Since |F&(w,wv)| = dg(w) —1+|0(Ay)| < A(G)—14+7 = A(G) +6,
there exists a color ¢ ¢ F&(w,wv). Similarly, since |F&(w', w'v)| < A(G) + 6, there
exists a color d ¢ Fg(w',w'v). By setting o(w,wv) = ¢ and o(w',w'v) = d, we
clearly obtained a (A(G) + 7, 7)-incidence coloring of G.

Now, if ww' is not an edge in G, we consider the graph G’ = (G'\v)+ww'. Due to the
minimality of G, the graph G’ admits a (A(G) + 7, 7)-incidence coloring ¢’. Again,
let a = o'(w,ww') and b = o' (w', w'w). We extend o' to a (A(G) + 7, 7)-incidence
coloring o of G as follows. We first set o(w,wv) = a and o(w', w'v) = b.

If |0'(Ay)| > 2 then there exists a color ¢ € o'(4,) such that ¢ # b and we set
o(v,vw) = ¢. Otherwise, that is o'(A,) = {b}, we have |FZ(v,vw)| = |o'(I,) U
o' (Ay)| < A(G) + 1; therefore, there exists a color ¢ ¢ F&(v,vw) and we set
o(v,vw) = c.

Now, if |0'(A,)| > 3 then there exists a color d € o'(A,y) such that d ¢ {a,c} and
we set o(v,vw') = d. Otherwise, we have |F&(v,vw')| = |0’ () U’ (Ay) U {c} <
A(G) + 2+ 1= A(G) + 3; therefore, there exists a color d ¢ FZ(v,vw') and we set
o(v,vw') = d.

3. G contains an edge vw such that dg(v) =3 and 3 < dg(w) < 10.

Due to the minimality of G, the graph G' = G\ vw admits a (A(G)+ 7, 7)-incidence
coloring o'. We extend ¢’ to a (A(G) + 7, 7)-incidence coloring o of G as follows.

For coloring the incidence (w,wv) we consider the five following subcases.
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(a) dg(w) < 7.
Since |Fg (w, wv)| = |0 (I,)Uo'(A,)Uo'(I,)| < 6+6+2 = 14 and A(G) +7 >
8 + 7 = 15, there exists a color a ¢ Fg (w,wv) and we set o(w, wv) = a.

(b) dg(w) =8 and (A(G) > 10 or |0'(A,)| < 5).
Since |0’ (I,)| = da(w)—1, we have | Fg (w, wv)| = dg(w)—1+|0"(A,)Ud’(1,)].
If A(G) > 10, we get |FZ (w,wv)| < 7T+ 7+2 =16 < A(G) + 6. Similarly,
if |0'(Ay)| < 5 we get |Fg (w,wv)| < A(G) —145+2 = A(G) + 6. In both
cases, there exists a color a such that a ¢ Fg (w,wv) and we set o(w, wv) = a.

(c) dg(w) =8, A(G) <9 and |0'(A,)| > 6.
Let Ng(v) = {w, z1,z2}. We first claim that we can recolor the two incidences
(v,vx1) and (v, vx9) by using two colors ¢; and ¢y such that ¢, ¢y € 0'(Ay) U
o' (I).
To see that, observe that if for some i € {1,2}, |0'(A;,)] = 7, then |o'(A,,) \
0'(A,)| >7—2+1=6and |0'(A,) Uo'(ly)| > 6+ 7 = 13. Since the total
number of colors is at most 16, |(0'(Az,) \ 0'(A,)) N (o' (A,) Ud'(1,))] > 3. So
we have at least three possible choices for ¢;. On the other hand, if [0'(A,,)| < 6
then we have at least three possible choices for ¢; since |0'(A,) U o' (L) > 13
and |o'(I,,)Uo'(A,)] <9+4+2—1=10.
By setting o(v,vz;) = ¢ and o(v,vrs) = ¢y, we get that |Fg (w,wv)| =
lo'(Ay) U o' (I,) Uo'(L,)| = |o'(Ay) Uo' (1) < T+ dg(w) =1 =dg(w) +6 <
A(G) 4 6. Therefore, there exists a color a such that a ¢ Fg (w,wv) and we
can set o(w,wv) = a.

(d) 9 <dg(w) <10 and (A(G) > 12 or |0'(Ay)| < 5).
Again, since |0’ (I,)| = dg(w)—1, we have |Fg (w, wv)| = dg(w) — 14 |0 (A,)U
o'(L)|. If A(G) > 12, we get |FS (w,wv)| < 9+ 7+2 =18 < A(G) + 6.
Similarly, if |0'(A,)| < 5 we get |Fg (w,wv)| < A(G) —1+5+2=A(G) +6.
In both cases, there exists a color a such that a ¢ FZ (w,wv) and we set
o(w,wv) = a.

(e) 9 <dg(w) <10, A(G) <11 and |o'(Ay)| > 6.
Let Ng(v) = {w, z1,z2}. We first claim that we can recolor the two incidences
(v,vx1) and (v, vx9) by using two colors ¢; and ¢y such that ¢, ¢y € 0'(Ay) U
o' (1).
To see that, observe that if for some i € {1,2}, |0'(A;,)] = 7, then |o'(A,,) \
0'(A,)| >7—2+1=6and |0'(A,) Uo'(l,)| > 6+ 8 = 14. Since the total
number of colors is at most 18, |(0'(Az,) \ 0'(A,)) N (o' (A,) U’ (1)) > 2. So
we have at least two possible choices for ¢;. On the other hand, if |0'(A,,)| < 6

then we have at least two possible choices for ¢; since |0'(Ay) U o'(1,)| >
6+ dg(w)—1> 14 and |0'(I;,) Uo'(4,)| <11 +2—-1=12.

i

By setting o(v,vz;) = ¢ and o(v,vrs) = ¢y, we get that |Fg (w,wv)| =
lo'(Ay) U o' (I,) Uo'(L,)| = |o'(Ay) Uo' (1) < T+ dg(w) =1 =dg(w) +6 <
A(G) 4 6. Therefore, there exists a color a such that a ¢ Fg (w,wv) and we
can set o(w,wv) = a.

[t remains to color the incidence (v,vw). If |0(A,)| < 6 then there exists a color d
such that d ¢ FZ(v,vw) since in that case |Fg(v,vw)| = |o(I,) Uo(A,) Uo(l,)] <
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2+ 3+dg(w) —1=dg(w)+4 < A(G) + 4. We then set o(v,vw) = d. Otherwise,
if |o0(Ay)| = 7, there exists a color e such that e € o(Ay) \ (0(4,) U a(1,)) since
lo(A,) Uoa(l,)| <5. We then set o(v,vw) = e.

. G contains an edge vw such that dg(v) =4 and 4 < dg(w) < 8.

Recall that we have A(G) > 8 and thus at least 15 colors. Due to the minimality of
G, the graph G' = G \ vw admits a (A(G) + 7, 7)-incidence coloring o’. We extend
o' to a (A(G) + 7, 7)-incidence coloring o of G as follows.

Ifdg( ) < 6, we have |Fg (w, wv)| = |0’ (I,) Uc' (Ay)Ua'(I,)| < 54543 = 13 and
|Fg (v,vw)| = |o'(I,) Ua'(A,) U’ (I,)] <3+ 345 =11. Since we have at least 15
colors, one can choose to colors a and b such that a ¢ Fg (w,wv), b ¢ FZ (v, vw)
and a # b. We then set o(w, wv) = a and o(v,vw) = b.

Assume from now on that 7 < dg(w) < 8. We shall first color the incidence (w, wv).
Let Ng(v) = {w, 1,29, 23}. We consider seven subcases, according to dg(w), A(G)
and |o’(Ay)]-

(a) A(G) > 11.
We have |Fg (w,wv)| = |0’ (I,) U o' (Ay) Ua'(I,)| < 747+ 3 = 17. Since we
have at least 18 colors, there exists a color a such that a ¢ Fg (w,wv) and we
set o(w,wv) = a.

(b) |0'(Ay)] <6 and |0'(Ay)| +4 < A(G) < 10.
Since |Fg (w,wv)| = |0’ (I,) Uc'(A,) Ud'(I,)| < T+ |o"(Ay)| +3 = |0’ (Ay)| +

10 < A(G) + 6, there exists a color a such that a ¢ FZ (w,wv) and we set

o(w,wv) = a.

(c) A(G) =8 and |0'(Ay)| = 5.
In that case we have 11 < |o'(A,) Uo'(I,)| < 12 and 15 possible colors. We
prove first that we can recolor the three incidences (v, vxy), (v, vxs) and (v, vrs)
by using three colors ¢y, ¢9, ¢3 with ¢; € [0'(Ay) U o' (1))
If [o'(Aay )| = 7 then [0"(As,) \ 0" (Ay)] N[0 () U o' (Au)] # 0, since |o”(As,)
o'(A,)| > 7—3+1 = 5. Therefore, there exists a color ¢; € [0'(A,,) \ 0'(A,)]
[0'(I,) Ud'(Ay)]. On the other hand, if |0’(A,,)| < 6 then |0'(I,,) Ud'(A,)]
8 +3 — 1 = 10; therefore, there exists a color ¢; € [0/(Ay,) U o' (Iy)] \ [0/ (I4,)
o'(Ay)]
We still have to find two distinct colors ¢; and c¢3, both distinct from ¢, that
can be respectively assigned to the incidences (v, vxs) and (v,vz3). This can
be done since for every i, i € {2,3},if |0'(A4,)| = 7 then the number of possible
choices is |0'(Az,) \ (0/(4y)U{e1}| > 7—3+1—1 =4 while if |0'(A,,)| < 6 the
number of forbldden choices is |0'(I,,) Uo'(A,) U{c1}| <8+3—-1+1=11.
Therefore, we can set o(v,vzy) = ¢, o(v,vr3) = ¢ and o(v,vr3) = c3. Now,
since we have |Fg(w,wv)| = |o(Ay)Uo(l,)Uo(l,)| < 1242 =14 = A(G) +6,
there exists a color a such that a ¢ FZ(w,wv) and we set o(w, wv) = a.

(d) dg(w) =7, A(G) =8 and |0'(A,)| = 6.
In that case we have |0'(A,) Uo’'(I,)| = 12 and 15 possible colors. Using the
same argument as in the previous case, we can recolor the three incidences

CIN D ~
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(v,vx1), (v,v1s) and (v, va3) by using three colors ¢, ¢o, 3 with ¢; € [0/ (Ay)U
o'(I,)]. Therefore, there exists a color a such that a ¢ FZ(w,wv) and we set
o(w,wv) = a.

(e) dg(w) =8, A(G) =8 and |0'(A,)| > 6.
In that case we have 13 < |o'(A,) Uo'(I,)] < 14 and 15 possible colors. For
every i, 1 <i < 3,if [0'(Ay,)| = 7 then |[0'(As,)\ o' (4,)]N[0" (Ay)Uo'(1,)]| > 3
since |0'(Ay,) \0'(Ay)| > 7—3+1 = 5. On the other hand, if |0'(A,,)| < 6 then
[[0"(Aw)Uo'(L,)]\[o' (1)U’ (A,)]| > 13—8—3+1 = 3. Therefore, we can find
three distinct colors ¢y, ¢o, c3 € 0'(Ay,) Uo'(1,,) such that ¢; ¢ [0’ (1,,)Uo’(4,)],
0" (Az,) U{ei | <7, 00 ¢ [0'(La,) U " (Av)], [0 (Any) Ufea}| <7, 5 € [0 (L) U
0'(A,)] and |0'(Az,) U {cs}| < 7. We then set o(v,vxy) = ¢1, 0(v,v22) = o
and o(v,vx3) = ¢3. Now, we have |Fg(w,wv)| < 14 = A(G) + 6; therefore,
there exists a color a such that a ¢ FgZ(w,wv) and we set o(w, wv) = a.

(f) A(G) =9 and |0'(Ay)| > 6.
Consider first the case dg(w) = 7. We then have |F5 (w,wv)| = |o'(I,) U
o' (Ay) Ud'(1,)] <6+6+3=15< A(G) + 6; therefore, there exists a color a
such that a ¢ FZ(w,wv) and we set o(w,wv) = a.
Suppose now dg(w) = 8. In that case we have 13 < |0'(A4,) Ud'(I,)] < 14
and 16 possible colors. We prove first that we can recolor the three in-
cidences (v,vxy), (v,vry) and (v,vr3) by using three colors ¢y, ¢y, c3 with
c1,02 € [0'(Ay) Ud'(Iy)]. For i € {1,2}, if |0'(A4,,)| = 7 then the number
of possible choices for ¢; is |[0'(As,) \ 0'(A,)] N[0/ (Ay) U o'(1)]| > 2 since
lo'(Az;) \ 0'(A,)] > 7—3+1 =5, while if |0'(A4,,)| < 6 then the number of
possible choices for ¢; is |[0' (A, )Ud' (1,)]\[0'(I+;) U0’ (A,)]] > 13—9—-3+1 = 2.
Now, if |0'(A,)| = 7 then the number of possible choices for ¢z is |0(Az,) \
(o' (Ay)U{c1,e2})| > 7T—34+1—2 = 3, while if |0'(A,,)| < 6 then the number of
forbidden choices for ¢z is |0’ (I,,)Uo’ (A,)U{e1, 2} < 9+3—1+2 = 13. There-
fore, we can find the three required colors ¢;, ¢, and ¢z and we set o (v, vx;) = ¢,
o(v,vzs) = ¢o and o(v,vrs) = c3.
Now, since we have |Fg(w,wv)| < 14+1 =15 < A(G) + 6, there exists a color
a such that a ¢ FZ(w,wv) and we set o(w, wv) = a.

(g) A(G) =10 and |o'(Ay)| = 7.
This case is similar to case (c).

It remains now to color the incidence (v,vw). If |0(A,)| = 7 then there exists a
color b such that b € o(A,) \ [0(A4,) Uo(1,))] since |o(A,) Uo(I,)] < 6 and we set
o(v,vw) = b. On the other hand, if |0(A,)| < 6, there exists a color b such that
b ¢ FZ(v,vw) since |[FZ(v,vw)| = |o(A,)Uo(I,)Uc(I,)| < 3+3+48 = 14 < A(G)+6.
We can thus set o(v, vw) = b.

. G contains an edge vw such that dg(v) =5 and 5 < dg(w) < 6.

Recall first that A(G) > 8. Due to the minimality of G, the graph G' = G \ vw
admits a (A(G) + 7,7)-incidence coloring ¢’. We extend o' to a (A(G) + 7,7)-
incidence coloring ¢ of G as follows.

Since |FS (w,wv)| = |0’ (Ay) Uo'(I,) Ud' (1) < 5+5+4 =14 < A(G) + 6, there
exists a color a such that a ¢ Fg (w,wv) and we set o(w, wv) = a.
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Now, since |FZ(v,vw)| = |o'(4,) Uo'([,) Uo' (Ip) U{a}| <4+4+5+1=14 <
A(G) + 6, there exists a color b such that b ¢ FZ(v,vw) and we set o(v, vw) = b.

It is easy to check that in all cases, we have obtained a (A(G)+7, 7)-incidence coloring
of G, which contradicts our assumption, and the theorem is proved. [ |

References

[1] 1. Algor and N. Alon, The star arboricity of graphs, Discrete Math. 75 (1989) 11-22.

2] O.V. Borodin, A generalization of Kotzig’s theorem and prescribed edge coloring of
planar graphs, Mathematical Notes of the Academy of Sciences of USSR, 48 (1990)
1186-1190.

3] R.A. Brualdi and J.J.Q. Massey, Incidence and strong edge colorings of graphs, Dis-
crete Math. 122 (1993) 51-58.

[4] D.L. Chen, P.C.B. Lam and W.C. Shiu, On incidence coloring for some cubic graphs,
Discrete Math. 252 (2002) 259-266.

[5] D.L. Chen, S.C. Pang and S.D. Wang, The incidence coloring number of Halin graphs
and outerplanar graphs, Discrete Math. 256 (2002) 397—405.

(6] B. Guiduli, On incidence coloring and star arboricity of graphs, Discrete Math. 163
(1997) 275-278.

7] K.W. Lih, W.F. Wang and X. Zhu, Coloring the square of a K -minor free graph,
preprint (2002).

12



