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Abstra
tWe prove that the in
iden
e 
oloring number of every k-degenerated graph G isat most �(G) + 2k � 1. For K4-minor free graphs (k = 2), we de
rease this boundto �(G) + 2, whi
h is tight. For planar graphs (k = 5), we de
rease this bound to�(G) + 7.AMS Subje
t Classi�
ation: 05C15.Keywords: in
iden
e 
oloring, k-degenerated graph, K4-minor free graph, planar graph.1 Introdu
tionAll the graphs we 
onsider are �nite and simple. For a graph G, we respe
tively denoteby V (G), E(G), Æ(G) and �(G) its vertex set, edge set, minimum degree and maximumdegree. For a vertex v in G we denote by NG(v) the set of its neighbors and by dG(v) =jNG(v)j its degree. A vertex of degree k will be 
alled a k-vertex.�Supported in part by the National S
ien
e Coun
il of ROC under grant NSC91-2115-M-110-0041



An in
iden
e in G is a pair (v; e) with v 2 V (G), e 2 E(G), su
h that v and e arein
ident. We denote by I(G) the set of all in
iden
es in G. For every vertex v, we denoteby Iv the set of in
iden
es of the form (v; vw) and by Av the set of in
iden
es of the form(w;wv). Two in
iden
es (v; e) and (w; f) are adja
ent if one of the following holds: (i)v = w, (ii) e = f or (iii) the edge vw equals e or f .A k-in
iden
e 
oloring of a graph G is a mapping � of I(G) to a set C of k 
olors su
hthat adja
ent in
iden
es are assigned distin
t 
olors. The in
iden
e 
hromati
 number�i(G) of G is the smallest k su
h that G admits a k-in
iden
e 
oloring.In
iden
e 
olorings have been introdu
ed by Brualdi and Massey [3℄ in 1993. It is easyto see that for every graph G with at least one edge, �i(G) � �(G) + 1. Brualdi andMassey proved the following upper bound:Theorem 1 [3℄ For every graph G, �i(G) � 2�(G).In [6℄, Guiduli observed that the 
on
ept of in
iden
e 
oloring is a parti
ular 
ase ofdire
ted star arbori
ity, introdu
ed by Algor and Alon [1℄. Following an example from [1℄,Guiduli proved that there exist graphs G with �i(G) � �(G) + 
(log�(G)). He alsoproved the following upper bound:Theorem 2 [6℄ For every graph G, �i(G) � �(G) +O(log�(G)).Con
erning the in
iden
e 
hromati
 number of spe
ial 
lasses of graphs, the followingis known:� For every n � 2, �i(Kn) = n = �(Kn) + 1 [3℄.� For every m � n � 2, �i(Km;n) = m + 2 = �(Km;n) + 2 [3℄.� For every tree T of order n � 2, �i(T ) = �(T ) + 1 [3℄.� For every Halin graph G with �(G) � 5, �i(G) = �(G) + 1 [5℄.� For every outerplanar graph G with �(G) � 4, �i(G) = �(G) + 1 [5℄.In [4℄, Chen, Lam and Shiu proposed the following:Conje
ture 3 [4℄ If G is a 
ubi
 graph then �i(G) � �(G) + 2.They proved that this 
onje
ture is true for some 
lasses of 
ubi
 graphs, for instan
ethe 
lass of Hamiltonian 
ubi
 graphs.In view of these results we are interested in 
lasses of graphs for whi
h the in
iden
e
hromati
 number is bounded by the maximum degree plus some �xed 
onstant notdepending on the maximum degree of the graph. We 
onsider in parti
ular the 
lassof k-degenerated graphs (re
all that a graph G is k-degenerated if Æ(H) � k for everysubgraph H of G), whi
h in
ludes for instan
e the 
lasses of partial k-trees or of graphsembeddable on a surfa
e of given genus. More pre
isely, we shall prove in this paper thefollowing: 2



1. If G is a k-degenerated graph, then �i(G) � �(G) + 2k � 1.2. If G is a K4-minor free graph, then �i(G) � �(G) + 2, and this bound is tight.3. If G is a planar graph, then �i(G) � �(G) + 7.In fa
t we shall prove something stronger, namely that one 
an 
onstru
t for these
lasses of graphs in
iden
e 
olorings su
h that for every vertex v, the number of 
olorsthat are used on the in
iden
es of the form (w;wv) is bounded by some �xed 
onstantnot depending on the maximum degree of the graph.More pre
isely, we de�ne a (k; `)-in
iden
e 
oloring of a graph G as a k-in
iden
e
oloring � of G su
h that for every vertex v 2 V (G), j�(Av)j � `.We end this se
tion by introdu
ing some notation that we shall use in the rest of thepaper.Let G be a graph. If v is a vertex in G and vw is an edge in G, we denote by Gn v thegraph obtained from G by deleting the vertex v and by G n vw the graph obtained fromG by deleting the edge vw. If vx is not an edge in G, we denote by G + vx the graphobtained from G by adding the edge vx.Let G be a graph and �0 a partial in
iden
e 
oloring of G, that is an in
iden
e 
oloringonly de�ned on some subset I of I(G). For every un
olored in
iden
e (v; vw) 2 I(G) n I,we denote by F �0G (v; vw) the set of forbidden 
olors of (v; vw), that is:F �0G (v; vw) = �0(Av) [ �0(Iv) [ �0(Iw):We shall often say that we extend su
h a partial in
iden
e 
oloring �0 to some in
iden
e
oloring � of G. In that 
ase, it should be understood that we set �(v; vw) = �0(v; vw)for every in
iden
e (v; vw) 2 I.Finally, we shall make extensive use of the fa
t that every (k; `)-in
iden
e 
oloringmay be viewed as a (k0; `)-in
iden
e 
oloring for any k0 > k.2 k-degenerated graphsThe aim of this se
tion is to prove the following:Theorem 4 Every k-degenerated graph G admits a (�(G)+2k�1; k)-in
iden
e 
oloring.Proof. Suppose to the 
ontrary that the theorem is false and let G be a minimal 
ounter-example. We 
an assume without loss of generality thatG is 
onne
ted. Let v be a t-vertexin G, t � k, with NG(v) = fx1; : : : ; xtg and let G0 = G n v. Due to the minimality ofG, there exists a (�(G) + 2k � 1; k)-in
iden
e 
oloring �0 of G0. We shall extend �0 to a(�(G) + 2k � 1; k)-in
iden
e 
oloring � of G. We start by proving the following:CLAIM. For every i, 1 � i � t, there exists a 
olor ai su
h that ai =2 F �0G (v; vxi) [fa1; : : : ; ai�1g and j�0(Axi) [ faigj � k. 3



Consider �rst i = 1. If �0(Ax1) 6= ; then a1 
an be any 
olor in �0(Ax1), otherwise(that is if dG(x1) = 1) a1 
an be any 
olor. Suppose now that we have obtained i � 1
olors a1; : : : ; ai�1, i � 1 < t, satisfying the 
laim. If j�0(Axi)j = k, we take any ai 2�0(Axi) n fa1; : : : ; ai�1g (re
all that i � k). Otherwise, jF �0G (v; vxi) [ fa1; : : : ; ai�1gj �dG(xi)� 1 + i� 1 � �(G) + i� 2 � �(G) + k� 2. Therefore, one 
an 
hoose some 
olorai =2 F �0G (v; vxi) [ fa1; : : : ; ai�1g and the 
laim is proved.Thanks to the above 
laim, we 
an set �(v; vxi) = ai for every i, 1 � i � t.Now, sin
e for every i, 1 � i � t, we have j�0(Axi)[faigj � k, we get that the numberof forbidden 
olors for the in
iden
e (xi; xiv) satis�es j�0(Ixi) [ �0(Axi) [ fa1; : : : ; atgj ��(G)� 1 + k+ t� 1 � �(G) + 2k� 2. Hen
e for every i, 1 � i � t, there exists one free
olor bi =2 F �0G (xi; xiv) [ fa1; : : : ; atg and we 
an set �(xi; xiv) = bi.The so-obtained 
oloring � is 
learly a (�(G)+ 2k� 1; k)-in
iden
e 
oloring of G. Wethus get a 
ontradi
tion and the theorem is proved.Sin
eK4-minor free graphs are 2-degenerated, we get in parti
ular that everyK4-minorfree graph G admits a (�(G) + 3; 2)-in
iden
e 
oloring. This result will be improved inSe
tion 3.Similarly, sin
e planar graphs are 5-degenerated, we get that every planar graph Gadmits a (�(G) + 9; 5)-in
iden
e 
oloring. This result will be improved in Se
tion 4.3 K4-minor free graphsWe shall make use of the following stru
tural lemma due to Lih, Wang and Zhu [7℄. Fora graph G and a vertex v 2 V (G), we denote by DG(v) the 
ardinality of the setfu 2 V (G) j [dG(u) � 3 and uv 2 E(G)℄ or [9w 2 V (G); dG(w) = 2; uw; wv 2 E(G)℄g:Then we have:Lemma 5 [7℄ Let G be a K4-minor free graph. Then one of the following holds:(1) Æ(G) � 1;(2) There exist two adja
ent 2-verti
es;(3) There exists a vertex u with dG(u) � 3 su
h that DG(u) � 2.We 
an now prove the main result of this se
tion:Theorem 6 Every K4-minor free graph G admits a (�(G) + 2; 2)-in
iden
e 
oloring.Proof. Suppose that the theorem is false and let G be a minimal 
ounter-example. We
an assume without loss of generality that G is 
onne
ted. A

ording to lemma 5, wehave three 
ases to 
onsider.1. G 
ontains a 1-vertex v. 4



Let w denote the unique neighbor of v in G. Due to the minimality of G, thereexists a (�(G) + 2; 2)-in
iden
e 
oloring �0 of G0 = G n v. Sin
e jF �0G (w;wv)j =j�0(Iw) [ �0(Aw)j � dG(w) � 1 + 2 � �(G) + 1, there exists a 
olor a su
h thata =2 F �0G (w;wv). We 
an then extend �0 to a (�(G) + 2; 2)-in
iden
e 
oloring � ofG by setting �(w;wv) = a and �(v; vw) = b for some b 2 �0(Aw) (if G0 has no edgewe simply take b 6= a).2. Æ(G) > 1 and G 
ontains two adja
ent 2-verti
es v and w.If �(G) = 2 then �i(G) � 4 by Theorem 1. Moreover, every 4-in
iden
e 
oloring ofa 
y
le is 
learly a (4,2)-in
iden
e 
oloring.Therefore, �(G) � 3. Let G0 = G n vw. Denote by v0 the unique neighbor of vand by w0 the unique neighbor of w in G0. Due to the minimality of G, there existsa (�(G) + 2; 2)-in
iden
e 
oloring �0 of G0. Let a = �0(w0; w0w), b = �0(w;ww0),
 = �0(v0; v0v) and d = �0(v; vv0).Suppose �rst that jfa; b; 
; dgj = 4. We 
an extend �0 to a (�(G) + 2; 2)-in
iden
e
oloring � of G by setting �(v; vw) = a and �(w;wv) = 
.Now, if jfa; b; 
; dgj = 3, we 
an extend �0 to a (�(G) + 2; 2)-in
iden
e 
oloring �of G by setting �(v; vw) = e and �(w;wv) = f for any e; f =2 fa; b; 
; dg, sin
e�(G) + 2 � 5.3. None of the two previous 
ases o

urs. In that 
ase, G 
ontains a vertex v withdG(v) � 3 and DG(v) � 2.Suppose �rst that DG(v) = 1 and denote by x1; : : : ; xt the 2-neighbors of v. We
learly have t � 2 and all these 2-verti
es are linked to a k-vertex w, k � 3 (re
allthat G has no 1-vertex and no pair of adja
ent 2-verti
es). Moreover, if t = 2 thenG ne
essarily 
ontains the edge vw sin
e dG(v) � 3. We 
onsider the following twosub
ases.(a) vw 2 E(G).LetG0 = Gnvx1 and let �0 be a (�(G)+2; 2)-in
iden
e 
oloring ofG0. Moreover,let a = �0(v; vw) and b = �0(w;wv). Note that a is a legal 
olor for thein
iden
e (x1; x1w). Thus by a re
oloring if ne
essary, we may assume that�0(x1; x1w) = a. We 
an extend �0 to a (�(G) + 2; 2)-in
iden
e 
oloring � ofG as follows. We �rst set �(x1; x1v) = b. Now, sin
e jF �G(v; vx1)j = j�0(Iv n(v; vx1))[ �0(Av)j � dG(v)� 1+2 � �(G)+ 1, there exists a 
olor 
 su
h that
 =2 F �0G (v; vx1) and we set �(v; vx1) = 
.(b) vw =2 E(G).In that 
ase, we have t � 3. Let G0 = G n v and let �0 be a (�(G) + 2; 2)-in
iden
e 
oloring of G0. Observe that the 
olor �0(x1; x1w) 
an be used for
oloring all the in
iden
es (xi; xiw), 2 � i � t. Therefore, we 
an 
hoose �0 insu
h a way that �0(xi; xiw) = a for every i, 1 � i � t. We 
an extend �0 to a(�(G) + 2; 2)-in
iden
e 
oloring � of G as follows. Sin
e for every i, 1 � i � t,F �0G (xi; xiv) = �0(Iw) [ fag and dG(w) � �(G), there exists one free 
olor, sayb, for 
oloring the in
iden
es (xi; xiv). We then set �(xi; xiv) = b, 1 � i � t.Finally, only the two 
olors a and b are forbidden for 
oloring the t in
iden
esof the form (v; vxi) by distin
t 
olors. Sin
e t � �(G) this 
an be done.5
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r � 2t � 1 , r � 1 t � 1 , r � 1 and t+ r � 3t � 0 , r � 1 Figure 1: Con�gurations for the proof of Theorem 6Suppose now that DG(v) = 2. We have four sub
ases to 
onsider, a

ording to thefour 
on�gurations depi
ted in Figure 1.(a) Let G0 = G n vx1 and let �0 be a (�(G) + 2; 2)-in
iden
e 
oloring of G0. Asabove, we 
an 
hoose �0 in su
h a way that �0(yi; yiw0) = a and �0(yi; yiv) =�0(w0; w0v) = b for every i, 1 � i � t. Moreover, let 
 = �0(v; vw), d =�0(w;wv), e = �0(x1; x1w) and f = �0(w;wx1).We 
an extend �0 to a (�(G) + 2; 2)-in
iden
e 
oloring � of G as follows.We �rst set �(x1; x1w) = 
 and �(x1; x1v) = d. Now, sin
e jF �G(v; vx1)j =j�0(Iv n (v; vx1)) [ �0(Av)j � dG(v)� 1 + 2 � �(G) + 1, there exists a 
olor gsu
h that g =2 F �G(v; vx1) and we set �(v; vx1) = g.(b) This 
ase is solved as in the previous 
ase, ex
ept that we do not need to
onsider the in
iden
e (v; vw0).(
) Let G0 = G n v and let �0 be a (�(G) + 2; 2)-in
iden
e 
oloring of G0. Sin
ewe have at least two possibilities for 
hoosing �0(xi; xiw), 1 � i � r, and�0(yj; yjw0), 1 � j � t, �0 
an be 
hosen in su
h a way that �0(xi; xiw) = a forevery i, 1 � i � r, �0(yj; yjw0) = b for every j, 1 � j � t, and a 6= b.We 
an extend �0 to a (�(G)+2; 2)-in
iden
e 
oloring � ofG as follows. We �rstset �(v; vx1) = b and �(v; vy1) = a. Sin
e r < dG(v) � �(G), there exists a
olor 
 =2 fa; bg [ f�0(w;wxi) : 1 � i � rg. Similarly, sin
e t < dG(v) � �(G),there exists a 
olor d =2 fa; bg [ f�0(w0; w0yj) : 1 � j � tg. We then set�(xi; xiv) = 
, 1 � i � r, and �(yj; yjv) = d, 1 � j � t. Finally, we needr + t� 2 
olors distin
t from a, b, 
 and d for 
oloring the in
iden
es (v; vxi),2 � i � r, and (v; vyj), 2 � j � t. This 
an be done sin
e r+t = dG(v) � �(G).(d) We 
onsider two sub
ases, a

ording to the degree of v in G.i. dG(v) < �(G).Let G0 = G n fvxi : 1 � i � rg and let �0 be a (�(G) + 2; 2)-in
iden
e
oloring of G0. As in 
ase (a), �0 
an be 
hosen in su
h a way that�0(xi; xiw) = a, 1 � i � r. Moreover, let b = �0(w0; w0v) and 
 = �0(v; vw0).We 
an extend �0 to a (�(G) + 2; 2)-in
iden
e 
oloring � of G as follows.Let F = Sri=1 F �0G (xi; xiv) = fag [ f�0(w;wxi) : 1 � i � rg; sin
e r <dG(v) < �(G), we 
an set �(xi; xiv) = d for every i, 1 � i � r, withd =2 F . Finally, we need r 
olors distin
t from a, b, 
 and d for 
oloring6



the in
iden
es (v; vxi), 1 � i � r. This 
an be done sin
e r � dG(v)� 1 ��(G)� 2.ii. dG(v) = �(G).Let G0 = Gnfxi; 1 � i � rg and let �0 be a (�(G)+2; 2)-in
iden
e 
oloringof G0. Let a = �0(w0; w0v) and b = �0(v; vw0), b 6= a. If dG(w) = �(G)� 1,then DG(w) = 1, whi
h is a 
ase 
overed already. Thus we may assumethat dG(w) = �(G).Let v0 be the unique neighbor of w in G0. Let 
 = �0(v0; v0w) and d =�0(w;wv0), d 6= 
. We set �(xi; xiw) = 
, 1 � i � r. Now, if a 6=
, we set �(xi; xiv) = a for every i, 1 � i � r, and, if a = 
, we set�(xi; xiv) = z, 1 � i � r, for some z =2 fa; b; dg. It is easy to verifythat in both 
ases jSrk=1 F �G(v; vxk)j = jSrk=1 F �G(w;wxk)j = 3. Sin
er = dG(w) � 1 = �(G) � 1, we 
an 
olor the in
iden
es (v; vxi) and thein
iden
es (w;wxi), 1 � i � r.Therefore, we get in ea
h 
ase a (�(G)+2; 2)-in
iden
e 
oloring ofG, whi
h 
ontradi
tsour assumption, and the theorem is proved.The following proposition shows that the bound given in Theorem 6 is tight:Proposition 7 For every k � 1, there exist in�nitely many K4-minor free graphs withmaximum degree k and in
iden
e 
hromati
 number k + 2.Proof. Let Gk be the K4-minor free graph obtained by linking two verti
es u and v by kdistin
t paths of length 2 whose inner 2-verti
es are denoted respe
tively by w1; w2; : : : ; wk.We 
learly have �(Gk) = k. Suppose to the 
ontrary that Gk admits a (k + 1)-in
iden
e
oloring. Sin
e we need k distin
t 
olors for 
oloring Iu, all the in
iden
es of the form(wi; wiu) are assigned the same 
olor, say a. Similarly, sin
e we need k distin
t 
olors for
oloring Iv, all the in
iden
es of the form (wi; wiv) are assigned the same 
olor, say b. Butthe 
olor b has to be distin
t from a and from the k 
olors assigned to Iu, a 
ontradi
tion.Finally, every K4-minor free graph with maximum degree k and 
ontaining Gk as asubgraph has in
iden
e 
hromati
 number k+2. (Su
h graphs 
an be obtained for instan
eby linking distin
t paths of arbitrary length to intermediate verti
es w1; w2; : : : ; wk).4 Planar graphsWe shall use the following stru
tural lemma whi
h follows from Euler's formula [2℄:Lemma 8 Let G be a planar graph. Then one of the following holds:(1) Æ(G) � 2;(2) There exists an edge vw in G with dG(v) = 3 and dG(w) � 10;(3) There exists an edge vw in G with dG(v) = 4 and dG(w) � 8;(4) There exists an edge vw in G with dG(v) = 5 and dG(w) � 6.7



We 
an now prove the main result of this se
tion:Theorem 9 Every planar graph G admits a (�(G) + 7; 7)-in
iden
e 
oloring.Proof. Suppose that the theorem is false and letG be a minimal 
ounter-example. We 
anassume without loss of generality that G is 
onne
ted. Observe �rst that we ne
essarilyhave �(G) � 8 sin
e otherwise we get by Theorem 1 that �i(G) � 2�(G) � �(G)+7 andevery (�(G) + 7)-in
iden
e 
oloring of G is obviously a (�(G) + 7; 7)-in
iden
e 
oloring.We 
onsider �ve 
ases, a

ording to Lemma 8 (for ea
h 
ase, we assume that none ofthe previous 
ases o

ur).1. G 
ontains a 1-vertex v.Let w denote the unique neighbor of v in G. Due to the minimality of G, thegraph G0 = G n v admits a (�(G) + 7; 7)-in
iden
e 
oloring �0. We extend �0 to a(�(G) + 7; 7)-in
iden
e 
oloring � of G as follows. Sin
e jF �0G (w;wv)j = j�0(Iw) [�0(Aw)j � �(G) � 1 + 7 = �(G) + 6, there is a free 
olor, say a, that 
an beassigned to the in
iden
e (w;wv) and we thus set �(w;wv) = a. Now, it suÆ
es toset �(v; vw) = b for any 
olor b in �0(Aw).2. G 
ontains a 2-vertex v.Let w and w0 denote the two neighbors of v in G. Suppose �rst that ww0 is an edgein G. Due to the minimality of G, the graph G0 = G n v admits a (�(G) + 7; 7)-in
iden
e 
oloring �0. Let a = �0(w;ww0) and b = �0(w0; w0w). We extend �0 to a(�(G) + 7; 7)-in
iden
e 
oloring � of G as follows. We �rst set �(v; vw) = b and�(v; vw0) = a. Sin
e jF �G(w;wv)j = dG(w)�1+ j�(Aw)j � �(G)�1+7 = �(G)+6,there exists a 
olor 
 =2 F �G(w;wv). Similarly, sin
e jF �G(w0; w0v)j � �(G) + 6, thereexists a 
olor d =2 F �G(w0; w0v). By setting �(w;wv) = 
 and �(w0; w0v) = d, we
learly obtained a (�(G) + 7; 7)-in
iden
e 
oloring of G.Now, if ww0 is not an edge inG, we 
onsider the graph G0 = (Gnv)+ww0. Due to theminimality of G, the graph G0 admits a (�(G) + 7; 7)-in
iden
e 
oloring �0. Again,let a = �0(w;ww0) and b = �0(w0; w0w). We extend �0 to a (�(G) + 7; 7)-in
iden
e
oloring � of G as follows. We �rst set �(w;wv) = a and �(w0; w0v) = b.If j�0(Aw)j � 2 then there exists a 
olor 
 2 �0(Aw) su
h that 
 6= b and we set�(v; vw) = 
. Otherwise, that is �0(Aw) = fbg, we have jF �G(v; vw)j = j�0(Iw) [�0(Aw)j � �(G) + 1; therefore, there exists a 
olor 
 =2 F �G(v; vw) and we set�(v; vw) = 
.Now, if j�0(Aw0)j � 3 then there exists a 
olor d 2 �0(Aw0) su
h that d =2 fa; 
g andwe set �(v; vw0) = d. Otherwise, we have jF �G(v; vw0)j = j�0(Iw0) [ �0(Aw0) [ f
gj ��(G) + 2 + 1 = �(G) + 3; therefore, there exists a 
olor d =2 F �G(v; vw0) and we set�(v; vw0) = d.3. G 
ontains an edge vw su
h that dG(v) = 3 and 3 � dG(w) � 10.Due to the minimality of G, the graph G0 = Gnvw admits a (�(G)+7; 7)-in
iden
e
oloring �0. We extend �0 to a (�(G) + 7; 7)-in
iden
e 
oloring � of G as follows.For 
oloring the in
iden
e (w;wv) we 
onsider the �ve following sub
ases.8



(a) dG(w) � 7.Sin
e jF �0G (w;wv)j = j�0(Iw)[�0(Aw)[�0(Iv)j � 6+6+2 = 14 and �(G)+7 �8 + 7 = 15, there exists a 
olor a =2 F �0G (w;wv) and we set �(w;wv) = a.(b) dG(w) = 8 and (�(G) � 10 or j�0(Aw)j � 5).Sin
e j�0(Iw)j = dG(w)�1, we have jF �0G (w;wv)j = dG(w)�1+j�0(Aw)[�0(Iv)j.If �(G) � 10, we get jF �0G (w;wv)j � 7 + 7 + 2 = 16 � �(G) + 6. Similarly,if j�0(Aw)j � 5 we get jF �0G (w;wv)j � �(G) � 1 + 5 + 2 = �(G) + 6. In both
ases, there exists a 
olor a su
h that a =2 F �0G (w;wv) and we set �(w;wv) = a.(
) dG(w) = 8, �(G) � 9 and j�0(Aw)j � 6.Let NG(v) = fw; x1; x2g. We �rst 
laim that we 
an re
olor the two in
iden
es(v; vx1) and (v; vx2) by using two 
olors 
1 and 
2 su
h that 
1; 
2 2 �0(Aw) [�0(Iw).To see that, observe that if for some i 2 f1; 2g, j�0(Axi)j = 7, then j�0(Axi) n�0(Av)j � 7 � 2 + 1 = 6 and j�0(Aw) [ �0(Iw)j � 6 + 7 = 13. Sin
e the totalnumber of 
olors is at most 16, j(�0(Axi) n �0(Av))\ (�0(Aw)[ �0(Iw))j � 3. Sowe have at least three possible 
hoi
es for 
i. On the other hand, if j�0(Axi)j � 6then we have at least three possible 
hoi
es for 
i sin
e j�0(Aw) [ �0(Iw)j � 13and j�0(Ixi) [ �0(Av)j � 9 + 2� 1 = 10.By setting �(v; vx1) = 
1 and �(v; vx2) = 
2, we get that jF �0G (w;wv)j =j�0(Aw) [ �0(Iw) [ �0(Iv)j = j�0(Aw) [ �0(Iw)j � 7 + dG(w)� 1 = dG(w) + 6 ��(G) + 6. Therefore, there exists a 
olor a su
h that a =2 F �0G (w;wv) and we
an set �(w;wv) = a.(d) 9 � dG(w) � 10 and (�(G) � 12 or j�0(Aw)j � 5).Again, sin
e j�0(Iw)j = dG(w)�1, we have jF �0G (w;wv)j = dG(w)�1+j�0(Aw)[�0(Iv)j. If �(G) � 12, we get jF �0G (w;wv)j � 9 + 7 + 2 = 18 � �(G) + 6.Similarly, if j�0(Aw)j � 5 we get jF �0G (w;wv)j � �(G)� 1 + 5 + 2 = �(G) + 6.In both 
ases, there exists a 
olor a su
h that a =2 F �0G (w;wv) and we set�(w;wv) = a.(e) 9 � dG(w) � 10, �(G) � 11 and j�0(Aw)j � 6.Let NG(v) = fw; x1; x2g. We �rst 
laim that we 
an re
olor the two in
iden
es(v; vx1) and (v; vx2) by using two 
olors 
1 and 
2 su
h that 
1; 
2 2 �0(Aw) [�0(Iw).To see that, observe that if for some i 2 f1; 2g, j�0(Axi)j = 7, then j�0(Axi) n�0(Av)j � 7 � 2 + 1 = 6 and j�0(Aw) [ �0(Iw)j � 6 + 8 = 14. Sin
e the totalnumber of 
olors is at most 18, j(�0(Axi) n �0(Av))\ (�0(Aw)[ �0(Iw))j � 2. Sowe have at least two possible 
hoi
es for 
i. On the other hand, if j�0(Axi)j � 6then we have at least two possible 
hoi
es for 
i sin
e j�0(Aw) [ �0(Iw)j �6 + dG(w)� 1 � 14 and j�0(Ixi) [ �0(Av)j � 11 + 2� 1 = 12.By setting �(v; vx1) = 
1 and �(v; vx2) = 
2, we get that jF �0G (w;wv)j =j�0(Aw) [ �0(Iw) [ �0(Iv)j = j�0(Aw) [ �0(Iw)j � 7 + dG(w)� 1 = dG(w) + 6 ��(G) + 6. Therefore, there exists a 
olor a su
h that a =2 F �0G (w;wv) and we
an set �(w;wv) = a.It remains to 
olor the in
iden
e (v; vw). If j�(Aw)j � 6 then there exists a 
olor dsu
h that d =2 F �G(v; vw) sin
e in that 
ase jF �G(v; vw)j = j�(Iv) [ �(Av) [ �(Iw)j �9



2 + 3 + dG(w)� 1 = dG(w) + 4 � �(G) + 4. We then set �(v; vw) = d. Otherwise,if j�(Aw)j = 7, there exists a 
olor e su
h that e 2 �(Aw) n (�(Av) [ �(Iv)) sin
ej�(Av) [ �(Iv)j � 5. We then set �(v; vw) = e.4. G 
ontains an edge vw su
h that dG(v) = 4 and 4 � dG(w) � 8.Re
all that we have �(G) � 8 and thus at least 15 
olors. Due to the minimality ofG, the graph G0 = G n vw admits a (�(G) + 7; 7)-in
iden
e 
oloring �0. We extend�0 to a (�(G) + 7; 7)-in
iden
e 
oloring � of G as follows.If dG(w) � 6, we have jF �0G (w;wv)j = j�0(Iw)[�0(Aw)[�0(Iv)j � 5+5+3 = 13 andjF �0G (v; vw)j = j�0(Iv)[ �0(Av)[ �0(Iw)j � 3 + 3+ 5 = 11. Sin
e we have at least 15
olors, one 
an 
hoose to 
olors a and b su
h that a =2 F �0G (w;wv), b =2 F �0G (v; vw)and a 6= b. We then set �(w;wv) = a and �(v; vw) = b.Assume from now on that 7 � dG(w) � 8. We shall �rst 
olor the in
iden
e (w;wv).Let NG(v) = fw; x1; x2; x3g. We 
onsider seven sub
ases, a

ording to dG(w), �(G)and j�0(Aw)j.(a) �(G) � 11.We have jF �0G (w;wv)j = j�0(Iw) [ �0(Aw) [ �0(Iv)j � 7 + 7 + 3 = 17. Sin
e wehave at least 18 
olors, there exists a 
olor a su
h that a =2 F �0G (w;wv) and weset �(w;wv) = a.(b) j�0(Aw)j � 6 and j�0(Aw)j+ 4 � �(G) � 10.Sin
e jF �0G (w;wv)j = j�0(Iw)[ �0(Aw)[ �0(Iv)j � 7+ j�0(Aw)j+ 3 = j�0(Aw)j+10 � �(G) + 6, there exists a 
olor a su
h that a =2 F �0G (w;wv) and we set�(w;wv) = a.(
) �(G) = 8 and j�0(Aw)j = 5.In that 
ase we have 11 � j�0(Aw) [ �0(Iw)j � 12 and 15 possible 
olors. Weprove �rst that we 
an re
olor the three in
iden
es (v; vx1), (v; vx2) and (v; vx3)by using three 
olors 
1; 
2; 
3 with 
1 2 [�0(Aw) [ �0(Iw)℄.If j�0(Ax1)j = 7 then [�0(Ax1) n �0(Av)℄ \ [�0(Iw) [ �0(Aw)℄ 6= ;, sin
e j�0(Ax1) n�0(Av)j � 7�3+1 = 5. Therefore, there exists a 
olor 
1 2 [�0(Ax1)n�0(Av)℄\[�0(Iw)[ �0(Aw)℄. On the other hand, if j�0(Ax1)j � 6 then j�0(Ix1)[ �0(Av)j �8 + 3� 1 = 10; therefore, there exists a 
olor 
1 2 [�0(Aw)[ �0(Iw)℄ n [�0(Ix1)[�0(Av)℄.We still have to �nd two distin
t 
olors 
2 and 
3, both distin
t from 
1, that
an be respe
tively assigned to the in
iden
es (v; vx2) and (v; vx3). This 
anbe done sin
e for every i, i 2 f2; 3g, if j�0(Axi)j = 7 then the number of possible
hoi
es is j�0(Axi)n (�0(Av)[f
1gj � 7�3+1�1 = 4 while if j�0(Axi)j � 6 thenumber of forbidden 
hoi
es is j�0(Ixi) [ �0(Av) [ f
1gj � 8 + 3� 1 + 1 = 11.Therefore, we 
an set �(v; vx1) = 
1, �(v; vx2) = 
2 and �(v; vx3) = 
3. Now,sin
e we have jF �G(w;wv)j = j�(Aw)[�(Iw)[�(Iv)j � 12+2 = 14 = �(G)+6,there exists a 
olor a su
h that a =2 F �G(w;wv) and we set �(w;wv) = a.(d) dG(w) = 7, �(G) = 8 and j�0(Aw)j = 6.In that 
ase we have j�0(Aw) [ �0(Iw)j = 12 and 15 possible 
olors. Using thesame argument as in the previous 
ase, we 
an re
olor the three in
iden
es10



(v; vx1), (v; vx2) and (v; vx3) by using three 
olors 
1; 
2; 
3 with 
1 2 [�0(Aw)[�0(Iw)℄. Therefore, there exists a 
olor a su
h that a =2 F �G(w;wv) and we set�(w;wv) = a.(e) dG(w) = 8, �(G) = 8 and j�0(Aw)j � 6.In that 
ase we have 13 � j�0(Aw) [ �0(Iw)j � 14 and 15 possible 
olors. Forevery i, 1 � i � 3, if j�0(Axi)j = 7 then j[�0(Axi)n�0(Av)℄\[�0(Aw)[�0(Iw)℄j � 3sin
e j�0(Axi)n�0(Av)j � 7�3+1 = 5. On the other hand, if j�0(Axi)j � 6 thenj[�0(Aw)[�0(Iw)℄n[�0(Ixi)[�0(Av)℄j � 13�8�3+1 = 3. Therefore, we 
an �ndthree distin
t 
olors 
1; 
2; 
3 2 �0(Aw)[�0(Iw) su
h that 
1 =2 [�0(Ix1)[�0(Av)℄,j�0(Ax1)[f
1gj � 7, 
2 =2 [�0(Ix2)[�0(Av)℄, j�0(Ax2)[f
2gj � 7, 
3 =2 [�0(Ix3)[�0(Av)℄ and j�0(Ax3) [ f
3gj � 7. We then set �(v; vx1) = 
1, �(v; vx2) = 
2and �(v; vx3) = 
3. Now, we have jF �G(w;wv)j � 14 = �(G) + 6; therefore,there exists a 
olor a su
h that a =2 F �G(w;wv) and we set �(w;wv) = a.(f) �(G) = 9 and j�0(Aw)j � 6.Consider �rst the 
ase dG(w) = 7. We then have jF �0G (w;wv)j = j�0(Iw) [�0(Aw) [ �0(Iv)j � 6 + 6 + 3 = 15 � �(G) + 6; therefore, there exists a 
olor asu
h that a =2 F �G(w;wv) and we set �(w;wv) = a.Suppose now dG(w) = 8. In that 
ase we have 13 � j�0(Aw) [ �0(Iw)j � 14and 16 possible 
olors. We prove �rst that we 
an re
olor the three in-
iden
es (v; vx1), (v; vx2) and (v; vx3) by using three 
olors 
1; 
2; 
3 with
1; 
2 2 [�0(Aw) [ �0(Iw)℄. For i 2 f1; 2g, if j�0(Axi)j = 7 then the numberof possible 
hoi
es for 
i is j[�0(Axi) n �0(Av)℄ \ [�0(Aw) [ �0(Iw)℄j � 2 sin
ej�0(Axi) n �0(Av)j � 7 � 3 + 1 = 5, while if j�0(Axi)j � 6 then the number ofpossible 
hoi
es for 
i is j[�0(Aw)[�0(Iw)℄n[�0(Ixi)[�0(Av)℄j � 13�9�3+1 = 2.Now, if j�0(Ax3)j = 7 then the number of possible 
hoi
es for 
3 is j�0(Ax3) n(�0(Av)[f
1; 
2g)j � 7�3+1�2 = 3, while if j�0(Ax3)j � 6 then the number offorbidden 
hoi
es for 
3 is j�0(Ix3)[�0(Av)[f
1; 
2gj � 9+3�1+2 = 13. There-fore, we 
an �nd the three required 
olors 
1, 
2 and 
3 and we set �(v; vx1) = 
1,�(v; vx2) = 
2 and �(v; vx3) = 
3.Now, sin
e we have jF �G(w;wv)j � 14+1 = 15 � �(G)+6, there exists a 
olora su
h that a =2 F �G(w;wv) and we set �(w;wv) = a.(g) �(G) = 10 and j�0(Aw)j = 7.This 
ase is similar to 
ase (
).It remains now to 
olor the in
iden
e (v; vw). If j�(Aw)j = 7 then there exists a
olor b su
h that b 2 �(Aw) n [�(Av) [ �(Iv))℄ sin
e j�(Av) [ �(Iv)j � 6 and we set�(v; vw) = b. On the other hand, if j�(Aw)j � 6, there exists a 
olor b su
h thatb =2 F �G(v; vw) sin
e jF �G(v; vw)j = j�(Av)[�(Iv)[�(Iw)j � 3+3+8 = 14 � �(G)+6.We 
an thus set �(v; vw) = b.5. G 
ontains an edge vw su
h that dG(v) = 5 and 5 � dG(w) � 6.Re
all �rst that �(G) � 8. Due to the minimality of G, the graph G0 = G n vwadmits a (�(G) + 7; 7)-in
iden
e 
oloring �0. We extend �0 to a (�(G) + 7; 7)-in
iden
e 
oloring � of G as follows.Sin
e jF �0G (w;wv)j = j�0(Aw) [ �0(Iw) [ �0(Iv)j � 5 + 5 + 4 = 14 � �(G) + 6, thereexists a 
olor a su
h that a =2 F �0G (w;wv) and we set �(w;wv) = a.11



Now, sin
e jF �G(v; vw)j = j�0(Av) [ �0(Iv) [ �0(Iw) [ fagj � 4 + 4 + 5 + 1 = 14 ��(G) + 6, there exists a 
olor b su
h that b =2 F �G(v; vw) and we set �(v; vw) = b.It is easy to 
he
k that in all 
ases, we have obtained a (�(G)+7; 7)-in
iden
e 
oloringof G, whi
h 
ontradi
ts our assumption, and the theorem is proved.Referen
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