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AbstratWe prove that the inidene oloring number of every k-degenerated graph G isat most �(G) + 2k � 1. For K4-minor free graphs (k = 2), we derease this boundto �(G) + 2, whih is tight. For planar graphs (k = 5), we derease this bound to�(G) + 7.AMS Subjet Classi�ation: 05C15.Keywords: inidene oloring, k-degenerated graph, K4-minor free graph, planar graph.1 IntrodutionAll the graphs we onsider are �nite and simple. For a graph G, we respetively denoteby V (G), E(G), Æ(G) and �(G) its vertex set, edge set, minimum degree and maximumdegree. For a vertex v in G we denote by NG(v) the set of its neighbors and by dG(v) =jNG(v)j its degree. A vertex of degree k will be alled a k-vertex.�Supported in part by the National Siene Counil of ROC under grant NSC91-2115-M-110-0041



An inidene in G is a pair (v; e) with v 2 V (G), e 2 E(G), suh that v and e areinident. We denote by I(G) the set of all inidenes in G. For every vertex v, we denoteby Iv the set of inidenes of the form (v; vw) and by Av the set of inidenes of the form(w;wv). Two inidenes (v; e) and (w; f) are adjaent if one of the following holds: (i)v = w, (ii) e = f or (iii) the edge vw equals e or f .A k-inidene oloring of a graph G is a mapping � of I(G) to a set C of k olors suhthat adjaent inidenes are assigned distint olors. The inidene hromati number�i(G) of G is the smallest k suh that G admits a k-inidene oloring.Inidene olorings have been introdued by Brualdi and Massey [3℄ in 1993. It is easyto see that for every graph G with at least one edge, �i(G) � �(G) + 1. Brualdi andMassey proved the following upper bound:Theorem 1 [3℄ For every graph G, �i(G) � 2�(G).In [6℄, Guiduli observed that the onept of inidene oloring is a partiular ase ofdireted star arboriity, introdued by Algor and Alon [1℄. Following an example from [1℄,Guiduli proved that there exist graphs G with �i(G) � �(G) + 
(log�(G)). He alsoproved the following upper bound:Theorem 2 [6℄ For every graph G, �i(G) � �(G) +O(log�(G)).Conerning the inidene hromati number of speial lasses of graphs, the followingis known:� For every n � 2, �i(Kn) = n = �(Kn) + 1 [3℄.� For every m � n � 2, �i(Km;n) = m + 2 = �(Km;n) + 2 [3℄.� For every tree T of order n � 2, �i(T ) = �(T ) + 1 [3℄.� For every Halin graph G with �(G) � 5, �i(G) = �(G) + 1 [5℄.� For every outerplanar graph G with �(G) � 4, �i(G) = �(G) + 1 [5℄.In [4℄, Chen, Lam and Shiu proposed the following:Conjeture 3 [4℄ If G is a ubi graph then �i(G) � �(G) + 2.They proved that this onjeture is true for some lasses of ubi graphs, for instanethe lass of Hamiltonian ubi graphs.In view of these results we are interested in lasses of graphs for whih the inidenehromati number is bounded by the maximum degree plus some �xed onstant notdepending on the maximum degree of the graph. We onsider in partiular the lassof k-degenerated graphs (reall that a graph G is k-degenerated if Æ(H) � k for everysubgraph H of G), whih inludes for instane the lasses of partial k-trees or of graphsembeddable on a surfae of given genus. More preisely, we shall prove in this paper thefollowing: 2



1. If G is a k-degenerated graph, then �i(G) � �(G) + 2k � 1.2. If G is a K4-minor free graph, then �i(G) � �(G) + 2, and this bound is tight.3. If G is a planar graph, then �i(G) � �(G) + 7.In fat we shall prove something stronger, namely that one an onstrut for theselasses of graphs inidene olorings suh that for every vertex v, the number of olorsthat are used on the inidenes of the form (w;wv) is bounded by some �xed onstantnot depending on the maximum degree of the graph.More preisely, we de�ne a (k; `)-inidene oloring of a graph G as a k-inideneoloring � of G suh that for every vertex v 2 V (G), j�(Av)j � `.We end this setion by introduing some notation that we shall use in the rest of thepaper.Let G be a graph. If v is a vertex in G and vw is an edge in G, we denote by Gn v thegraph obtained from G by deleting the vertex v and by G n vw the graph obtained fromG by deleting the edge vw. If vx is not an edge in G, we denote by G + vx the graphobtained from G by adding the edge vx.Let G be a graph and �0 a partial inidene oloring of G, that is an inidene oloringonly de�ned on some subset I of I(G). For every unolored inidene (v; vw) 2 I(G) n I,we denote by F �0G (v; vw) the set of forbidden olors of (v; vw), that is:F �0G (v; vw) = �0(Av) [ �0(Iv) [ �0(Iw):We shall often say that we extend suh a partial inidene oloring �0 to some inideneoloring � of G. In that ase, it should be understood that we set �(v; vw) = �0(v; vw)for every inidene (v; vw) 2 I.Finally, we shall make extensive use of the fat that every (k; `)-inidene oloringmay be viewed as a (k0; `)-inidene oloring for any k0 > k.2 k-degenerated graphsThe aim of this setion is to prove the following:Theorem 4 Every k-degenerated graph G admits a (�(G)+2k�1; k)-inidene oloring.Proof. Suppose to the ontrary that the theorem is false and let G be a minimal ounter-example. We an assume without loss of generality thatG is onneted. Let v be a t-vertexin G, t � k, with NG(v) = fx1; : : : ; xtg and let G0 = G n v. Due to the minimality ofG, there exists a (�(G) + 2k � 1; k)-inidene oloring �0 of G0. We shall extend �0 to a(�(G) + 2k � 1; k)-inidene oloring � of G. We start by proving the following:CLAIM. For every i, 1 � i � t, there exists a olor ai suh that ai =2 F �0G (v; vxi) [fa1; : : : ; ai�1g and j�0(Axi) [ faigj � k. 3



Consider �rst i = 1. If �0(Ax1) 6= ; then a1 an be any olor in �0(Ax1), otherwise(that is if dG(x1) = 1) a1 an be any olor. Suppose now that we have obtained i � 1olors a1; : : : ; ai�1, i � 1 < t, satisfying the laim. If j�0(Axi)j = k, we take any ai 2�0(Axi) n fa1; : : : ; ai�1g (reall that i � k). Otherwise, jF �0G (v; vxi) [ fa1; : : : ; ai�1gj �dG(xi)� 1 + i� 1 � �(G) + i� 2 � �(G) + k� 2. Therefore, one an hoose some olorai =2 F �0G (v; vxi) [ fa1; : : : ; ai�1g and the laim is proved.Thanks to the above laim, we an set �(v; vxi) = ai for every i, 1 � i � t.Now, sine for every i, 1 � i � t, we have j�0(Axi)[faigj � k, we get that the numberof forbidden olors for the inidene (xi; xiv) satis�es j�0(Ixi) [ �0(Axi) [ fa1; : : : ; atgj ��(G)� 1 + k+ t� 1 � �(G) + 2k� 2. Hene for every i, 1 � i � t, there exists one freeolor bi =2 F �0G (xi; xiv) [ fa1; : : : ; atg and we an set �(xi; xiv) = bi.The so-obtained oloring � is learly a (�(G)+ 2k� 1; k)-inidene oloring of G. Wethus get a ontradition and the theorem is proved.SineK4-minor free graphs are 2-degenerated, we get in partiular that everyK4-minorfree graph G admits a (�(G) + 3; 2)-inidene oloring. This result will be improved inSetion 3.Similarly, sine planar graphs are 5-degenerated, we get that every planar graph Gadmits a (�(G) + 9; 5)-inidene oloring. This result will be improved in Setion 4.3 K4-minor free graphsWe shall make use of the following strutural lemma due to Lih, Wang and Zhu [7℄. Fora graph G and a vertex v 2 V (G), we denote by DG(v) the ardinality of the setfu 2 V (G) j [dG(u) � 3 and uv 2 E(G)℄ or [9w 2 V (G); dG(w) = 2; uw; wv 2 E(G)℄g:Then we have:Lemma 5 [7℄ Let G be a K4-minor free graph. Then one of the following holds:(1) Æ(G) � 1;(2) There exist two adjaent 2-verties;(3) There exists a vertex u with dG(u) � 3 suh that DG(u) � 2.We an now prove the main result of this setion:Theorem 6 Every K4-minor free graph G admits a (�(G) + 2; 2)-inidene oloring.Proof. Suppose that the theorem is false and let G be a minimal ounter-example. Wean assume without loss of generality that G is onneted. Aording to lemma 5, wehave three ases to onsider.1. G ontains a 1-vertex v. 4



Let w denote the unique neighbor of v in G. Due to the minimality of G, thereexists a (�(G) + 2; 2)-inidene oloring �0 of G0 = G n v. Sine jF �0G (w;wv)j =j�0(Iw) [ �0(Aw)j � dG(w) � 1 + 2 � �(G) + 1, there exists a olor a suh thata =2 F �0G (w;wv). We an then extend �0 to a (�(G) + 2; 2)-inidene oloring � ofG by setting �(w;wv) = a and �(v; vw) = b for some b 2 �0(Aw) (if G0 has no edgewe simply take b 6= a).2. Æ(G) > 1 and G ontains two adjaent 2-verties v and w.If �(G) = 2 then �i(G) � 4 by Theorem 1. Moreover, every 4-inidene oloring ofa yle is learly a (4,2)-inidene oloring.Therefore, �(G) � 3. Let G0 = G n vw. Denote by v0 the unique neighbor of vand by w0 the unique neighbor of w in G0. Due to the minimality of G, there existsa (�(G) + 2; 2)-inidene oloring �0 of G0. Let a = �0(w0; w0w), b = �0(w;ww0), = �0(v0; v0v) and d = �0(v; vv0).Suppose �rst that jfa; b; ; dgj = 4. We an extend �0 to a (�(G) + 2; 2)-inideneoloring � of G by setting �(v; vw) = a and �(w;wv) = .Now, if jfa; b; ; dgj = 3, we an extend �0 to a (�(G) + 2; 2)-inidene oloring �of G by setting �(v; vw) = e and �(w;wv) = f for any e; f =2 fa; b; ; dg, sine�(G) + 2 � 5.3. None of the two previous ases ours. In that ase, G ontains a vertex v withdG(v) � 3 and DG(v) � 2.Suppose �rst that DG(v) = 1 and denote by x1; : : : ; xt the 2-neighbors of v. Welearly have t � 2 and all these 2-verties are linked to a k-vertex w, k � 3 (reallthat G has no 1-vertex and no pair of adjaent 2-verties). Moreover, if t = 2 thenG neessarily ontains the edge vw sine dG(v) � 3. We onsider the following twosubases.(a) vw 2 E(G).LetG0 = Gnvx1 and let �0 be a (�(G)+2; 2)-inidene oloring ofG0. Moreover,let a = �0(v; vw) and b = �0(w;wv). Note that a is a legal olor for theinidene (x1; x1w). Thus by a reoloring if neessary, we may assume that�0(x1; x1w) = a. We an extend �0 to a (�(G) + 2; 2)-inidene oloring � ofG as follows. We �rst set �(x1; x1v) = b. Now, sine jF �G(v; vx1)j = j�0(Iv n(v; vx1))[ �0(Av)j � dG(v)� 1+2 � �(G)+ 1, there exists a olor  suh that =2 F �0G (v; vx1) and we set �(v; vx1) = .(b) vw =2 E(G).In that ase, we have t � 3. Let G0 = G n v and let �0 be a (�(G) + 2; 2)-inidene oloring of G0. Observe that the olor �0(x1; x1w) an be used foroloring all the inidenes (xi; xiw), 2 � i � t. Therefore, we an hoose �0 insuh a way that �0(xi; xiw) = a for every i, 1 � i � t. We an extend �0 to a(�(G) + 2; 2)-inidene oloring � of G as follows. Sine for every i, 1 � i � t,F �0G (xi; xiv) = �0(Iw) [ fag and dG(w) � �(G), there exists one free olor, sayb, for oloring the inidenes (xi; xiv). We then set �(xi; xiv) = b, 1 � i � t.Finally, only the two olors a and b are forbidden for oloring the t inidenesof the form (v; vxi) by distint olors. Sine t � �(G) this an be done.5
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r � 2t � 1 , r � 1 t � 1 , r � 1 and t+ r � 3t � 0 , r � 1 Figure 1: Con�gurations for the proof of Theorem 6Suppose now that DG(v) = 2. We have four subases to onsider, aording to thefour on�gurations depited in Figure 1.(a) Let G0 = G n vx1 and let �0 be a (�(G) + 2; 2)-inidene oloring of G0. Asabove, we an hoose �0 in suh a way that �0(yi; yiw0) = a and �0(yi; yiv) =�0(w0; w0v) = b for every i, 1 � i � t. Moreover, let  = �0(v; vw), d =�0(w;wv), e = �0(x1; x1w) and f = �0(w;wx1).We an extend �0 to a (�(G) + 2; 2)-inidene oloring � of G as follows.We �rst set �(x1; x1w) =  and �(x1; x1v) = d. Now, sine jF �G(v; vx1)j =j�0(Iv n (v; vx1)) [ �0(Av)j � dG(v)� 1 + 2 � �(G) + 1, there exists a olor gsuh that g =2 F �G(v; vx1) and we set �(v; vx1) = g.(b) This ase is solved as in the previous ase, exept that we do not need toonsider the inidene (v; vw0).() Let G0 = G n v and let �0 be a (�(G) + 2; 2)-inidene oloring of G0. Sinewe have at least two possibilities for hoosing �0(xi; xiw), 1 � i � r, and�0(yj; yjw0), 1 � j � t, �0 an be hosen in suh a way that �0(xi; xiw) = a forevery i, 1 � i � r, �0(yj; yjw0) = b for every j, 1 � j � t, and a 6= b.We an extend �0 to a (�(G)+2; 2)-inidene oloring � ofG as follows. We �rstset �(v; vx1) = b and �(v; vy1) = a. Sine r < dG(v) � �(G), there exists aolor  =2 fa; bg [ f�0(w;wxi) : 1 � i � rg. Similarly, sine t < dG(v) � �(G),there exists a olor d =2 fa; bg [ f�0(w0; w0yj) : 1 � j � tg. We then set�(xi; xiv) = , 1 � i � r, and �(yj; yjv) = d, 1 � j � t. Finally, we needr + t� 2 olors distint from a, b,  and d for oloring the inidenes (v; vxi),2 � i � r, and (v; vyj), 2 � j � t. This an be done sine r+t = dG(v) � �(G).(d) We onsider two subases, aording to the degree of v in G.i. dG(v) < �(G).Let G0 = G n fvxi : 1 � i � rg and let �0 be a (�(G) + 2; 2)-inideneoloring of G0. As in ase (a), �0 an be hosen in suh a way that�0(xi; xiw) = a, 1 � i � r. Moreover, let b = �0(w0; w0v) and  = �0(v; vw0).We an extend �0 to a (�(G) + 2; 2)-inidene oloring � of G as follows.Let F = Sri=1 F �0G (xi; xiv) = fag [ f�0(w;wxi) : 1 � i � rg; sine r <dG(v) < �(G), we an set �(xi; xiv) = d for every i, 1 � i � r, withd =2 F . Finally, we need r olors distint from a, b,  and d for oloring6



the inidenes (v; vxi), 1 � i � r. This an be done sine r � dG(v)� 1 ��(G)� 2.ii. dG(v) = �(G).Let G0 = Gnfxi; 1 � i � rg and let �0 be a (�(G)+2; 2)-inidene oloringof G0. Let a = �0(w0; w0v) and b = �0(v; vw0), b 6= a. If dG(w) = �(G)� 1,then DG(w) = 1, whih is a ase overed already. Thus we may assumethat dG(w) = �(G).Let v0 be the unique neighbor of w in G0. Let  = �0(v0; v0w) and d =�0(w;wv0), d 6= . We set �(xi; xiw) = , 1 � i � r. Now, if a 6=, we set �(xi; xiv) = a for every i, 1 � i � r, and, if a = , we set�(xi; xiv) = z, 1 � i � r, for some z =2 fa; b; dg. It is easy to verifythat in both ases jSrk=1 F �G(v; vxk)j = jSrk=1 F �G(w;wxk)j = 3. Siner = dG(w) � 1 = �(G) � 1, we an olor the inidenes (v; vxi) and theinidenes (w;wxi), 1 � i � r.Therefore, we get in eah ase a (�(G)+2; 2)-inidene oloring ofG, whih ontraditsour assumption, and the theorem is proved.The following proposition shows that the bound given in Theorem 6 is tight:Proposition 7 For every k � 1, there exist in�nitely many K4-minor free graphs withmaximum degree k and inidene hromati number k + 2.Proof. Let Gk be the K4-minor free graph obtained by linking two verties u and v by kdistint paths of length 2 whose inner 2-verties are denoted respetively by w1; w2; : : : ; wk.We learly have �(Gk) = k. Suppose to the ontrary that Gk admits a (k + 1)-inideneoloring. Sine we need k distint olors for oloring Iu, all the inidenes of the form(wi; wiu) are assigned the same olor, say a. Similarly, sine we need k distint olors foroloring Iv, all the inidenes of the form (wi; wiv) are assigned the same olor, say b. Butthe olor b has to be distint from a and from the k olors assigned to Iu, a ontradition.Finally, every K4-minor free graph with maximum degree k and ontaining Gk as asubgraph has inidene hromati number k+2. (Suh graphs an be obtained for instaneby linking distint paths of arbitrary length to intermediate verties w1; w2; : : : ; wk).4 Planar graphsWe shall use the following strutural lemma whih follows from Euler's formula [2℄:Lemma 8 Let G be a planar graph. Then one of the following holds:(1) Æ(G) � 2;(2) There exists an edge vw in G with dG(v) = 3 and dG(w) � 10;(3) There exists an edge vw in G with dG(v) = 4 and dG(w) � 8;(4) There exists an edge vw in G with dG(v) = 5 and dG(w) � 6.7



We an now prove the main result of this setion:Theorem 9 Every planar graph G admits a (�(G) + 7; 7)-inidene oloring.Proof. Suppose that the theorem is false and letG be a minimal ounter-example. We anassume without loss of generality that G is onneted. Observe �rst that we neessarilyhave �(G) � 8 sine otherwise we get by Theorem 1 that �i(G) � 2�(G) � �(G)+7 andevery (�(G) + 7)-inidene oloring of G is obviously a (�(G) + 7; 7)-inidene oloring.We onsider �ve ases, aording to Lemma 8 (for eah ase, we assume that none ofthe previous ases our).1. G ontains a 1-vertex v.Let w denote the unique neighbor of v in G. Due to the minimality of G, thegraph G0 = G n v admits a (�(G) + 7; 7)-inidene oloring �0. We extend �0 to a(�(G) + 7; 7)-inidene oloring � of G as follows. Sine jF �0G (w;wv)j = j�0(Iw) [�0(Aw)j � �(G) � 1 + 7 = �(G) + 6, there is a free olor, say a, that an beassigned to the inidene (w;wv) and we thus set �(w;wv) = a. Now, it suÆes toset �(v; vw) = b for any olor b in �0(Aw).2. G ontains a 2-vertex v.Let w and w0 denote the two neighbors of v in G. Suppose �rst that ww0 is an edgein G. Due to the minimality of G, the graph G0 = G n v admits a (�(G) + 7; 7)-inidene oloring �0. Let a = �0(w;ww0) and b = �0(w0; w0w). We extend �0 to a(�(G) + 7; 7)-inidene oloring � of G as follows. We �rst set �(v; vw) = b and�(v; vw0) = a. Sine jF �G(w;wv)j = dG(w)�1+ j�(Aw)j � �(G)�1+7 = �(G)+6,there exists a olor  =2 F �G(w;wv). Similarly, sine jF �G(w0; w0v)j � �(G) + 6, thereexists a olor d =2 F �G(w0; w0v). By setting �(w;wv) =  and �(w0; w0v) = d, welearly obtained a (�(G) + 7; 7)-inidene oloring of G.Now, if ww0 is not an edge inG, we onsider the graph G0 = (Gnv)+ww0. Due to theminimality of G, the graph G0 admits a (�(G) + 7; 7)-inidene oloring �0. Again,let a = �0(w;ww0) and b = �0(w0; w0w). We extend �0 to a (�(G) + 7; 7)-inideneoloring � of G as follows. We �rst set �(w;wv) = a and �(w0; w0v) = b.If j�0(Aw)j � 2 then there exists a olor  2 �0(Aw) suh that  6= b and we set�(v; vw) = . Otherwise, that is �0(Aw) = fbg, we have jF �G(v; vw)j = j�0(Iw) [�0(Aw)j � �(G) + 1; therefore, there exists a olor  =2 F �G(v; vw) and we set�(v; vw) = .Now, if j�0(Aw0)j � 3 then there exists a olor d 2 �0(Aw0) suh that d =2 fa; g andwe set �(v; vw0) = d. Otherwise, we have jF �G(v; vw0)j = j�0(Iw0) [ �0(Aw0) [ fgj ��(G) + 2 + 1 = �(G) + 3; therefore, there exists a olor d =2 F �G(v; vw0) and we set�(v; vw0) = d.3. G ontains an edge vw suh that dG(v) = 3 and 3 � dG(w) � 10.Due to the minimality of G, the graph G0 = Gnvw admits a (�(G)+7; 7)-inideneoloring �0. We extend �0 to a (�(G) + 7; 7)-inidene oloring � of G as follows.For oloring the inidene (w;wv) we onsider the �ve following subases.8



(a) dG(w) � 7.Sine jF �0G (w;wv)j = j�0(Iw)[�0(Aw)[�0(Iv)j � 6+6+2 = 14 and �(G)+7 �8 + 7 = 15, there exists a olor a =2 F �0G (w;wv) and we set �(w;wv) = a.(b) dG(w) = 8 and (�(G) � 10 or j�0(Aw)j � 5).Sine j�0(Iw)j = dG(w)�1, we have jF �0G (w;wv)j = dG(w)�1+j�0(Aw)[�0(Iv)j.If �(G) � 10, we get jF �0G (w;wv)j � 7 + 7 + 2 = 16 � �(G) + 6. Similarly,if j�0(Aw)j � 5 we get jF �0G (w;wv)j � �(G) � 1 + 5 + 2 = �(G) + 6. In bothases, there exists a olor a suh that a =2 F �0G (w;wv) and we set �(w;wv) = a.() dG(w) = 8, �(G) � 9 and j�0(Aw)j � 6.Let NG(v) = fw; x1; x2g. We �rst laim that we an reolor the two inidenes(v; vx1) and (v; vx2) by using two olors 1 and 2 suh that 1; 2 2 �0(Aw) [�0(Iw).To see that, observe that if for some i 2 f1; 2g, j�0(Axi)j = 7, then j�0(Axi) n�0(Av)j � 7 � 2 + 1 = 6 and j�0(Aw) [ �0(Iw)j � 6 + 7 = 13. Sine the totalnumber of olors is at most 16, j(�0(Axi) n �0(Av))\ (�0(Aw)[ �0(Iw))j � 3. Sowe have at least three possible hoies for i. On the other hand, if j�0(Axi)j � 6then we have at least three possible hoies for i sine j�0(Aw) [ �0(Iw)j � 13and j�0(Ixi) [ �0(Av)j � 9 + 2� 1 = 10.By setting �(v; vx1) = 1 and �(v; vx2) = 2, we get that jF �0G (w;wv)j =j�0(Aw) [ �0(Iw) [ �0(Iv)j = j�0(Aw) [ �0(Iw)j � 7 + dG(w)� 1 = dG(w) + 6 ��(G) + 6. Therefore, there exists a olor a suh that a =2 F �0G (w;wv) and wean set �(w;wv) = a.(d) 9 � dG(w) � 10 and (�(G) � 12 or j�0(Aw)j � 5).Again, sine j�0(Iw)j = dG(w)�1, we have jF �0G (w;wv)j = dG(w)�1+j�0(Aw)[�0(Iv)j. If �(G) � 12, we get jF �0G (w;wv)j � 9 + 7 + 2 = 18 � �(G) + 6.Similarly, if j�0(Aw)j � 5 we get jF �0G (w;wv)j � �(G)� 1 + 5 + 2 = �(G) + 6.In both ases, there exists a olor a suh that a =2 F �0G (w;wv) and we set�(w;wv) = a.(e) 9 � dG(w) � 10, �(G) � 11 and j�0(Aw)j � 6.Let NG(v) = fw; x1; x2g. We �rst laim that we an reolor the two inidenes(v; vx1) and (v; vx2) by using two olors 1 and 2 suh that 1; 2 2 �0(Aw) [�0(Iw).To see that, observe that if for some i 2 f1; 2g, j�0(Axi)j = 7, then j�0(Axi) n�0(Av)j � 7 � 2 + 1 = 6 and j�0(Aw) [ �0(Iw)j � 6 + 8 = 14. Sine the totalnumber of olors is at most 18, j(�0(Axi) n �0(Av))\ (�0(Aw)[ �0(Iw))j � 2. Sowe have at least two possible hoies for i. On the other hand, if j�0(Axi)j � 6then we have at least two possible hoies for i sine j�0(Aw) [ �0(Iw)j �6 + dG(w)� 1 � 14 and j�0(Ixi) [ �0(Av)j � 11 + 2� 1 = 12.By setting �(v; vx1) = 1 and �(v; vx2) = 2, we get that jF �0G (w;wv)j =j�0(Aw) [ �0(Iw) [ �0(Iv)j = j�0(Aw) [ �0(Iw)j � 7 + dG(w)� 1 = dG(w) + 6 ��(G) + 6. Therefore, there exists a olor a suh that a =2 F �0G (w;wv) and wean set �(w;wv) = a.It remains to olor the inidene (v; vw). If j�(Aw)j � 6 then there exists a olor dsuh that d =2 F �G(v; vw) sine in that ase jF �G(v; vw)j = j�(Iv) [ �(Av) [ �(Iw)j �9



2 + 3 + dG(w)� 1 = dG(w) + 4 � �(G) + 4. We then set �(v; vw) = d. Otherwise,if j�(Aw)j = 7, there exists a olor e suh that e 2 �(Aw) n (�(Av) [ �(Iv)) sinej�(Av) [ �(Iv)j � 5. We then set �(v; vw) = e.4. G ontains an edge vw suh that dG(v) = 4 and 4 � dG(w) � 8.Reall that we have �(G) � 8 and thus at least 15 olors. Due to the minimality ofG, the graph G0 = G n vw admits a (�(G) + 7; 7)-inidene oloring �0. We extend�0 to a (�(G) + 7; 7)-inidene oloring � of G as follows.If dG(w) � 6, we have jF �0G (w;wv)j = j�0(Iw)[�0(Aw)[�0(Iv)j � 5+5+3 = 13 andjF �0G (v; vw)j = j�0(Iv)[ �0(Av)[ �0(Iw)j � 3 + 3+ 5 = 11. Sine we have at least 15olors, one an hoose to olors a and b suh that a =2 F �0G (w;wv), b =2 F �0G (v; vw)and a 6= b. We then set �(w;wv) = a and �(v; vw) = b.Assume from now on that 7 � dG(w) � 8. We shall �rst olor the inidene (w;wv).Let NG(v) = fw; x1; x2; x3g. We onsider seven subases, aording to dG(w), �(G)and j�0(Aw)j.(a) �(G) � 11.We have jF �0G (w;wv)j = j�0(Iw) [ �0(Aw) [ �0(Iv)j � 7 + 7 + 3 = 17. Sine wehave at least 18 olors, there exists a olor a suh that a =2 F �0G (w;wv) and weset �(w;wv) = a.(b) j�0(Aw)j � 6 and j�0(Aw)j+ 4 � �(G) � 10.Sine jF �0G (w;wv)j = j�0(Iw)[ �0(Aw)[ �0(Iv)j � 7+ j�0(Aw)j+ 3 = j�0(Aw)j+10 � �(G) + 6, there exists a olor a suh that a =2 F �0G (w;wv) and we set�(w;wv) = a.() �(G) = 8 and j�0(Aw)j = 5.In that ase we have 11 � j�0(Aw) [ �0(Iw)j � 12 and 15 possible olors. Weprove �rst that we an reolor the three inidenes (v; vx1), (v; vx2) and (v; vx3)by using three olors 1; 2; 3 with 1 2 [�0(Aw) [ �0(Iw)℄.If j�0(Ax1)j = 7 then [�0(Ax1) n �0(Av)℄ \ [�0(Iw) [ �0(Aw)℄ 6= ;, sine j�0(Ax1) n�0(Av)j � 7�3+1 = 5. Therefore, there exists a olor 1 2 [�0(Ax1)n�0(Av)℄\[�0(Iw)[ �0(Aw)℄. On the other hand, if j�0(Ax1)j � 6 then j�0(Ix1)[ �0(Av)j �8 + 3� 1 = 10; therefore, there exists a olor 1 2 [�0(Aw)[ �0(Iw)℄ n [�0(Ix1)[�0(Av)℄.We still have to �nd two distint olors 2 and 3, both distint from 1, thatan be respetively assigned to the inidenes (v; vx2) and (v; vx3). This anbe done sine for every i, i 2 f2; 3g, if j�0(Axi)j = 7 then the number of possiblehoies is j�0(Axi)n (�0(Av)[f1gj � 7�3+1�1 = 4 while if j�0(Axi)j � 6 thenumber of forbidden hoies is j�0(Ixi) [ �0(Av) [ f1gj � 8 + 3� 1 + 1 = 11.Therefore, we an set �(v; vx1) = 1, �(v; vx2) = 2 and �(v; vx3) = 3. Now,sine we have jF �G(w;wv)j = j�(Aw)[�(Iw)[�(Iv)j � 12+2 = 14 = �(G)+6,there exists a olor a suh that a =2 F �G(w;wv) and we set �(w;wv) = a.(d) dG(w) = 7, �(G) = 8 and j�0(Aw)j = 6.In that ase we have j�0(Aw) [ �0(Iw)j = 12 and 15 possible olors. Using thesame argument as in the previous ase, we an reolor the three inidenes10



(v; vx1), (v; vx2) and (v; vx3) by using three olors 1; 2; 3 with 1 2 [�0(Aw)[�0(Iw)℄. Therefore, there exists a olor a suh that a =2 F �G(w;wv) and we set�(w;wv) = a.(e) dG(w) = 8, �(G) = 8 and j�0(Aw)j � 6.In that ase we have 13 � j�0(Aw) [ �0(Iw)j � 14 and 15 possible olors. Forevery i, 1 � i � 3, if j�0(Axi)j = 7 then j[�0(Axi)n�0(Av)℄\[�0(Aw)[�0(Iw)℄j � 3sine j�0(Axi)n�0(Av)j � 7�3+1 = 5. On the other hand, if j�0(Axi)j � 6 thenj[�0(Aw)[�0(Iw)℄n[�0(Ixi)[�0(Av)℄j � 13�8�3+1 = 3. Therefore, we an �ndthree distint olors 1; 2; 3 2 �0(Aw)[�0(Iw) suh that 1 =2 [�0(Ix1)[�0(Av)℄,j�0(Ax1)[f1gj � 7, 2 =2 [�0(Ix2)[�0(Av)℄, j�0(Ax2)[f2gj � 7, 3 =2 [�0(Ix3)[�0(Av)℄ and j�0(Ax3) [ f3gj � 7. We then set �(v; vx1) = 1, �(v; vx2) = 2and �(v; vx3) = 3. Now, we have jF �G(w;wv)j � 14 = �(G) + 6; therefore,there exists a olor a suh that a =2 F �G(w;wv) and we set �(w;wv) = a.(f) �(G) = 9 and j�0(Aw)j � 6.Consider �rst the ase dG(w) = 7. We then have jF �0G (w;wv)j = j�0(Iw) [�0(Aw) [ �0(Iv)j � 6 + 6 + 3 = 15 � �(G) + 6; therefore, there exists a olor asuh that a =2 F �G(w;wv) and we set �(w;wv) = a.Suppose now dG(w) = 8. In that ase we have 13 � j�0(Aw) [ �0(Iw)j � 14and 16 possible olors. We prove �rst that we an reolor the three in-idenes (v; vx1), (v; vx2) and (v; vx3) by using three olors 1; 2; 3 with1; 2 2 [�0(Aw) [ �0(Iw)℄. For i 2 f1; 2g, if j�0(Axi)j = 7 then the numberof possible hoies for i is j[�0(Axi) n �0(Av)℄ \ [�0(Aw) [ �0(Iw)℄j � 2 sinej�0(Axi) n �0(Av)j � 7 � 3 + 1 = 5, while if j�0(Axi)j � 6 then the number ofpossible hoies for i is j[�0(Aw)[�0(Iw)℄n[�0(Ixi)[�0(Av)℄j � 13�9�3+1 = 2.Now, if j�0(Ax3)j = 7 then the number of possible hoies for 3 is j�0(Ax3) n(�0(Av)[f1; 2g)j � 7�3+1�2 = 3, while if j�0(Ax3)j � 6 then the number offorbidden hoies for 3 is j�0(Ix3)[�0(Av)[f1; 2gj � 9+3�1+2 = 13. There-fore, we an �nd the three required olors 1, 2 and 3 and we set �(v; vx1) = 1,�(v; vx2) = 2 and �(v; vx3) = 3.Now, sine we have jF �G(w;wv)j � 14+1 = 15 � �(G)+6, there exists a olora suh that a =2 F �G(w;wv) and we set �(w;wv) = a.(g) �(G) = 10 and j�0(Aw)j = 7.This ase is similar to ase ().It remains now to olor the inidene (v; vw). If j�(Aw)j = 7 then there exists aolor b suh that b 2 �(Aw) n [�(Av) [ �(Iv))℄ sine j�(Av) [ �(Iv)j � 6 and we set�(v; vw) = b. On the other hand, if j�(Aw)j � 6, there exists a olor b suh thatb =2 F �G(v; vw) sine jF �G(v; vw)j = j�(Av)[�(Iv)[�(Iw)j � 3+3+8 = 14 � �(G)+6.We an thus set �(v; vw) = b.5. G ontains an edge vw suh that dG(v) = 5 and 5 � dG(w) � 6.Reall �rst that �(G) � 8. Due to the minimality of G, the graph G0 = G n vwadmits a (�(G) + 7; 7)-inidene oloring �0. We extend �0 to a (�(G) + 7; 7)-inidene oloring � of G as follows.Sine jF �0G (w;wv)j = j�0(Aw) [ �0(Iw) [ �0(Iv)j � 5 + 5 + 4 = 14 � �(G) + 6, thereexists a olor a suh that a =2 F �0G (w;wv) and we set �(w;wv) = a.11



Now, sine jF �G(v; vw)j = j�0(Av) [ �0(Iv) [ �0(Iw) [ fagj � 4 + 4 + 5 + 1 = 14 ��(G) + 6, there exists a olor b suh that b =2 F �G(v; vw) and we set �(v; vw) = b.It is easy to hek that in all ases, we have obtained a (�(G)+7; 7)-inidene oloringof G, whih ontradits our assumption, and the theorem is proved.Referenes[1℄ I. Algor and N. Alon, The star arboriity of graphs, Disrete Math. 75 (1989) 11{22.[2℄ O.V. Borodin, A generalization of Kotzig's theorem and presribed edge oloring ofplanar graphs, Mathematial Notes of the Aademy of Sienes of USSR, 48 (1990)1186{1190.[3℄ R.A. Brualdi and J.J.Q. Massey, Inidene and strong edge olorings of graphs, Dis-rete Math. 122 (1993) 51{58.[4℄ D.L. Chen, P.C.B. Lam and W.C. Shiu, On inidene oloring for some ubi graphs,Disrete Math. 252 (2002) 259{266.[5℄ D.L. Chen, S.C. Pang and S.D. Wang, The inidene oloring number of Halin graphsand outerplanar graphs, Disrete Math. 256 (2002) 397{405.[6℄ B. Guiduli, On inidene oloring and star arboriity of graphs, Disrete Math. 163(1997) 275{278.[7℄ K.W. Lih, W.F. Wang and X. Zhu, Coloring the square of a K4-minor free graph,preprint (2002).
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