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Abstract. We show that the minimum number of edges in a graph on n vertices with oriented chromatic
number n is (1 + o(1))nlog, n.
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In 1995, in a conversation with the French member of the set of the authors of this note, Pl Erdds
asked about the minimal number of edges a graph on n vertices with oriented chromatic number n can
have. During the conference on the Future of Discrete Mathematics in the cosy but fruitful atmosphere
of the Stifin Castle we found an elementary answer to this question which we present below.

We consider first an extremal question closely related to Erddés’s problem. A colouring of the
vertices of a graph G whose edges are initially coloured with k colours is admissible, if every colour
class spans an independent set and each pair of colour classes is joined by edges of one colour only.
After Alon and Marshall [1], we define the k-chromatic number xi(G) of G as the minimal number
¢ such that for any colouring of the edges of G with k£ colours there exists an admissible ¢-colouring
of the vertices of G. Finally, by fr(n) we denote the minimum number of edges in a graph G on n
vertices for which xx(G) = n. We shall show that for any fixed k£ the function fr(n) grows roughly as
n log;, n.

Theorem 1 For a fixed k > 2 and n large enough
n(log, n — 4logy log, n — 5) < fr(n) < [log, n](n — [log, n]) .

The argument we use in the proof of Theorem 1 in the case when & = 2 can be easily employed to
answer Erdés’s original question. Recall (see [2-4]) that the oriented chromatic number of a graph G
is defined as the smallest number /¢, such that for every orientation G of G there exists a tournament
T(G) on ¢ vertices such that G can be homomorphically embedded into T'(G).
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Theorem 2 Let g(n) be the smallest number for which there exists a graph G with n vertices, g(n)
edges, and oriented chromatic number n. Then, for large enough n, we have

n(logy m — 4logy logy n — 5) < g(n) < logy n](n — logy n]) .

Proof of Theorem 1. In order to see the upper bound for fi(n) observe that the complete bipartite
graph on n vertices, with bipartition (W',W"), where |W'| = [log,n] and [W"| = n — [log n],
has k-chromatic number n. Indeed, label elements of W’ by 1,..., [log; n] and elements of W" by
0,1,...,n — [log,n| — 1. Now colour the edge {i’,i"}, where i/ € W' i" € W" | with the jth colour,
j=0,1,...,k — 1, if j appears at the 7'th position in the expansion of i’ in the k-ary system. Note
that for each pair of vertices z’,y’ € W' there exists 2’ € W" such that the edges {z’, 2"} and {y/, 2"}
are coloured with different colours; it is enough to take z” which has different digits at positions z’
and y'. Similarly, for every z”,y"” € W" one can find a position 2’ at which the digits of the k-ary
expansions of z” and y"” differ; then the colours of the edges {z",2'} and {y", 2’} must differ as well.
Hence, every admissible colouring of the vertices of such a coloured graph must use different colours
for different vertices, i.e. the k-chromatic number of the graph equals n.

The proof of the lower bound for fi(n) is slightly less immediate. Let G be a graph with n vertices
and

e(G) < n(log; n — 4logy log,. n — 5)

edges, which are coloured with & colours. We need to show that for each such colouring there exists
an admissible colouring of the vertices of G which uses only n — 1 colours.

Our argument will be based on the following observation (see Tuza [5]).

Claim. If the edges of the complete graph K, are covered by a family of k-partite graphs
Gi,...,Gp, of ri,...,ry, vertices, respectively, then ), r; > nlog; n.

Let us partition the vertices of G into two classes W’ and W, where W' consists of all vertices
of G of degree at least logs n. Then

2e(G 2
|Wl| S 8(2 ) < n ,
login  loggn

and so [W"| > n(1 — 2/log, n). Now, for every vertex w’ € W' we define a complete k-partite graph
G, choosing as the ith set of the k-partition of G, the set of all vertices of W which are connected
to w’ by edges of the ith colour. Thus, the total number of vertices of G, is the same as the number of
neighbours of w’ in W"”. Furthermore, let H” be the graph with vertex set W”, in which two vertices
are adjacent if they lie within distance two in the subgraph G[W"] induced by W" in G. Note that
every graph F' contains a k-partite subgraph F’ such that the maximum degree of the graph obtained
from F by removing the edges of F' is at most |A(F)/k]. Thus, since the maximum degree A(H")
of H" is bounded from above by A?(G[W"]) < log} n, H" can be decomposed into

m" <1+ log,(log, n)* = 4log), log, n + 1

k-partite subgraphs Hy,..., H,». Observe also that the sum of the orders of all graphs {G s} ew
and {H;}" can be bounded from above by

"
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< [W"|(logpn — 1) < |[W"|log;, [W"] .

Hence, the Claim implies that there exists a pair of vertices {z",y"”} which appears as an edge in
none of the graphs {Gu }uew and {H;}7), i.e. vertices z” and 3" are not adjacent, they have no
common neighbours in W”, and for each of their common neighbours 2’ € W' both edges {z”,2'} and
{y",2'} are coloured with the same colour. Thus, the colouring in which z” and y"” are coloured with
the same colour, while all other vertices of G receive different colours, is admissible. Consequently,
Xk(G) < n —1 and the assertion follows. O

Proof of Theorem 2. Note that a graph G on n vertices has oriented chromatic number n if and
only if in some orientation G of G each pair of non-adjacent vertices of G is connected by a directed
path of length two. Now to estimate g(n) from above take the 2-coloured complete bipartite graph
with bipartition (W', W") used in the proof of Theorem 1 to get an upper bound for f3(n); the edges
coloured with the first colour direct from W' to W", for the edges of the second colour choose the
other direction.

Similarly, to get a lower bound for g(n) divide the set of vertices of a graph G into two classes
W' and W", where W’ consists of all vertices of degree at least logZ n. Then one can mimic the proof
of Theorem 1 and show that in order to orient all edges in such a way that all non-adjacent vertices
of W" are joined by a directed path of length two, G must have at least n(logs n — 4log, logy n — 5)
edges. a

We conclude with a few words on the expected behaviour of fi(n) and g(n). It is tempting to
conjecture that the upper bounds given in Theorems 1 and 2 are close to the truth and fi(n) =
nlog, n+0O(n) and g(n) = nlogy n+ O(n), where the term O(n) depends on the arithmetic properties
of n. On the other hand, we should mention that the elementary bipartite construction we used to get
the upper bound for fx(n) is far from being best possible. For instance, one can modify it slightly by
deleting one vertex from the smaller set of the bipartition at the same time adding a perfect matching to
the larger of the sets; the graph obtained in such a way has k-chromatic number n — 1 and, typically,
less than [log,(n — 1)](n — 1 — [logi(n — 1)]) edges. Furthermore, if we have a family of graphs
G1,Go,...,G,, such that G; has n; vertices and k-chromatic number n;, then the graph 1+ >/, G;
obtained by taking disjoint copies of G1, G2, ..., G, and adding to it one more vertex of degree Y 7_; n;
has the largest possible k-chromatic number as well. Hence, one can take small “extremal” graphs
and build out of them graphs with a large k-chromatic number, which also improve the upper bound
for fr(n) given in Theorem 1. The same observation applies for the oriented chromatic number; the
Reader can easily provide examples of sparse small extremal graphs for this problem with n vertices
and less than [logyn](n — [log,n]) edges, and describe a recursive construction for obtaining such
an extremal graph out of two smaller ones. However, to find an exact guess for the structure of the
extremal graphs does not seem to be easy for us.
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