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Abstract. The oriented chromatic number X,(G) of an oriented graph G = (V, A) is the minimum number
of vertices in an oriented graph H for which there exists a homomorphism of G to H. The oriented chromatic
number x,(G) of an undirected graph G is the maximum of the oriented chromatic numbers of all the orientations
of G. This paper discusses the relations between the oriented chromatic number and the acyclic chromatic
number and some other parameters of a graph. We shall give a lower bound for x,(G) in terms of x,(G). An
upper bound for x,(G) in terms of x,(G) was given by Raspaud and Sopena. We also give an upper bound
for xo(G) in terms of the maximum degree of G. We shall show that this upper bound is not far from being
optimal.
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1 Introduction

A homomorphism f of a digraph G = (V, A) to a digraph H = (V’, A’) is a mapping of V to V' such
that for any arc (z,y) of G, the image (f(z), f(y)) is an arc of H. Homomorphisms of undirected
graphs are defined similarly. Homomorphisms of digraphs and undirected graphs have been studied as
a generalization of graph coloring in the literature [7, 8, 9, 14]. It is easy to see that a k-coloring of an
undirected graph G is equivalent to a homomorphism of G to the complete graph Kj. Therefore the
chromatic number x(G) of an undirected graph G is equal to the minimum integer k& such that there
is a homomorphism of G to Kj, or equivalently x(G) is equal to the minimum number of vertices of
an undirected graph H for which there exists a homomorphism of G to H.

We call those digraphs which contain no opposite arcs oriented graphs. Generalizing the above
definition of chromatic number to oriented graphs, we define the oriented chromatic number of an
oriented graph G to be the minimum number of vertices in an oriented graph H for which there exists
a homomorphism of G to H. We denote this number by x,(G).

The oriented chromatic number of an oriented graph G can also be defined as follows: For an
integer k, a k-coloring of G is an assignment c¢ of colors, taken from a set of k colors, to the vertices of
G such that for every arc (z,y) of G the following is true: (1) ¢(z) # c(y); (2) there is no arc (z,t) of
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G for which ¢(t) = ¢(z) and ¢(z) = c(y). The oriented chromatic number xo(G) of G is the minimum
k for which there exists a k-coloring of G.

For an undirected graph G, let Og be the set of all orientations of G. We define the oriented
chromatic number xo(G) of G to be the maximum of x,(G) over all orientations G of G, i.e., Xo(G) =
max{x,(G) : G € Og}.

Graph coloring problems usually can be transformed into graph orientation problems. For example,
a graph G is k-colorable if and only if there is an acyclic orientation of G in which the longest directed
path has length at most k. The class of perfect graphs can be characterized by the existence of “good”
orientations. The star-chromatic number of a graph, the fractional chromatic number of a graph G can
also be obtained by finding some optimal orientations of G. Recently, Galvin [5] solved the problem
of list chromatic index of bipartite multigraphs by showing the existence of certain orientations of
the line graph of a bipartite multigraph. All such efforts are to find certain optimal orientations of a
graph. In contrast to this, the concept of the oriented chromatic number of a graph deals with the
‘worst’ orientation of a graph. It is natural to ask how ‘bad’ could be an orientation of a graph G
(here the ‘badness’ is measured by the oriented chromatic number), if the graph G itself has some
‘good’ property such as having small chromatic number, bounded genus, bounded maximum degree,
bounded acyclic chromatic number, bounded arboricity or bounded treewidth, etc.

Such problems were first studied by B. Courcelle [4]. It was shown in [4] that every planar oriented
graph has oriented chromatic number at most 3%3. This result was improved by Raspaud and Sopena
[15] who showed that every planar graph has oriented chromatic number at most 80. It was also proved
in [15] that if a graph G has acyclic chromatic number k then it has oriented chromatic number at
most k- 2¥~!. For graphs with bounded treewidth, Sopena [16] showed that any partial k-tree has
oriented chromatic number at most (k4 1)2%. Tt was also shown in [16] that any graph with maximum
degree k has oriented chromatic number at most (2k — 1)22¥=2. For graphs of treewidths 2 and 3,
their oriented chromatic numbers are at most 7 and 16, respectively.

We shall also study the relations between the oriented chromatic number and other parameters of
a graph, including the chromatic number, the arboricity, the acyclic chromatic number, the maximum
degree, the genus, etc. First we note that it was shown by Albertson and Berman [1] that any graph
of genus n > 0 can be acyclically colored with 4n + 4 colors. Combining this result with the above
mentioned result of Raspaud and Sopena [15], we obtain:

Theorem 1 Any graph of genus n > 0 has oriented chromatic number at most (4n + 4)2*7+3,

For the relation between the oriented chromatic number and the chromatic number of a graph,
we note that it follows from the definition that the oriented chromatic number of a graph G is at
least the chromatic number of G. However, bipartite graphs may have arbitrarily large oriented
chromatic numbers. Indeed, let G = (A, B, FE) be the complete bipartite graph with two parts A =
{a1,a2,---,a,} and B = {by,b,---,by}. We orient the edge (a;,b;) from a; to b; if i < j and from b;
to a; if © > j. It is straightforward to verify that this orientation of G has oriented chromatic number
2n.

The arboricity of a graph G is the minimum number &k such that the edges of G can be decomposed
into k forests. It was shown by Nash-Williams [12] that for any graph G the arboricity arb(G) of G is
equal to the maximum of [e(H)/(v(H) — 1)] over all subgraphs H of G where v(H) and e(H) are the
number of vertices and the number of edges of H respectively. For the relation between the oriented
chromatic number and the arboricity of a graph, we note here that graphs of arboricity 2 could have
arbitrarily large oriented chromatic number (cf. Observation 2 in Section 2). Of course, forests have
oriented chromatic number at most 3, cf. [15].

On the other hand, we shall show in Section 2 that any graph with oriented chromatic number k
has arboricity at most logyk + k/2 (cf. Theorem 2).

The main result of this paper, Theorem 6 proved in Section 2, gives an upper bound for the acyclic
chromatic number of a graph G in terms of the oriented chromatic number of G. An upper bound
for the oriented chromatic number of a graphs G in terms of the acyclic chromatic number was given
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by Raspaud and Sopena [15] as mentioned above. Therefore any class of graphs has bounded acyclic
chromatic number if and only if it has bounded oriented chromatic number.

In Section 9, we consider the relation between the oriented chromatic number of a graph and its
maximum degree. We shall give an upper bound for the oriented chromatic number of a graph in
terms of its maximum degree, which improves the previous known upper bound [16]. We shall show
that our upper bound is not far from being optimal.

Given a class C of graphs, we say that C is y,-bounded if there exists an integer n such that
Xa(G) < m for all G € C. Similarly we say C is x,-bounded if there exists an integer n such that
Xo(G) < n for all G € C. It follows from the result of Raspaud and Sopena [15] and the result in
Section 2 that a class of graph is x,-bounded if and only if it is x,-bounded. A few classes of graphs,
such as graphs of genus at most m, graphs of maximum degree at most k, etc. are known to be
Xo-bounded. In Section 4, we shall construct some more classes of graphs which are y,-bounded.

2 Acyclic chromatic number

The acyclic chromatic number x,(G) of a graph G is the least integer n for which there is a coloring of
the vertices of G with n colors in such a way that each color class is an independent set, and the union
of any two color classes induces a forest. In this section, we discuss the relations between the oriented
chromatic number, the arboricity and the acyclic chromatic number of a graph. We have observed in
the previous section that graphs of arboricity 2 could have arbitrarily large oriented chromatic number.
We now show that graphs of bounded oriented chromatic number must have bounded arboricity.

Theorem 2 If a graph G has oriented chromatic number k, then the arboricity arb(G) of G is at
most [logsk + k/2].

This theorem will easily follow from the observation below:
Observation 3 If a graph G' has n vertices, m edges and x,(G") < k, then
2(b)fm > om,
That 1is,
k
logy k > m/n — 5 /n. (1)

Proof. Consider G’ as a labelled graph. Then there are 2™ different orientations of G'. On the other
hand, each k-coloring, i.e., each partition of the vertices of G’ into k classes, is compatible with at
most 2(];) orientations of edges of G', and the number of possible k-colorings is less than k™. Therefore
om < 9(3) . gn. O

We now prove Theorem 2. By Nash-Williams’ Theorem, it suffices to show that for any subgraph
G of G, e(G')/(v(G') — 1) < logyk + k/2. Thus we let G’ be an arbitrary subgraph of G. If v(G’) < k,

then e(G")/(v(G') — 1) < v(G")/2 < k/2. Now we assume that v(G') > k. Since x,(G’) < xo(G) <k,
. . e(G’ k(k—1 e(G’ e(G’ - e(G’
it follows from Observation 3 that logyk > v%G’; - 25;((;')) > U(((;,)zl - U(G,)(S,(G),)fl) - % > U(é,)ll

1/2—-k/2+1/2> % — k/2. Therefore #G)lzl < logyk + k/2. Theorem 2 is proved.

(

Next we give an upper bound of the acyclic chromatic number of a graph G in terms of its oriented
chromatic number and its arboricity.

Theorem 4 If a graph G has oriented chromatic number k and arboricity q, then G has acyclic
chromatic number at most k10829141,



4 Acyclic and oriented chromatic numbers of graphs

Proof. Since the arboricity of G is ¢, there are ¢ forests T1,...T, covering F(G).
Let s = [logs q] and let a; be binary form of the number 4, i = 1,...,q. For j =1,...,s, let

= {UE ) | the j-th digit of a; is 1}.

Then for any i; # i2, 91,42 < ¢, there exists some M; which contains one of F(T;,) and E(T;,), and
disjoint from the other.

Let vy, vy, -+, v, be an arbitrary enumeration of the vertices of G. We say that v; is less than (or
proceeds) v; if i < j. Let Gy be the orientation of G in which an edge (v;, v;) is oriented from v; to v;
ifand only if 7 < j. For j =1,...,s, let éj be the orientation of G obtained from G by reversing the
orientations of those edges contained in M. Since the graph G has oriented chromatic number £, for
each j = 0,1,---,s, there is an oriented coloring ¢; of @j with & colors.

We claim that the coloring ¢* of the vertices of G, defined as ¢*(v) = (¢o(v), p1(v),...,0s(v)),
is an acyclic coloring of G. Obviously adjacent vertices of G are colored with distinct colors by ¢*.
Suppose ¢* is not an acyclic coloring, then there exists a 2-colored cycle C' = [c1,¢2, -+, cam]. Then
C' is 2-colored in each of the coordinate colorings ¢; for j = 0,1,---,s. Observe that if three vertices
z,y,z form a directed path  — y — 2z, then all the three vertices must be colored with distinct
colors in any oriented coloring. Therefore the edges of the cycle C form alternating cycles in all the
orientations C?j of G. In particular, the edges of C forms an alternating cycle in Go. Thus without
lgss of generality, we may assume that ¢; < co > ¢3 < ¢q---com—1 < 2 > ¢1 (cf. the definition of
Go).

Since each T} is a forest, there are two adjacent edges of C, say (c;,cit1), (¢i+1,Cit2), that belong
to distinct forests. Suppose (¢;,¢iv1) € E(T,) and (¢j11,civ2) € E(Ty). As we have observed before,
there is an M; such that M; contains all the edges of T, and contains no edge of T;,. We assume that
(Cit1, Cit2) € Mj and (cl, ciy1) € M;. Then the orientation of the edge (Cit1,Ciy2) In G is the reverse
of its orientation in Gg, while the orientation of the edge (¢;, ¢j11) in G is the same as its orientation
in Gy. This implies that the two edges (¢;, ¢i+1) and (¢jt1, ¢iy2) form a directed path in G], contrary
to our observation in the previous paragraph. This proves that ¢* is indeed an acyclic coloring of G.

The number of colors used by ¢* is k10824141 Therefore the acyclic chromatic number of G is at most
L Nogaq]+1 0O

Combining Theorem 2 and Theorem 4, we obtain an upper bound for the acyclic chromatic number
of a graph in terms of its oriented chromatic number:

Corollary 5 If a graph G has oriented chromatic number k, then its acyclic chromatic number is at
most k[10g2(|—10g2k-| +k/2)-|+1 .

However a more careful analysis of the proofs of the above two theorems yields a better upper
bound.

Theorem 6 Let G be a graph with the oriented chromatic number xo,(G) < k. If k > 4, then
Xa(G) < k2 + 3+[logy logy k]

Proof. Let ¢ be the maximum real number such that there exists G’ C G with |V(G")| > k? and
B(E)| > V(S @)
Let G” be the biggest subgraph of G with |E(G")| > t|V(G")|. By the definition of ¢,
V(G")| < k2.

Denote Gy = G — G". Clearly, x,(G) < xo(Go) + k2.
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By the maximality of G”, we have
|E(H)| <t|V(H)| for each H C Gy.

1t ¢ < VUL then |E(H)| < (¢ + 1/2)((V(H)| - 1). Tf ¢ > YL then VIDL 44 10 Thys

\E(H)| < WEDIELDVUIDL < (44 1/2)(|V (H)| - 1). Therefore
|[E(H)| < (t+1/2)(|V(H)| - 1) for each H C G,

and by Nash-Williams’ theorem, there exist ¢ = [t + 1/2] forests T1,...T, covering E(Gj).
Similarly to the proof of Theorem 4, we can show that x,(Gp) < k5.
It follows from Observation 3 that logy k > ¢t — 1/2. Therefore

s = [logy([t +1/2])] < [logy(1 + [logy k])] < 2 + log, logs k.

Hence x4(G) < k2 4 k3tTlogzlogs kT, -

We close this section with two observations:
Observation 7 [11] Graphs of arboricity 2 could have arbitrarily large acyclic chromatic numbers.

We just recall here the construction proposed in [11]. Let G be the graph obtained from K, by
replacing each edge of K,, by n — 1 parallel paths of length 2. Tt is easy to see that G has arboricity
2. To see that G has acyclic chromatic number at least n observe that if the vertices of G are colored
with n — 1 colors, then two of the vertices of K, are colored with the same color. Among the n — 1
paths of length 2 connecting these two vertices there are two paths whose middle vertices are colored
with the same color. Therefore we obtain a 2-colored cycle Cy.

Observation 8 Graphs of acyclic chromatic number k could have oriented chromatic number greater
than 2= — 1.

Let G = (V, E) be a graph such that V.=V, UV, U---UV, where Vi, V5, .-V} are disjoint sets of
cardinality p, G(V;) has no edges for each i, and G(V; UV}) is a path of length 2p — 1 for each {1, j}.
Then v(G) = kp,e(G) = (¥)(2p — 1). Tt follows from the construction that x,(G) = k. Suppose the
oriented chromatic number of G is t. Then by Observation 3

logy ¢ > (’;) (2p — 1)/kp - (;) Jkp. (3)

E—1 [t
] Sk—1->_~ _ . 4
ogyt >k o <2>/kp (4)

When p is sufficiently large, we have ¢t > 2F~1 — 1.

3 Maximum degree and oriented chromatic number

It is known that graphs of maximum degree k have acyclic chromatic number at most O(k%), [3]. Since
graphs of acyclic chromatic number m have oriented chromatic number at most m2™~!, (cf. [15]), it

follox;vs that graphs of maximum degree k£ have oriented chromatic number at most O(ké)ZO(H) =
20(”). A better upper bound for the oriented chromatic number in terms of the maximum degree
was proved in [16]. It was shown in [16] that graphs of maximum degree k have oriented chromatic
number at most (2k — 1)22#=2, We shall prove in this section that graphs of maximum degree k have
oriented chromatic number at most 2k22%. This upper bound seems to be not too far from the optimal
upper bound. We shall show that for each integer k£ > 1, there is a graph of maximum degree k whose

oriented chromatic number is at least 25/2.
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Theorem 9 If G is a graph of mazimum degree k, then its oriented chromatic number xo(G) is at
most 2k>2F.

To prove this theorem, we shall first prove the existence of a tournament which has certain property.
Suppose G is an oriented graph, and that I = {z1,...,2;} is a subset of V(é), and that v is vertex of
G which is adjacent to each vertex in I. We denote by F(I,v, @) the vector a of length 7, where the
j-th coordinate of a equals 1 if (z;,v) is an arc of G and equals —1 if (v,x;) is an arc of G.

Lemma 10 Let k > 5 be an integer. There exists a tournament T = (V, A) on t = 2k>2F vertices
with the following property:

for each i, 0 <1i <k, for each I CV with |I| =1, and for each £1-vector a of length i, there exist at
least 1 + (k —i)(k — 1) vertices v in V' \ I with F(I,v,T) = a.

Proof. Consider a random tournament 7" = (V, A) on ¢ vertices, where for each pair {v,w} of vertices
of T, the events that (v,w) € A and that (w,v) € A are complementary and equiprobable, and for
distinct pairs of vertices corresponding events are independent.
Let I C V, |I| =i and a be a £1-vector of length i. Let P(i,I,a) denote the probability of the
event R(i,I,a) that the number of vertices in V'\ I with F(I,v,T) = a is at most (k —i)(k — 1).
For a fixed v € V'\ I, the probability that F/(I,v,T) = a is equal to 2% and for distinct v,w € V'\ I,
the events that F(I,v,T) = a and that F(I,w,T) = a are independent. Hence

(k—i)(k—1)

A o
P(i,I,a) = ( ] 7’) 274 (1 — 2—z)t—z—9 <
J
=27 NI <

<267t2*i Z + <67t2*it(k71)(k71)+1_
J=0

The probability P(T) that at least one of R(i, I,a) occurs is at most

Z Z ZPzIa <Z(> i 127" y(k— i)(k71)+1§

i=0 {ICV[[1]=i} &

) Z —12~ l k 1)+1+z (5)
The ratio of the (i 4+ 1)-th summand over i-th summand in (5) is

el2  pk—i—1)(k—1)+1+i+1 et27 7t el2 7"

o2 (k=) (k—1)+14i k-2 =

o2k o2k’ o2k \ F AN
) (k22k+1)k 2— 129k > k2 > 2.

3 . 9k29k 1+k (k+1)/k9 k
P(T) < 2e~27 41k < 2e=2° <i> <o () ML) <

But for t = 2k%2F,

Thus,

1+k e2k

6\ HL/E\ F
<2 (%) <1/2
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for k > 5. Consequently, there exists T' for which no one of R(i,I,a) occurs. |

We now prove Theorem 9. Let G be an oriented graph of maximum degree k. We need to prove
that x,(G) < 2-k2-2F. For k < 4, the result follows from Theorem 4.1 of [16]. Assume now that
k > 5. By Lemma 10, there is a tournament 7' = (V, A) such that for each i, 0 <7 < k, foreach I C V
with |I| = 4, and for each +1-vector a of length 7, there exist at least 1 + (k —i)(k — 1) vertices v in
V\ I with F(I,v,T) = a. We shall prove that there exists a homomorphism f of GtoT. Suppose the
vertices of G are vy, vy, --,v,. We shall define f(vy1), f(v2),- -+, f(vn) recursively such that at step m,
the images f(v1), f(v2), -+, f(vn) are defined, and
(i) the partial mapping f(v1), f(v2), -+, f(vm) is a partial homomorphism; and
(ii) for each v; with j > m, all the neighbours v, of v; with s < m have different images under the
partial mapping f.

Step 1 is trivial. Suppose that f(v1), f(v2),- -, f(vy) are defined such that (i) and (ii) hold.
We shall call vy, vy, -+, v, the colored vertices, and call f(v1), f(v2), -+, f(vm) their colors. We
need to define f(vp,41) (i-e., to color v,11) so that (i) and (ii) still hold. Suppose y1,...y; are
colored neighbours of v,,+1, and that F({y1,...yi},vm+1,G) = a. By (ii), the set I of colors
{f(y1), f(y2),--- f(y;)} also has cardinality i. Let K be the set of vertices w in V(T') \ I such that
F({f(y1), f(y2), - f(yi)},w,T) = a. By Lemma 10, |[K| > 1+ (k —i)(k — 1). Let A be the set
of uncolored neighbours of v; 11, and let B be the set of colored neighbours of vertices in A. Then
|A| < k—1i,and |B| < (k—1i)(k—1). Therefore K\ f(B) # 0. Let f(vm+1) be any vertex in K\ f(B),
it is straightforward to verify that (i) and (ii) still hold. This completes the proof of Theorem 9.

We close this section with an observation that the upper bound given in Theorem 9 is not too far
from being optimal.

Observation 11 For each integer k > 1, there exists an oriented graph G of mazimum degree k for
which xo(G) > 2F/2,

Proof. Let G be a k-regular graph on n vertices. Then it has kn/2 edges. By Observation 3,
Xo(G) > 2K/2. 2G)/m Tt n is sufficiently big, say n > 100¥, we then have y,(G) > 2k/2. a

4 y,~bounded classes of graphs

There are a few classes of graphs known to have bounded acyclic chromatic numbers: Albertson and
Berman [1] showed that the class of graphs of bounded genus is x,-bounded; it is trivial that the class
of graphs of bounded maximum degree is x,-bounded; Sopena [16] proved that the class of graphs of
bounded treewidth is y,-bounded. We present here a method of constructing new y,-bounded classes
of graphs from old ones.

For two graphs G, G2 on the same vertex set, we denote by G1 + G2 the graph with vertex set
V(G) =V(Gy) =V(Gs) and E(G) = E(G1)U E(G2). We assume V (G1) = V(G3) only for simplicity
and the reader can observe that by adding isolated vertices to G; or G2 we may capture a more general
case. For two classes C1,Cy of graphs, let C1 +Co = {G1 + G2 : G1 € C1,G2 € C2,V(G1) = V(G2)}.

Theorem 12 Suppose that Ci is a xq-bounded class of graphs and that Co is a class of graphs of
bounded maximum degree. Then C1 + Ca is a Xxq-bounded class of graphs.

Proof. It suffices to show the following: Suppose G is a graph with acyclic chromatic number at
most k£ and that G’ is a graph on the same vertex set as G and has maximum degree s. Then
Xa(G+G') < k(2((2[(logg kb +k — 1+ k-2872)] +5)2 + 2s[(logo k + k — 1 + k- 2572)]) + 1).

Let vy, v, -+, v, be an ordering of the vertices of G such that for each 1 = 1,2, ---,n, the vertex v;
has minimum degree in G[{vy,va,---,v;}]. Since x4(G) < k, we have x,(G) < k2¢~! (cf. Section 1).
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By Theorem 2, G has arboricity at most [(log, k+k—1+k-2572)]. Let m = [(logy, k+k—14+k-2F72)].
It follows from Nash-Williams’ Theorem that each vertex v; has degree at most 2m in the subgraph
G[{vi,va,---,v;}] of G.

Let G" = G + G, let D be the digraph with vertex set V' = V(G") and (v;,v;) be an arc of D if
and only if either (v;,v;) is an edge of G” and j < 4, or there exists a vertex v, such that

i) (vi,vq), (vg,v;) are edges of G” and j < ¢;
q)s Vg, Vj

(ii) either ¢ < i or (vj,vq) is an edge of G'.

It is straightforward to verify that each vertex of D has out-degree at most (m + s)? + ms. Then
D has a vertex which has in-degree at most (m + s)? + ms, and hence has total degree at most
2((m + s)%2 4+ ms). This is also true for any subgraph of D, i.e., any subgraph of D has a vertex which
has total degree at most 2((m + s)? +ms). Therefore the underline graph of D has chromatic number
at most 2((m + s)? +ms) + 1.

Let fi be an acyclic coloring of G with k colors; and let fo be a proper coloring of the underline
graph of D with 2((m + s)2 + ms) + 1 colors. We claim that the coloring f defined as f(z) =
(f1(z), f2(z)) is an acyclic coloring of G”. Suppose to the contrary that there exists a 2-colored cycle
C = [c1,¢2,+ -+, c]. Then C' must contain an edge not belonging to G. Suppose (c1, c2) is an edge of
G'. Without loss of generality, we assume that ¢; = v;,co = vj and 7 < j. Suppose ¢3 = v,. If j < g,
then (c3,c1) is an arc of D and hence ¢3, ¢; are colored with distinct colors by fo. If 7 > ¢, then (c1, ¢3)
is an arc of D and hence c3, c; are again colored with distinct colors by fs. This is in contrary to the
assumption that C is a 2-colored cycle under the coloring f. O

Note that considering the example used in Observation 2 (see Section 2), it is not enough to assume
that the class Cs in Theorem 12 is of bounded genus, of bounded arboricity or of bounded treewidth.

Remark. Very recently, N. Alon and T. H. Marshall [2] discussed homomorphisms of edge colored
graphs. These homomorphisms possess many properties of oriented homomorphisms, and a number
of results of our paper can be extended to similar results on homomorphisms of edge colored graphs.
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