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hromati
 number �o(~G) of an oriented graph ~G = (V;A) is the minimum numberof verti
es in an oriented graph ~H for whi
h there exists a homomorphism of ~G to ~H . The oriented 
hromati
number �o(G) of an undire
ted graphG is the maximum of the oriented 
hromati
 numbers of all the orientationsof G. This paper dis
usses the relations between the oriented 
hromati
 number and the a
y
li
 
hromati
number and some other parameters of a graph. We shall give a lower bound for �o(G) in terms of �a(G). Anupper bound for �o(G) in terms of �a(G) was given by Raspaud and Sopena. We also give an upper boundfor �o(G) in terms of the maximum degree of G. We shall show that this upper bound is not far from beingoptimal.Keywords. Oriented 
hromati
 number, A
y
li
 
hromati
 number.1 Introdu
tionA homomorphism f of a digraph ~G = (V;A) to a digraph ~H = (V 0; A0) is a mapping of V to V 0 su
hthat for any ar
 (x; y) of ~G, the image (f(x); f(y)) is an ar
 of ~H. Homomorphisms of undire
tedgraphs are de�ned similarly. Homomorphisms of digraphs and undire
ted graphs have been studied asa generalization of graph 
oloring in the literature [7, 8, 9, 14℄. It is easy to see that a k-
oloring of anundire
ted graph G is equivalent to a homomorphism of G to the 
omplete graph Kk. Therefore the
hromati
 number �(G) of an undire
ted graph G is equal to the minimum integer k su
h that thereis a homomorphism of G to Kk, or equivalently �(G) is equal to the minimum number of verti
es ofan undire
ted graph H for whi
h there exists a homomorphism of G to H.We 
all those digraphs whi
h 
ontain no opposite ar
s oriented graphs. Generalizing the abovede�nition of 
hromati
 number to oriented graphs, we de�ne the oriented 
hromati
 number of anoriented graph ~G to be the minimum number of verti
es in an oriented graph ~H for whi
h there existsa homomorphism of ~G to ~H. We denote this number by �o( ~G).The oriented 
hromati
 number of an oriented graph ~G 
an also be de�ned as follows: For aninteger k, a k-
oloring of ~G is an assignment 
 of 
olors, taken from a set of k 
olors, to the verti
es of~G su
h that for every ar
 (x; y) of ~G the following is true: (1) 
(x) 6= 
(y); (2) there is no ar
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2 A
y
li
 and oriented 
hromati
 numbers of graphs~G for whi
h 
(t) = 
(x) and 
(z) = 
(y). The oriented 
hromati
 number �o( ~G) of ~G is the minimumk for whi
h there exists a k-
oloring of ~G.For an undire
ted graph G, let OG be the set of all orientations of G. We de�ne the oriented
hromati
 number �o(G) of G to be the maximum of �o( ~G) over all orientations ~G of G, i.e., �o(G) =maxf�o( ~G) : ~G 2 OGg.Graph 
oloring problems usually 
an be transformed into graph orientation problems. For example,a graph G is k-
olorable if and only if there is an a
y
li
 orientation of G in whi
h the longest dire
tedpath has length at most k. The 
lass of perfe
t graphs 
an be 
hara
terized by the existen
e of \good"orientations. The star-
hromati
 number of a graph, the fra
tional 
hromati
 number of a graph G 
analso be obtained by �nding some optimal orientations of G. Re
ently, Galvin [5℄ solved the problemof list 
hromati
 index of bipartite multigraphs by showing the existen
e of 
ertain orientations ofthe line graph of a bipartite multigraph. All su
h e�orts are to �nd 
ertain optimal orientations of agraph. In 
ontrast to this, the 
on
ept of the oriented 
hromati
 number of a graph deals with the`worst' orientation of a graph. It is natural to ask how `bad' 
ould be an orientation of a graph G(here the `badness' is measured by the oriented 
hromati
 number), if the graph G itself has some`good' property su
h as having small 
hromati
 number, bounded genus, bounded maximum degree,bounded a
y
li
 
hromati
 number, bounded arbori
ity or bounded treewidth, et
.Su
h problems were �rst studied by B. Cour
elle [4℄. It was shown in [4℄ that every planar orientedgraph has oriented 
hromati
 number at most 363. This result was improved by Raspaud and Sopena[15℄ who showed that every planar graph has oriented 
hromati
 number at most 80. It was also provedin [15℄ that if a graph G has a
y
li
 
hromati
 number k then it has oriented 
hromati
 number atmost k � 2k�1. For graphs with bounded treewidth, Sopena [16℄ showed that any partial k-tree hasoriented 
hromati
 number at most (k+1)2k. It was also shown in [16℄ that any graph with maximumdegree k has oriented 
hromati
 number at most (2k � 1)22k�2. For graphs of treewidths 2 and 3,their oriented 
hromati
 numbers are at most 7 and 16, respe
tively.We shall also study the relations between the oriented 
hromati
 number and other parameters ofa graph, in
luding the 
hromati
 number, the arbori
ity, the a
y
li
 
hromati
 number, the maximumdegree, the genus, et
. First we note that it was shown by Albertson and Berman [1℄ that any graphof genus n > 0 
an be a
y
li
ally 
olored with 4n + 4 
olors. Combining this result with the abovementioned result of Raspaud and Sopena [15℄, we obtain:Theorem 1 Any graph of genus n > 0 has oriented 
hromati
 number at most (4n+ 4)24n+3.For the relation between the oriented 
hromati
 number and the 
hromati
 number of a graph,we note that it follows from the de�nition that the oriented 
hromati
 number of a graph G is atleast the 
hromati
 number of G. However, bipartite graphs may have arbitrarily large oriented
hromati
 numbers. Indeed, let G = (A;B;E) be the 
omplete bipartite graph with two parts A =fa1; a2; � � � ; ang and B = fb1; b2; � � � ; bng. We orient the edge (ai; bj) from ai to bj if i � j and from bjto ai if i > j. It is straightforward to verify that this orientation of G has oriented 
hromati
 number2n. The arbori
ity of a graph G is the minimum number k su
h that the edges of G 
an be de
omposedinto k forests. It was shown by Nash-Williams [12℄ that for any graph G the arbori
ity arb(G) of G isequal to the maximum of de(H)=(v(H)� 1)e over all subgraphs H of G where v(H) and e(H) are thenumber of verti
es and the number of edges of H respe
tively. For the relation between the oriented
hromati
 number and the arbori
ity of a graph, we note here that graphs of arbori
ity 2 
ould havearbitrarily large oriented 
hromati
 number (
f. Observation 2 in Se
tion 2). Of 
ourse, forests haveoriented 
hromati
 number at most 3, 
f. [15℄.On the other hand, we shall show in Se
tion 2 that any graph with oriented 
hromati
 number khas arbori
ity at most log2k + k=2 (
f. Theorem 2).The main result of this paper, Theorem 6 proved in Se
tion 2, gives an upper bound for the a
y
li

hromati
 number of a graph G in terms of the oriented 
hromati
 number of G. An upper boundfor the oriented 
hromati
 number of a graphs G in terms of the a
y
li
 
hromati
 number was given
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hka, E. Sopena and X. Zhu 3by Raspaud and Sopena [15℄ as mentioned above. Therefore any 
lass of graphs has bounded a
y
li

hromati
 number if and only if it has bounded oriented 
hromati
 number.In Se
tion 9, we 
onsider the relation between the oriented 
hromati
 number of a graph and itsmaximum degree. We shall give an upper bound for the oriented 
hromati
 number of a graph interms of its maximum degree, whi
h improves the previous known upper bound [16℄. We shall showthat our upper bound is not far from being optimal.Given a 
lass C of graphs, we say that C is �a-bounded if there exists an integer n su
h that�a(G) � n for all G 2 C. Similarly we say C is �o-bounded if there exists an integer n su
h that�o(G) � n for all G 2 C. It follows from the result of Raspaud and Sopena [15℄ and the result inSe
tion 2 that a 
lass of graph is �a-bounded if and only if it is �o-bounded. A few 
lasses of graphs,su
h as graphs of genus at most m, graphs of maximum degree at most k, et
. are known to be�a-bounded. In Se
tion 4, we shall 
onstru
t some more 
lasses of graphs whi
h are �a-bounded.2 A
y
li
 
hromati
 numberThe a
y
li
 
hromati
 number �a(G) of a graph G is the least integer n for whi
h there is a 
oloring ofthe verti
es of G with n 
olors in su
h a way that ea
h 
olor 
lass is an independent set, and the unionof any two 
olor 
lasses indu
es a forest. In this se
tion, we dis
uss the relations between the oriented
hromati
 number, the arbori
ity and the a
y
li
 
hromati
 number of a graph. We have observed inthe previous se
tion that graphs of arbori
ity 2 
ould have arbitrarily large oriented 
hromati
 number.We now show that graphs of bounded oriented 
hromati
 number must have bounded arbori
ity.Theorem 2 If a graph G has oriented 
hromati
 number k, then the arbori
ity arb(G) of G is atmost dlog2k + k=2e.This theorem will easily follow from the observation below:Observation 3 If a graph G0 has n verti
es, m edges and �o(G0) � k, then2(k2)kn � 2m:That is, log2 k � m=n�  k2!=n: (1)Proof. Consider G0 as a labelled graph. Then there are 2m di�erent orientations of G0. On the otherhand, ea
h k-
oloring, i.e., ea
h partition of the verti
es of G0 into k 
lasses, is 
ompatible with atmost 2(k2) orientations of edges of G0, and the number of possible k-
olorings is less than kn. Therefore2m � 2(k2) � kn. 2We now prove Theorem 2. By Nash-Williams' Theorem, it suÆ
es to show that for any subgraphG0 of G, e(G0)=(v(G0)�1) � log2k+k=2. Thus we let G0 be an arbitrary subgraph of G. If v(G0) � k,then e(G0)=(v(G0)� 1) � v(G0)=2 � k=2. Now we assume that v(G0) > k. Sin
e �o(G0) � �o(G) � k,it follows from Observation 3 that log2k � e(G0)v(G0) � k(k�1)2v(G0) � e(G0)v(G0)�1 � e(G0)v(G0)(v(G0)�1) � k�12 � e(G0)v(G0)�1 �1=2 � k=2 + 1=2 � e(G0)v(G0)�1 � k=2. Therefore e(G0)v(G0)�1 � log2k + k=2. Theorem 2 is proved.Next we give an upper bound of the a
y
li
 
hromati
 number of a graph G in terms of its oriented
hromati
 number and its arbori
ity.Theorem 4 If a graph G has oriented 
hromati
 number k and arbori
ity q, then G has a
y
li

hromati
 number at most kdlog2qe+1.



4 A
y
li
 and oriented 
hromati
 numbers of graphsProof. Sin
e the arbori
ity of G is q, there are q forests T1; : : : Tq 
overing E(G).Let s = dlog2 qe and let ai be binary form of the number i; i = 1; : : : ; q. For j = 1; : : : ; s, letMj = f[E(Ti) j the j-th digit of ai is 1g:Then for any i1 6= i2; i1; i2 � q, there exists some Mj whi
h 
ontains one of E(Ti1) and E(Ti2), anddisjoint from the other.Let v1; v2; � � � ; vn be an arbitrary enumeration of the verti
es of G. We say that vi is less than (orpro
eeds) vj if i < j. Let ~G0 be the orientation of G in whi
h an edge (vi; vj) is oriented from vi to vjif and only if i < j. For j = 1; : : : ; s, let ~Gj be the orientation of G obtained from ~G0 by reversing theorientations of those edges 
ontained in Mj. Sin
e the graph G has oriented 
hromati
 number k, forea
h j = 0; 1; � � � ; s, there is an oriented 
oloring 'j of ~Gj with k 
olors.We 
laim that the 
oloring '� of the verti
es of G, de�ned as '�(v) = ('0(v); '1(v); : : : ; 's(v)),is an a
y
li
 
oloring of G. Obviously adja
ent verti
es of G are 
olored with distin
t 
olors by '�.Suppose '� is not an a
y
li
 
oloring, then there exists a 2-
olored 
y
le C = [
1; 
2; � � � ; 
2m℄. ThenC is 2-
olored in ea
h of the 
oordinate 
olorings 'j for j = 0; 1; � � � ; s. Observe that if three verti
esx; y; z form a dire
ted path x ! y ! z, then all the three verti
es must be 
olored with distin
t
olors in any oriented 
oloring. Therefore the edges of the 
y
le C form alternating 
y
les in all theorientations ~Gj of G. In parti
ular, the edges of C forms an alternating 
y
le in ~G0. Thus withoutloss of generality, we may assume that 
1 < 
2 > 
3 < 
4 � � � 
2m�1 < 
2m > 
1 (
f. the de�nition of~G0).Sin
e ea
h Tj is a forest, there are two adja
ent edges of C, say (
i; 
i+1); (
i+1; 
i+2), that belongto distin
t forests. Suppose (
i; 
i+1) 2 E(Ta) and (
i+1; 
i+2) 2 E(Tb). As we have observed before,there is an Mj su
h that Mj 
ontains all the edges of Ta and 
ontains no edge of Tb. We assume that(
i+1; 
i+2) 2Mj and (
i; 
i+1) 62Mj . Then the orientation of the edge (
i+1; 
i+2) in ~Gj is the reverseof its orientation in ~G0, while the orientation of the edge (
i; 
i+1) in ~Gj is the same as its orientationin ~G0. This implies that the two edges (
i; 
i+1) and (
i+1; 
i+2) form a dire
ted path in ~Gj , 
ontraryto our observation in the previous paragraph. This proves that '� is indeed an a
y
li
 
oloring of G.The number of 
olors used by '� is kdlog2qe+1. Therefore the a
y
li
 
hromati
 number of G is at mostkdlog2qe+1. 2Combining Theorem 2 and Theorem 4, we obtain an upper bound for the a
y
li
 
hromati
 numberof a graph in terms of its oriented 
hromati
 number:Corollary 5 If a graph G has oriented 
hromati
 number k, then its a
y
li
 
hromati
 number is atmost kdlog2(dlog2ke+k=2)e+1.However a more 
areful analysis of the proofs of the above two theorems yields a better upperbound.Theorem 6 Let G be a graph with the oriented 
hromati
 number �o(G) � k. If k � 4, then�a(G) � k2 + k3+dlog2 log2 ke.Proof. Let t be the maximum real number su
h that there exists G0 � G with jV (G0)j � k2 andjE(G0)j � tjV (G0)j: (2)Let G00 be the biggest subgraph of G with jE(G00)j > tjV (G00)j. By the de�nition of t,jV (G00)j < k2:Denote G0 = G�G00. Clearly, �a(G) � �a(G0) + k2.



A.V. Kosto
hka, E. Sopena and X. Zhu 5By the maximality of G00, we havejE(H)j � tjV (H)j for ea
h H � G0:If t � jV (H)j�12 , then jE(H)j � (t + 1=2)(jV (H)j � 1). If t > jV (H)j�12 , then jV (H)j2 < t + 12 . ThusjE(H)j � (jV (H)j�1)jV (H)j2 � (t+ 1=2)(jV (H)j � 1). ThereforejE(H)j � (t+ 1=2)(jV (H)j � 1) for ea
h H � G0;and by Nash-Williams' theorem, there exist q = dt+ 1=2e forests T1; : : : Tq 
overing E(G0).Similarly to the proof of Theorem 4, we 
an show that �a(G0) � ks+1.It follows from Observation 3 that log2 k � t� 1=2. Therefores = dlog2(dt+ 1=2e)e � dlog2(1 + dlog2 ke)e � 2 + log2 log2 k:Hen
e �a(G) � k2 + k3+dlog2 log2 ke. 2We 
lose this se
tion with two observations:Observation 7 [11℄ Graphs of arbori
ity 2 
ould have arbitrarily large a
y
li
 
hromati
 numbers.We just re
all here the 
onstru
tion proposed in [11℄. Let G be the graph obtained from Kn byrepla
ing ea
h edge of Kn by n� 1 parallel paths of length 2. It is easy to see that G has arbori
ity2. To see that G has a
y
li
 
hromati
 number at least n observe that if the verti
es of G are 
oloredwith n� 1 
olors, then two of the verti
es of Kn are 
olored with the same 
olor. Among the n � 1paths of length 2 
onne
ting these two verti
es there are two paths whose middle verti
es are 
oloredwith the same 
olor. Therefore we obtain a 2-
olored 
y
le C4.Observation 8 Graphs of a
y
li
 
hromati
 number k 
ould have oriented 
hromati
 number greaterthan 2k�1 � 1.Let G = (V;E) be a graph su
h that V = V1 [ V2 [ � � � [ Vk, where V1; V2; � � � Vk are disjoint sets of
ardinality p, G(Vi) has no edges for ea
h i, and G(Vi [ Vj) is a path of length 2p� 1 for ea
h fi; jg.Then v(G) = kp; e(G) = �k2�(2p � 1). It follows from the 
onstru
tion that �a(G) = k. Suppose theoriented 
hromati
 number of G is t. Then by Observation 3log2 t �  k2!(2p� 1)=kp � t2!=kp: (3)log2 t � k � 1� k � 12p �  t2!=kp: (4)When p is suÆ
iently large, we have t > 2k�1 � 1.3 Maximum degree and oriented 
hromati
 numberIt is known that graphs of maximum degree k have a
y
li
 
hromati
 number at most O(k 43 ), [3℄. Sin
egraphs of a
y
li
 
hromati
 number m have oriented 
hromati
 number at most m2m�1, (
f. [15℄), itfollows that graphs of maximum degree k have oriented 
hromati
 number at most O(k 43 )2O(k 43 ) =2O(k 43 ). A better upper bound for the oriented 
hromati
 number in terms of the maximum degreewas proved in [16℄. It was shown in [16℄ that graphs of maximum degree k have oriented 
hromati
number at most (2k � 1)22k�2. We shall prove in this se
tion that graphs of maximum degree k haveoriented 
hromati
 number at most 2k22k. This upper bound seems to be not too far from the optimalupper bound. We shall show that for ea
h integer k > 1, there is a graph of maximum degree k whoseoriented 
hromati
 number is at least 2k=2.



6 A
y
li
 and oriented 
hromati
 numbers of graphsTheorem 9 If G is a graph of maximum degree k, then its oriented 
hromati
 number �o(G) is atmost 2k22k.To prove this theorem, we shall �rst prove the existen
e of a tournament whi
h has 
ertain property.Suppose ~G is an oriented graph, and that I = fx1; :::; xig is a subset of V ( ~G), and that v is vertex of~G whi
h is adja
ent to ea
h vertex in I. We denote by F (I; v; ~G) the ve
tor a of length i, where thej-th 
oordinate of a equals 1 if (xj ; v) is an ar
 of ~G and equals �1 if (v; xj) is an ar
 of ~G.Lemma 10 Let k � 5 be an integer. There exists a tournament T = (V;A) on t = 2k22k verti
eswith the following property:for ea
h i; 0 � i � k, for ea
h I � V with jIj = i, and for ea
h �1-ve
tor a of length i, there exist atleast 1 + (k � i)(k � 1) verti
es v in V n I with F (I; v; T ) = a.Proof. Consider a random tournament T = (V;A) on t verti
es, where for ea
h pair fv; wg of verti
esof T , the events that (v; w) 2 A and that (w; v) 2 A are 
omplementary and equiprobable, and fordistin
t pairs of verti
es 
orresponding events are independent.Let I � V , jIj = i and a be a �1-ve
tor of length i. Let P(i; I;a) denote the probability of theevent R(i; I;a) that the number of verti
es in V n I with F (I; v; T ) = a is at most (k � i)(k � 1).For a �xed v 2 V nI, the probability that F (I; v; T ) = a is equal to 2�i and for distin
t v; w 2 V nI,the events that F (I; v; T ) = a and that F (I; w; T ) = a are independent. Hen
eP(i; I;a) = (k�i)(k�1)Xj=0  t� ij !2�ij(1� 2�i)t�i�j << (1� 2�i)t (k�i)(k�1)Xj=0 tjj! (1� 2�i)�i�j2�ij << 2e�t2�i (k�i)(k�1)Xj=0 tj < e�t2�it(k�i)(k�1)+1:The probability P(T ) that at least one of R(i; I;a) o

urs is at mostkXi=0 XfI�V jjIj=igXa P(i; I;a) < kXi=0 ti!2ie�t2�it(k�i)(k�1)+1 �2 kXi=0 e�t2�it(k�i)(k�1)+1+i: (5)The ratio of the (i+ 1)-th summand over i-th summand in (5) iset2�it(k�i�1)(k�1)+1+i+1et2�i�1t(k�i)(k�1)+1+i = et2�i�1tk�2 � et2�ktk�2 :But for t = 2k22k, et2�ktk�2 = e2k2(k22k+1)k�2 �  e2kk22k!k >  ekk2!k > 2:Thus, P(T ) < 2e�t2�k t1+k � 2e�2k2  e2k22k1 + k !1+k � 2 (6k)(k+1)=k2k+1e2k !k << 2 (6k)1+1=kek !k < 1=2



A.V. Kosto
hka, E. Sopena and X. Zhu 7for k � 5. Consequently, there exists T for whi
h no one of R(i; I;a) o

urs. 2We now prove Theorem 9. Let ~G be an oriented graph of maximum degree k. We need to provethat �o(G) � 2 � k2 � 2k. For k � 4, the result follows from Theorem 4.1 of [16℄. Assume now thatk � 5. By Lemma 10, there is a tournament T = (V;A) su
h that for ea
h i; 0 � i � k, for ea
h I � Vwith jIj = i, and for ea
h �1-ve
tor a of length i, there exist at least 1 + (k � i)(k � 1) verti
es v inV nI with F (I; v; T ) = a. We shall prove that there exists a homomorphism f of ~G to T . Suppose theverti
es of G are v1; v2; � � � ; vn. We shall de�ne f(v1); f(v2); � � � ; f(vn) re
ursively su
h that at step m,the images f(v1); f(v2); � � � ; f(vm) are de�ned, and(i) the partial mapping f(v1); f(v2); � � � ; f(vm) is a partial homomorphism; and(ii) for ea
h vj with j > m, all the neighbours vs of vj with s � m have di�erent images under thepartial mapping f .Step 1 is trivial. Suppose that f(v1); f(v2); � � � ; f(vm) are de�ned su
h that (i) and (ii) hold.We shall 
all v1; v2; � � � ; vm the 
olored verti
es, and 
all f(v1); f(v2); � � � ; f(vm) their 
olors. Weneed to de�ne f(vm+1) (i.e., to 
olor vm+1) so that (i) and (ii) still hold. Suppose y1; : : : yi are
olored neighbours of vm+1, and that F (fy1; : : : yig; vm+1; G) = a. By (ii), the set I of 
olorsff(y1); f(y2); � � � f(yi)g also has 
ardinality i. Let K be the set of verti
es w in V (T ) n I su
h thatF (ff(y1); f(y2); � � � f(yi)g; w; T ) = a. By Lemma 10, jKj � 1 + (k � i)(k � 1). Let A be the setof un
olored neighbours of vi+1, and let B be the set of 
olored neighbours of verti
es in A. ThenjAj � k� i, and jBj � (k� i)(k�1). Therefore K nf(B) 6= ;. Let f(vm+1) be any vertex in K nf(B),it is straightforward to verify that (i) and (ii) still hold. This 
ompletes the proof of Theorem 9.We 
lose this se
tion with an observation that the upper bound given in Theorem 9 is not too farfrom being optimal.Observation 11 For ea
h integer k > 1, there exists an oriented graph ~G of maximum degree k forwhi
h �o( ~G) � 2k=2.Proof. Let G be a k-regular graph on n verti
es. Then it has kn=2 edges. By Observation 3,�o(G) � 2k=2 � 2(k2)=n. If n is suÆ
iently big, say n � 100k, we then have �o(G) � 2k=2. 24 �a-bounded 
lasses of graphsThere are a few 
lasses of graphs known to have bounded a
y
li
 
hromati
 numbers: Albertson andBerman [1℄ showed that the 
lass of graphs of bounded genus is �a-bounded; it is trivial that the 
lassof graphs of bounded maximum degree is �a-bounded; Sopena [16℄ proved that the 
lass of graphs ofbounded treewidth is �o-bounded. We present here a method of 
onstru
ting new �a-bounded 
lassesof graphs from old ones.For two graphs G1; G2 on the same vertex set, we denote by G1 + G2 the graph with vertex setV (G) = V (G1) = V (G2) and E(G) = E(G1)[E(G2). We assume V (G1) = V (G2) only for simpli
ityand the reader 
an observe that by adding isolated verti
es to G1 or G2 we may 
apture a more general
ase. For two 
lasses C1; C2 of graphs, let C1 + C2 = fG1 +G2 : G1 2 C1; G2 2 C2; V (G1) = V (G2)g.Theorem 12 Suppose that C1 is a �a-bounded 
lass of graphs and that C2 is a 
lass of graphs ofbounded maximum degree. Then C1 + C2 is a �a-bounded 
lass of graphs.Proof. It suÆ
es to show the following: Suppose G is a graph with a
y
li
 
hromati
 number atmost k and that G0 is a graph on the same vertex set as G and has maximum degree s. Then�a(G+G0) � k(2((2d(log2 k + k � 1 + k � 2k�2)e+ s)2 + 2sd(log2 k + k � 1 + k � 2k�2)e) + 1).Let v1; v2; � � � ; vn be an ordering of the verti
es of G su
h that for ea
h i = 1; 2; � � � ; n, the vertex vihas minimum degree in G[fv1; v2; � � � ; vig℄. Sin
e �a(G) � k, we have �o(G) � k2k�1 (
f. Se
tion 1).



8 A
y
li
 and oriented 
hromati
 numbers of graphsBy Theorem 2, G has arbori
ity at most d(log2 k+k�1+k �2k�2)e. Letm = d(log2 k+k�1+k �2k�2)e.It follows from Nash-Williams' Theorem that ea
h vertex vi has degree at most 2m in the subgraphG[fv1; v2; � � � ; vig℄ of G.Let G00 = G +G0, let D be the digraph with vertex set V = V (G00) and (vi; vj) be an ar
 of D ifand only if either (vi; vj) is an edge of G00 and j < i, or there exists a vertex vq su
h that(i) (vi; vq); (vq; vj) are edges of G00 and j < q;(ii) either q < i or (vi; vq) is an edge of G0.It is straightforward to verify that ea
h vertex of D has out-degree at most (m+ s)2 +ms. ThenD has a vertex whi
h has in-degree at most (m + s)2 + ms, and hen
e has total degree at most2((m+ s)2+ms). This is also true for any subgraph of D, i.e., any subgraph of D has a vertex whi
hhas total degree at most 2((m+ s)2+ms). Therefore the underline graph of D has 
hromati
 numberat most 2((m+ s)2 +ms) + 1.Let f1 be an a
y
li
 
oloring of G with k 
olors; and let f2 be a proper 
oloring of the underlinegraph of D with 2((m + s)2 + ms) + 1 
olors. We 
laim that the 
oloring f de�ned as f(x) =(f1(x); f2(x)) is an a
y
li
 
oloring of G00. Suppose to the 
ontrary that there exists a 2-
olored 
y
leC = [
1; 
2; � � � ; 
2t℄. Then C must 
ontain an edge not belonging to G. Suppose (
1; 
2) is an edge ofG0. Without loss of generality, we assume that 
1 = vi; 
2 = vj and i < j. Suppose 
3 = vq. If j < q,then (
3; 
1) is an ar
 of D and hen
e 
3; 
1 are 
olored with distin
t 
olors by f2. If j > q, then (
1; 
3)is an ar
 of D and hen
e 
3; 
1 are again 
olored with distin
t 
olors by f2. This is in 
ontrary to theassumption that C is a 2-
olored 
y
le under the 
oloring f . 2Note that 
onsidering the example used in Observation 2 (see Se
tion 2), it is not enough to assumethat the 
lass C2 in Theorem 12 is of bounded genus, of bounded arbori
ity or of bounded treewidth.Remark. Very re
ently, N. Alon and T. H. Marshall [2℄ dis
ussed homomorphisms of edge 
oloredgraphs. These homomorphisms possess many properties of oriented homomorphisms, and a numberof results of our paper 
an be extended to similar results on homomorphisms of edge 
olored graphs.A
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