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2 Ayli and oriented hromati numbers of graphs~G for whih (t) = (x) and (z) = (y). The oriented hromati number �o( ~G) of ~G is the minimumk for whih there exists a k-oloring of ~G.For an undireted graph G, let OG be the set of all orientations of G. We de�ne the orientedhromati number �o(G) of G to be the maximum of �o( ~G) over all orientations ~G of G, i.e., �o(G) =maxf�o( ~G) : ~G 2 OGg.Graph oloring problems usually an be transformed into graph orientation problems. For example,a graph G is k-olorable if and only if there is an ayli orientation of G in whih the longest diretedpath has length at most k. The lass of perfet graphs an be haraterized by the existene of \good"orientations. The star-hromati number of a graph, the frational hromati number of a graph G analso be obtained by �nding some optimal orientations of G. Reently, Galvin [5℄ solved the problemof list hromati index of bipartite multigraphs by showing the existene of ertain orientations ofthe line graph of a bipartite multigraph. All suh e�orts are to �nd ertain optimal orientations of agraph. In ontrast to this, the onept of the oriented hromati number of a graph deals with the`worst' orientation of a graph. It is natural to ask how `bad' ould be an orientation of a graph G(here the `badness' is measured by the oriented hromati number), if the graph G itself has some`good' property suh as having small hromati number, bounded genus, bounded maximum degree,bounded ayli hromati number, bounded arboriity or bounded treewidth, et.Suh problems were �rst studied by B. Courelle [4℄. It was shown in [4℄ that every planar orientedgraph has oriented hromati number at most 363. This result was improved by Raspaud and Sopena[15℄ who showed that every planar graph has oriented hromati number at most 80. It was also provedin [15℄ that if a graph G has ayli hromati number k then it has oriented hromati number atmost k � 2k�1. For graphs with bounded treewidth, Sopena [16℄ showed that any partial k-tree hasoriented hromati number at most (k+1)2k. It was also shown in [16℄ that any graph with maximumdegree k has oriented hromati number at most (2k � 1)22k�2. For graphs of treewidths 2 and 3,their oriented hromati numbers are at most 7 and 16, respetively.We shall also study the relations between the oriented hromati number and other parameters ofa graph, inluding the hromati number, the arboriity, the ayli hromati number, the maximumdegree, the genus, et. First we note that it was shown by Albertson and Berman [1℄ that any graphof genus n > 0 an be aylially olored with 4n + 4 olors. Combining this result with the abovementioned result of Raspaud and Sopena [15℄, we obtain:Theorem 1 Any graph of genus n > 0 has oriented hromati number at most (4n+ 4)24n+3.For the relation between the oriented hromati number and the hromati number of a graph,we note that it follows from the de�nition that the oriented hromati number of a graph G is atleast the hromati number of G. However, bipartite graphs may have arbitrarily large orientedhromati numbers. Indeed, let G = (A;B;E) be the omplete bipartite graph with two parts A =fa1; a2; � � � ; ang and B = fb1; b2; � � � ; bng. We orient the edge (ai; bj) from ai to bj if i � j and from bjto ai if i > j. It is straightforward to verify that this orientation of G has oriented hromati number2n. The arboriity of a graph G is the minimum number k suh that the edges of G an be deomposedinto k forests. It was shown by Nash-Williams [12℄ that for any graph G the arboriity arb(G) of G isequal to the maximum of de(H)=(v(H)� 1)e over all subgraphs H of G where v(H) and e(H) are thenumber of verties and the number of edges of H respetively. For the relation between the orientedhromati number and the arboriity of a graph, we note here that graphs of arboriity 2 ould havearbitrarily large oriented hromati number (f. Observation 2 in Setion 2). Of ourse, forests haveoriented hromati number at most 3, f. [15℄.On the other hand, we shall show in Setion 2 that any graph with oriented hromati number khas arboriity at most log2k + k=2 (f. Theorem 2).The main result of this paper, Theorem 6 proved in Setion 2, gives an upper bound for the aylihromati number of a graph G in terms of the oriented hromati number of G. An upper boundfor the oriented hromati number of a graphs G in terms of the ayli hromati number was given



A.V. Kostohka, E. Sopena and X. Zhu 3by Raspaud and Sopena [15℄ as mentioned above. Therefore any lass of graphs has bounded aylihromati number if and only if it has bounded oriented hromati number.In Setion 9, we onsider the relation between the oriented hromati number of a graph and itsmaximum degree. We shall give an upper bound for the oriented hromati number of a graph interms of its maximum degree, whih improves the previous known upper bound [16℄. We shall showthat our upper bound is not far from being optimal.Given a lass C of graphs, we say that C is �a-bounded if there exists an integer n suh that�a(G) � n for all G 2 C. Similarly we say C is �o-bounded if there exists an integer n suh that�o(G) � n for all G 2 C. It follows from the result of Raspaud and Sopena [15℄ and the result inSetion 2 that a lass of graph is �a-bounded if and only if it is �o-bounded. A few lasses of graphs,suh as graphs of genus at most m, graphs of maximum degree at most k, et. are known to be�a-bounded. In Setion 4, we shall onstrut some more lasses of graphs whih are �a-bounded.2 Ayli hromati numberThe ayli hromati number �a(G) of a graph G is the least integer n for whih there is a oloring ofthe verties of G with n olors in suh a way that eah olor lass is an independent set, and the unionof any two olor lasses indues a forest. In this setion, we disuss the relations between the orientedhromati number, the arboriity and the ayli hromati number of a graph. We have observed inthe previous setion that graphs of arboriity 2 ould have arbitrarily large oriented hromati number.We now show that graphs of bounded oriented hromati number must have bounded arboriity.Theorem 2 If a graph G has oriented hromati number k, then the arboriity arb(G) of G is atmost dlog2k + k=2e.This theorem will easily follow from the observation below:Observation 3 If a graph G0 has n verties, m edges and �o(G0) � k, then2(k2)kn � 2m:That is, log2 k � m=n�  k2!=n: (1)Proof. Consider G0 as a labelled graph. Then there are 2m di�erent orientations of G0. On the otherhand, eah k-oloring, i.e., eah partition of the verties of G0 into k lasses, is ompatible with atmost 2(k2) orientations of edges of G0, and the number of possible k-olorings is less than kn. Therefore2m � 2(k2) � kn. 2We now prove Theorem 2. By Nash-Williams' Theorem, it suÆes to show that for any subgraphG0 of G, e(G0)=(v(G0)�1) � log2k+k=2. Thus we let G0 be an arbitrary subgraph of G. If v(G0) � k,then e(G0)=(v(G0)� 1) � v(G0)=2 � k=2. Now we assume that v(G0) > k. Sine �o(G0) � �o(G) � k,it follows from Observation 3 that log2k � e(G0)v(G0) � k(k�1)2v(G0) � e(G0)v(G0)�1 � e(G0)v(G0)(v(G0)�1) � k�12 � e(G0)v(G0)�1 �1=2 � k=2 + 1=2 � e(G0)v(G0)�1 � k=2. Therefore e(G0)v(G0)�1 � log2k + k=2. Theorem 2 is proved.Next we give an upper bound of the ayli hromati number of a graph G in terms of its orientedhromati number and its arboriity.Theorem 4 If a graph G has oriented hromati number k and arboriity q, then G has aylihromati number at most kdlog2qe+1.



4 Ayli and oriented hromati numbers of graphsProof. Sine the arboriity of G is q, there are q forests T1; : : : Tq overing E(G).Let s = dlog2 qe and let ai be binary form of the number i; i = 1; : : : ; q. For j = 1; : : : ; s, letMj = f[E(Ti) j the j-th digit of ai is 1g:Then for any i1 6= i2; i1; i2 � q, there exists some Mj whih ontains one of E(Ti1) and E(Ti2), anddisjoint from the other.Let v1; v2; � � � ; vn be an arbitrary enumeration of the verties of G. We say that vi is less than (orproeeds) vj if i < j. Let ~G0 be the orientation of G in whih an edge (vi; vj) is oriented from vi to vjif and only if i < j. For j = 1; : : : ; s, let ~Gj be the orientation of G obtained from ~G0 by reversing theorientations of those edges ontained in Mj. Sine the graph G has oriented hromati number k, foreah j = 0; 1; � � � ; s, there is an oriented oloring 'j of ~Gj with k olors.We laim that the oloring '� of the verties of G, de�ned as '�(v) = ('0(v); '1(v); : : : ; 's(v)),is an ayli oloring of G. Obviously adjaent verties of G are olored with distint olors by '�.Suppose '� is not an ayli oloring, then there exists a 2-olored yle C = [1; 2; � � � ; 2m℄. ThenC is 2-olored in eah of the oordinate olorings 'j for j = 0; 1; � � � ; s. Observe that if three vertiesx; y; z form a direted path x ! y ! z, then all the three verties must be olored with distintolors in any oriented oloring. Therefore the edges of the yle C form alternating yles in all theorientations ~Gj of G. In partiular, the edges of C forms an alternating yle in ~G0. Thus withoutloss of generality, we may assume that 1 < 2 > 3 < 4 � � � 2m�1 < 2m > 1 (f. the de�nition of~G0).Sine eah Tj is a forest, there are two adjaent edges of C, say (i; i+1); (i+1; i+2), that belongto distint forests. Suppose (i; i+1) 2 E(Ta) and (i+1; i+2) 2 E(Tb). As we have observed before,there is an Mj suh that Mj ontains all the edges of Ta and ontains no edge of Tb. We assume that(i+1; i+2) 2Mj and (i; i+1) 62Mj . Then the orientation of the edge (i+1; i+2) in ~Gj is the reverseof its orientation in ~G0, while the orientation of the edge (i; i+1) in ~Gj is the same as its orientationin ~G0. This implies that the two edges (i; i+1) and (i+1; i+2) form a direted path in ~Gj , ontraryto our observation in the previous paragraph. This proves that '� is indeed an ayli oloring of G.The number of olors used by '� is kdlog2qe+1. Therefore the ayli hromati number of G is at mostkdlog2qe+1. 2Combining Theorem 2 and Theorem 4, we obtain an upper bound for the ayli hromati numberof a graph in terms of its oriented hromati number:Corollary 5 If a graph G has oriented hromati number k, then its ayli hromati number is atmost kdlog2(dlog2ke+k=2)e+1.However a more areful analysis of the proofs of the above two theorems yields a better upperbound.Theorem 6 Let G be a graph with the oriented hromati number �o(G) � k. If k � 4, then�a(G) � k2 + k3+dlog2 log2 ke.Proof. Let t be the maximum real number suh that there exists G0 � G with jV (G0)j � k2 andjE(G0)j � tjV (G0)j: (2)Let G00 be the biggest subgraph of G with jE(G00)j > tjV (G00)j. By the de�nition of t,jV (G00)j < k2:Denote G0 = G�G00. Clearly, �a(G) � �a(G0) + k2.



A.V. Kostohka, E. Sopena and X. Zhu 5By the maximality of G00, we havejE(H)j � tjV (H)j for eah H � G0:If t � jV (H)j�12 , then jE(H)j � (t + 1=2)(jV (H)j � 1). If t > jV (H)j�12 , then jV (H)j2 < t + 12 . ThusjE(H)j � (jV (H)j�1)jV (H)j2 � (t+ 1=2)(jV (H)j � 1). ThereforejE(H)j � (t+ 1=2)(jV (H)j � 1) for eah H � G0;and by Nash-Williams' theorem, there exist q = dt+ 1=2e forests T1; : : : Tq overing E(G0).Similarly to the proof of Theorem 4, we an show that �a(G0) � ks+1.It follows from Observation 3 that log2 k � t� 1=2. Therefores = dlog2(dt+ 1=2e)e � dlog2(1 + dlog2 ke)e � 2 + log2 log2 k:Hene �a(G) � k2 + k3+dlog2 log2 ke. 2We lose this setion with two observations:Observation 7 [11℄ Graphs of arboriity 2 ould have arbitrarily large ayli hromati numbers.We just reall here the onstrution proposed in [11℄. Let G be the graph obtained from Kn byreplaing eah edge of Kn by n� 1 parallel paths of length 2. It is easy to see that G has arboriity2. To see that G has ayli hromati number at least n observe that if the verties of G are oloredwith n� 1 olors, then two of the verties of Kn are olored with the same olor. Among the n � 1paths of length 2 onneting these two verties there are two paths whose middle verties are oloredwith the same olor. Therefore we obtain a 2-olored yle C4.Observation 8 Graphs of ayli hromati number k ould have oriented hromati number greaterthan 2k�1 � 1.Let G = (V;E) be a graph suh that V = V1 [ V2 [ � � � [ Vk, where V1; V2; � � � Vk are disjoint sets ofardinality p, G(Vi) has no edges for eah i, and G(Vi [ Vj) is a path of length 2p� 1 for eah fi; jg.Then v(G) = kp; e(G) = �k2�(2p � 1). It follows from the onstrution that �a(G) = k. Suppose theoriented hromati number of G is t. Then by Observation 3log2 t �  k2!(2p� 1)=kp � t2!=kp: (3)log2 t � k � 1� k � 12p �  t2!=kp: (4)When p is suÆiently large, we have t > 2k�1 � 1.3 Maximum degree and oriented hromati numberIt is known that graphs of maximum degree k have ayli hromati number at most O(k 43 ), [3℄. Sinegraphs of ayli hromati number m have oriented hromati number at most m2m�1, (f. [15℄), itfollows that graphs of maximum degree k have oriented hromati number at most O(k 43 )2O(k 43 ) =2O(k 43 ). A better upper bound for the oriented hromati number in terms of the maximum degreewas proved in [16℄. It was shown in [16℄ that graphs of maximum degree k have oriented hromatinumber at most (2k � 1)22k�2. We shall prove in this setion that graphs of maximum degree k haveoriented hromati number at most 2k22k. This upper bound seems to be not too far from the optimalupper bound. We shall show that for eah integer k > 1, there is a graph of maximum degree k whoseoriented hromati number is at least 2k=2.



6 Ayli and oriented hromati numbers of graphsTheorem 9 If G is a graph of maximum degree k, then its oriented hromati number �o(G) is atmost 2k22k.To prove this theorem, we shall �rst prove the existene of a tournament whih has ertain property.Suppose ~G is an oriented graph, and that I = fx1; :::; xig is a subset of V ( ~G), and that v is vertex of~G whih is adjaent to eah vertex in I. We denote by F (I; v; ~G) the vetor a of length i, where thej-th oordinate of a equals 1 if (xj ; v) is an ar of ~G and equals �1 if (v; xj) is an ar of ~G.Lemma 10 Let k � 5 be an integer. There exists a tournament T = (V;A) on t = 2k22k vertieswith the following property:for eah i; 0 � i � k, for eah I � V with jIj = i, and for eah �1-vetor a of length i, there exist atleast 1 + (k � i)(k � 1) verties v in V n I with F (I; v; T ) = a.Proof. Consider a random tournament T = (V;A) on t verties, where for eah pair fv; wg of vertiesof T , the events that (v; w) 2 A and that (w; v) 2 A are omplementary and equiprobable, and fordistint pairs of verties orresponding events are independent.Let I � V , jIj = i and a be a �1-vetor of length i. Let P(i; I;a) denote the probability of theevent R(i; I;a) that the number of verties in V n I with F (I; v; T ) = a is at most (k � i)(k � 1).For a �xed v 2 V nI, the probability that F (I; v; T ) = a is equal to 2�i and for distint v; w 2 V nI,the events that F (I; v; T ) = a and that F (I; w; T ) = a are independent. HeneP(i; I;a) = (k�i)(k�1)Xj=0  t� ij !2�ij(1� 2�i)t�i�j << (1� 2�i)t (k�i)(k�1)Xj=0 tjj! (1� 2�i)�i�j2�ij << 2e�t2�i (k�i)(k�1)Xj=0 tj < e�t2�it(k�i)(k�1)+1:The probability P(T ) that at least one of R(i; I;a) ours is at mostkXi=0 XfI�V jjIj=igXa P(i; I;a) < kXi=0 ti!2ie�t2�it(k�i)(k�1)+1 �2 kXi=0 e�t2�it(k�i)(k�1)+1+i: (5)The ratio of the (i+ 1)-th summand over i-th summand in (5) iset2�it(k�i�1)(k�1)+1+i+1et2�i�1t(k�i)(k�1)+1+i = et2�i�1tk�2 � et2�ktk�2 :But for t = 2k22k, et2�ktk�2 = e2k2(k22k+1)k�2 �  e2kk22k!k >  ekk2!k > 2:Thus, P(T ) < 2e�t2�k t1+k � 2e�2k2  e2k22k1 + k !1+k � 2 (6k)(k+1)=k2k+1e2k !k << 2 (6k)1+1=kek !k < 1=2



A.V. Kostohka, E. Sopena and X. Zhu 7for k � 5. Consequently, there exists T for whih no one of R(i; I;a) ours. 2We now prove Theorem 9. Let ~G be an oriented graph of maximum degree k. We need to provethat �o(G) � 2 � k2 � 2k. For k � 4, the result follows from Theorem 4.1 of [16℄. Assume now thatk � 5. By Lemma 10, there is a tournament T = (V;A) suh that for eah i; 0 � i � k, for eah I � Vwith jIj = i, and for eah �1-vetor a of length i, there exist at least 1 + (k � i)(k � 1) verties v inV nI with F (I; v; T ) = a. We shall prove that there exists a homomorphism f of ~G to T . Suppose theverties of G are v1; v2; � � � ; vn. We shall de�ne f(v1); f(v2); � � � ; f(vn) reursively suh that at step m,the images f(v1); f(v2); � � � ; f(vm) are de�ned, and(i) the partial mapping f(v1); f(v2); � � � ; f(vm) is a partial homomorphism; and(ii) for eah vj with j > m, all the neighbours vs of vj with s � m have di�erent images under thepartial mapping f .Step 1 is trivial. Suppose that f(v1); f(v2); � � � ; f(vm) are de�ned suh that (i) and (ii) hold.We shall all v1; v2; � � � ; vm the olored verties, and all f(v1); f(v2); � � � ; f(vm) their olors. Weneed to de�ne f(vm+1) (i.e., to olor vm+1) so that (i) and (ii) still hold. Suppose y1; : : : yi areolored neighbours of vm+1, and that F (fy1; : : : yig; vm+1; G) = a. By (ii), the set I of olorsff(y1); f(y2); � � � f(yi)g also has ardinality i. Let K be the set of verties w in V (T ) n I suh thatF (ff(y1); f(y2); � � � f(yi)g; w; T ) = a. By Lemma 10, jKj � 1 + (k � i)(k � 1). Let A be the setof unolored neighbours of vi+1, and let B be the set of olored neighbours of verties in A. ThenjAj � k� i, and jBj � (k� i)(k�1). Therefore K nf(B) 6= ;. Let f(vm+1) be any vertex in K nf(B),it is straightforward to verify that (i) and (ii) still hold. This ompletes the proof of Theorem 9.We lose this setion with an observation that the upper bound given in Theorem 9 is not too farfrom being optimal.Observation 11 For eah integer k > 1, there exists an oriented graph ~G of maximum degree k forwhih �o( ~G) � 2k=2.Proof. Let G be a k-regular graph on n verties. Then it has kn=2 edges. By Observation 3,�o(G) � 2k=2 � 2(k2)=n. If n is suÆiently big, say n � 100k, we then have �o(G) � 2k=2. 24 �a-bounded lasses of graphsThere are a few lasses of graphs known to have bounded ayli hromati numbers: Albertson andBerman [1℄ showed that the lass of graphs of bounded genus is �a-bounded; it is trivial that the lassof graphs of bounded maximum degree is �a-bounded; Sopena [16℄ proved that the lass of graphs ofbounded treewidth is �o-bounded. We present here a method of onstruting new �a-bounded lassesof graphs from old ones.For two graphs G1; G2 on the same vertex set, we denote by G1 + G2 the graph with vertex setV (G) = V (G1) = V (G2) and E(G) = E(G1)[E(G2). We assume V (G1) = V (G2) only for simpliityand the reader an observe that by adding isolated verties to G1 or G2 we may apture a more generalase. For two lasses C1; C2 of graphs, let C1 + C2 = fG1 +G2 : G1 2 C1; G2 2 C2; V (G1) = V (G2)g.Theorem 12 Suppose that C1 is a �a-bounded lass of graphs and that C2 is a lass of graphs ofbounded maximum degree. Then C1 + C2 is a �a-bounded lass of graphs.Proof. It suÆes to show the following: Suppose G is a graph with ayli hromati number atmost k and that G0 is a graph on the same vertex set as G and has maximum degree s. Then�a(G+G0) � k(2((2d(log2 k + k � 1 + k � 2k�2)e+ s)2 + 2sd(log2 k + k � 1 + k � 2k�2)e) + 1).Let v1; v2; � � � ; vn be an ordering of the verties of G suh that for eah i = 1; 2; � � � ; n, the vertex vihas minimum degree in G[fv1; v2; � � � ; vig℄. Sine �a(G) � k, we have �o(G) � k2k�1 (f. Setion 1).
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