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2 Di�erent loal ontrols for graph relabelling systemsWe say that a labelled graph (G; l) is relabelled into (G; l0) by R if there exists a �nite sequene ofallowed appliations (in a sense spei�ed below) of relabellings in R leading from (G; l) to (G; l0).Given a noetherian graph relabelling system R, we are interested in the funtion IrredR whih, witheah initial graph (G; l), assoiates the set of irreduible graphs (i.e. where no allowed appliation ofa rule is possible) obtained from (G; l). We say that two noetherian graph relabelling systems R andR' are equivalent when they have the same set of initial labels and when IrredR = IrredR'. A familyF1 of graph relabelling systems is less powerful than a family F2 if every noetherian graph relabellingsystem in F1 is equivalent to a graph relabelling system in F2. The families F1 and F2 are equivalentif eah one is less powerful than the other one.We now present the six types of graph relabelling systems we will onsider in this paper. For eahof them we have to speify the notion of allowed appliation of a rule r in a graph (G; l). The �rstriterium haraterizing the appliability of r is given by the de�nition of an ourrene of the graph(Gr; �) in (G; l). Suh an ourrene may be :� a partial subgraph of (G; l) isomorphi to (Gr; �),� an indued subgraph of (G; l) isomorphi to (Gr; �).Hene, we respetively obtain the families of pGRS's and iGRS's. We prove that the family ofpGRS's is stritly less powerful than the family of iGRS's.On the other hand, to inrease the omputational power of these basi graph relabelling systems,we use two kinds of loal ontrol on the appliability of rules :� The �rst one has been introdued in [4℄ and onsists of adding a partial order relation, alledpriority, on the set of relabelling rules. In suh systems, the appliation of a rule r is allowedon an ourrene � of (Gr; �) if no rule with a greater priority has an ourrene overlapping �.Note that the e�et of these priorities is stritly loal (onstraint (C3) is respeted).� The seond one, inspired by [5℄, onsists of adding to eah relabelling rule r a set of forbiddenontexts, where a ontext is a graph having (Gr; �) as subgraph. For suh systems, an appliationof r is allowed on an ourrene � of (Gr; �) if � is not a subgraph of a forbidden ontext in(G; l).Remark 1 Partial order and forbidden ontext onditions are known in formal language theory [6℄.However, partial order of rules is used here in a stritly loal way.These relabelling systems are respetively alled PxGRS's and FCxGRS's (for x 2 fp; ig). It iseasy to see that the so-de�ned families are stritly more powerful than the previous ones, and thatthe family of FCxGRS's is more powerful than the family of PxGRS's (for x 2 fp; ig). The mainpart of this paper is devoted to proving the equivalene of the FCpGRS's and the PpGRS's. Thisresult is not immediate : for example, it is easy to give a one-rule FCpGRS \reognizing" the lassof omplete graphs, but no \simple" PpGRS an do it. The main diÆulty omes from the fat thata FCpGRS forbids the appliation of a relabelling rule by only onsidering the forbidden ontextsassoiated with this rule, sine a PpGRS only forbids suh an appliation when another rule (with agreater priority) is appliable on an overlapping ourrene. Assuming �rst that one works on graphshaving a distinguished vertex, depth-�rst traversals an be sequentially proessed by using a PpGRS(see example 1.4). In this ase, every FCpGRS an be simulated by a PpGRS in the following way: eah depth-�rst traversal attempts to apply a f-rule ; when it has found one or more suh rules, it\hooses" one of them and applies it ; when no f-rule is appliable, the PpGRS stops (see Rlosimin Setion 4). But it is known that the problem of distinguishing one vertex (known as the eletionproblem) is not solvable for arbitrary graphs (see [1, 2, 12℄). Hene, the main idea of this paper is toonstrut, using a PpGRS, a partition of the graph into subgraphs (alled ountries) of k-boundeddiameter (where k is the maximal diameter of the graphs in the rules of the FCpGRS), eah ountryhaving an eleted vertex (the apital). This \k-eletion" mehanism, used together with the PpGRSRlosim, enables us to simulate every FCpGRS by a PpGRS (Proposition 6.1).



I. Litovsky, Y. M�etivier and E. Sopena 3We also prove that with a loal ontrol Y (Priority or Forbidden Contexts), the Y pGRS's andthe Y iGRS's are equivalent. The following sheme summarizes the relative powers of these di�erentfamilies. PpGRSFCpGRSPiGRSFCiGRSpGRS iGRS
This paper is organized as follows. Setion 1 ontains the de�nitions. Setions 2 to 5 desribethe di�erent steps used for proving Proposition 6.1 : the k-eletion problem is solved in Setion 2,a PpGRS enumerating m-tuples of verties is given in Setion 3 and used for the loal simulationof a FCpGRS by a PpGRS in Setion 4, Setion 5 realizes the global simulation. In Setion 6, theequivalene between PpGRS's and FCpGRS's is proved. In Setion 7, we �nally ompare the otherrelabelling families we have introdued.2 De�nitions and notation2.1 GraphsA simple, loopless, undireted graph G [3, 7℄ is de�ned as a pair (v(G);e(G)) where v(G) is a �niteset of verties and e(G) a set of edges, an edge being a subset of two distint verties in v(G). Letv1 and v2 be two verties in v(G) ; a path p from v1 to v2 in G is a sequene x0; : : : ; xn of verties inv(G) suh that for 0 � i < n, fxi; xi+1g 2 e(G), x0 = v1 and xn = v2 ; n is said to be the length ofp. The graph G is onneted if any two verties in v(G) are linked by a path. The distane betweentwo verties v1 and v2 in G, denoted d(v1; v2), is the length of the shortest path from v1 to v2. Themaximal distane between any two verties in v(G) is alled the diameter of G.Let L = (Lv; Le) be a pair of two �nite sets of labels (Lv (resp. Le) stands for the set of vertex(resp. edge) labels). A labelled graph is a pair (G;�) where G is a graph and � = (�v ; �e) where �v(resp. �e) is a mapping from v(G) (resp. e(G)) to Lv (resp. Le). We will denote by jAj(G;�), or simplyjAj, the number of A-labelled verties (or edges) in (G;�). Let (G;�) and (G0; �0) be two labelledgraphs. (G;�) is a (partial) subgraph of (G0; �0) if8><>: v(G) � v(G0);e(G) � e(G0);� = �0jG = (�0v jG; �0ejG):where �0vjG (resp. �0ejG) denotes the restrition of �v (resp. �e) to v(G) (resp. e(G)).Remark 2 From now on, we will simply use �0 instead of �0jG whenever G is learly given by theontext.An injetive mapping � from v(G) into v(G0) is an ourrene of (G;�) in (G0; �0) if for any x; yin v(G), we have : 8><>: fx; yg 2 e(G) =) f�(x); �(y)g 2 e(G0)�v(x) = �0v(�(x))�e(fx; yg) = �0e(f�(x); �(y)g)Let � be an ourrene of (G;�) in (G0; �0); we will denote by �(G) the graph (�(v(G)); E) whereE = ff�(x); �(y)g = fx; yg 2 e(G)g. Note that (�(G); �0) is a subgraph of (G0; �0).Let (G;�) be a subgraph of (G0; �0). We say that (G;�) is an indued subgraph of (G0; �0) i� forall x; y in v(G), fx; yg 2 e(G0) () fx; yg 2 e(G). An ourrene � of (G00; �00) in (G0; �0) is said tobe an indued ourrene if (�(G00); �0) is an indued subgraph of (G0; �0).Let r be an integer and x be a vertex in v(G) ; the ball subgraph B(x; r) is the indued subgraphof (G;�) whose verties are all the verties in v(G) whose distane to vertex x is at most r.



4 Di�erent loal ontrols for graph relabelling systemsRemark 3 From now on, as we will only deal with onneted labelled graphs, we will simply usegraph to denote onneted labelled graphs. By using a speial \empty label", denoted by ", we willbe able to onsider unlabelled graphs as labelled ones.2.2 Relabelling of partial or indued subgraphsA partial-Graph Relabelling rule is a triple (Gr; �r; �0r), also denoted (Gr; �r) �! (Gr; �0r). (Gr; �r)(resp. (Gr; �0r)) is alled the left-hand side (resp. right-hand side) graph of the rule r. The relabellingrelation �!r is de�ned by : (G;�) �!r (G;�0) if there exists an ourrene � of (Gr; �r) in (G;�) suhthat � is an ourrene of (Gr; �0r) in (G;�0), for any x 2 v(G) n v(�(Gr)), �v(x) = �0v(x) and for anye 2 e(G) n e(�(Gr)), �e(e) = �0e(e). We say that � is the relabelled ourrene.A partial-Graph Relabelling System (pGRS) is a triple R = (L; I; P ) where L = (Lv ; Le) is the setof labels, I = (Iv; Ie), with Iv � Lv and Ie � Le, is the set of initial labels and P is a �nite set ofpartial-graph relabelling rules, suh that the graphs in these rules have labels in L. The relabellingrelation �!R is de�ned by : (G;�) �!R (G;�0) if and only if there exists a rule r 2 R suh that(G;�) �!r (G;�0).A partial-Graph Relabelling System with Priorities (PpGRS) is a triple R = (L; I; P ) where L andI are de�ned as before and P is a �nite set of relabelling rules equipped with a partial ordering relation> alled priority whih works as follows : let � be an ourrene of a rule r 2 R in a graph (G;�). Therule r is appliable to � if there is no ourrene �0 of a rule r0 > r suh that v(�(Gr))\v(�0(Gr0)) 6= ;.If two or more rules are simultaneously appliable in (G;�), one of them (nondeterministially hosen)is applied. We write (G;�) �!R (G;�0) if there exists a rule r 2 R suh that (G;�) �!r (G;�0) andr is appliable in (G;�) to the relabelled ourrene. In the sequel, the priority of eah rule may bespei�ed by using an integer to indiate the ordering (whenever two rules have the same integer aspriority, they are not omparable).A partial-Graph Relabelling rule with forbidden ontexts (f-rule for short) is a pair (r;Hr) wherer is a relabelling rule (Gr; �r; �0r) and Hr is a �nite family of pairs f((Gi; �i); �i)gi2Ir where (Gi; �i) is agraph (alled forbidden ontext) and �i is an ourrene of (Gr; �r) in (Gi; �i). The forbidden ontextsof the f-rule are used as follows : let � be an ourrene of (Gr; �r) in (G;�); the f-rule (r;Hr) isappliable to � if for no i, there exists an ourrene 'i of (Gi; �i) in (G;�) suh that 'i�i = �.A partial-Graph Relabelling System with Forbidden Context (FCpGRS) is a triple R = (L; I; P )where L and I are de�ned as before and P is a �nite set of f-rules. We write (G;�) �!R (G;�0) ifthere exists a rule r 2 R suh that (G;�) �!r (G;�0) and r is appliable in (G;�) to the relabelledourrene.The same notions an be de�ned by using indued ourrenes instead of partial ones, leadingrespetively to i-, Pi- and FCiGRS. We shall use �!iR to denote the orresponding relabelling relations.Example 4 Consider the graph (G;�) of Figure 1(f) and the graph relabelling rules r = (Gr; �r; �0r),s = (Gs; �s; �0s), where (Gr; �r), (Gr; �0r), (Gs; �s) and (Gs; �0s) are given by Figure 1(a,b,d,e) respe-tively. Reall that unlabelled edges are onsidered as labelled with the empty label.� As rule of a pGRS, r an be applied to the four orners of graph (G;�) (verties marked as Æ).� As rule of a iGRS, r an be applied to eah orner of graph (G;�) exept to the upper-rightone, sine there is a forbidden edge linking two verties of the ourrene.� As rule of a FCpGRS, with graph (G1; �1) of Figure 1() as forbidden ontext, r an only beapplied to the two upper orners of graph (G;�).� As rule of a FCiGRS, r an be applied to the upper-left orner of (G;�) and to its bottom-rightorner, sine the forbidden ontext of r does not appear as an indued subgraph.� As rule of a PpGRS, with s > r, rule r an only be applied to the two upper orners of (G;�).
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tAtC tA(a) The graph (Gr; �r) tAtB tA(b) The graph (Gr; �0r)

tB tBtAtC tA() The graph (G1; �1)
tBtC tB

(d) The graph (Gs; �s)
tCtB tC

(e) The graph (Gs; �0s)
dC tA���dCtA tAdCtB tB tA dC tBtB���(f) The graph (G;�)Figure 1: Appliability of rewriting rules.� As rule of a PiGRS, with s > r, rule r an be applied to the upper left orner, and the bottom-right orner of (G;�) (sine s annot be applied to ourrenes overlapping these orners).2.3 Relabelling system behaviourAny omputation on a graph (by means of a relabelling system) must give a result in a �nite time.Thus (unless expliitly stated otherwise) we will only onsider noetherian graph relabelling systems,whih means that from any initial graph, there exists no in�nite relabelling hain.Given a graph relabelling system R, we onsider the reexive transitive losure �!�R of �!R (or�!iR ). A graph (G;�0) is said to be irreduible with respet to R if no rule of R is appliable to (G;�0).For every graph (G;�) with labels in I, we denote by IrredR((G;�)) the set of irreduible graphsobtained from (G;�):IrredR((G;�)) = f(G;�0) = (G;�) �!�R (G;�0) and no rule of R is appliable to (G;�0)gLet R andR0 be two relabelling systems. The systemsR andR0 are said to be equivalent if I = I 0 andfor every graph (G;�) with labels in I we have IrredR((G;�)) = IrredR0 ((G;�)). We will say thata family F1 of graph relabelling systems is less powerful than a family F2, if every graph relabellingsystem in F1 is equivalent to a graph relabelling system in F2. The families F1 and F2 are equivalentif eah one is less powerful than the other one.We now give some examples of various GRS0s. To avoid any ambiguity between the left andright-hand sides of the relabelling rules (whih orrespond to the same underlying unlabelled graph)we will number the verties by x1, x2,...Example 5 The following iGRS is suh that L = (fC;nCg; f"g), I = (fCg; f"g) and P has two rulesgiven below. We have the property that a graph (G;�0) 2 Irred((G;�)) has only C-labels if G is aomplete graph, it has only nC-labels if G is not omplete.R1 tCx1 tCx2 tCx3 - tnCx1 tnCx2 tnCx3



6 Di�erent loal ontrols for graph relabelling systemsR2 tnCx1 tCx2 - tnCx1 tnCx2Rule R1 is applied whenever the two verties assoiated with x1 and x3 are not linked by an edge.In suh a ase, the graph G is not a omplete graph, and rule R2 broadasts the nC-label to all otherverties. Whenever the graph G is omplete, no rule an be applied.Example 6 The following pGRS is suh that L = (f0; 1g; f";�g), I = (f0g; f"g) and P has threerules given below. An irreduible graph will be suh that all its verties are labelled 0 or 1 aordingto the parity of their degree.R00 t0x1 t0x2 - t1x1 � t1x2R01 t0x1 t1x2 - t1x1 � t0x2R11 t1x1 t1x2 - t0x1 � t0x2Every rule marks an edge of the graph and updates the labels of its end-points. When all theedges are marked, the so-obtained graph is irreduible.Example 7 The following PpGRS is suh that L = (fN;A;M;Fg; f";�g), I = (fA;Ng; f"g) and Phas two rules given below. This PpGRS omputes a spanning forest (i.e. a subgraph whih is a forestinluding all the verties) of the initial graph suh that eah tree is \rooted" at a vertex with initiallabel A. The intuitive idea is the following : from eah initially A-labelled vertex starts a omputationwhih onsists in \attahing" free verties (i.e. with a N -label) by marking the orresponding edges(with a �-label).R1 tAx1 tNx2 - tMx1 � tAx2 priority 1R2 tMx1 � tAx2 - tAx1 � tFx2 priority 0Every tree in the spanning forest is omputed in a depth-�rst way : every ative (A-labelled)vertex hooses one of its free neighbours whih beomes ative (rule R1). When an ative vertex hasno more free neighbours, it ativates its father, i.e. the M -labelled vertex to whih it is linked bya marked edge (rule R2). If it does not have suh a neighbour, that means that it was one of theinitially A-labelled verties. At the end of the omputation, any initially A-labelled vertex has labelA, every initially N -labelled vertex has label F . Note that we are interested in initial graphs with atleast one A-labelled vertex (otherwise, the initial graph is irreduible). If there is exatly one initiallyA-labelled vertex x, this PpGRS onstruts a spanning tree rooted at x.Figure 2 shows a sample derivation of this PpGRS.Remark 8 The omputation of any tree in the spanning forest is done \sequentially" : at any moment,there is only one ative vertex in eah tree. We an inrease the \parallelism" of this omputation bysimply replaing the M -label of the right-hand side of rule R1 by a A-label and deleting rule R2. Theomputation is no longer \depth-�rst-searh-like" (neither \breadth-�rst-searh-like") and the vertiesof an irreduible graph are then all A-labelled.
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tt tt ttN A N
A N N �!R1 tt tt ttN A N

M A N� �!R1 tt tt ttA M N
M A N��

�!R2 tt tt ttA M N
A F N�� �!R2 tt tt ttF A N

A F N�� �!R1 tt tt ttF M A
A F N�� �

�!R1 tt tt ttF M M
A F A�� � � �!R2 tt tt ttF M A

A F F�� � � �!R2 tt tt ttF A F
A F F�� � �Figure 2: Computing a spanning forest.Example 9 The following FCpGRS is suh that L = (fN;Tg; f"g), I = (fNg; f"g) and P has tworules given below. We have the property that an irreduible graph (G;�) has only T -labels if and onlyif G is a tree. The �rst relabelling rule is:R1 tNx1 tNx2 - tNx1 tTx2and its forbidden ontext is:tNx1 tNx2 tNx3The seond rule is:R2 tNx1 - tTx1and its forbidden ontext is: tNx1 tNx2The forbidden ontext of R1 fores x2 to have exatly one neighbour with labelN , and the forbiddenontext of R2 fores x1 to have no neighbour with label N .Figure 3 shows two sample derivations of this FCpGRS, eah one leading to an irreduible graph.3 The k-eletion problemIt is not possible to elet exatly one vertex in a graph with a PpGRS [9℄. For this reason, we areinterested in \loal" eletions alled k-eletions where k is a given integer. The k-eletion problem on agraph an be intuitively introdued as follows. Eah vertex of the graph stands for a town, eah edgefor a road segment joining two di�erent towns. Initially, eah town has a neutral status. We want



8 Di�erent loal ontrols for graph relabelling systems
t����N tAAAAN t���� AAAANtN tN �!R1(3) t����T tAAAAN t���� AAAANtT tT �!R1 t����T tAAAAN t���� AAAATtT tT �!R2 t����T tAAAAT t���� AAAATtT tT(a) Derivation of a tree.tN tNtN tN tN �!R1 tN tNtN tN tT(b) Derivation of a yli graph.Figure 3: The reognition of trees.to organize the graph by delimiting ountries, eah ountry having one apital. In eah ountry, thedistane between any town and the apital must at most be k. Moreover, the distane between anytwo apitals in the graph must be at least k + 1. Eah apital (resp. eah town) has also to \know"the towns (resp. the apital) of its ountry | in the sense that there is a marked path between aapital and eah of its towns.The PpGRS whih solves this problem will ful�ll two additional requirements : the towns in allthe ountries will be lassi�ed aording to their distane to the apital and any town will belongto one of the ountries whose apital is the nearest. This will be done by onstruting a \spanningforest" of the initial graph (i.e. a partial subgraph of the initial graph whih is a forest inluding everyvertex). Eah tree (standing for a ountry) of this forest will be rooted at a apital.To solve this problem, we onsider the PpGRS Rk�ele = (L; I; P ). The set of labels L =(fN;C; T; T1; :::; Tkg;f�; "g) where N stands for Neutral, C for Capital, T for a town belonging to aountry (but not yet lassi�ed), Ti (1 � i � k) for a lassi�ed town, � for marked edges (i.e. edgesbelonging to the spanning forest) and " (the empty symbol) for unmarked edges. The set of initiallabels is given as I = (fNg; f"g).The set of rules P is given in Figure 4. Labels Xi stand for any vertex label. Exept when it isexpliitly spei�ed (rules R4(i)), any edge an be marked or unmarked, and this is preserved in theright-hand side of any rule.The priorities are given as :R1 < R4(k) < R4(k � 1) < � � � < R4(1) < nR3(i)ok<i�2k < nR2(i)o1�i�kRule R1 says that any neutral town an spontaneously beome a apital, exept if there alreadyexists a apital in its k-neighbourhood (rules R2(i) prevent rule R1 to be applied).Rules R2(i) are intended to mark any town in the k-neighbourhood of a apital as a town belongingto a ountry (label T ). The lassi�ation of these towns will be done later, by using rules R4(i).Rules R3(i) have been essentially introdued for tehnial purposes. Thanks to them, a apitalwill only begin to lassify its towns when the apitals of its neighbouring ountries are eleted. This
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R1 : txN - txCR2(i) : tx0C tx1X1 � � � txi�1Xi�1 txiN - tx0C tx1X1 � � � txi�1Xi�1 txiT for 1 � i � kR3(i) : tx0C tx1X1 � � � txi�1Xi�1 txiN - tx0C tx1X1 � � � txi�1Xi�1 txiCfor k < i � 2kR4(i) : tx0C tx1T1 � � � txi�1Ti�1 txiT - tx0C tx1T1 � � � txi�1Ti�1� txiTi for 1 � i � kFigure 4: The PpGRS Rk�ele.tCx0 � tT1x1HHHH� tT2x2HHHH����tNx3tNx4(a) A bad intermediate on�guration

tCx0 � tT1x1HHHHtT1x2HHHH������ tCx3tT2x4(b) A good terminal on�gurationFigure 5: The lassi�ation problem.will ensure a good lassi�ation of the towns in a ountry. Figure 5 shows what kind of problem wouldarise if we do not use suh rules : let k = 2 and suppose vertex x0 beomes a apital. But for rulesR3(i), it an mark verties x1 and x2 as lassi�ed towns (see �gure 5(a)). Then the system terminatesby eleting, say x3, as a apital and relabelling x4 by T ; x4 remains an unlassi�ed town. Figure 5(b)shows a good terminal on�guration, obtained by using rules R3(i).Rules R4(i) implement the lassi�ation of the towns. Their priority ensures that eah town will belabelled aording to its distane to the nearest apital (a Ti-label means that this town is at distanei from the nearest apital).We now give some results on the behaviour of the PpGRS Rk�ele.Proposition 10 The PpGRS Rk�ele is noetherian. Moreover, if (G;�) is a graph with unmarkededges and n verties all N -labelled, the number of relabelling steps in any derivation sequene issuedfrom (G;�) is bounded by 2n.Proof. The termination riteria is given by the strit dereasing of the ordered pair of labels (jN j; jT j):whenever the number of N 's does not derease the number of T 's does.Any vertex is suessively labelled by the sequene (N , C) or (N , T , Ti). As every rule modi�esthe label of at least one vertex, we an say that the length of any derivation sequene is bounded bythe quantity 2n. 2



10 Di�erent loal ontrols for graph relabelling systemsProposition 11 Let (G;�) be a graph with every vertex N -labelled and with unmarked edges. Let(G;�0) be a graph suh that : (G;�) ��!Rk�ele (G;�0)Then the graph (G;�0) satis�es :(P1) If x and y are two C-labelled verties of (G;�0) then the distane from x to y is at least k + 1.(P2) If x is a T -labelled vertex of (G;�0), then there exists a C-labelled vertex y at distane at mostk from vertex x.(P3) If x is a Ti-labelled (i > 1) vertex in (G;�0), then there exists no N -labelled vertex at distaneless than k + 1 from x.(P4) The subgraph indued by the marked edges is a forest with all verties labelled C, T1, . . . , Tk�1or Tk and suh that :{ Every tree has exatly one C-labelled vertex,{ Every Ti-labelled vertex x belongs to that subgraph and is onneted to the C-labelled vertexof its tree by a marked path whose length is i.(P5) If x is a Ti-labelled vertex of (G;�0), then we have d(x; f�0�1(C)g) = i.Proof. All these properties are obviously true for the initial graph. Let us suppose that (G;�i)satis�es these properties and let (G;�i+1) be suh that(G;�i) �!Rk � ele (G;�i+1)We have to show that (G;�i+1) also satis�es these properties. Most of them are very easy to hek.Hene, we only give proofs of (P1) and (P3) as examples.(P1) Only rules R1 and R3(i) an lead to a C-labelled vertex. This property is guaranteed by thegreater priority of rules R2(i).(P3) Every Ti-labelled vertex, say x, is issued from a rule R4(i). If there exists a N -labelled vertex yat distane less than k+1 from x, rules R2(i) or R3(i) should have been applied �rst, thanks tothe priorities. 2We now state the main result of this setion, whih says that the PpGRS Rk�ele solves thek-eletion problem.Theorem 12 Let (G;�) be a graph with unmarked edges and whose verties are all N -labelled. Then,any graph (G;�0) in IrredRk�ele((G;�)) is suh that the subgraph indued by the marked edges is aspanning forest of (G;�0) with all verties labelled C, T1, . . . , Tk�1 or Tk and satisfying :� Every tree of that forest has exatly one C-labelled vertex,� The distane between two C-labelled verties is at least k + 1,� Every Ti-labelled vertex x satis�es d(x; �0�1(C)) = i.



I. Litovsky, Y. M�etivier and E. Sopena 11Proof. If (G;�0) is irreduible, it ontains neither N -labelled verties (rules R1, R2(i) or R3(i) shouldbe appliable) nor T -labelled verties (rule R4(i) should be appliable). Hene, (G;�0) only ontainsC-, T1-, . . . , Tk�1- or Tk-labelled verties. Property (P1) ensures that the distane between two C-labelled verties is at least k + 1. By property (P5), the subgraph indued by the marked edges is aspanning forest of (G;�0), eah tree having exatly one C-labelled vertex. Moreover, by property (P6)eah Ti-labelled vertex satis�es the stated property. 24 The m-enumeration problemLet G be a graph and m; r be two integers. We an onstrut a PpGRS whih enables us to \enumer-ate" all the m-tuples of distint verties in a ball B(x; r) (given together with a rooted spanning treeT (x)) for any \given" vertex x in G. A given vertex x means that x has a speial label whih does notappear elsewhere in G and \a PpGRS R enumerates all the m-tuples of B(x; r)" means that duringa omputation of R on G, for every m-tuple (y1; : : : ; ym) of B(x; r), there is exatly one intermediaterelabelling � suh that h(�v(y1)) = 1; : : : ; h(�v(ym)) = m, and h(�v(x)) = � for all x 62 fy1; : : : ; ymgwhere h is a �xed mapping from Lv to f1; : : : ;m; �g. Note that we an obtain a spanning tree ofB(x; r), rooted at x, by using an obvious variation of the PpGRS of example 1.4 (in whih all nodesof the tree are fored to have a distane at most r to x).Let us intuitively desribe the behaviour of suh a PpGRS : vertex x will be the ontroller ofthe omputation. It �rst looks for a vertex, say v1, whih an be hosen as the �rst omponent of anew m-tuple. When suh a vertex is found, it looks for a seond one and so on. When for i givenverties v1; : : : ; vi the system has enumerated all the m-tuples having these verties as �rst (ordered)omponents, vertex vi is marked as having been the ith omponent of all suh m-tuples and a new ithomponent is searhed. All these steps will be handled by depth-�rst traversals : vertex x initiates atraversal whih looks for a given vertex ; when the ontrol returns to x, it initiates a new traversalfor the next searh. This omputation terminates when all the verties in the graph are marked ashaving been the �rst omponent of all possible m-tuples.Lemma 13 There is a (non noetherian) PpGRS Rtrav whih, given a rooted tree T (x), makes alter-nating tree traversals of T (x).Proof. The PpGRS Rtrav that we now desribe works on T (x) where the vertex x is the root ofT (x). Initially the root has label R0 and all other verties label N0. In the �rst traversal there isalways exatly one A0-labelled vertex (the \ative" vertex, initially the root), all verties on the pathfrom the root to the ative vertex have labelW , and the other verties have label N0 (if they have notyet been visited) or label N1 (if they have been visited). At the end of the �rst traversal the root haslabel R1 and all other verties label N1. The seond traversal an then be made (simply interhangethe roles of 0's and 1's) and the system inde�nitely alternates suh traversals.In the following rules, i 2 f0; 1g and R stands for Root, A for Ative, N for Neutral and W forWaiting:R1 tRix1 - tAix1 priority -1R2 tAix1 tNix2 - tWx1 tAix2 priority 2R3 tWx1 tAix2 - tAix1 tN1�ix2 priority 1R4 tAix1 - tR1�ix1 priority -1 2



12 Di�erent loal ontrols for graph relabelling systemsProposition 14 Let m and r be two integers (m; r > 0). There exists a PpGRS Renum whih, givena graph (G;�) and any vertex x 2 v(G), enumerates all m-tuples of the ball B(x; r) in (G;�).Proof. As the vertex x is given, we may assume that a rooted spanning tree T (x) of B(x; r) isonstruted, whih means that some edges in (G;�) are marked as belonging to T (x). The PpGRSRenum that we now desribe works on T (x) (all the edges in the following rules have to be onsideredas marked). Eah omputation of Renum orresponds to a sequene of alternating tree traversals ofT (x) based on the PpGRS Rtrav .Every vertex v 2 B(x; r) is labelled by a ouple or a triple of omponents. The �rst omponent is alabel of Rtrav : Ri; Ai; Ni or W . The seond omponent is a m-tuple of labels (l1; : : : ; lm) desribingthe state of v with respet to the enumeration of m-tuples. These labels are suh that :� lj = 1 means that v is the jth omponent in the urrent m-tuple,� lj = 1 means that v has been the jth omponent of all the m-tuples whose j�1 �rst omponentsare the (unique) verties suh that l1 = 1; : : : ; lj�1 = 1,� lj = 0 means that v is not in one of the previous ases.Finally the ative vertex (with Ai or Ri as �rst omponent) has an additional \ation label" :Searhj for Searhing the jth omponent of a m-tuple, Returnj when the jth omponent has beenfound (then the ative vertex has to return bak to the root), Resetj when the jth omponent has beenused as jth omponent of all the m-tuples having the same j �rst omponents and has to be markedas suh (i.e., has to hange its lj-label from 1 to �1), and Stop when the omputation has terminated.Initially, for every vertex, we have lj = 0; 8 j 2 f1; : : : ;mg. Moreover, the root has a (A0; Searh1)label and any other vertex has a N0 label. The irreduible graphs are suh that for every vertex, l1 = �1and lj = 0; 1 < j � m.The PpGRS Renum ontains rules R2 to R4, extended with all possible values of the seond andthird omponents of the labels (but does not ontain the rule R4 when the ative label has a Stopomponent). The role of rule R4 is taken over by rules R6(j), R7(j) and R10(j), below.In the following rules of Renum, 0j (resp. 1j , 1j) means that lj = 0 (resp. lj = 1, lj = 1), and onlythe omponents involved in the relabelling are spei�ed.R5(j) is used when the jth omponent of a m-tuple is found.R5(j) t(Ai; 0j ; Searhj)x1 - t(Ai; 1j ; Returnj)x1 priority 4for an ative vertex suh that 8 x 2 f1; : : : ; j � 1; j + 1; : : : ;mg; lx 6= 1:When suh a jth omponent has been found, the (Ai; Returnj) label �nishes its traversal, returnsto the root by means of rules R2 and R3 of Rtrav with the orresponding labels of Renum and beomes(R1�i; Returnj) by rule R4. Then, when j < m, the root initiates a new traversal for searhing a(j + 1)th omponent. This is done by the following rules :R6(j; j < m) t(Ri; Returnj)x1 - t(Ai; Searhj+1)x1 priority 0When a mth omponent has been found and the (Ai; Returnm) label has returned to the root, thismth omponent must be marked (it an no more be the mth omponent of a m-tuple having the samem�1 �rst verties). This proess is initiated by rule R6(m), and done by rules R8(m) and rules R2 toR4 of Rtrav with the orresponding labels of Renum. Next, a new mth omponent has to be searhed,whih is initiated by rules R10(m).R6(m) t(Ri; Returnm)x1 - t(Ai; Resetm)x1 priority 0



I. Litovsky, Y. M�etivier and E. Sopena 13When a jth omponent (j > 1) has not been found after a omplete traversal (this means that allremaining verties have already been the jth omponent or that there is not enough verties in theball), the vertex with label 1j�1 must be marked. This proess is initiated by rule R7(j), and done byrules R8(j � 1) and R2 to R4. In suh a ase, all the verties with labels �1j have to be reset to 0j (the(j � 1)th omponent will hange). This will be done by rules R9(j). Next, a new (j � 1)th omponenthas to be searhed, whih is initiated by rules R10(j � 1).R7(j; j > 1) t(Ri; Searhj)x1 - t(Ai; Resetj�1)x1 priority 4R8(j) t(Ai; 1j ; Resetj)x1 - t(Ai; �1j ; Resetj)x1 priority 4R9(j; j > 1) t(Ai; �1j ; Resetj�1)x1 - t(Ai; 0j ; Resetj�1)x1 priority 4R10(j) t(Ri; Resetj)x1 - t(Ai; Searhj)x1 priority 4When a �rst omponent has not been found during a omplete depth-�rst tree traversal, thePpGRS stops (all the verties have been the �rst omponent of any possible m-tuple).R7(1) t(Ri; Searh1)x1 - t(Ai; Stop)x1 priority 0As every tree traversal stops, the strit inreasing of the 3m-tuple (j11j; : : : ; j1mj; j11j; : : : ; j1mj;jReset1j; : : : ; jResetmj) evaluated whenever the root has a label Ri is a termination riterium for theomplete PpGRS Renum. Hene Renum is noetherian.Furthermore, we have the following invariant properties, ensuring that the PGRS Renum enumer-ates all the m-tuples of verties of B(x; r) :(P1) if Searhj is the urrent Ation label, then for 1 � x < j exatly one vertex has a omponentlx = 1 and for j � y � m every vertex has a omponent ly 6= 1(P2) lj = 1 implies that the vertex v has been the jth omponent of all the m-tuples suh that :(C1) 8 x < j, the xth omponent is the unique vertex suh that lx = 1(C2) the jth omponent is the vertex v.At eah moment that Returnm has just beome the ation label (by rule R5(m)), a new m-tuple(y1; : : : ; ym) is enumerated : for every 1 � j � m exatly one vertex yj has a omponent lj = 1. Themapping h from Lv to f1; : : : ;m; �g mentioned in the beginning of this setion an now be de�ned inan obvious way (e.g., h(Ai; 1m; Returnm) = m). 25 Loal Simulation of a FCpGRS by a PpGRSLet R be a FCpGRS. In this setion, we desribe a PpGRS Rlosim working on a ountry of a givenapital  (in the sense de�ned in Setion 2) within a given graph (G;�). We assume that a rootedspanning tree T () of the ountry has been onstruted. Then Rlosim will realize a nondeterministiappliation on T () of one appliable f-rule of R when suh a rule exists.Proposition 15 Let R be a FCpGRS and let k be the greatest diameter of a graph in the de�nitionof R. There exists a PpGRS Rlosim whih, for any given rooted tree T () in a given graph (G;�),an test whether a f-rule r of R is appliable in (G;�) to an ourrene � of Gr suh that �(Gr)is a partial subgraph of the ball B(v; k) for some vertex v of T (). Furthermore, a nondeterministiappliation of suh an appliable f-rule (when it exists) is done.



14 Di�erent loal ontrols for graph relabelling systemsProof. By using a depth-�rst tree traversal, Rlosim ativates every vertex v 2 T (). Then, from anyvertex v, Rlosim marks in (G;�) a rooted spanning tree T (v) of the ball B(v; k) in (G;�). This ballmay inlude verties of other ountries but only of ountries whih are near the ountry of v (twoountries C1, C2 are near if their respetive apitals are at distane at most 3k : thus a ball B(v; k)with enter in C1 an interset C2). Hene, it will be the main point of the global simulation in Setion5 to ensure that two near ountries are not simultaneously ative.For eah f-rule (r;Hr) in the FCpGRS R, with r = (Gr; �r; �0r), the PpGRS Rlosim uses aPpGRS Rr that tests wether r is appliable to an ourrene of Gr that lies inside B(v; k). Let m bethe number of verties of Gr. To �nd all ourrenes of Gr in B(v; k), Rr will enumerate all m-tuplesof verties of B(v; k). Thus, Rr is obtained from the PpGRS Renum by adding the heking and theeventual appliation of r whenever we have a label (Ai; 1m; F oundm). Labels (Ai; 1m; F oundm) appearinstead of the labels (Ai; 1m; Returnm) of rules R5(m), and mean that we have found a new m-tupleand that we must try to apply the f-rule r on the m-tuple. The PpGRS Rlosim (that we will notdesribe in detail) ativates the PpGRS's Rr one after another (in some �xed order) to ensure thatall f-rules of R are tried.Let us now desribe the PpGRS's Rr. We �rst hoose a numbering v1; : : : ; vm of the verties ofGr. Next, for eah vertex vj 2 v(Gr), we onatenate to �v(vj) a label hosen from Renum : (Wi; 1j)or (Ni; 1j) if j < m and a label (Ai; 1m; F oundm) if j = m. Hene, for eah of these hoies, we obtaina new labelling of Gr. Let  be suh a labelling of Gr and let (Gr; ; 0) be the new orrespondingrelabelling rule. For eah pair ((Gl; �l); �l) 2 Hr, we onsider all possible graphs (Gl; l) where forevery x 2 v(Gl) [ e(Gl), l(x) is the onatenation of the label �l(x) and a label from Renum. Thelabelling l must be suh that for every x 2 v(Gr) [ e(Gr), l(�l(x)) = (x). Furthermore a labelDone or Notdone is possibly added to the label Ai. Done means that r has been applied; Notdonemeans that r is appliable, but it has not been applied.Now we an add the following rules to the PpGRS Renum in order to obtain the PpGRS Rr thatsimulates the appliation of the f-rule r.R51(r) t(Ai; 0m; Searhm)x1 - t(Ai; 1m; F oundm)x1 priority 5for an ative vertex suh that 8 x 2 f1; : : : ;m� 1g; lx 6= 1.R52(r; l) (Gl; l) - (Gl; 0l) priority 7where l = 0l exept for the omponent (Ai; 1m; F oundm) whih beomes (Ai; 1m; Returnm). Forevery possible  and l (depending on how we add labels of Renum) suh rules are added.R53(r) (Gr; ) - (Gr; 0) priority 6where  = 0 but the \� part" of the label is replaed by �0 and the vertex numbered m has now alabel (Ai;Done) instead of Ai or (Ai; Notdone).R54(r) (Gr; ) - (Gr; 00) priority 6where  = 00 but the omponent (Ai; 1m; F oundm) of the vertex numbered m has beome(Ai; Notdone; 1m; Returnm).R55(r) t(Ai; 1m; F oundm)x1 - t(Ai; 1m; Returnm)x1 priority 5Rules R51(r) replae rules R5(m) and mean that a new urrent m-tuple is found.Rules R52(r; l) mean that the urrent m-tuple is an ourrene � of Gr, suh that �(Gr) is inthe ontext (Gl; �l). In this ase, the f-rule r annot be applied to the urrent m-tuple and a new



I. Litovsky, Y. M�etivier and E. Sopena 15m-tuple must be looked for.Rules R53(r) mean that the f-rule r is appliable to the urrent m-tuple (thanks to the respetivepriorities of R52(r; l) and R53(r)) and that the relabelling has been done. Then the label (Ai;Done)stops the enumeration of m-tuples and gives a label Done to the root v of the tree T (v) (and Rlosimwill then give label Done to the apital , in a way that is not spei�ed here).Rules R54(r) mean that the f-rule r is appliable to the urrent m-tuple (thanks to the respetivepriorities of R52(r; l) and R54(r)) but the relabelling has not been done. Rules R53(r) and RulesR54(r) have the same priority, thus they have the same probability to be applied. This possibility ofnon-appliation ensures a nondeterministi appliation of the f-rules of R in T().Rule R55(r) means that the urrent m-tuple is not an ourrene of Gr. Hene, a new m-tuplemust be searhed.When all f-rules of R are sequentially proessed, if the apital  has a label Notdone, a newsearhing of appliable f-rules is started, and the �rst appliable f-rule is applied (we do notdesribe the PpGRS). Thus a nondeterministi appliation of an appliable f-rule of R in T (), ifit exists, is made by the omplete PpGRS Rlosim so onstruted. Furthermore, when Rlosim stops,if a relabelling has been made, the apital  has the label Done and if there is no appliable rule inT (), the apital  has the label Nothing (the Nothing-labelling is not desribed). 26 Simulating the ativity of a FCpGRS by using a PpGRSTo ahieve the simulation of a given FCpGRS R by a PpGRS, we now give a PpGRS Ratsim whihsupervises the ativity of apitals. A apital x is said to be ative if the PpGRS Rlosim from theprevious setion is looking for applying a f-rule in the ountry of the apital x.Let k be the greatest diameter of a graph in the de�nition of R. Given a graph (G;�), we onsiderthe graph Cap(G) whose verties are the apitals obtained via a k-eletion in (G;�), and whose edgesare linking two apitals when these two apitals are near (i.e. whose distane is at most 3k). We aregoing to give a PpGRS Rap whih simulates, in Cap(G), the ativity on (G;�) of every exeution ofthe given FCpGRS R. More preisely, let us assume that we have a graph (G;�) where a k-eletionhas been made. An exeution of R on G is de�ned by the sequene of relabelled ourrenes �1; : : : ; �nin G. Eah ourrene �i intersets one or more ountries with apitals Ci;1; : : : ; Ci;ji respetively. Thegoal of the PpGRS Rap is to ensure that �rst, one of the apitals C1;1; : : : ; C1;j1 is ative (step1), nextone of the apitals C2;1; : : : ; C2;j2 is ative (step2),. . . , next one of the apitals Cn;1; : : : ; Cn;jn (stepn)is ative, and �nally every apital must be inative (i.e. N -labelled in the PpGRS of Figure 6). Thus,at eah stepi (1 � i � n), the PpGRS Rlosim may simulate the relabelling of R on �i (1 � i � n).To obtain a PpGRS no longer working on Cap(G), but on the whole graph (G;�), it is suÆient toonsider that the edges in Figure 6 are in fat paths of length at most 3k.Proposition 16 Let R be a FCpGRS. There exists a PpGRS Ratsim whih, for every given graph(G;�), an simulate on Cap(G) the ativity of any exeution of the given FCpGRS R.Proof. We use the following labels for every apital x 2 Cap(G):� W means that the ountry of x is Waiting to be ative,� A means that the ountry of x is Ative : the PpGRS Rlosim is looking for applying a f-ruleof R in the ountry of x (after whih the label of x beomes D or N),� D (= Done) means that a f-rule has been applied to an ourrene ontaining a vertex in theountry of x,� N (= Nothing) means that no f-rule an be applied to an ourrene ontaining a vertex ofthe ountry of x.All apitals are initially W -labelled. We must ensure that:



16 Di�erent loal ontrols for graph relabelling systemsR1 tAx1 tWx2 - tLx1 tWx2 priority 5R2 tAx1 - tLx1 priority 4R3 tDx1 tNx2 - tDx1 tWx2 priority 3R4 tDx1 tWx2 - tWx1 tWx2 priority 2R5 tDx1 - tWx1 priority 1R6 tWx1 - tAx1 priority 0Figure 6: The PpGRS Ratsim of global simulation(P1) two neighbouring apitals in Cap(G) are not simultaneously Ative, to ensure that two loalsimulations do not work on a ommon subgraph of G (see Setion 4),(P2) whenever a apital x has applied a f-rule to an ourrene whih intersets its ountry, allneighbouring apitals of x in Cap(G) and the apital x itself will beome Waiting,(P3) every Waiting apital will beome Ative.The PpGRS Ratsim is given by the rules in Figure 6 where L stands for a label D or N . RuleR1 indiates that the loal simulation of the FCpGRS in the ountry of the A-labelled apital hasterminated. The relative priorities of R1 and R6 ensure that two neighbouring apitals are not simul-taneously ative ((P1) is satis�ed). Rule R2 does the same thing when the apital has no W -labelledneighbouring apitals. Rule R3 is used when a apital has done an appliation and allows us to \wakeup" a sleeping apital. Then rule R4 is applied when all the neighbouring apitals have been wakedup and the D-labelled apital beomes itself W -labelled ((P2) is satis�ed). Rule R5 onerns graphshaving only one apital. Rule R6 ativates a waiting apital ((P3) is satis�ed).Furthermore we have the following properties:(P4) 8 fx; yg 2 e(Cap(G)); �v(x) = A =) �v(y) 2 fN;Wg (indeed, aording to R6 < R1 we have�v(y) 6= A, and aording to R6 < R4 we have �v(y) 6= D),(P5) 8 fx; yg 2 e(Cap(G)); �v(x) = D =) �v(y) 2 fN;Wg (aording to (P4)),(P6) whenever a vertex x beomes Done, all its neighbours are W -labelled or will beome againW -labelled (aording to (P5) and rule R3),(P7) a D-labelled vertex will be W -labelled only when all its neighbours are W -labelled (aordingto R4, R5 < R3),(P8) 8 fx; yg 2 e(Cap(G)), if �v(x) = D and �v(y) = W , y will stay W -labelled as long as x isD-labelled (aording to (P5)).Thanks to these properties, the PpGRS Ratsim simulates on Cap(G) the ativity of any exeutionof the FCpGRS R on (G;�) (if no rule of R is appliable, then all apitals will beome N -labelled,



I. Litovsky, Y. M�etivier and E. Sopena 17and no rule R1; : : : ; R6 is then appliable). Conversely any exeution of the previous PpGRS is asimulation of an exeution of the FCpGRS R in (G;�). 27 Equivalene between PpGRS's and FCpGRS'sWe are now going to show that PpGRS0s and FCpGRS0s are in fat equivalent. We �rst give, forany FCpGRS R, a PpGRS R' whih an simulate the behaviour of R on any graph G labelled withinitial labels. The intuitive idea is the following one : let k (resp. m) be the greatest diameter (resp.number of verties) of the graphs in the rules of R. We �rst onstrut a overing of the graph Gby means of ountries and apitals (two apitals being at a distane at least k + 1 from eah other).Then, any apital an test whether a f-rule an or annot be applied on an ourrene overlappingits ountry, by enumerating the m-tuples in its neighbourhood, and apply one of these rules whenpossible. The whole ativity of the apitals is managed by the PpGRS Ratsim seen in the previoussetion.Proposition 17 The lass of FCpGRS's is less powerful than the lass of PpGRS's.Proof. Let R be a given FCpGRS. Putting together the PpGRS's onstruted in Setions 2, 4 and5 with appropriate priorities we obtain a PpGRS R0 equivalent to R. First, we observe that theW -labels in Ratsim are here C-labels from PpGRS Rk�ele. Rule R1 of Ratsim is replaed by therules of Rlosim where paths of length at most 3k are added from the Ative vertex to a C-labelledvertex. The so-onstruted rules (with the priorities of Rlosim) lead to a PpGRS alled R0losim.Finally, rule R2 of Ratsim is replaed by the rules of Rlosim.The priorities of the so-obtained PpGRS R' are given as:Rk�ele > R0losim > Rlosim > R3;atsim > R4;atsim > R5;atsim > R6;atsimwhere in eah used PpGRS, the respetive priorities of the rules are respeted. Giving the greatestpriorities to the rules of Rk�ele we ensure that a apital is Ative (i.e. A-labelled) only if all nearapitals (i.e. at a distane at most 3k) have been eleted (i.e. have a C-label). In suh a system,simulations of relabelling may be proessed before the k-eletion has globally terminated, but thegreater priorities of the rules of Rk�ele ensure that the near ountries are onstruted. Thus theso-proessed relabelling steps are allowed. 2Conversely, for any PpGRS R, one an easily onstrut a FCpGRS R0 whih simulates thebehaviour of R. For any rule r in R, one an haraterize the ontexts whih have to prevent theappliation of r : it suÆes to take into aount all the rules r0 in R whih have a higher priority thanr and whih an overlap an ourrene of Gr. Hene, we obtain the following result :Proposition 18 The lass of PpGRS's is less powerful than the lass of FCpGRS's.Proof. Let R be a PpGRS. We are going to onstrut a FCpGRS R1 whih, for any graph (G;�),leads to the same irreduible graphs (by allowing the same relabelling steps than R). For eah ruler 2 R, we onsider the set S of rules r0 2 R whih have a higher priority than r. For every r0 2 S, weonsider the set Gr0 UGr of pairs ((G;�); �) de�ned as follows. A pair ((G;�); �) belongs to Gr0 UGri� � is an ourrene of Gr in (G;�) and there exists an ourrene �0 of Gr0 suh that:v(G) = v(�(Gr)) [ v(�0(Gr0)) and v(�(Gr)) \ v(�0(Gr0)) 6= ;Then (r;Gr0 UGr) is the f-rule assoiated in R1 with r. Thus a rule r 2 R is appliable toan ourrene � i� the f-rule (r;Gr0 UGr) 2 R1 is appliable to �. Hene, the PpGRS R and theso-onstruted FCpGRS R1 allow exatly the same relabelling steps. 2Finally, we obtain the following result :



18 Di�erent loal ontrols for graph relabelling systemsTheorem 19 The PpGRS's and the FCpGRS's are equivalent.8 Other omparisons between the lasses of relabelling systemsThe aim of this setion is to ahieve all the omparisons between the di�erent kinds of relabellingsystems we have introdued. We �rst lassify the two basi systems based on the relabelling of partialor indued subgraphs. Then, we will onsider the two mehanisms of loal ontrol that we have de�ned: the priorities on the set of rules and the use of forbidden ontexts. We will see that whenever we usesuh a loal ontrol, the di�erenes between the powers of partial or indued relabellings disappear.Proposition 20 The lass of pGRS's is stritly less powerful than the lass of iGRS's.Proof. Let R be a given pGRS. The onstruted iGRS will have the same sets of labels as R.Eah rule (Gr; �; �0) 2 R is simulated by the set of rules (G0r; ; 0) on indued subgraphs suh thatv(G0r) = v(Gr), (Gr; �) is a subgraph of (G0r; ) and 0e(fx; yg) = e(fx; yg) for every edge fx; yg 2e(G0r)n e(Gr). Thus R an be simulated by a iGRS. 2The following example shows that the stated inlusion is strit.Example 21 Consider the iGRS previously de�ned in Example 1.2. The following properties holdfor every graph (G;�0) in some Irred((G;�)) where (G;�) has only C-labels.� an irreduible graph (G;�0) has only C-labels or only nC-labels,� an irreduible graph (G;�0) has only C-labels if and only if G is a omplete graph.On the other hand, a pGRS working on initially C-labelled graphs annot satisfy the previousproperties. To see that, let us suppose that a pGRS R satis�es these properties. Then, R would allowthe following relabelling:tCx1����tCx2 ���� tCx3 -+ tnCx1����tnCx2 ���� tnCx3 AC-labelled triangle should be irreduible, but there is no way to prevent the pGRS R from applyingto it the same relabelling rules as before, whih gives the ontradition :tCx1����tCx2 ���� tCx3 -+ tnCx1����tnCx2 ���� tnCx3 2Proposition 22 The lass of iGRS's is stritly less powerful than the lass of FCpGRS's.Proof. Let R be a given iGRS. Eah rule (Gr; �; �0) 2 R an be simulated by a f-rule given by(Gr; �; �0) where the forbidden ontexts are the graphs obtained by adding any new edge linking twoverties of v(Gr). On the other hand, the set of trees is \reognized" by a FCpGRS (see Example 9),but is not \reognizable" by a iGRS. To see that, let us assume that a iGRS R' \reognizes" theset of trees, that is, R' works on initially N -labelled graphs and is suh that an irreduible graph



I. Litovsky, Y. M�etivier and E. Sopena 19(G;�) has only T -labels i� G is a tree. Hene, R' must reognize a string (i.e. a \line-graph"). Now,onsider a long enough string (whose length is greater than the greatest diameter of a rule in R') ; ifwe add an edge linking the two end-points of this string, R' will be able to apply the same relabellingrules as it did for the string, and then reognizes a ring. This leads to a ontradition, thus the statedinlusion is strit. 2As in Theorem 19, by adapting the onstruted PpGRS to the notion of indued ourrenesinstead of partial ones, one an prove that:Proposition 23 The PiGRS's and the FCiGRS's are equivalent.We still have to relate the lasses of Y pGRS's and ZiGRS's, for Y;Z 2 fP; FCg. To do that, we�rst need the following result :Lemma 24 There exists a PpGRS whih, given a rooted spanning tree of a graph G and given agraph Gi having m verties, makes an enumeration of all the m-tuples of verties of G and during thisenumeration reognizes the m-tuples whih orrespond to an indued ourrene of Gi in G.Sketh of proof. One takes again a PpGRS whih enumerates all m-tuples of verties of G (seeSetion 3). Then we add a rule ri with Gi as left-hand side and a label reognized in the right-handside. For any possible Gj , obtained from Gi by adding a new edge, we add a rule rj with Gj asleft-hand side and a label unreognized in the right-hand side, and assign to rj a greater priority thanri. 2Proposition 25 The lass of FCiGRS's is less powerful than the lass of PpGRS's.Proof. Let R be a FCiGRS. The simulation priniple is the same that we have used in the proofof Proposition 17. Let (r;Hr) be a rule of R, with r = (Gr; �r; �0r), Hr = f((Gi; �i); �i)gi2Ir and d bethe greatest diameter of the ontext graphs Gi's. We only need to hange the appliation test of thef-rule r. We informally desribe this new test, whih replaes rules R52, R53 and R54 in Rlosim. Letm be the number of verties of the relabelled graph Gr of r. Aording to the previous lemma, duringan enumeration of m-tuples, one an reognize whether the urrent m-tuple is an indued ourreneof (Gr; �r) or not. When it is the ase one an test (lemma 7.5), for any i 2 Ir, whether a ni-tuple isan indued ourrene of Gi (ni is the number of verties of Gi). The f-rule r is then appliable tothe urrent m-tuple if and only if no ni-tuple is an indued ourrene of Gi. 2Thus, any PiGRS, equivalent to a FCiGRS, an also be simulated by a PpGRS. On the otherhand, by adding priorities to the sets of rules obtained by simulating, like in Proposition 20, eah ruleof a PpGRS, one proves that any PpGRS an be simulated by a PiGRS. Thus, we have the followingresult :Proposition 26 The PiGRS's and the PpGRS's are equivalent.Finally, we obtain the global lassi�ation | given in the introdution | of the graph relabellingsystems introdued in this paper.Referenes[1℄ M.W. Alford, J.P. Ansart, G. Hommel, L. Lamport, B. Liskov, G.P. Mullery and F.B. Shneider,Distributed Systems, Leture Notes in Computer Siene 190 (1985).[2℄ D. Angluin, Loal and global properties in networks of proessors, Proeedings of the 12th STOC(1980), 82-93.
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