
LaBRI Researh Report No. Compiled on April 11, 2001The �nal version of this paper has been published in Eletroni Notes in Comput. Si. 2 (1996).CHECKING GLOBAL GRAPHPROPERTIES BY MEANS OFLOCAL COMPUTATIONS:THE MAJORITY PROBLEM1Igor LITOVSKYI3S URA CNRS 1376, ESSI, BP 145, 06903 Sophia Antipolis Cedex, Frane.Yves M�ETIVIER and �Eri SOPENALaBRI URA CNRS 1304, Universit�e Bordeaux 1, 33405 Talene Cedex, Frane.Abstrat. This paper is a ontribution to the study of the general problem of haraterizing those propertieswhih an be omputed on a graph or a network by means of loal transformations. By using an abstrat modelbased on graph relabelling systems we onsider the majority problem : let G be a graph whose verties havelabel A or B ; we say that label A has the majority if the number of A-labelled verties is stritly greater thanthe number of B-labelled verties (jGjA > jGjB). We prove that there exists graph relabelling systems deidingfor every onneted graph G whether jGjA > jGjB (resp. jGjA = jGjB) or not. On the other hand, we provethat no suh system an deide if jGjA > jGjB �m (resp. jGjA = jGjB �m), for any positive integer m.Keywords. Distributed systems, Graph relabelling systems, Majority problem.1 IntrodutionOne of the main harateristis of distributed systems is the loal nature of the omputation. A set ofproessors, onneted in some spei� way, try to reah a ommon goal (e.g. omputing some funtion)after a �nite number of elementary steps, eah involving solely a subset of \near" proessors. In thisframework, one of the main questions is to haraterize those funtions, that is those global propertiesof the network, that an be omputed by means of loal transformations in the network [1, 2, 6, 9, 10℄.In this paper we investigate that question by using a omputational model introdued in [3℄, whihallows to express suh omputations by means of some graph relabelling systems. More preisely, wewill onsider graph relabelling systems as reognizers of labelled graphs families based as follows onloal relabellings : the labelled graph G to be reognized as a member of a spei�ed set is labelled bysome speial initial labelling ; labels are then loally modi�ed, that is on subgraphs of �xed diameterof the urrent graph, aording to some given relabelling rules ; these modi�ations are iterated untilsome irreduible form is reahed, that is until no more transformation is possible. The presene orthe absene of some spei� �nal labels deides whether G is aepted or not.The lass of problems whih an be solved by loal omputations is strongly dependent on theassumptions whih are made on the initial graph. For instane all problems beome easier when thegraph has some distinguished vertex (with a speial label), or when suh a vertex an be eleted[1, 6, 7℄. In the same way when every vertex has some knowledge onerning the whole graph (anupper bound on or the exat number of verties, the whole or partial topology of the graph, et.)some problems may beome solvable. We onsider here the more general ase, that is no vertex an1With the support of the Esprit-Basi Researh Working Group "COMPUGRAPH II", the European Basi AtionResearh Esprit no 3166 (ASMICS) and the European Community Cooperative Ation IC-1000 (ALTEC).1



2 Cheking global graph properties by means of loal omputationsbe distinguished and no vertex has any knowledge onerning the rest of the graph. We are mostlyinterested in the following paradigm, alled the majority problem : let A and B be any two labels, Gbe a graph whose verties are labelled on fA;Bg, jGjA (resp. jGjB) be the number of verties of Glabelled with A (resp. with B). To what extent are we able to ompare the quantities jGjA and jGjB? We prove that using suh graph reognizers we an deide whether jGjA > jGjB (resp. jGjA = jGjB)or not. Then, using the notion of k�overing, we prove that it is not possible to deide whetherjGjA > jGjB �m (resp. jGjA = jGjB �m) or not, for any m > 0.This paper is organized as follows : in Setion 2 we introdue the main notions and notation.We prove in Setion 3 our main result and in Setion 4 our impossibility result. Due to the lak ofspae our main result is only established for yles (the ring is ertainly the most ommonly studiednetwork) and the main ideas are given for the general ase. The omplete proofs will be given in thefull version of this paper.2 Basi notions and notationLet L be a �nite set of labels. A labelled graph G over L, denoted by (G;�), is a graph with vertex setV (G) and edge set E(G) equipped with a labelling funtion � : V (G) [E(G) �! L. We assume thatthe set L is partitionned into two subsets, the vertex and edge label sets respetively. The graph G isalled the underlying graph, and the mapping � is a labelling of it. The lass of labelled graphs oversome �xed alphabet L will be denoted by GL. Let  2 L, a -labelled vertex (resp. edge) is a vertex v(resp. an edge e) suh that �(v) =  (resp. �(e) = ).Let (G;�) and (G0; �0) be two labelled graphs. We say that (G;�) is a subgraph of (G0; �0), denotedby (G;�) � (G0; �0), if G is a subgraph of G0 and � is the restrition of �0 to V (G) [ E(G). Anisomorphism from (G;�) to (G0; �0) is an isomorphism ' from G to G0 whih preserves the labelling,that is 8 x 2 V (G) [E(G); �0('(x)) = �(x). An ourrene of (G;�) in (G0; �0) is an isomorphism 'from (G;�) to a subgraph (H; �) = '(G;�) of (G0; �0).A graph relabelling system is given as a 4-tuple R = (L; I; P;>) where L is a �nite set of labels,I � L the set of initial labels, P a �nite set of relabelling rules and > a partial order over P . Eahrelabelling rule is given as a triple (R;�; �0) suh that (R;�) and (R;�0) are two graphs in GL. Let(G;�) be a graph in GL, ' an ourrene of (R;�) in (G;�) ; if there is no ourrene  of a rule(S; �; � 0), S > R, suh that  (S; �) \intersets" (in an obvious way) '(R;�) in (G;�), we say that(R;�; �0) is appliable on (G;�). The appliation of the relabelling rule (R;�; �0) leads then to thegraph (G;�0) obtained by relabelling the omponents of '(R;�) aording to the labelling funtion�0. We will then write (G;�) R (G;�0). Note here that the e�et of the priority mehanism is stritlyloal : in order to deide whether a relabelling rule may be applied or not, we only have to hek theneighbourhood of the orresponding ourrene.Let (G;�) be a graph in GI , that is a graph with labels in the initial set I. We will denote byR(G;�)the set of R-irreduible forms of (G;�), that is the set of graphs (G;�0) suh that (G;�) R� (G;�0)and (G;�0) is irreduible, where R� denotes the reexive and transitive losure of R. This set an beinterpreted as the set of possible results of the omputation expressed by R on (G;�). For that reasonwe will only onsider noetherian graph relabelling systems not allowing in�nite derivation sequenes(a derivation sequene is a sequene (G;�1); (G;�2); : : : ; (G;�i); : : : with 8 i; (G;�i) R (G;�i+1)).A �nal ondition over L is any �nite propositional formula onstruted from variables of the setf�l j l 2 Lg by means of operations _, ^ and :. A labelled graph (G;�) satis�es a �nal ondition }over L, denoted (G;�) j= }, if the formula } where we de�ne �l as true if ��1(l) 6= ; is true. Notethat this notion is invariant under isomorphism. Thus, suh �nal onditions enable us to hek thepresene or the absene of some labels in a labelled graph but not to ount verties or edges with givenlabels, or to express some properties on their relative positions. For intane, it is impossible to speifythat there is exatly one T-labelled vertex or that there exist two adjaent T-labelled verties. Let }be a �nal ondition. We will denote by K(}) the set de�ned by K(}) = f(G;�) 2 GL j (G;�) j= }g.A reognizer is a pair (R; }) where R is a graph relabelling system and } a �nal ondition. Thelass of graphs reognized by (R; }), denoted by L(R; }), is then de�ned as those graphs (G;�) in GI



I. Litovsky, Y. M�etivier and E. Sopena 3t t t t t t t t t t t t t tA a a B A B B X a a A a X X� � � � �Figure 1: Constrution of A-paths on a yle.suh that R(G;�) \ K(}) 6= ;. A reognizer (R; }) is said to be deterministi if for any graph (G;�)in GI , either R(G;�) \ K(}) = R(G;�) or R(G;�) \ K(}) = ;. The lass of graphs deterministiallyreognized by (R; }), denoted by Ldet(R; }), is then de�ned as those graphs (G;�) in GI suh thatR(G;�) � K. In other words, a graph is deterministially reognized if every omputation leads toa graph satisfying the �nal ondition. A graph is undeterministially reognized if there exists someomputation leading to a graph satisfying the �nal ondition. Note here that the term deterministirefers to the reognition proedure (whose result is unique) but that the sets R(G;�) are in generalnot singletons. This notion is very similar to the one used in [1℄.3 The main resultIn this setion we prove the following :Theorem 1 Let A and B be two labels; the lass of labelled onneted graphs G suh that jGjA > jGjB(resp. jGjA = jGjB) is deterministially reognizable by loal omputations.We �rst illustrate the tehnique we will use by onsidering the simple ase when the graph G is ayle. This tehnique will then be extended in order to apture the general ase.3.1 The yle aseThe main idea an be intuitively desribed as follows : when a A-labelled vertex has a B-labelledneighbour then they neutralize eah other and beome X-labelled. By repeating this proess it mayhappen that the graph still ontain some A- and B-labelled verties whih have only X-labelledneighbours. The solution is then to build some A-paths (whose edges will be marked) having oneA-labelled vertex (the root of the A-path) and some X-labelled verties whih will beome a-labelled(see Figure 1). In this way, A-labelled verties will be able to \enounter" some B-labelled vertiesnot belonging to their immediate neighbourhood.When the omputation stops we have one of the following situations : (1) there are only X-labelledverties, whih means that G was suh that jGjA = jGjB , (2) there are only a- and A-labelled verties,whih means that G was suh that jGjA > jGjB or (3) there are only X- and B-labelled verties,whih means that G was suh that jGjB > jGjA.More preisely, this omputation an be done by a relabelling system R using the set of rulesdepited on Figure 2. These rules work as follows :R1, R2 : when a a- or A-labelled vertex has a X-labelled neighbour this neighbour is added to theA-path.R3 : when a A-labelled vertex has a B-labelled neighbour, this neighbour beomes X-labelled, andthe vertex beomes AX labelled. The AX label means that we have to hange the labels of all theverties of its A-path to X (this will be done by rules R10,. . . ,R15).R4 : when a a-labelled vertex has a B-labelled neighbour it needs to ask the root of its A-path whetherthe B-labelled vertex an be neutralized or not. The B-labelled vertex is marked as B and thus annotbe \attaked" on its other side until the deision is taken. The a-labelled beomes ax?-labelled.R5 : The ax? label is brought along the A-path towards the root.
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R1 tA tX - tA � ta R2 ta tX - ta � taR3 tA tB - tAX tX R4 ta tB - tax?� tBR5 ta � tax? - tax?� tax? R6 tA � tax? - tA � taxR7 tax � tax? - tax � tax R8 tax� tax� tB - tax� tB tXR9 tA � tax� tB - tAX tX tX R10 ta � tAX - tAX� tXR11 tax?� tAX - tAX � tX R12 tB � tAX - tB tAXR13 tAX - tAX R14 tAX � tX - tX tAXR15 tAX - tX Priority : R10, R11, R12 > R13,R14 > R15.Figure 2: The set of relabelling rules in the yle ase.R6 : The ax? label reahes the root whih is free (A-labelled). The root then aepts the neutralizationand beomes marked as A and thus annot neutralize another B-labelled vertex on its other side. Theax? label beomes ax.R7 : the ax label return bak to the neutralized (B-labelled) vertex.R8, R9 : when the ax label reahes the neutralized vertex, the B label is brought bak to the root.When the B label reahes the root the root beomes AX-labelled, in order to hange the labels of allthe other verties of the A-path.R10, R11 : the AX label goes down the A-path (it may enounter only a or ax? labels) and marksas X the enountered verties.R12, R13 : the AX label reahes the end of the A-path. If a B-labelled vertex is enountered thenthe B-label is restored. The AX label an now beome AX. Note that thanks to the priority relation,this is only done when the end of the A-path is reahed.R14, R15 : all the X-labelled verties are now unmarked as X-labelled and the whole A-path is thusdestroyed.Note here that by marking with X the A-path to be destroyed before e�etively destroying it weensure that the system thus obtain always terminates. Without using that trik we ould have suha A-path inde�nitely turning around the yle, growing on one side and being destroyed on the otherside.We will now sketh the proof of Theorem 1 for yles. Due to the lak of spae our intent is toillustrate here the proof tehniques whih are used for the general ase. Let P = x1 : : : ; xp be a markedpath in G (that is whose all edges are marked). Let us all the label of P the word �(x1): : : : :�(xp).We denote by U�1 the mirror image of any rational language U .Claim 2 In every derivation sequene in R the labels of the marked paths are of the form U�1:A:U ,U�1:A:V, V�1:A:U , U�1:AX:X� or AX:X�, where U = a�(" + (ax?)+:B) and V = (ax)+:(ax?)�:B.Moreover, all the verties whih are not inident to a marked edge have label A, B or X.Proof. It suÆes to hek these invariants for every rule in R. 2Claim 3 The system R is noetherian.



I. Litovsky, Y. M�etivier and E. Sopena 5Proof. Let (G;�) be a graph whith n verties labelled on fA;Bg. For every rational language U let�(U) denote the total number of verties of all (maximal) paths in G whose label is in U . The tuple :( jGjB + jGjB + jGjA; jGjAX ; n��(AX:X�); �(AX:X�);�(A:(ax)+:(ax?)�:B); n��(A:(ax)�); n��((ax?)�); n��(a�) )is then a noetherian order ompatible with the system R [3℄ : every omponent is positive and if weonsider the usual lexiographi order on tuples, every rule inR dereases this quantity. The followingtable gives for every rule the omponent of this tuple whih is dereased (in every ase the previousomponents are unhanged) :Rule : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Component : 8 8 1 7 7 1 6 5 1 3 3 2 2 4 4Thus every derivation sequene in R starting from a graph G labelled on fA;Bg is �nite. 2Claim 4 If (G;�) is an irreduible graph then either (1) all its verties are X-labelled or (2) all itsverties are X- or B-labelled or (3) all its verties are a- or A-labelled.Proof. Using Claim 2 it is not diÆult to dedue the following : if G has a A-labelled vertex thenthe rule R9 is appliable ; if G has a ax?-labelled vertex then one of the rules R5, R6, R7 or R11 isappliable ; if G has a ax-labelled vertex then one of the rules R7, R8 or R9 is appliable ; if G has aAX-labelled vertex then one of the rules R10, R11, R12 or R13 is appliable ; if G has a AX-labelledvertex then one of the rules R14 or R15 is appliable ; if G has a X-labelled vertex the rule R14 isappliable ; if G has a B-labelled vertex then one of the rules R8, R9 or R12 is appliable . Moreover,if G has some B-labelled verties together with some a- or A-labelled verties then one of the rulesR3 or R4 is appliable. 2Claim 5 Let G and G0 be two labelled graphs suh that G R G0. ThenjGjA + jGjA � jGjB � jGjB = jG0jA + jG0jA � jG0jB � jG0jBProof. This quantity is learly preserved by every rule in R. 2Let us now de�ne the following �nal onditions : }X = :�A ^ :�B , }A = �A. By using theprevious laims one an prove that the two reognizers (R; }X) and (R; }A) satisfy the requirementsof Theorem 1 : let (G;�) be any graph whose verties are labelled on fA;Bg and (G;�0) be anyR-irreduible form of (G;�). By Claim 4 and Claim 5 we know that either (G;�0) has only X-labelled verties (in this ase j(G;�)jA = j(G;�)jB) or (G;�0) has only X- and B-labelled verties(in this ase j(G;�)jA < j(G;�)jB) or (G;�0) has only X-, a- and A-labelled verties (in this asej(G;�)jA > j(G;�)jB). Note that in this latter ase we know by Claim 2 that (G;�0) has at least oneA-labelled vertex. Moreover, the �nal number of A-paths is exatly the di�erene between the numberof initially A- and B-labelled verties.3.2 The general aseFor the general ase we simply use A-trees instead of A-paths. Those trees will be direted (theorientation of any tree an be simulated by using three additional labels, see [3℄) and rooted at a A-,A- or AX-labelled vertex. The relabelling system is quite more omplex but the basi idea is stillthe same : every A-tree try to neutralize a B-labelled vertex among those whih are neighbours of itsverties. When suh a neutralization ours, the whole A-tree is destroyed and all its verties beomeX-labelled.



6 Cheking global graph properties by means of loal omputations4 Impossibility resultLet (G;�) be a labelled graph and x a vertex of (G;�). The entered ball BG(x; k) of radius k isthe subgraph of (G;�) indued by those verties whih are at distane at most k from x. Let k be apositive integer. We say that a graph G is a k�overing of a graph G0 via a mapping  from V (G)onto V (G0) if  is a surjetive homomorphism suh that for every vertex v of V (G), the restrition of to BG(v; k) is an isomorphism between BG(v; k) and BG0((v); k): In [4℄ the following is proved :Theorem 6 [4℄ Every lass of onneted graphs reognizable by loal omputations is losed underoverings.Using that, we easily obtain :Theorem 7 Let A and B be two labels, let m > 0 be an integer ; the lass of labelled onneted graphsG suh that jGjA > jGjB �m (resp. jGjA = jGjB �m) is not reognizable by loal omputations, evenin a non deterministi way.Proof. It suÆes here to onsider the ase of yles : if C = (x0x1 : : : xp�1; �) is a labelled yle onp > k verties, the labelled yle C 0 = (y0y1 : : : y2p�1; �0), with �0(yi) = �(xi mod p), is a k-overing ofC. Suppose that there exists a reognizer for the family of graphs G suh that jGjA > jGjB �m (resp.jGjA = jGjB �m). By Theorem 6, if this reognizer aepts C then it also aepts C 0, a ontraditionsine jC 0jA � jC 0jB = 2(jCjA � jCjB). 25 Conluding remarks and open questionsBy slightly modifying our system (we mean by using B-trees instead of isolated B-labelled verties)we obtain a new system suh that in any irreduible graph every vertex knows the result of theomputation (if a vertex has a A- or a-label (resp. B- or b-) then label A (resp. B) has the majorityand if a vertex has a X-label then there is no majority). But no vertex is able to detet the terminationof the omputation. Whether a system with suh a loal termination detetion property exists or notis still an open question.Our main onern here was the existene or non-existene of systems solving the majority problem.The design of systems ahieving a better time omplexity has not been yet onsidered (this omplexityan be measured by the average length of a derivation sequene). This omplexity ould maybe beimproved by using A-, B- and X-trees, leading then to more ompliated systems.Consider a �nite set C = fA1; : : : ; Akg of labels. By ombining several opies of our system (thatis by using tuples of labels) we an deide for every graph G whether jGjA1 > MaxfjGjAi ; 2 � i � kg(resp. jGjA1 = jGjAi , 8 i, 2 � i � k) or not. However, we do not know whether it is possible or notto reognize those labelled graphs G satisfying jGjA > k� jGjB (resp. jGjA = k� jGjB). Note that inthis ase the k-overing argument fails.Referenes[1℄ D. Angluin, Loal and global properties in networks of proessors, Pro. 12th ACM STOC (1980),82{93.[2℄ B. Awerbuh, A.V. Goldberg, M. Luby and S.A. Plotkin, Network deomposition and loality indistributed omputation, Pro. 30th IEEE Symp. on Foundations of Computer Siene (1989),364{369.[3℄ M. Billaud, P. Lafon, Y. M�etivier and E. Sopena, Graph rewriting systems with priorities, LetureNotes in Comput. Si. 411 (1989), 94{106.
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