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e.Abstra
t. This paper is a 
ontribution to the study of the general problem of 
hara
terizing those propertieswhi
h 
an be 
omputed on a graph or a network by means of lo
al transformations. By using an abstra
t modelbased on graph relabelling systems we 
onsider the majority problem : let G be a graph whose verti
es havelabel A or B ; we say that label A has the majority if the number of A-labelled verti
es is stri
tly greater thanthe number of B-labelled verti
es (jGjA > jGjB). We prove that there exists graph relabelling systems de
idingfor every 
onne
ted graph G whether jGjA > jGjB (resp. jGjA = jGjB) or not. On the other hand, we provethat no su
h system 
an de
ide if jGjA > jGjB �m (resp. jGjA = jGjB �m), for any positive integer m.Keywords. Distributed systems, Graph relabelling systems, Majority problem.1 Introdu
tionOne of the main 
hara
teristi
s of distributed systems is the lo
al nature of the 
omputation. A set ofpro
essors, 
onne
ted in some spe
i�
 way, try to rea
h a 
ommon goal (e.g. 
omputing some fun
tion)after a �nite number of elementary steps, ea
h involving solely a subset of \near" pro
essors. In thisframework, one of the main questions is to 
hara
terize those fun
tions, that is those global propertiesof the network, that 
an be 
omputed by means of lo
al transformations in the network [1, 2, 6, 9, 10℄.In this paper we investigate that question by using a 
omputational model introdu
ed in [3℄, whi
hallows to express su
h 
omputations by means of some graph relabelling systems. More pre
isely, wewill 
onsider graph relabelling systems as re
ognizers of labelled graphs families based as follows onlo
al relabellings : the labelled graph G to be re
ognized as a member of a spe
i�ed set is labelled bysome spe
ial initial labelling ; labels are then lo
ally modi�ed, that is on subgraphs of �xed diameterof the 
urrent graph, a

ording to some given relabelling rules ; these modi�
ations are iterated untilsome irredu
ible form is rea
hed, that is until no more transformation is possible. The presen
e orthe absen
e of some spe
i�
 �nal labels de
ides whether G is a

epted or not.The 
lass of problems whi
h 
an be solved by lo
al 
omputations is strongly dependent on theassumptions whi
h are made on the initial graph. For instan
e all problems be
ome easier when thegraph has some distinguished vertex (with a spe
ial label), or when su
h a vertex 
an be ele
ted[1, 6, 7℄. In the same way when every vertex has some knowledge 
on
erning the whole graph (anupper bound on or the exa
t number of verti
es, the whole or partial topology of the graph, et
.)some problems may be
ome solvable. We 
onsider here the more general 
ase, that is no vertex 
an1With the support of the Esprit-Basi
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2 Che
king global graph properties by means of lo
al 
omputationsbe distinguished and no vertex has any knowledge 
on
erning the rest of the graph. We are mostlyinterested in the following paradigm, 
alled the majority problem : let A and B be any two labels, Gbe a graph whose verti
es are labelled on fA;Bg, jGjA (resp. jGjB) be the number of verti
es of Glabelled with A (resp. with B). To what extent are we able to 
ompare the quantities jGjA and jGjB? We prove that using su
h graph re
ognizers we 
an de
ide whether jGjA > jGjB (resp. jGjA = jGjB)or not. Then, using the notion of k�
overing, we prove that it is not possible to de
ide whetherjGjA > jGjB �m (resp. jGjA = jGjB �m) or not, for any m > 0.This paper is organized as follows : in Se
tion 2 we introdu
e the main notions and notation.We prove in Se
tion 3 our main result and in Se
tion 4 our impossibility result. Due to the la
k ofspa
e our main result is only established for 
y
les (the ring is 
ertainly the most 
ommonly studiednetwork) and the main ideas are given for the general 
ase. The 
omplete proofs will be given in thefull version of this paper.2 Basi
 notions and notationLet L be a �nite set of labels. A labelled graph G over L, denoted by (G;�), is a graph with vertex setV (G) and edge set E(G) equipped with a labelling fun
tion � : V (G) [E(G) �! L. We assume thatthe set L is partitionned into two subsets, the vertex and edge label sets respe
tively. The graph G is
alled the underlying graph, and the mapping � is a labelling of it. The 
lass of labelled graphs oversome �xed alphabet L will be denoted by GL. Let 
 2 L, a 
-labelled vertex (resp. edge) is a vertex v(resp. an edge e) su
h that �(v) = 
 (resp. �(e) = 
).Let (G;�) and (G0; �0) be two labelled graphs. We say that (G;�) is a subgraph of (G0; �0), denotedby (G;�) � (G0; �0), if G is a subgraph of G0 and � is the restri
tion of �0 to V (G) [ E(G). Anisomorphism from (G;�) to (G0; �0) is an isomorphism ' from G to G0 whi
h preserves the labelling,that is 8 x 2 V (G) [E(G); �0('(x)) = �(x). An o

urren
e of (G;�) in (G0; �0) is an isomorphism 'from (G;�) to a subgraph (H; �) = '(G;�) of (G0; �0).A graph relabelling system is given as a 4-tuple R = (L; I; P;>) where L is a �nite set of labels,I � L the set of initial labels, P a �nite set of relabelling rules and > a partial order over P . Ea
hrelabelling rule is given as a triple (R;�; �0) su
h that (R;�) and (R;�0) are two graphs in GL. Let(G;�) be a graph in GL, ' an o

urren
e of (R;�) in (G;�) ; if there is no o

urren
e  of a rule(S; �; � 0), S > R, su
h that  (S; �) \interse
ts" (in an obvious way) '(R;�) in (G;�), we say that(R;�; �0) is appli
able on (G;�). The appli
ation of the relabelling rule (R;�; �0) leads then to thegraph (G;�0) obtained by relabelling the 
omponents of '(R;�) a

ording to the labelling fun
tion�0. We will then write (G;�) R (G;�0). Note here that the e�e
t of the priority me
hanism is stri
tlylo
al : in order to de
ide whether a relabelling rule may be applied or not, we only have to 
he
k theneighbourhood of the 
orresponding o

urren
e.Let (G;�) be a graph in GI , that is a graph with labels in the initial set I. We will denote byR(G;�)the set of R-irredu
ible forms of (G;�), that is the set of graphs (G;�0) su
h that (G;�) R� (G;�0)and (G;�0) is irredu
ible, where R� denotes the re
exive and transitive 
losure of R. This set 
an beinterpreted as the set of possible results of the 
omputation expressed by R on (G;�). For that reasonwe will only 
onsider noetherian graph relabelling systems not allowing in�nite derivation sequen
es(a derivation sequen
e is a sequen
e (G;�1); (G;�2); : : : ; (G;�i); : : : with 8 i; (G;�i) R (G;�i+1)).A �nal 
ondition over L is any �nite propositional formula 
onstru
ted from variables of the setf�l j l 2 Lg by means of operations _, ^ and :. A labelled graph (G;�) satis�es a �nal 
ondition }over L, denoted (G;�) j= }, if the formula } where we de�ne �l as true if ��1(l) 6= ; is true. Notethat this notion is invariant under isomorphism. Thus, su
h �nal 
onditions enable us to 
he
k thepresen
e or the absen
e of some labels in a labelled graph but not to 
ount verti
es or edges with givenlabels, or to express some properties on their relative positions. For intan
e, it is impossible to spe
ifythat there is exa
tly one T-labelled vertex or that there exist two adja
ent T-labelled verti
es. Let }be a �nal 
ondition. We will denote by K(}) the set de�ned by K(}) = f(G;�) 2 GL j (G;�) j= }g.A re
ognizer is a pair (R; }) where R is a graph relabelling system and } a �nal 
ondition. The
lass of graphs re
ognized by (R; }), denoted by L(R; }), is then de�ned as those graphs (G;�) in GI
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tion of A-paths on a 
y
le.su
h that R(G;�) \ K(}) 6= ;. A re
ognizer (R; }) is said to be deterministi
 if for any graph (G;�)in GI , either R(G;�) \ K(}) = R(G;�) or R(G;�) \ K(}) = ;. The 
lass of graphs deterministi
allyre
ognized by (R; }), denoted by Ldet(R; }), is then de�ned as those graphs (G;�) in GI su
h thatR(G;�) � K. In other words, a graph is deterministi
ally re
ognized if every 
omputation leads toa graph satisfying the �nal 
ondition. A graph is undeterministi
ally re
ognized if there exists some
omputation leading to a graph satisfying the �nal 
ondition. Note here that the term deterministi
refers to the re
ognition pro
edure (whose result is unique) but that the sets R(G;�) are in generalnot singletons. This notion is very similar to the one used in [1℄.3 The main resultIn this se
tion we prove the following :Theorem 1 Let A and B be two labels; the 
lass of labelled 
onne
ted graphs G su
h that jGjA > jGjB(resp. jGjA = jGjB) is deterministi
ally re
ognizable by lo
al 
omputations.We �rst illustrate the te
hnique we will use by 
onsidering the simple 
ase when the graph G is a
y
le. This te
hnique will then be extended in order to 
apture the general 
ase.3.1 The 
y
le 
aseThe main idea 
an be intuitively des
ribed as follows : when a A-labelled vertex has a B-labelledneighbour then they neutralize ea
h other and be
ome X-labelled. By repeating this pro
ess it mayhappen that the graph still 
ontain some A- and B-labelled verti
es whi
h have only X-labelledneighbours. The solution is then to build some A-paths (whose edges will be marked) having oneA-labelled vertex (the root of the A-path) and some X-labelled verti
es whi
h will be
ome a-labelled(see Figure 1). In this way, A-labelled verti
es will be able to \en
ounter" some B-labelled verti
esnot belonging to their immediate neighbourhood.When the 
omputation stops we have one of the following situations : (1) there are only X-labelledverti
es, whi
h means that G was su
h that jGjA = jGjB , (2) there are only a- and A-labelled verti
es,whi
h means that G was su
h that jGjA > jGjB or (3) there are only X- and B-labelled verti
es,whi
h means that G was su
h that jGjB > jGjA.More pre
isely, this 
omputation 
an be done by a relabelling system R using the set of rulesdepi
ted on Figure 2. These rules work as follows :R1, R2 : when a a- or A-labelled vertex has a X-labelled neighbour this neighbour is added to theA-path.R3 : when a A-labelled vertex has a B-labelled neighbour, this neighbour be
omes X-labelled, andthe vertex be
omes AX labelled. The AX label means that we have to 
hange the labels of all theverti
es of its A-path to X (this will be done by rules R10,. . . ,R15).R4 : when a a-labelled vertex has a B-labelled neighbour it needs to ask the root of its A-path whetherthe B-labelled vertex 
an be neutralized or not. The B-labelled vertex is marked as B and thus 
annotbe \atta
ked" on its other side until the de
ision is taken. The a-labelled be
omes ax?-labelled.R5 : The ax? label is brought along the A-path towards the root.
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king global graph properties by means of lo
al 
omputations
R1 tA tX - tA � ta R2 ta tX - ta � taR3 tA tB - tAX tX R4 ta tB - tax?� tBR5 ta � tax? - tax?� tax? R6 tA � tax? - tA � taxR7 tax � tax? - tax � tax R8 tax� tax� tB - tax� tB tXR9 tA � tax� tB - tAX tX tX R10 ta � tAX - tAX� tXR11 tax?� tAX - tAX � tX R12 tB � tAX - tB tAXR13 tAX - tAX R14 tAX � tX - tX tAXR15 tAX - tX Priority : R10, R11, R12 > R13,R14 > R15.Figure 2: The set of relabelling rules in the 
y
le 
ase.R6 : The ax? label rea
hes the root whi
h is free (A-labelled). The root then a

epts the neutralizationand be
omes marked as A and thus 
annot neutralize another B-labelled vertex on its other side. Theax? label be
omes ax.R7 : the ax label return ba
k to the neutralized (B-labelled) vertex.R8, R9 : when the ax label rea
hes the neutralized vertex, the B label is brought ba
k to the root.When the B label rea
hes the root the root be
omes AX-labelled, in order to 
hange the labels of allthe other verti
es of the A-path.R10, R11 : the AX label goes down the A-path (it may en
ounter only a or ax? labels) and marksas X the en
ountered verti
es.R12, R13 : the AX label rea
hes the end of the A-path. If a B-labelled vertex is en
ountered thenthe B-label is restored. The AX label 
an now be
ome AX. Note that thanks to the priority relation,this is only done when the end of the A-path is rea
hed.R14, R15 : all the X-labelled verti
es are now unmarked as X-labelled and the whole A-path is thusdestroyed.Note here that by marking with X the A-path to be destroyed before e�e
tively destroying it weensure that the system thus obtain always terminates. Without using that tri
k we 
ould have su
ha A-path inde�nitely turning around the 
y
le, growing on one side and being destroyed on the otherside.We will now sket
h the proof of Theorem 1 for 
y
les. Due to the la
k of spa
e our intent is toillustrate here the proof te
hniques whi
h are used for the general 
ase. Let P = x1 : : : ; xp be a markedpath in G (that is whose all edges are marked). Let us 
all the label of P the word �(x1): : : : :�(xp).We denote by U�1 the mirror image of any rational language U .Claim 2 In every derivation sequen
e in R the labels of the marked paths are of the form U�1:A:U ,U�1:A:V, V�1:A:U , U�1:AX:X� or AX:X�, where U = a�(" + (ax?)+:B) and V = (ax)+:(ax?)�:B.Moreover, all the verti
es whi
h are not in
ident to a marked edge have label A, B or X.Proof. It suÆ
es to 
he
k these invariants for every rule in R. 2Claim 3 The system R is noetherian.



I. Litovsky, Y. M�etivier and E. Sopena 5Proof. Let (G;�) be a graph whith n verti
es labelled on fA;Bg. For every rational language U let�(U) denote the total number of verti
es of all (maximal) paths in G whose label is in U . The tuple :( jGjB + jGjB + jGjA; jGjAX ; n��(AX:X�); �(AX:X�);�(A:(ax)+:(ax?)�:B); n��(A:(ax)�); n��((ax?)�); n��(a�) )is then a noetherian order 
ompatible with the system R [3℄ : every 
omponent is positive and if we
onsider the usual lexi
ographi
 order on tuples, every rule inR de
reases this quantity. The followingtable gives for every rule the 
omponent of this tuple whi
h is de
reased (in every 
ase the previous
omponents are un
hanged) :Rule : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Component : 8 8 1 7 7 1 6 5 1 3 3 2 2 4 4Thus every derivation sequen
e in R starting from a graph G labelled on fA;Bg is �nite. 2Claim 4 If (G;�) is an irredu
ible graph then either (1) all its verti
es are X-labelled or (2) all itsverti
es are X- or B-labelled or (3) all its verti
es are a- or A-labelled.Proof. Using Claim 2 it is not diÆ
ult to dedu
e the following : if G has a A-labelled vertex thenthe rule R9 is appli
able ; if G has a ax?-labelled vertex then one of the rules R5, R6, R7 or R11 isappli
able ; if G has a ax-labelled vertex then one of the rules R7, R8 or R9 is appli
able ; if G has aAX-labelled vertex then one of the rules R10, R11, R12 or R13 is appli
able ; if G has a AX-labelledvertex then one of the rules R14 or R15 is appli
able ; if G has a X-labelled vertex the rule R14 isappli
able ; if G has a B-labelled vertex then one of the rules R8, R9 or R12 is appli
able . Moreover,if G has some B-labelled verti
es together with some a- or A-labelled verti
es then one of the rulesR3 or R4 is appli
able. 2Claim 5 Let G and G0 be two labelled graphs su
h that G R G0. ThenjGjA + jGjA � jGjB � jGjB = jG0jA + jG0jA � jG0jB � jG0jBProof. This quantity is 
learly preserved by every rule in R. 2Let us now de�ne the following �nal 
onditions : }X = :�A ^ :�B , }A = �A. By using theprevious 
laims one 
an prove that the two re
ognizers (R; }X) and (R; }A) satisfy the requirementsof Theorem 1 : let (G;�) be any graph whose verti
es are labelled on fA;Bg and (G;�0) be anyR-irredu
ible form of (G;�). By Claim 4 and Claim 5 we know that either (G;�0) has only X-labelled verti
es (in this 
ase j(G;�)jA = j(G;�)jB) or (G;�0) has only X- and B-labelled verti
es(in this 
ase j(G;�)jA < j(G;�)jB) or (G;�0) has only X-, a- and A-labelled verti
es (in this 
asej(G;�)jA > j(G;�)jB). Note that in this latter 
ase we know by Claim 2 that (G;�0) has at least oneA-labelled vertex. Moreover, the �nal number of A-paths is exa
tly the di�eren
e between the numberof initially A- and B-labelled verti
es.3.2 The general 
aseFor the general 
ase we simply use A-trees instead of A-paths. Those trees will be dire
ted (theorientation of any tree 
an be simulated by using three additional labels, see [3℄) and rooted at a A-,A- or AX-labelled vertex. The relabelling system is quite more 
omplex but the basi
 idea is stillthe same : every A-tree try to neutralize a B-labelled vertex among those whi
h are neighbours of itsverti
es. When su
h a neutralization o

urs, the whole A-tree is destroyed and all its verti
es be
omeX-labelled.



6 Che
king global graph properties by means of lo
al 
omputations4 Impossibility resultLet (G;�) be a labelled graph and x a vertex of (G;�). The 
entered ball BG(x; k) of radius k isthe subgraph of (G;�) indu
ed by those verti
es whi
h are at distan
e at most k from x. Let k be apositive integer. We say that a graph G is a k�
overing of a graph G0 via a mapping 
 from V (G)onto V (G0) if 
 is a surje
tive homomorphism su
h that for every vertex v of V (G), the restri
tion of
 to BG(v; k) is an isomorphism between BG(v; k) and BG0(
(v); k): In [4℄ the following is proved :Theorem 6 [4℄ Every 
lass of 
onne
ted graphs re
ognizable by lo
al 
omputations is 
losed under
overings.Using that, we easily obtain :Theorem 7 Let A and B be two labels, let m > 0 be an integer ; the 
lass of labelled 
onne
ted graphsG su
h that jGjA > jGjB �m (resp. jGjA = jGjB �m) is not re
ognizable by lo
al 
omputations, evenin a non deterministi
 way.Proof. It suÆ
es here to 
onsider the 
ase of 
y
les : if C = (x0x1 : : : xp�1; �) is a labelled 
y
le onp > k verti
es, the labelled 
y
le C 0 = (y0y1 : : : y2p�1; �0), with �0(yi) = �(xi mod p), is a k-
overing ofC. Suppose that there exists a re
ognizer for the family of graphs G su
h that jGjA > jGjB �m (resp.jGjA = jGjB �m). By Theorem 6, if this re
ognizer a

epts C then it also a

epts C 0, a 
ontradi
tionsin
e jC 0jA � jC 0jB = 2(jCjA � jCjB). 25 Con
luding remarks and open questionsBy slightly modifying our system (we mean by using B-trees instead of isolated B-labelled verti
es)we obtain a new system su
h that in any irredu
ible graph every vertex knows the result of the
omputation (if a vertex has a A- or a-label (resp. B- or b-) then label A (resp. B) has the majorityand if a vertex has a X-label then there is no majority). But no vertex is able to dete
t the terminationof the 
omputation. Whether a system with su
h a lo
al termination dete
tion property exists or notis still an open question.Our main 
on
ern here was the existen
e or non-existen
e of systems solving the majority problem.The design of systems a
hieving a better time 
omplexity has not been yet 
onsidered (this 
omplexity
an be measured by the average length of a derivation sequen
e). This 
omplexity 
ould maybe beimproved by using A-, B- and X-trees, leading then to more 
ompli
ated systems.Consider a �nite set C = fA1; : : : ; Akg of labels. By 
ombining several 
opies of our system (thatis by using tuples of labels) we 
an de
ide for every graph G whether jGjA1 > MaxfjGjAi ; 2 � i � kg(resp. jGjA1 = jGjAi , 8 i, 2 � i � k) or not. However, we do not know whether it is possible or notto re
ognize those labelled graphs G satisfying jGjA > k� jGjB (resp. jGjA = k� jGjB). Note that inthis 
ase the k-
overing argument fails.Referen
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