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Abstract

An incidence in a graph G is a pair (v, e) where v is a vertex of G and e is an edge of G
incident to v. Two incidences (v, e) and (u, f) are adjacent if at least one of the following
holds: (i) v = u, (ii) e = f , or (iii) edge vu is from the set {e, f}. An incidence coloring
of G is a coloring of its incidences assigning distinct colors to adjacent incidences. The
corresponding chromatic number is called the incidence chromatic number.

It was proved that at most ∆(G) + 5 colors are enough for an incidence coloring of any
planar graph G except for ∆(G) = 6, in which case at most 12 colors are needed. It is also
known that every planar graph G with girth at least 6 and ∆(G) ≥ 5 has incidence chromatic
number at most ∆(G) + 2.

In this paper we present some results on graphs regarding their maximum degree and
maximum average degree. We improve the bound for planar graphs with ∆(G) = 6. We show
that the incidence chromatic number is at most ∆(G) + 2 for any graph G with mad(G) < 3
and ∆(G) = 4, and for any graph with mad(G) < 10

3 and ∆(G) ≥ 8.

Keywords: Incidence coloring, Incidence chromatic number, Planar graph, Maximum average
degree.
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1 Introduction

Incidence coloring was defined by Brualdi and Massey [2] as a tool to study strong edge colorings
of bipartite graphs. However, soon after its definition, the coloring itself attracted the attention
of several researchers from different points of view.

An incidence in a graph G is a pair (v, e) where v is a vertex of G and e is an edge of G
incident to v. Two incidences (v, e) and (u, f) are adjacent if at least one of the following holds:
(i) v = u, (ii) e = f , or (iii) edge vu is from the set {e, f}. An incidence coloring of G is a
coloring of its incidences assigning distinct colors to adjacent incidences. The corresponding
chromatic number is called the incidence chromatic number of G, denoted by χi(G).

Brualdi and Massey [2] conjectured that χi(G) ≤ ∆(G) + 2 for any graph G, where ∆(G)
denotes the maximum degree ofG. The conjecture was disproved by Guiduli [3], who showed that
Paley graphs with maximum degree ∆ have incidence chromatic number at least ∆ + Ω(log ∆).
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However, for many of the commonly considered graph classes the incidence chromatic number
is bounded by ∆ + c for some constant c, and several papers are devoted to the proof of this
type of result, including the following one.

Theorem 1 (Maydanskiy, 2005). Five colors suffice for an incidence coloring of any subcubic
graph.

In order to obtain upper bounds on the incidence chromatic number, in many cases, stronger
statements concerning incidence colorings with further local constraints are proved, allowing to
apply induction in a more efficient way.

An incidence coloring of a graph G using k colors is an incidence (k, p)-coloring of G if for
every vertex v of G, the number of colors used for coloring the incidences of the form (u, uv) is
at most p.

Hosseini Dolama, Sopena and Zhu [5] proved that every planar graph with maximum de-
gree ∆ admits an incidence (∆ + 7, 7)-coloring and, thus, has incidence chromatic number at
most ∆ + 7. This bound was further improved to ∆ + 4 for triangle-free planar graphs [6], to
∆ + 3 (resp. ∆ + 2, ∆ + 1) for planar graphs of girth at least 6 (resp. 11, 16) [6]. The last result
was further improved to girth 14 [1].

Some of these results were proved for more general graph classes, namely graphs with
bounded maximum average degree. The average degree of a graph G is the mean value of
the degrees of its vertices. The maximum average degree mad(G) of a graph G is then defined
as the maximum value of the average degrees of its subgraphs. When G is a planar graph with
girth g, it is folklore to establish the inequality mad(G) < 2g

g−2 .
In [6] the authors proved the following result.

Theorem 2 (Hosseini Dolama, Sopena, 2005). Let G be a graph with mad(G) < 3 and ∆(G) ≥
5. Then G admits a (∆(G) + 2, 2)-incidence coloring. Therefore, χi(G) ≤ ∆(G) + 2.

In section 2 we extend this result to mad(G) < 3 and ∆(G) ≥ 4 (Theorem 4). Moreover, we
present another result for graphs with larger maximum average degree (Theorem 5).

Recall that the star arboricity of an undirected graph G is the smallest number of star forests
needed to cover G. Yang [8] observed the following: let G be an undirected graph with star
arboricity st(G), let s : E(G)→ {1, . . . , st(G)} be a mapping such that s−1(i) is a forest of stars
for every i, 1 ≤ i ≤ st(G), and let λ be a proper edge coloring of G. Now define the mapping f
by f(u, uv) = s(uv) if v is the center of a star in some forest s−1(i) (if some star is reduced to one
edge, we arbitrarily choose one of its end vertices as the center) and f(u, uv) = λ(uv) otherwise.
It is not difficult to check that f is indeed an incidence coloring of G. Therefore, thanks to the
classical result of Vizing, the relation χi(G) ≤ ∆(G) + st(G) (resp. χi(G) ≤ ∆(G) + st(G) + 1)
holds for every graph of class 1 (resp. of class 2). (Recall that the chromatic index χ′(G) of any
graph G is either ∆(G) – such graphs are said to be of class 1 – or ∆(G) + 1 – such graphs are
said to be of class 2). The facts that planar graphs with ∆ ≥ 7 are class 1 [7] and that the star
arboricity of any planar graph is at most 5 [4] led to the following result.

Theorem 3 (Yang, 2007). If G is a planar graph with ∆(G) 6= 6, then χi(G) ≤ ∆(G) + 5.
If ∆(G) = 6, then χi(G) ≤ ∆(G) + 6.

Yang [8] proposed the following question: Are ∆(G) + 5 colors enough for graphs with
maximum degree 6? We give a positive answer to this question (in a stronger form) in Section 3.

2 Graphs with bounded maximum average degree

In this section we present two results: one of them extends Theorem 2, the other one concerns
graphs with larger maximum average degree.
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Theorem 4. Let G be a graph with mad(G) < 3 and ∆(G) ≥ 4. Then G admits a (∆(G)+2, 2)-
incidence coloring. Therefore, χi(G) ≤ ∆(G) + 2.

Theorem 5. Let G be a graph with mad(G) < 10
3 and ∆(G) ≥ 8. Then G admits a (∆(G)+2, 2)-

incidence coloring. Therefore, χi(G) ≤ ∆(G) + 2.

2.1 Reducible configurations

We first introduce some additional notation used in the proofs of both results. We denote by
degG(v) the degree of a vertex v in a graph G. By a k-vertex, a k+-vertex and a k−-vertex, we
mean a vertex of degree k, at least k and at most k, respectively. A (k1, k2)-edge is an edge v1v2

such that for every i ∈ {1, 2}, vi is a ki-vertex. More generally, a (k1, k2, . . . , k`)-path (resp. a
(k1, k2, . . . , k`)-cycle), ` ≥ 3, is a path (resp. a cycle) v1v2 . . . v` such that for every i, 1 ≤ i ≤ `,
vi is a ki-vertex.

Let c be a partial incidence coloring of a graph G. We say that a color a is admissible for an
(uncolored) incidence (v, e) in G if there is no incidence colored by a adjacent to (v, e); otherwise
the color a is forbidden. We denote F c(v, e) the set of forbidden colors for the incidence (v, e).

Let v be a vertex of G. We set Iv := {(v, uv) | uv ∈ E(G)} and Av := {(u, uv) | uv ∈ E(G)}.
If c is a partial incidence coloring of G, we necessarily have c(Iv) ∩ c(Av) = ∅ for each vertex v
of G. Moreover, if c is a partial (k, 2)-incidence coloring of G, then |c(Av)| ≤ 2. By Ac(v), we
will denote a set of exactly two colors such that Ac(v) ⊇ c(Av) and Ac(v) ∩ c(Iv) = ∅.

We now prove a series of lemmas.

Lemma 1. Let G be a graph, v be a 1-vertex in G and k ≥ ∆(G) + 2 be an integer. If G \ v
admits a (k, 2)-incidence coloring, then G also admits a (k, 2)-incidence coloring.

Proof. Let c be a (k, 2)-incidence coloring of G \ v, and w denote the unique neighbor of v in
G. We will extend c to a (k, 2)-incidence coloring of G. Since |F c(w,wv)| = |c(Iw) ∪ c(Aw)| ≤
∆(G)− 1 + 2 = ∆(G) + 1, there is an admissible color a for (w,wv). We then set c(w,wv) = a
and c(v, vw) = b for any color b in Ac(w). Clearly, c is a (k, 2)-incidence coloring of G.

Lemma 2. Let G be a graph, uv be a (2, (∆(G)−1)−)-edge in G and k ≥ ∆(G)+2 be an integer.
If G \ uv admits a (k, 2)-incidence coloring, then G also admits a (k, 2)-incidence coloring.

Proof. Let w be the other neighbor of u in G and c be a (k, 2)-incidence coloring of G\e; e = uv.
We extend c to a (k, 2)-incidence coloring of G in the following way. We first uncolor (u, uw).
We then set c(u, e) = a, for some color a ∈ Ac(v) \ c(w, uw), and c(u, uw) = b for some color
b ∈ Ac(w)\ c(u, e). Finally, since |F c(v, e)| = |c(Iv)∪ c(Av)∪{c(u, uw)}| ≤ (∆(G)−2) + 2 + 1 =
∆(G) + 1 < k, there is an admissible color for (v, e), so that we can complete the coloring.

Lemma 3. Let G be a graph with no 1-vertices and k ≥ ∆(G) + 2 be an integer. Let v be an
s-vertex in G, s ≥ 3, adjacent to at most one 3+-vertex, and let ui, 1 ≤ i ≤ s − 1, denote the
2-neighbors of v. If the graph G \ {vui, 1 ≤ i ≤ s− 1} admits a (k, 2)-incidence coloring, then G
also admits a (k, 2)-incidence coloring.

Proof. Let ei = vui, fi = uiwi be the other edge incident to ui for every i, 1 ≤ i ≤ s−1, and us be
the last neighbor of v and es = vus. Let c be a (k, 2)-incidence coloring of G\{ei, 1 ≤ i ≤ s−1}.
We extend c to a (k, 2)-incidence coloring of G as follows.

We first uncolor (v, es) and all incidences (ui, fi), 1 ≤ i ≤ s− 1. Let ai = c(wi, fi), 1 ≤ i ≤
s − 1. Since we have k colors and k ≥ ∆(G) + 2, there is a color t not in {ai, 1 ≤ i ≤ s − 1};
moreover, we can choose t such that t /∈ Ac(w1). We then set c(ui, uiv) = t, 1 ≤ i ≤ l − 1.

Next, for every i, 2 ≤ i ≤ s− 1, we set c(ui, fi) = ti with ti ∈ Ac(wi) \ {t}, c(v, es) = ts with
ts ∈ Ac(us) \ {t}, and c(u1, f1) = t1 with t1 ∈ Ac(w1) \ {t2}.

Now F c(v, ei) = {t, c(ui, fi), c(us, es), c(v, es)}. Therefore we have at least k − 4 ≥ s − 2
admissible colors for every uncolored incidence. As c(u1, f1) 6= c(u2, f2), we can choose at least
s−1 distinct colors bi such that bi /∈ F c(v, ei), and we set c(v, ei) = bi for every i, 1 ≤ i ≤ s−1.
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Lemma 4. Let G be a graph with ∆(G) ≥ 7, k ≥ ∆(G) + 2 be an integer, and C = v1v2v3 be
a (3, 3, 3)-cycle in G. If the graph G \ {v1v2, v2v3, v3v1} admits a (k, 2)-incidence coloring, then
G also admits a (k, 2)-incidence coloring.

Proof. Let c be a (k, 2)-incidence coloring of G \ {v1v2, v2v3, v3v1}. Let ui be the neighbor of
vi not included in C, 1 ≤ i ≤ 3. We extend c to a (k, 2)-incidence coloring of G as follows.
Let ai = c(ui, uivi), bi = c(vi, viui), 1 ≤ i ≤ 3. Since k ≥ 9, there are three colors c1, c2, c3 /∈
{ai, 1 ≤ i ≤ 3} ∪ {bi, 1 ≤ i ≤ 3}. We then color the six incidences of C, cyclically, with colors
c1, c2, c3, c1, c2, c3.

Lemma 5. Let G be a graph with ∆(G) ≥ 8, k ≥ ∆(G) + 2 be an integer, and P = u1v1v2u2 be
a (4−, 3, 3, 4−)-path in G. If the graph G \ {u1v1, v1v2, v2u2} admits a (k, 2)-incidence coloring,
then G also admits a (k, 2)-incidence coloring.

Proof. Let c be a (k, 2)-incidence coloring of G \ {u1v1, v1v2, v2u2} and wi be the third neighbor
of vi, i = 1, 2. We will extend c to a (k, 2)-incidence coloring of G.

We can assume that {c(wi, wivi), c(vi, viwi)} 6= Ac(ui), i = 1, 2 (otherwise we recolor (vi, viwi)
using the other color from Ac(wi)). Thus we can set c(vi, viui) = ti with ti ∈ Ac(ui) \
{c(wi, wivi), c(vi, viwi)}, i = 1, 2.

We now consider three cases:

1. c(w2, w2v2) /∈ c(Iv1) ∪ c(Av1).
We first set c(v1, v1v2) = c(w2, w2v2). Since k ≥ 10, there exists a color c1 /∈ c(Iu1) ∪
c(Au1) ∪ {c(v1, v1w1), c(v2, v2w2), c(w2, w2v2), c(v2, v2u2)}. We then set c(u1, u1v1) =
c(v2, v2v1) = c1. Since the incidence (u2, u2v2) is adjacent to at most nine other inci-
dences, it can be colored.

2. c(w1, w1v1) /∈ c(Iv2) ∪ c(Av2).
We proceed similarly as in the previous case.

3. c(w1, w1v1) ∈ c(Iv2) ∪ c(Av2) and c(w2, w2v2) ∈ c(Iv1) ∪ c(Av1).
We will color the incidences (u1, u1v1) and (v2, v2v1) with a common color c1, and the
incidences (u2, u2v2) and (v1, v1v2) with a common color c2. Note that we have at most
nine forbidden colors for each of c1 and c2. If we can choose c1 6= c2, we are done. If not,
we necessarily have k = 10, the sets of forbidden colors for c1 and c2 are the same, and
both contain nine distinct colors. Since in this case we have c(w1, w1v1) ∈ c(Iv2) ∪ c(Av2)
and c(w1, w1v1), c(v2, v2u2), c(v2, v2w2) are different (they are different forbidden colors for
c2), we get c(w1, w1v1) = c(w2, w2v2). Without loss of generality, we may assume that
c(w1, w1v1) = c(w2, w2v2) = 9, c(v1, v1w1) = 8, c(v1, v1u1) = 7, c(v2, v2w2) = 6, and
c(v2, v2u2) = 5 (see Figure 1). Then c(Iu2) ∪ c(Au2) = {1, 2, 3, 4, 5} and c(Iu1) ∪ c(Au1) =
{1, 2, 3, 4, 7}. We can replace c(v1, v1u1) with the other color from c(Au1). Now, 7 is no
more forbidden for c2, so we have only eight forbidden colors for c2. Therefore, we can
now choose c1 6= c2 to obtain the desired coloring.

2.2 Discharging rules

2.2.1 Proof of Theorem 4

We prove Theorem 4 by contradiction. Let G be a minimal counterexample (with respect to the
number of vertices) with mad(G) < 3 and ∆(G) ≥ 4. From Lemma 1, 2 and 3 it follows that
δ(G) ≥ 2, every 2-vertex in G is adjacent to two ∆(G)-vertices and every 3+-vertex is adjacent
to at least two 3+-vertices. We will reach a contradiction by using the discharging method.
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Figure 1: A partial incidence coloring of a (4−, 3, 3, 4−)-path

We assign an initial charge ω(v) = degG(v) to each vertex v of G, and we use the following
discharging rule: each 4+-vertex gives 1

2 to each of its 2-neighbors. We shall prove that the new
charge ω′(v) of each vertex v of G is at least 3, which contradicts our assumption mad(G) < 3
(since

∑
v∈G ω

′(v) =
∑

v∈G ω(v)).
Let v be a vertex of G. We consider three cases, according to degG(v):

1. degG(v) = 2.
Every 2-vertex in G is adjacent to two ∆(G)-vertices. Therefore, since ∆(G) ≥ 4, ω′(v) =
2 + 2× 1

2 = 3.

2. degG(v) = 3.
The discharging rule does not involve 3-vertices, thus ω′(v) = ω(v) = 3.

3. degG(v) = d ≥ 4.
Since every d-vertex is adjacent to at most (d−2) 2-vertices, ω′(v) ≥ d− 1

2(d−2) = d+2
2 ≥ 3.

2.2.2 Proof of Theorem 5

We prove Theorem 5 by contradiction. Let G be a minimal counterexample G (with respect
to the number of vertices) with mad(G) < 10

3 and ∆(G) ≥ 8. From Lemma 1, 2, 3, 4 and 5
it follows that δ(G) ≥ 2, every 2-vertex in G is adjacent to two ∆(G)-vertices, every 3+-vertex
is adjacent to at least two 3+-vertices, G does not contain any 3-cycle only on 3-vertices as a
subgraph and G contains no (4−, 3, 3, 4−)-path as a subgraph.

Let us define a cluster as a maximal connected subgraph of G induced on 3-vertices.
We will reach a contradiction by using the discharging method.
We assign an initial charge ω(v) = degG(v) to each vertex v of G, and we use the following

discharging rules:

(R1) Each ∆(G)-vertex gives 2
3 to each of its 2-neighbors.

(R2) Each 4-vertex gives 1
9 to each of its 3-neighbors.

(R3) Each 5+-vertex gives 2
9 to each of its 3-neighbors.

We shall prove that the new charge ω′(v) of each k-vertex v of G, k = 2 or k ≥ 4, is at least
10
3 and that each cluster has average charge at least 10

3 too, which contradicts our assumption
mad(G) < 10

3 .
Let v be a vertex of G. We consider four cases, according to degG(v):

• degG(v) = 2.
Every 2-vertex in G is adjacent to two ∆(G)-vertices. Therefore, ω′(v) = 2 + 2 × 2

3 = 10
3

by R1.
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• degG(v) = 4.
Due to R2, we have ω′(v) ≥ 4− 4× 1

9 = 32
9 > 10

3 .

• degG(v) = d, with 5 ≤ d < ∆(G).
According to R3, vertex v sends a charge at most 2

9 to each of its neighbors. Hence,
ω′(v) ≥ d− 2

9d = 7
9d ≥

35
9 > 10

3 .

• degG(v) = ∆(G).
Each ∆(G)-vertex sends 2

3 to each of its 2-neighbors and at most 2
9 to its other neighbors.

Moreover v is adjacent to at most (∆(G) − 2) 2-vertices and, therefore, we have ω′(v) ≥
∆(G)− 2

3(∆(G)− 2)− 2× 2
9 = 10

3 + 3∆(G)−22
9 > 10

3 .

Finally, we consider a cluster K. The initial charge of K is 3|K|. We will show that the
final charge ω′(K) =

∑
v∈K ω′(v) is at least 10

3 |K|. As G contains no (3, 3, 3)-cycle and no
(4−, 3, 3, 4−)-path, we have only four possibilities for K:

1. K is a single 3-vertex v.
In this case ω′(K) = ω′(v) ≥ 3 + 3× 1

9 = 10
3 .

2. K is a (3, 3)-edge.
By Lemma 5, K is adjacent to at least two 5+-vertices and we have ω′(K) ≥ 2× 3 + 2×
1
9 + 2× 2

9 = 2× 10
3 .

3. K is a (3, 3, 3)-path.
Again by Lemma 5, K has at least four 5+-vertices in its neighborhood and ω′(K) ≥
3× 3 + 1× 1

9 + 4× 2
9 = 3× 10

3 .

4. K is a star on four 3-vertices.
In this case each neighbor of K is a 5+-vertex and ω′(K) = 4× 3 + 6× 2

9 = 4× 10
3 .

3 Graphs with maximum degree 6

Yang [8] proved that χi(G) ≤ ∆(G) + 5 for every planar graph G with ∆(G) 6= 6, using the
relation between the incidence chromatic number, the star arboricity and the chromatic index
of a graph. For planar graphs with ∆(G) = 6 he only proved χi(G) ≤ 12. We improve this
bound and get the following result for a more general class of graphs.

Theorem 6. If G is a graph with ∆(G) ≤ 6 and with no 6-regular component on an odd number
of edges, then χi(G) ≤ 10.

Figure 2: An Eulerian (multi)graph G′ with an additional (multi)edge
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Proof. Let G be a graph with ∆(G) ≤ 6, which has no 6-regular component on an odd number
of edges. Without loss of generality we may assume that G is connected, otherwise we consider
each of its components separately. If G is an Eulerian graph, than we color the edges of an
Eulerian trail T alternately with red and blue, starting at a vertex of degree less than 6 (if there
exists one; otherwise we start at an arbitrary vertex). The subgraphs R and B of G induced by
the sets of red and blue edges, respectively, are subcubic. Hence, by Theorem 1, χi(R) ≤ 5 and
χi(B) ≤ 5. Using two disjoint sets of colors for incidence coloring of the subgraphs R and B,
we obtain an incidence coloring of G with (at most) 10 colors.

If G is connected but not Eulerian, then we add edges joining pairs of vertices of odd degree
in G to obtain an Eulerian (multi)graph G′. Clearly, ∆(G′) ≤ 6. We then assign colors red and
blue alternately to edges of an Eulerian trail T in G′. It is easily seen that the subgraphs R
and B of G′ obtained as before are subcubic, unless G is 6-regular and has an odd number of
edges. We can avoid this by starting a trail T at a vertex of degree less than 6 (if such a vertex
exists) or by some added (multi)edge (see Figure 2). Therefore, we can ensure that R and B are
subcubic. Again, using two disjoint sets of colors for incidence coloring the subgraphs R and B,
we obtain an incidence coloring of G′ (and of G) with (at most) 10 colors.

Therefore, χi(G) ≤ 10.

As a consequence of the previous theorem, we positively answer Yang’s question about planar
graphs with maximum degree 6, even improving the suggested bound:

Corollary 1. Every planar graph G with ∆(G) = 6 satisfies χi(G) ≤ 10.
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