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January 10, 2019

Abstract

The notion of homomorphisms of signed graphs, introduced quite recently, pro-
vide better interplay with notion of minor and thus of high importance in graph
coloring. A newer, but equivalent, definition of homomorphisms of signed graph,
proposed jointly by authors of this paper and Tom Zaslavsky, leads to a basic no
homomorphism lemma. According to this definition, a signed graph (G, σ) maps to
a signed graph (H,π) if there is a mapping φ of vertices and edges of G to vertices
and edges of H (respectively) which preserves adjacencies, incidences, and signs of
closed walks. For ij = 00, 01, 10, 11, let gij(G, σ) be the length of a shortest closed
walk of (G, σ) which is, positive and of even length for ij = 00, positive and of odd
length for ij = 01, negative and of even length for ij = 10, negative and of odd
length for ij = 11, For each ij if there is no closed walk of corresponding type, we
define gij(G, σ) = ∞. If G is bipartite, then g01(G, σ) = g11(G, σ) = ∞. In this
case, g10(G, σ) is certainly realized by a cycle of G, and it will be referred to as
unbalanced-girth of (G, σ).

It then follows that if (G, σ) admits a homomorphism to (H,π), then we have
gij(G, σ) ≥ gij(H,π) for ij ∈ {00, 01, 10, 11}.

Studying the restriction of homomorphisms of signed graphs on sparse families,
in this paper we first prove that: for a given signed graph (H,π), there is a positive
value of ε such that if G is connected graph of maximum average degree less than
2 + ε, and if σ is a signature of G such that gij(G, σ) ≥ gij(H,π) for all ij ∈
{00, 01, 10, 11}, than (G, σ) admits a homomorphism to (H,π).

For (H,π) being the signed graph on K4 with exactly one negative edge, we
show that ε = 2

3 works and that this is the best possible value of ε. For (H,π) being
the negative cycles of length 2g, denoted UC2g, we show that ε = 1

2g−1 works.
As a bipartite analogue of Jaeger-Zhang conjecture we conjecture that every

signed bipartite planar graph (G, σ) satisfying gij(G, σ) ≥ 4g − 2 admits a ho-
momorphism to UC2g. We show that 4g − 2 cannot be strengthened, and, sup-
porting the conjecture, we prove it for (G, σ) satisfying the weaker condition of
gij(G, σ) ≥ 8g − 2.

In the course our work we provide a duality theorem to decide if a 2-edge-colored
graph admits a homomorphism to certain class of 2-edge-colored signed graphs.

Keywords: Signed graphs; homomorphism, sparse graphs, planarity.
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1 Introduction

One of the earliest observation in the theory of (proper) vertex coloring of graphs is that
if any subgraph of a graph G has a vertex of degree at most k, then G is (k+1)-colorable.
Many efforts are devoted to improve, generalize, and strengthen this early observation.
Brook’s theorem is one such result which classifies the case when k+ 1 colors are actually
needed. The four color theorem could also be seen as an improvement as, by the Euler
formula, there is a vertex of degree at most five in every planar graph, and thus the trivial
bound of 6 is decreased to 4. So is Grötzsch’s theorem, as every triangle-free planar graph
has a vertex of degree at most 4, and is thus 5-colorable, but the theorem decreases this
bound to 3.

Further studies and recent developments are based on the notions such as minor,
maximum average degree of graph, denoted mad(G), various coloring notions such as
circular and fractional coloring and more generally the notion of graph homomorphism.

Considering the general notion of homomorphisms of graphs, the following is easily
observed (we denote by Cn the cycle of order n).

Lemma 1. There exists a homomorphism of C2`+1 to C2k+1 if and only if ` ≥ k.

Therefore, if there is a homomorphism of G to H, then the odd-girth of G is at
least the odd-girth of H. This provides an easy condition upon which one can guarantee
the non-existence of a homomorphism from G to H. While this condition is not always
sufficient, under certain conditions it might be. Some of the well-known coloring results
or conjectures in graph theory can be viewed in this context. A notable example is
the following conjecture, whose first case, and the only case proven so far, is Grötzsch’s
theorem.

Conjecture 2 (Jaeger-Zhang[9]). Every planar graph of odd-girth 4k + 1, k ≥ 1, admits
a homomorphism to C2k+1.

For required definitions we refer to Section ??, but we would like to note that the
same conjecture with a girth condition rather than an odd-girth condition is the dual
statement of a conjecture of Jaeger on theory of flows on graphs, when restricted to
the class of planar graphs. That the girth condition can be relaxed to a condition on
the odd-girth is proposed by C.Q. Zhang. The folding lemma of W. Klostermeyer and
C.Q. Zhang [9] is supporting evidence of this suggestion and implies a similar condition
on the average degree. Partial results are obtained in [?, ?].

Results of this type can normally be rephrased in the following general framework:
“Given a non bipartite graph H, any sufficiently enough sparse graph G either admits a
homomorphism to H, or has a small odd cycle.”

For each specific problem, working on a given family of graphs (such as planar graphs,
or a minor-closed classes of graphs) and with a fixed H or a fixed family of H’s, one would
like to know precisely “how sparse is enough”. For a specific conjecture in this regard
when H is just an odd cycle and some related question we refer to in [5] (Section 2).

A notion of graph theory which provides room for extensions and strengthening of
classical graph theory results is the notion of signed graph. This notion, among others,
provide a stronger and more natural connection between theories of minor and coloring.
Using this notion, colorings and homomorphisms of (signed) bipartite graphs are no longer
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a matter of triviality. Indeed, as we will describe later, the notion of homomorphism
restricted to signed bipartite graphs captures the classical theory of homomorphisms of
graphs.

In this work, we initiate the study of coloring and homomorphism problems for sparse
signed graphs, with particular emphasize on the bipartite case. Among other things, we
propose a bipartite analogue of Jaeger-Zhang conjecture, and we provide partial results
supporting our conjecture.

2 Notation and terminology

Graphs are finite and simple, i.e., without loops and without parallel edges. For classical
graph theory we use the standard notation, mainly following [1].

The main objects of this study are signed graphs. As the theories on signed graphs are
under development from a wide range of interests, there are some differences in terminol-
ogy in the existing literature. In this paper we adopt an improved notation introduced in
[4] which fits well with respect to theory of homomorphisms and match most other views
(compared to the recent introduction of the theory in [13]). We start with basic notation
of graphs for clarity.

A graph is a pair (V,E) where V is a set, which normally and certainly in this paper,
is finite, and E is a collection of 2-subsets of V (E could be considered as a multiset when
we speak of a multigraph). Elements of V are referred to as vertices and elements of
E are edges. Thus, using this definition, we do not allow loops. We follow the standard
terminology of graphs. Some precisions are as follows. A vertex of degree k maybe referred
to as a k-vertex. A walk of length k in a graph G is a sequence of (not necessarily distinct)
vertices v0 . . . vk, such that vivi+1 is an edge in G for every i, 0 ≤ i < k. If v0 = vk, we say
the walk is a closed walk. A path is a walk with the additional property that no vertex
appears twice. A close walk where the first vertex is the only repeated vertex is a cycle.

A thread is a path whose internal vertices are all of degree 2 in G. If x and y are
the end vertices of the walk, the path or the thread, we call it an xy-walk, xy-path or
xy-thread, respectively. Length of this path is the length of the thread. Observe that
every edge in G is a walk, a path, and a thread of length 1.

A 2-edge-colored graph is a graph whose edges are assigned one of the two possible
colors (this coloring is not necessarily proper). Assuming E1 and E2 are the color classes,
we will denote the corresponding 2-edge-colored graph by a triplet, namely (V,E1, E2) or
(G,E1, E2), in order to distinguish it from a signed graph.

A signed graph is a graph G together with an assignment of one of the two possible
signs (we mean + or −) to each edge of G. This notion is thus different from that of a
2-edge-colored graph, since {+,−} is a 2-element multiplicative group, which allows us to
speak of positive or negative objects (e.g. subgraphs), using the operation of this group.

One may then use one of the two natural notations to denote a signed graph, namely
either (G, σ), with σ being the function that assigns signs to edges, or (G,Σ), with Σ
being the set of negative edges. We rather use the latter in this paper.

One notion of importance, which distinguishes signed graphs from 2-edge-colored
graphs, is the notion of resigning (also called switching by many authors). Given an
edge-cut [X, Y ] of a signed graph (G, σ), resigning at [X, Y ] consists of multiplying all
edges of [X, Y ] by the negative sign, in other words, it is switching the sign of each edge
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with one end in X and one end in Y . If [X, Y ] is of the form [{x}, V (G) \ {x}] for some
vertex x of G, we will say that we resign at x rather than we resign at [{x}, V (G) \ {x}].
It is then easy to observe that resigning at any cut [X, Y ] is equivalent to resigning at all
vertices of X or resigning at all vertices of Y .

Let u and v be two (not necessarily distinct) vertices of a signed graph (G, σ), and W
be a uv-walk in G (recall that edges can be used more than once in a walk). The sign of
such a walk is simply the product of the sign of its edges, each edge appearing more than
once being counted with the corresponding multiplicity.

Observe that resigning at in internal vertex of walk does not change the sign of the
walk. Thus sign of closed walks are invariant under the operation fo resigning. However,
if W is not a closed walk, then resigning at exactly one end will change the sign of W .

Together with parity of the length, this lead to four distinguishable types of closed
walks: positive and of even length (type 00), positive and of odd length (type 01), negative
and of even length (10), negative and of odd length (type 11).

This type notation is convenient in the following sense: if W1 is a close walk of type
ab start at u and W2 is a close walk of type cd also start at u, then the uw-walk W1∪W2,
obtained by concatenating W1 and W2, is of the type ab+ cd (where the addition in taken
in the additive group Z2 × Z2).

A positive cycle is said to be balanced whereas a negative cycles is referred to as
unbalanced. An unbalanced cycle of length l is denoted by UCl.

Structures whose sign is invariant under resigning, specially closed walks, are the key
to our study of homomorphisms. Two signatures σ1 and σ2 on a same graph G are said
to be equivalent if one is obtained from the other by a resigning. It is easily observed that
this induces an equivalence relation on the class of all signatures on G. For each family
of equivalent signatures, the set of balanced cycles is fixed. A key lemma of Zaslavsky
is that the converse is also true, i.e., the set of balanced cycles uniquely determines the
equivalent classes of signatures.

Lemma 3 (Zaslavsky [17]). Given two signatures σ1 and σ2 of a graph G, σ1 is a resigning
of σ2 if and only if the sets of balanced (or, equivalently, unbalanced) cycles of (G, σ1) and
(G, σ2) are the same.

We may now define the key notions of this work: homomorphisms of graphs, of 2-edge-
colored graphs and of signed graphs. We emphasize on the difference between homomor-
phisms of 2-edge-colored graphs and of signed graphs, but we will indeed take advantage
of the strong relation between these two notions when proving our results.

Definition 4. Given two graphs G and H, a homomorphism of G to H is a mapping
φ which maps vertices of G to vertices of H, edges of G to edges of H, and such that
it preserves adjacency and incidence, i.e., φ(x)φ(y) ∈ E(H) whenever xy ∈ E(G), and
φ(x) ∈ φ(e) (in H) whenever x ∈ e (in G).

If G and H are both 2-edge-colored graphs, then a homomorphism of G to H is a
homomorphism of the underlying (uncolored) graphs which preserves the colors as well.

Given signed graphs (G, σ) and (H, π), a homomorphism of (G, σ) to (H, π) is a ho-
momorphism of G to H which preserves the balance of all closed walks.

In all of three of the definitions above if the underlying graphs are simple (which will
be the case in this study), then we can define a homomorphism to be a mapping of vertices
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which preserves adjacency. For 2-edge-colored graphs we require, furthermore, that the
mapping preserves the color of edges, and for signed graphs we require that the mapping
preserves the signs of closed walks. Next we show a strong connection between these two
conditions.

Theorem 5. A signed graph (G, σ) admits a homomorphism to a signed graph (H, π) if
and only if there is a resigning (G, σ′) of (G, σ) and a homomorphism of G to H which
preserves the sign of the edges with respect to σ′ and π.

One direction of this theorem is easy, a sign preserving mapping of (G, σ′) to (H, π)
certainly preserves signs of closed-walks and these signs are the same in (G, σ) and (G, σ′).
On the other hand if there is a homomorphism φ of (G, σ) to (H, π), defining σ′(e) =
π(φ(e)) we get a signature σ′ which induces a same sign as σ on all closed walks. Thus,
by Lemma 3, σ′ is a resigning of σ.

We note that one can then take the condition of this theorem as the definition of
homomorphisms of signed graphs. This is indeed the original definition given in [13], and
in the rest of this work we will use this definition. Thus a mapping of signed (simple)
graph (G, σ) to (H, π) will be denoted by a function f = (f1, f2) : {+,−}×V (G)→ V (H),
where for each vertex x of G, f1 specifies if a resigning is done at x or not and f2 specifies
to which vertex of V (H) the vertex x is mapped.

A rather surprising result of [13] is that the restriction of homomorphism on signed
bipartite graphs captures the classic notion of homomorphism of graphs as a special case.
This is shown through the following construction: given a signed graph G, a signed
bipartite graph S(G) is built as follows. For each edge uv of G, first add a parallel edge,
and then subdivide both edges in order to form a 4-cycle (if G has n vertices and m edges,
then S(G) has thus n + 2m vertices and 4m edges). Finally, for each such a 4-cycle, we
assign one negative and three positive signs to its edges. With this construction in mind,
the following is proved in [13].

Theorem 6. Given graphs G and H, there is a homomorphism of G to H if and only if
there is a homomorphism of S(G) to S(H).

It is thus of special interest to study the homomorphism relation on the subclass of
signed bipartite graphs.

A common notion in the theory of homomorphisms is the notion of core which is
defined analogously for each of the structural subjects. A core is a graph (analogously,
a signed or a 2-edge-colored graph) which do not admit a homomorphism to any of its
proper subgraphs. The core of a graph G is then the smallest subgraph of G (with respect
to subgraph inclusion) to which G admits a homomorphism. It is not difficult to show,
in each case, that the core of a graph is unique up to isomorphism.

An automorphism of a signed graph (G, σ) is a homomorphism of (G, σ) to itself which
is one-to-one. A signed graph is said to be vertex transitive if for each pairs x and y of
vertices there is an automorphism which maps x to y. Most important example of vertex
transitive signed graph for this work are unbalanced cycles.

3 Girth and maximum average degree conditions

An advantage of the new definition of homomorphisms of signed graph is an immediate
no-homomorphism lemma which is based on the following definition.
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Figure 1: Signed graphs where gij is given by a closed walk which is not a cycle.

Definition 7. Given a signed graph (G, σ) and ij ∈ Z2
2, the ij-walk-girth of (G, σ),

denoted gij(G, σ), is the length of a shortest closed walk of type ij in (G, σ). When there
is no such a walk, we write gij(G, σ) =∞.

Observe that g00(G, σ) = 2 unless G has no edges in which case g00(G, σ) = ∞. We
note that gij(G, σ) for ij 6= 00 might not be realized by a cycle of G as shown by examples
of Figure 1, however it can be show that for each connected graph, of the three values,
at least two will be realized by a cycle. Furthermore, as shown in [4], in a connected
signed graph (G, σ), of the three values of g01(G, σ), g10(G, σ) and g11(G, σ) we cannot
have exactly one value bing ∞. This leads to three special subclasses where exactly two
of the values are ∞. Of these three, the case that g01(G, σ) = g11(G, σ) =∞ is the class
of signed bipartite graph which is of special important for this work.

We now state a basic no-homomorphism lemma for signed graph:

Lemma 8. If a signed graph (G, σ) admits a homomorphism to a signed graph (H, π),
then we have:

gij(G, σ) ≥ gij(H, π)

for each ij ∈ Z2
2.

It is easy to observe that the conditions of this lemma are far from being sufficient.
However, as we will show in this work, for graphs of small maximum average degree,
these conditions are also sufficient. The bound on the maximum average degree will be
provided as a function of (H, π). This is stated more precisely in the next theorem, but
we first state a folklore lemma on the structure of graphs with small maximum average
degree.

Lemma 9. If G is a connected 2-connected? graph with minimum degree at least 2 and
maximum average degree less than 2 + 2

2+3(d−1) , then either G is a cycle or G contains a
thread of length d.

Theorem 10. For every connected signed graph (H, π), there exists an ε, such that for
each graph G with mad(G) < 2 + ε and any signature of G such that gij(G, σ) ≥ gij(H, π)
we have (G, σ)→ (H, π).
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Proof. To prove Theorem 10 one may first observe that vertices of degree 0 or 1 are of no
importance. Thus, by Lemma 9, either G is a cycle or it contains a long thread.

If G is a cycle, then (G, σ) is a cycle of type, say, ij. As gij(G, σ) ≥ gij(H, π), this
cycle can be mapped to walk of type ij in (H, π). Therefore, by Lemma 9, we may assume
that G has a thread of length d where d is a function of ε which increases when ε tends
to zero.

For the remaining part of the proof we assume gij(H, π) <∞ for all ij ∈ Z2
2. The other

cases are similar and simpler, in each case one may consider (H, π) to be just a cycle and
then apply a simpler version of the following arguments. Recall that diam(H) is the largest
possible distance between two vertices of H. As H is a connected graph, this is a finite
number and a function of H. We take a d which is at least as 2diam(H)+max{gij(H,Pi)}
and, using Lemma 9, we choose an ε so that mad(G) < 2 + ε implies existence of a thread
P of length d in G. Let x and y be the two ends of this thread. Consider the signed graph
(G′, σ′) obtained from (G, σ) by removing internal vertices of P . We may map (G′, σ′) to
(H, π) by induction, let φ be such a mapping. We would like to extend φ to a mapping
of (G, σ) to (H, π). We pay attention that x and y are already mapped and we are not
allowed to resign at these two vertices but we are allowed to resign at internal vertices
of P after which we may choose where to map them. Observe that resigning at internal
vertices of P does not change the sign of P (that is the product of signs of all edges of
P ), furthermore, parity of P is given, thus, employing the terminology of types of closed
walks, we may say P is of type ij for some ij ∈ Z2

2. We may now consider a shortest
path Q in (H, σ) connecting φ(x) and φ(y). If Q is of the same type as P , then we map
P on Q, that is possible because parity and sign of P permits this. Otherwise we choose
a shortest closed walk W of type i′j′ starting at a vertex v of Q such that the walk Q′,
starting form φ(x), going to v on the path Q, then traversing W , then moving to φ(y) on
the path Q is of the same type as P . As we have assumed (H, π) has each type of the
closed walks, and as H is connected, this is possible. Furthermore, by taking a shortest
path and a shortest closed walk, we have insured that Q′ has length at most d. We may
now extend the mapping φ to a mapping of P to Q′.

A challenging question then is to determine the best value of ε for a given (H, π).
This value may be improved by further restriction on the graph (G, σ). For example what
if we consider only planar graphs? Note that, planarity already imposes a condition of
maximum average degree being strictly less than 6. Further conditions on lengths of facial
cycles of a planar graph may improve this bound on the average degree. A sort of dual
question then is the following question of high interest:

Problem 11. Given cij and lij, ij ∈ {01, 10, 11}, satisfying cij ≥ lij what is a smallest
signed graph (H, π) satisfying gij(H, π) ≥ lij such that every planar signed graph (G, σ)
satisfying gij(G, σ) ≥ cij admits a homomorphism to (H, π)?

For example for c10 = c11 = l10 = l11 =∞, c01 = l01 = 3, it is a restatement of the four
color theorem that (K4,+) works. Similarly, if we take c10 = c11 = l10 = l11 =∞, c01 = 5
and l01 = 3, it is a restatement of the Grötzsch theorem that (K3,+) works. Furthermore,
the Jaegr-Zhang conjecture can be restated to the claim that if c10 = c11 = l10 = l11 =∞,
c01 = 4k + 1 and l01 = 2k + 1, then (C2k+1,+) is the answer.

For c10 = l10 = 4 c11 = l11 = c01 = l01 = 3, while a lower bound of 10 on the order of
H is given in [13], an upper bound of 40 is proved in [15], where the authors propose a
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specific signed graph of order 10 as a conjecture.
For c10 = 4 c01 = c11 = 3 and l10 = 2, l01 = 3, l11 = 1, it is a conjecture of Naserasr

and Raspaud that the signed graph on two vertices, consisting of a positive and a negative
edges between two vertices and a negative loop on each vertex works.

The main results of this work can then be seen as providing optimal values in Theo-
rem 10 for specific cases. More precisely, we prove in Section 6 the following result.

Theorem 12. If G is a graph with mad(G) ≤ 8
3

then, for any signature Σ ⊆ E(G),
(G, σ)→ (K4, {e}). Moreover the bound of 8

3
is best possible.

And then in Section 7 studying the case signed bipartite graphs we prove the following
theorem.

Furthermore, as the bipartite analogue of Jaeger-Zhang conjecture, we propose the
conjecture stated next and provide some supporting result for it.

Theorem 13. If G is a bipartite graph with mad(G) < 2 + 1
2g−1 then, for any signature

σ such that g01(G, σ) ≥ 2g, (G, σ)→ (C2g, {e}).

Conjecture 14. Any signed bipartite planar graph (G, σ) of unbalanced-girth at least
4g − 2 admits a homomorphism to UC2g.

The rest of the paper is organized as follows. In the next section, we provide a duality
theorem for mapping 2-edge-colored graphs into (C2g, {e}, E − e). In Section 5 we prove
some properties of minimum counterexamples for our statements. In Section 6 we prove
Theorem 12 and in Section 7 we prove Theorem 13. In Section 8, applying our results
on planar graphs, we provide some support for Conjecture 14. Finally, in Section 9, we
give some examples proving lower claims on some of our results and conjectures being the
best possible.

4 A duality theorem for mapping to a 2-edge-colored

cycle

As a 2-edge-colored homomorphism problem, given a fixed 2-edge-colored cycle C, the
corresponding C-coloring problem, by Feder-Vardi dichotomy conjecture [6], is expected
to be either solvable in polynomial time or to be NP-complete, see [2, 3].

For the case of (C2g, {e}, E − {e}) we show that a duality theorem holds, which in
particular implies a polynomial time algorithm. A polynomial time algorithm is also given
in [2], but our interest is in theoretical applications of the simple and nice duality theorem
which we provide here.

Let (Pn+1, {e1, en}, E − {e1, en}) be a path of length n whose first and last edges are
colored red (or 1), while all other edges are colored blue (or 2). It is easily observed that
there exists a homomorphism of this 2-edge-colored graph to the 2-edge-colored cycle
(C2g, {e}, E−{e}) if and only if either n is even, or n is odd and n ≥ 2g+ 1. Therefore, if
a 2-edge-colored graph (G,E1, E2) admits a homomorphism from (P2`−1, {e1, e2`−1}, E −
{e1, e2`−1}), with ` ≤ g, then it does not admit any homomorphism to (C2g, {e}, E−{e}).
Our claim is that this necessary condition is also sufficient for an input whose underlying
graph is bipartite.
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Theorem 15. Given a bipartite graph G, a 2-edge-colored graph (G,E1, E2), admits
a homomorphism to (C2g, {e}, E − {e}) if and only if there is no homomorphism of
(P2g−1, {e1, e2g−1}, E − {e1, e2g−1}) to (G,E1, E2).

Proof. Observe that for every i, i ≤ g, (P2i−1, {e1, e2i−1}, E−{e1, e2i−1}) and (C2i, {e}, E−
{e}) are both homomorphic images of (P2g−1, {e1, e2g−1}, E −{e1, e2g−1}). Moreover, any
bipartite image of (P2g−1, {e1, e2g−1}, E−{e1, e2g−1}) must contain either (P2i−1, {e1, e2i−1}, E−
{e1, e2i−1}) or (C2i, {e}, E − {e}) as a subgraph for some i ≤ g.

Thus (G,E1, E2) does not admit any homomorphism from (P2g−1, {e1, e2g−1}, E −
{e1, e2g−1}) if and only if it contains neither (P2i−1, {e1, e2i−1}, E−{e1, e2i−1}) nor (C2i, {e}, E−
{e}) as a subgraph, for every i ≤ g. In other words, (G,E1, E2) does not admit any ho-
momorphism from (P2g−1, {e1, e2g−1}, E − {e1, e2g−1}) if and only if no two vertices, each
incident with a red edge, are connected by a blue path of odd length 2`+ 1 where ` < g.
In particular, this implies that (C2g, {e}, E − {e}) does not admit any homomorphism
from (P2g−1, {e1, e2g−1}, E − {e1, e2g−1}), which proves the “only if” part of our theorem.

For the converse, denote by x0y0x1y1 . . . xg−1yg−1 the cycle C2g and assume x0y0 is the
red edge of (C2g, {e}, E−{e}). Consider a 2-edge-colored graph (G,E1, E2), where G is a
bipartite graph with bipartition (X, Y ) and such that (P2g−1, {e1, e2g−1}, E − {e1, e2g−1})
does admit a homomorphism to (G,E1, E2). We need to find a mapping of (G,E1, E2)
to (C2g, {e}, E − {e}). Let X0 (respectively Y0) be vertices in X (respectively Y ) each of
which is incident with a red edge. Let Xi, i ≤ g−2 be the set of vertices in X at distance
i from X1 ∪Y1. Thus a vertex v of X is in Xi if a closest vertex to it in X0 ∪Y0, say f(v),
is at distance i from it. Observe that, because of the bipartition of G, for odd values of i,
f(v) is in Y0 and for even values of i, f(v) is in X0. Let Xg−1 be all the remaining vertices
in X, thus vertices in Xg are at distance g − 1 or more from all vertices in X0 ∪ Y0. We
define Yi, i ≤ g − 1 similarly.

We may now define a homomorphisms of (G,E1, E2) to (C2g, {e}, E −{e}) as follows:
all vertices in Xi are mapped to the vertex xi and all vertices in Yi are mapped to the
vertex yi. It remains to show that red edges of (G,E1, E2) (edges in E1) are mapped to
red edge of (C2g, {e}, E − {e}) (the edge e = x1y1) and that blues edges are mapped to
the blue edges. A red edge in (G,E1, E2) must have, by definition and because of the
bipartition, one end in X0 and the other end in Y0. Thus it maps to x0y0 which is the red
edge of (C2g, {e}, E − {e}). Let e = uv be a blue edge, and assume u ∈ Xi, i < g − 1.
Let f(u) be a closest vertex in X0 ∪ Y0 to u. Recall that whether f(u) is in X0 or in Y0
only depends on the parity of i. Observe that v is a vertex in Y part of G because of
bipartition of G. We claim that v cannot be in Yi. Otherwise, f(v), a closest vertex to v
in X0 ∪ Y0, must be in the part which f(u) is not. Then the walk composed of a shortest
connection from f(u) to u, edge uv and a shortest connection from v to f(v) fits the parity
condition to be the image of (P2g−1, {e1, e2g−1}, E−{e1, e2g−1}), but this path cannot map
to (G,E1, E2). Thus, considering the triangular inequality, the vertex v has to be either
in Yi−1 or Yi+1. Since both yi−1xi and xiyi+1 are blue edges of (C2g, {e}, E − {e}), uv is
mapped to a blues edge and this this type of edges are fine as well. It only remains to
consider a blue uv where u ∈ Xg−1. In this case, again by the triangular inequality, either
v ∈ Yg−2 or v ∈ Yg−1, as yg−2xg−1 and xg−1yg−1 are both blues edges of (C2g, {e}, E−{e})
we are done with this case as well.

In relation to signed graph homomorphisms, we observed that any unbalanced cycle

9



can be resigned in such a way that it contains a single negative edge. Therefore, the
question of deciding whether a signed bipartite graph admits a homomorphism to an
unbalanced cycle UC2g amounts to finding an equivalent signature which does not induce
a (Pn+1, {e1, en}, E − {e1, en}) structure.

However, unless P = NP , this would not be an easy task as it is shown in [3, 7]
that this homomorphism question, in contrast to its 2-edge-colored counterpart, is an
NP-complete problem.

As an application of Theorem 15, we have the following result.

Theorem 16. A signed bipartite graph (G,Σ) maps to (C4, {e}) if and only if it maps to
(K4, {e}).

Proof. Since (C4, {e}) is a subgraph of (K4, {e}), if (G,Σ) maps to (C4, {e}) then it also
maps to (K4, {e}). Conversely, suppose that (G, σ) maps to (K4, {e}) under the signa-
ture Σ. It follows that (G,Σ) cannot contain any positive edge xy such that both x and y
are incident with a negative edge. Assuming G is bipartite, this property corresponds to
the hypothesis of Theorem 15 for g = 2, and thus (G, σ), with this particular signature,
maps to (C4, {e}).

5 Minimal elements

A standard technique to prove results of the type we consider in this work is to consider
a minimum counterexample, prove some properties that such an graph must satisfy, and
finally derive a contradiction. The minimality of such counterexample can be viewed in
two ways. The first one is to say that no subgraph of our minimal counterexample is a
counterexample, which, in particular, says that a minimal counterexample is a core. The
second one is to say that no smaller member of the class of graphs we are working with
is a counterexample. This, in particular, implies that no (proper) homomorphic image of
our minimal counterexample belongs to the considered class of graphs.

In view of the former case, i.e., a minimum counterexample necessarily being a core, we
will show here that certain subdivisions of K4 cannot be a core. In view of the latter case,
Klostermyer and Zhang developed in [9] a so-called “folding lemma” for homomorphism
problems on the class of planar graphs, which implies that every planar graph of odd girth
2k+1 has a planar homomorphic image for which in every planar embedding every face is
a (2k+1)-cycle. An analogue of this lemma for the class of signed bipartite planar graphs
is developed in [12] which would also be of importance for the part of our work which
deals with this subclass of signed graphs. We thus restate this lemma and its corollary
below.

Lemma 17 (Naserasr, Rollová and Sopena [12]). Let (G, σ) be a signed bipartite graph
of unbalanced-girth 2g, together with a planar embedding. If (G, σ) has a facial cycle C
which is not an unbalanced cycle of length 2g, then there exist two vertices x and y of C,
at distance two from each other, such that the planar signed graph obtained from (G, σ)
by identifying x and y is a homomorphic image of (G, σ) with unbalanced-girth 2g.

Corollary 18. Every signed planar bipartite graph of unbalanced-girth 2g admits a planar
homomorphic image of unbalanced-girth 2g where in every planar embedding every face is
an unbalanced cycle of length exactly 2g.

10
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Figure 2: Subdivision of K4

Thus, for instance, a minimal counterexample to Conjecture 14 should be a signed
bipartite planar graph such that every facial cycle of any of its planar embeddings is an
unbalanced cycle of length exactly 4g − 2.

A subdivision of K4 is a graph obtained by replacing some or all edges of K4 by threads
connecting their end points. A signed subdivision of K4 is any signed graph based on a
subdivision of K4. A planar drawing of a subdivision of K4 has four facial cycles. As the
number of unbalanced faces must be even (since each negative edge changes the balance
of two incident faces), there are essentially three different types of signed subdivisions of
K4, namely those having two, four, or no unbalanced faces. We are interested in the case
where the number of unbalanced faces is two, and we want to determine when such a
signed subdivision of K4 is a core. The next two lemmas give an answer to this question
for two particular cases, and will be used in Section 7 to prove Theorem 13.

Let
−−−−−
K4 be a subdivision of K4 whose (main) vertices are a, b, c and d (see Figure 2).

For every x, y ∈ {a, b, c, d}, x 6= y, let Pxy be the path which represents the edge xy, and
let Lxy be the length of Pxy. Moreover, let Cxyz = Pxy + Pyz + Pzx.

In [14] all subdivisions of K4 which are cores are classified. The following case of that
result is used in this work.

Lemma 19. Let
−−−−−
K4 be a bipartite subdivision of K4 satisfying |Cabc| = 2g and Lad +Lbd +

Lcd ≥ 4g, and σ be a signature of
−−−−−
K4 such that Cabc is an unbalanced cycle, and (

−−−−−
K4, σ)

is of unbalanced-girth 2g. Then, the core of (
−−−−−
K4, σ) is UC2g.

Let K++
3 be the multigraph obtained from K3, with vertices a, b and c, by adding a

parallel edge to each of the edges ab and ac. Similarly to the proof of the previous lemma,
we can prove the following result which claims that certain signed graphs, build upon
specific subdivisions of K++

3 (see Figure 3) are not cores. The following has also been
proved in [14].

Lemma 20. Let
−−−−−−−−
K++

3 be a bipartite subdivision of K++
3 such that the outer cycle is of

length 2g and the total length of the three threads incident to b is at least 4g, and σ be a
signature of

−−−−−−−−
K++

3 such that (
−−−−−−−−
K++

3 , σ) is of unbalanced-girth 2g. Then, the core of (
−−−−−−−−
K++

3 , σ)
is UC2g.

11
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Figure 3: Subdivision of K++
3

6 Mapping sparse signed graphs into (K4, {e})
In this section, we prove Theorem 12, using standard discharging technique. A reducible
configuration for this theorem is a signed graph (F, σ1) with the following property: given
any signed graph (G, σ) containing (F, σ1) as a subgraph, any possible homomorphism of
the signed graph induced by G− F to (K4, {e}) can be extended to a homomorphism of
(G, σ) to (K4, {e}).

To prove Theorem 12, we first exhibit a set of reducible configurations (Lemmas 24
to 27). Then, to complete the proof, we show that if a graph G has maximum average
degree less than 8

3
, then G must contain at least one of these reducible configurations.

This clearly implies that Theorem 12 does not admit any counterexample.

We start with some notation and terminology. In the rest of this section, (G, σ) is
considered to be a minimal counterexample to Theorem12: that is a counterexample
with minimum possible number of vertices and among all such counterexamples having
a smallest number of edges. That is to say, mad(G) � 8

3
, (G, σ) 9 (K4, {e}), and every

signed graph with less vertices than G having maximum average degree less than 8
3

maps
to (K4, {e}). Note that, since the maximum average degree is taken over all subgraphs,
any subgraph of G has also maximum average degree less than 8

3
. Thus, any proper signed

subgraph of (G, σ) maps to (K4, {e}), which implies that G must be connected.
Recall that a k-vertex is a vertex of degree k.

Definition 21 (Weak vertex). A weak vertex is a 3-vertex adjacent to two 2-vertices.

Definition 22 (3-subgraph, 3-subtree). A 3-subgraph of a graph G is a connected sub-
graph S of G all of whose vertices have degree 3 in G and which is maximal for this
property. Every vertex of G− S adjacent to a vertex of S is a neighbour of S. (Observe
that no 3-vertex can be a neighbour of S.) If S is a tree, then S is a 3-subtree of G.

We will label vertices of the signed graph (K4, {e}), with V (K4) = {1, 2, 3, 4} where
e = 14 is the negative edge (see Figure 4). This signed graph has the following easy to
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Figure 4: The signed graph (K4, {e})

observe properties.

Observation 23. For every two vertices (not necessarily distinct) x and y of (K4, {e}),

1. there exists a vertex z such that the walk xzy is positive,

2. if x ∈ {a, c} and y ∈ {b, d}, then there exists a vertex z such that the path xzy is
negative,

3. there exist vertices z and z′ such that the walk xzz′y is positive,

4. there exist vertices z and z′ such that the walk xzz′y is negative.

We now prove a series of lemmas giving a set of reducible configurations.

Lemma 24 (Reducible configuration 1). The graph G has no 1-vertex, i.e., δ(G) ≥ 2.

Proof. Assume to the contrary that u is a 1-vertex of G, and let v be the neighbour of u.
By the minimality of G, there is a homomorphism φ of (G−u, σ−{uv}) to (K4, {e}). We
can then extend this mapping to a mapping of (G, σ) to (K4, {e}) as follows. If uv ∈ σ,
we first resign at u, so that the edge uv is positive. We can then map u to any vertex
of (K4, {e}) connected to φ(v) by a positive edge. We thus obtain a homomorphism of
(G, σ) to (K4, {e}), a contradiction.

Lemma 25 (Reducible configuration 2). The graph G has no pair of adjacent 2-vertices.

Proof. Assume to the contrary that u and u′ are two adjacent 2-vertices in G, and let
G′ = G − {u, u′}. By the minimality of G, there is a homomorphism φ of (G′, σ′) to
(K4, {e}), where σ′ is the signature induced by σ on G′. We prove that this mapping can
be extended to a mapping of G to (K4, {e}).

Let v and v′ denote the other neighbour of u and u′, respectively. By Observa-
tion 23(3,4), there exist a positive 3-walk and an negative 3-walk from φ(v) to φ(v′)
in (K4, {e}). If necessary, we can resign at u, or u′, or both, in such a way that the
signs of the edges of the path vuu′v′ and the corresponding, positive or negative, walk
in (K4, {e}) coincide. By mapping u and u′ to the internal vertices of the corresponding
walk, we get a homomorphism of (G, σ) to (K4, {e}), a contradiction.

13



u

v1

v2

v3

w1

w2

w3

Figure 5: Reducible configuration 3

Lemma 26 (Reducible configuration 3). The graph G has no 3-vertex adjacent to three
2-vertices.

Proof. Assume to the contrary that u is a 3-vertex, adjacent to three 2-vertices v1, v2
and v3 (see Figure 5), and let G′ = G − {u, v1, v2, v3}. By the minimality of G, there
is a homomorphism φ of (G′, σ′) to (K4, {e}), where σ′ is the signature induced by σ on
G′. Again, we prove that this mapping can be extended to a homomorphism of G to
(K4, {e}), leading to a contradiction.

Let w1, w2 and w3 denote the other neighbour of v1, v2 and v3, respectively. We
consider two cases.

1. The three paths uv1w1, uv2w2 and uv3w3 are all positive or all negative.
In this case, by resigning at v1, v2, v3 and u, if necessary, we may get an equivalent
signature where all the six edges incident to v1, v2 and v3 are positive. We then map
u to any vertex of (K4, {e}), and extend the mapping φ to v1, v2 and v3 thanks to
Observation 23(1).

2. The three paths uv1w1, uv2w2 and uv3w3 do not have the same balance.
In that case, we may resign at u in such a way that only one path, say uv1w1,
is negative. If φ(w1) ∈ {a, c} (respectively, φ(w1) ∈ {b, d}), then we map u to b
(respectively, to a). The mapping can then be extended to v1, thanks to Observa-
tion 23(2), and to v2 and v3, thanks to Observation 23(1).

This concludes the proof.

Lemma 27 (Reducible configuration 4). The graph G has no 3-subtree T all of whose
neighbours (in G− T ) are 2-vertices in G.

Consider a 3-subtree T of G which is only adjacent in G − T to 2-vertices. Let T2
be the subgraph of G containing T and all its adjacent 2-vertices, and G′ = G − T2. By
the minimality of G, there is a homomorphism φ of (G′, σ′) to (K4, {e}), where σ′ is the
signature induced by σ on G′. Again, we want to extend this mapping to a homomorphism
of G to (K4, {e}), leading to a contradiction. In what follows, we show that φ can
be partially extended, with some degree of freedom which is made more precise by the
following definitions.
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Let Q be a connected (strict) subtree of T such that T − Q is connected, and let
x = end(Q) be the unique vertex of Q having a neighbour in T −Q, called the end vertex
of Q. (For instance, any leaf vertex of T can be chosen as Q.) Let Q2 be the subgraph of
G containing the vertices of Q and the 2-vertices of G adjacent to vertices of Q. Recall
that the mapping φ = (φ1, φ2) decides, for each vertex v of G′, if there must be a resigning
at v (determined by the component φ1), and to which of the four vertices of (K4, {e}) the
vertex v is mapped to (determined by the component φ2).

Based on the following notation we show that one can extend the mapping φ to Q2,
with a degree of freedom at x. We define the six following sets of images of the mapping φ.

A1 = {(+, 1), (+, 4), (−, 1), (−, 4)}, A2 = {(+, 2), (+, 3), (−, 2), (−, 3)},
A3 = {(+, 1), (+, 4), (−, 2), (−, 3)}, A4 = {(+, 2), (+, 3), (−, 1), (−, 4)},
A5 = {(+, 1), (+, 4), (+, 2), (+, 3)}, A6 = {(−, 1), (−, 4), (−, 2), (−, 3)}.

We now prove the following claim.
Claim. Given a connected subtree Q of T with end vertex x, and a homomorphism

φ of G′ = G − T2 to (K4, {e}), we claim that there exists a set Ai, 1 ≤ i ≤ 6, such that
for any of the four choices (α, β) ∈ Ai, the mapping φ can be extended to Q2 in such a
way that φ(x) = (α, β).

Proof of the claim. We will prove this claim by the methods of dynamic programing.
First we show that the claim holds if Q is just a leaf vertex of T . Then we show that add
a verex u to Q as a new end vertex when u is of degree 2 in T . Finally we show that two
end vertices can be merged to form a larger three with a new end vertex.

Suppose first that Q is any leaf u of T , in particular we haveend(Q) = u. Since all
vertices of T are of degree 3 in G and all neighbours of T outside T are of degree 2,
u is a weak vertex of G. Let v1 and v2 denote the two neighbours of u not in T . Let
H = {u, v1, v2} and let w1, w2 be the other neighbours of v1 and v2 in G, respectively.
Depending on the signs of the paths uv1w1 and uv2w2, we consider two cases.

1. The paths uv1w1 and uv2w2 are both positive or both negative.
In the former case, by resigning at v1, or at v2, or at both v1 and v2, we may assume
that the four edges of these two paths are positive. Then, any choice of φ2(u)
(without resigning at u) can be extended to v1 and v2 by Observation 23(1). Thus,
φ(u) can be any member of A5. In the latter case, after resigning at u, we are in
the former case, and thus φ(u) can be any member of A6.

2. The paths uv1w1 and uv2w2 do not have the same sign.
Without loss of generality, assume uv1w1 is negative. If w1 is mapped to 1 or 4,
then each choice of φ(u) = (+, 2) and φ(u) = (+, 3) can be extended to v1 and v2.
If w1 is mapped to 2 or 3, then each choice of φ(u) = (+, 1) and φ(u) = (+, 1) can
be extended to v1 and v2. But then, after a resigning at u, we may exchange the
role of w1 with w2 to get two more possibilities for u. Therefore, depending on the
values of φ2(w1) and φ2(w2), one of the four sets A1, A2, A3 or A4 works.

Suppose now that the claim holds for every connected subtree of T of order at most
k ≥ 1. Let Q be a connected subtree of T of order k + 1 with end vertex x, and φ be a
homomorphism of G′ = G− T2 to (K4, {e}).
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To proceed with our goal, given a subtree Q with end vertex x which satisfies our
claim, we want to extend Q to have a new end vertex which also satisfies our claim. This
is done in the following setting: Let u be a 2-vertex of T and x be a neighbour of u. Let
Q be the subtree of T such that end(Q) = x and u /∈ Q. Observe that u is the end vertex
of the subtree Q+ = Q+ {u}. We claim that if x satisfies our claim as the end vertex of
Q, then u also satisfies our claim as the end vertex of Q+.

Proof. Since all vertices of T are 3-vertices of G, u has one neighbour in G which is
not in T , we call this vertex v. As we have assumed all neighbours of T are 2-vertices, v
is a vertex of degree 2 in G, thus it has another neighbour which we name it w. We note
that w could be a vertex of T or Q, but even then we will assume, in the rest of the proof,
that φ(w) is already given. Depending on the balance of the path xuvw and which four
choices are available for x we have four possible cases:

Case 1 - xuvw is positive. We first resign at u or v or both, if needed, such that all the
three edges of the path xuvw are positive. Then first we assume that of the four
choices for x two are without a resigning at x, i.e., choices of the form (+, i). For
any such choice of (+, i) all three choices of (+, j), j 6= i for u are then exntendable
at v, thus if we have not resigned at u, then A5 works and if we have then A6 works.
If our assumption does not hold, then A6 is the set of four choices for x. In such a
case for each choice of (−, i) the choice of color i for u is also extendable to v. Thus
again depending on whether we have already resigned at u or not, the set A5 or A6

would work.

Case 2 - xuvw is negative. In this case we may resign at u or v or both, if needed,
such that ux is a negative edge and it is the only negative edges of the path xuvw.
Then we consider a set of four possible choices for x. If for and i ∈ {1, 2, 3, 4} we
have (−, i) as a choices, then every choice of (+, j), j 6= i for u can be extended to
v as well. Observe that if for some j we have (−, j) ∈ Ai, then there is a j′ 6= j
such that (−, j′) is also in Ai. Thus in this case depending on whether we have
originally resigned at u or not, A5 or A6 is a collection of four possible choices for
u. Finally if there are no negative choice available for x, then the corresponding set
of four possible choices for x are the four members of A5. In this case, with respect
to current signature, for each choice of (+, i) for x, assigning u to same vertex, i.e.,
i, can be extend to v. Thus, again depending on whether we have already resigned
at u or not the set A5 or A6 provide a list of four possible choice for u.

Next we want to merge to subtrees with distinct end points to get a larger subtree
with a new end point, and to show that if we had the four choices (from sets Ai and Aj)
for each of the two previous end points, then we have such a set of choices for the new
one as well. This is done with the following precise notation: Let y be a 3-vertex of T ,
with vertices x1 and x2 of T being two of its neighbours. Let Q1 and Q2 be the subtrees
of T with end(Q1) = x1, end(Q2) = x2, y 6∈ Q1 and y 6∈ Q2. Observe that y is an end
vertex of the subtree Q induced by Q1, Q2 and y. Assume that for a coloring φ of G′,
(recall G′ = G−T2), there is set of Ai (i ∈ {1, 2, · · · 6}) of four possible choices for x1 with
which φ can be extended to Q′1 and a set Aj (j ∈ {1, 2, · · · 6}) of four possible choices for
x2 with which φ can be extended to Q′2. Then we claim that there is a set Al, 1 ≤ l ≤ 6,
such that any choice of an element of Al for φ(y) can be extend to the Q′.
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To prove this, first suppose that the corresponding set for one of x1 or x2, say x1, is
Ai for some i ≤ 4. That means we have two choices of colors for x1 without resigning at
x1 and two choices together with resigning. Thus over all, we have two choices of distinct
colors for each of x1 and x2 such that the path x1yx2 is positive. Thus for each choice of
color for y we can make it distinct from a choice of color for x1 and choice of color for
x2 and such that the sign of the edges x1y and yx2 remain the same. Thus if the sign of
these edges are positive, then A5 is a set of possible choices for y and otherwise A6 is such
a choice set for y.

Thus we may assume that the set of four choices for each of x1 and x2 is either A5 or
A6. In such a case, after each of such assignment to x1 and x2 each of the two edges, x1y
and yx2, have a fixed sign. If these fixed signs matches i.e., if the path x1yx2 is positive,
then A5 or A6 is a set of possible choices for y as before. Otherwise, one of the two edges,
say x1y is negative and the other, yx2 remains positive. Then for each choice of (α, i)
for x1, the choice of (+, i) works with some choice for x2, thus in this case A5 is a set of
choices for y.

This concludes the proof of the claim.
Finally we are ready to prove that a 3-subtree of G all whose neighbours are 2-vertices

of G is a reducible configuration.
If T has only one vertex, then this is done in reducible configuration 3. Thus we

may assume that T has at least one edge xy. Let assume that x is an end vertex of Qx,
y /∈ V (Qx), and that y is an end vertex of Qy, x /∈ V (Qy). We note that Qx and Qy each
can be constructed starting from leaf vertices of T by the operations of adding degree
2-vertices of T or merging at degree 3 vertices as we described above. Thus there are sets
Ai and Aj such that for each choice of φ(x) from Ai and φ(y) from Aj we have extension
which is ok for all edges except possibly for the edge xy. Observe that for each element
(α, l) in Ai there is an element (α, l′), l 6= l′, in Ai. Thus if for some such a choice of φ(x)
and φ(y) the edges xy is of positive sign, then we may simply change the color of one end,
if necessary, to have all edges satisfied. Otherwise, xy is a negative edge and we must
have i, j ∈ 5, 6. In such a case then it would be enough to choose φ(x) and φ(y) vertices
1 and 4 of the K4.

Lemma 28. Let G be a graph. If mad(G) < 8
3
, then G contains one of the following

configurations:

C1: A 1-vertex.

C2: Two adjacent 2-vertices.

C3: A 3-vertex adjacent to three 2-vertices.

C4: A 3-subtree S whose neighors are all 2-vertices of G.

Proof. We prove this lemma with a discharging argument. Suppose that this lemma is
false, and let G be a counterexample, i.e., a graph with mad(G) < 8

3
and with no subgraph

isomorphic to configurations C1, C2, C3 or C4. We assign to each vertex v of G an initial
charge which equals to µ(v) = d(v) − 8

3
. As mad(G) < 8

3
, the sum of the initial charges

of the graph is negative.
Then we redistribute these charges, according to several rules given below, verifying

that the whole charge on the graph does not change. After this discharging, we compute
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the final charge µ∗(v) at each vertex v and prove that the sum of all the final charges on
the graph µ∗(G) is non-negative. This contradiction completes the proof.

Here are the discharging rules:

R1 - Each 3+-vertex gives 1
3

to each adjacent 2-vertex.

R2 - Each 4+-vertex adjacent to a 3-vertex gives it 1
3
.

• Let v be a vertex with d(v) = 2. We have µ(v) = −2

3
, and since G has no C2

configuration, v is adjacent to two 3+-vertices. Thus v receives 2 × 1
3

and, by R1,
we have µ∗(v) = 0.

• Let v be a vertex with d(v) = 3 which has no neighbour of degree 3, that is to say
the 3-subgraph containing v consists of v only. We have µ(v) = 1

3
and since G has

no (C3), v has at most two neighbours of degree 2 and so gives away at most 2
3

(in
the rule R1). Moreover, v receives at least 1

3
by R2, thus µ∗(v) ≥ 0.

• Let v be a vertex with d(v) ≥ 4, we have µ∗(v) ≥ d(v) − 8
3
− d(v)

3
by Rule R2, so

µ∗(v) ≥ 2d(v)−8
3
≥ 0.

Recall that a 3-subgraph is a connected component of the subgraph induced by 3-
vertices of G. We have already seen that the charge of each vertex not in this subgraph
and the charge of each isolated vertex of this subgraph is positive. To complete the proof
we show that the sum of charges on each component of this subgraph is also positive, this
would mean that the total charge is positive, contradicting our assumptions.

Let S be such a component of the subgraph induced by 3-vertices, thus S has at least
two vertices. Let v be a vertex S. Let us denote its degree in the subgraph S by dS(v).
We consider all three possibilities:

• If dS(v) = 3, then v is adjacent to three 3-vertices in G and µ∗(v) = 1
3
.

• If dS(v) = 2, then v is adjacent to two 3-vertices in G.

– Either the third neighbour of v in G has degree 2, and µ∗(v) = 0.

– Or it has degree at least 4, and µ∗(v) = 2
3
.

• If v is a leaf of S, i.e. dS(v) = 1, then if v has two neighbours that are 2-vertices,
then µ∗(v) = −1

3
, otherwise µ∗(v) ≥ 0.

For i ∈ {1, 2, 3}, we denote by ni(S) the number of vertices v with dS(v) = i, and by
µ∗i (S) the sum of the charges on those vertices. Since G has no C4 configuration, either
S is not a tree (case 1), or one leaf of S is not a weak vertex (case 2), or at least one
internal vertex of S is adjacent to a 4+-vertex (case 3).

To complete the proof we prove that for every connected (multi)-graph S of maximum
degree at most 3, n3(S) ≥ n1(S)− 2 and that if S is not a tree, then n3(S) ≥ n1(S). This
claim can be easily proved by induction on |S|. It is easily verified for small values of |S|.
Assuming it is true |S| ≤ k, we consider a graph on k + 1 vertices. If S has a vertex of
degree 2, we contract one of the edges incident to it, the result has the same number of
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vertices of degree 3 and 1 as the original graph, and it is still of maximum degree at most
3, so we are done. Otherwise, we only have vertices of degree 1 and 3. As S is connected
and not a K2, each vertex of degree 1 is adjacent to a vertex of degree 3. If each vertex
of degree 3 is adjacent to at most one vertex of degree 1, then we have n3(S) ≥ n1(S),
otherwise a vertex x of degree three has two neighbours u and v each of degree 1. Delete
both u and v, then now x is of degree 1, we have thus one less degree 3 and one less degree
1 vertices in the new graph. The claim then follows from inductive assumption.

Recall that µ∗(S) = µ∗3(S) + µ∗2(S) + µ∗1(S), and that µ∗2(S) = 0. We consider the
possible cases:

Case 1 - In this case we have µ∗(S) ≥ 1
3
n3(S) + 0 − 1

3
n1(S), and since S is not a tree,

we have µ∗(S) ≥ 0.

Case 2 - In this case S is a tree, but a neighbour u of S is not of degree 2. As S is a
connected component induced by degree 3 vertices, u is of degree at least 4. Thus
first of all vertices in S send a maximum charge of 1

3
(n1(S)− 1) to their neighbours

by R1 but then they receive a charge of 1
3

from u. Therefore, over all we have
µ∗(S) ≥ 1

3
n3(S) + 0− 1

3
(n1(S)− 1) + 1

3
= 1

3
× (n3(S)− (n1(S)− 1) + 1), which is a

nonnegative value as n3(S) ≥ n1(S)− 2.

Case 3 - Let u be the internal vertex of S which is adjacent to a 4+-vertex of G. Then in
the count of n3(S), n2(G) and n1(S), the vertex u is counted as a degree 2 vertex.
However, following the discharging rules, not only u does not lose a charge but it
also receives a minimum charge of 1

3
from its 4+-neighbour. Thus to total charge on

S is at least 1
3
n3(S)− 1

3
n1(S) + 2

3
≥ 0.

This concludes the proof of this lemma. We may now prove Theorem 12.

Proof of Theorem 12. By contradiction, let (G, σ) be a counterexample to our claim with
a minimum possible number of vertices. Since we have mad(G) < 8

3
, and by the Lemma 28,

G must have one of the reducible configurations. However, this contradicts our earlier
proofs that G cannot contain any of these reducible configurations.

7 Mapping sparse signed bipartite graphs into un-

balanced even cycles

Recall that the study of homomorphism of signed bipartite graphs captures the study
of homomorphisms of graphs as a special case. Thus the restriction of the study on the
class of bipartite graphs is of high interest. In the world of signed bipartite graphs, for
(H, π) to admit a homomorphism from any signed bipartite graph (G, σ) with G having
maximum average degree less than 2 + ε, where ε > 0 depends on H, it is necessary and
sufficient for H to have an unbalanced cycle. Here, proving Theorem 13, we give a lower
bound on the best values of ε. Let us first recall the theorem.

Theorem 29. For every bipartite graph G with mad(G) < 2+ 1
2g−1 and for every signature

σ of G such that unbalanced-girth of (G, σ) is at least 2g we have (G, σ)→ (C2g, {e}).
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Proof. Note that as a signed graph but not a 2-edge-colored graph, the unbalanced-cycle
of length l, UCl, is vertex-transitive. Let (G, σ) be a minimum counterexample to our
claim. Thus G is a bipartite graph of maximum average degree at most 2 + 1

2g−1 , the

unbalanced-girth of (G, σ) is at least 2g, but (G, σ) does not map to UC2g. Since (G, σ)
is of unbalanced-girth at least 2g, and by Lemma 9, G is not just a cycle. Our next
conclusion is that G must be 2-connected: otherwise either G has a connected component
G1 which is a proper subgraph, or G has a 2-connected end block G2 which is connected
to the rest of the graph at a vertex x. By minimality of G, induced signed graph on
G1 or on G2 maps to UC2g. Similarly, if we remove all vertices of G1, or if we remove
all vertices of G2 except x, then the induced signed graph also maps to UC2g. Note
that to resign at a set X of vertices of any signed graph is the same as resigning at the
complement of X. Since G2 has only one common vertex with the rest of the graph and
G1 has non, in mapping of the two parts we may choose resignings that coincide on the
possible common vertex. Finally since UC2g is vertex-transitive, by composing one of the
two homomorphisms with an automorphism of UC2g we may assume that x is mapped to
a same vertex by the two mappings. Hence they can be composed to a homomorphism of
(G, σ) to UC2g.

That G must be 2-connected implies, in particular, that it has minimum degree at
least 2. A vertex of degree 2 then is an internal vertex of a maximal thread. Our next
claim is that no such thread can have a length 2g − 1 or higher. Assume to the contrary
that G has a thread T of length exactly 2g− 1 (not necessarily a maximal thread) with x
and y as its end points. Let G′ be the subgraph obtained from deleting all internal vertices
of this thread and let σ′ be the signature induced by σ on G′. Observe that since G was
2-connected, G′ is a connected graph. By minimality of (G, σ), the signed bipartite graph
(G′, σ) maps to UC2g. Let φ be such a mapping. Since G′ is connected, φ, as a mapping
of underlying bipartite graph G′ to bipartite graph C2g, must preserve bipartition. Thus
φ(x) and φ(y) partition UC2g into two paths of odd length: one containing the negative
edge, the other composed of only positive edges. Then depending on the parity of the
number of negative edges of T and after a suitable resigning of internal vertices of it,
we may extend the mapping φ to the vertices of T , thus mapping (G, σ) to UC2g which
contradict the choice of (G, σ).

Next we consider vertices of degree 3. Let v be a 3-vertex of G and let x, y and z
be the three ends of the maximal threads whose other end is v. Let lx, ly and lz be the
corresponding lengths of these threads. We claim that lx + ly + lz ≤ 4g − 1. Suppose the
contrary and let G′ be the subgraph obtained from G by removing v and all the internal
vertices of the three threads x−v, y−v and z−v. Let σ′ by the induced signature on G′.
By the minimality of G, we have a mapping φ = (φ1, φ2) of (G′, σ′) to UC2g. Considering
the size of the set {φ2(x), φ2(y), φ2(z)} we have three possible cases:

First we consider the case when this set is of size one, that is to say φ2(x) = φ2(y) =
φ2(z). In this case we consider the image of G after applying φ on the subgraph G′. The
result then is a graph obtained as from an unbalanced cycle of length 2g and the vertex v
which is joined to a vertex (φ2(x)) of the cycle by three internally vertex disjoint paths of
length lx, ly and lz whose signature is induced by signature of (G, σ) and φ1(x) = φ1(y) =
φ1(z). Of these three paths then two are of a same sign and, since our graph is bipartite,
all three of them are of same parity. Thus we can map the larger of the two to the smaller
one. Noting the this larger thread is not of length greater than 2g and that the sum
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three lengths were at least 4g, the cycle formed by the two remaining threads between v
and φ2(x) must be of length at least 2g. We may now use vertex transitivity of UC2g to
complete our mapping as in the previous case.

In the case that |{φ2(x), φ2(y), φ2(z)}| ≥ 2 we similarly use φ to build a homomorphic
image of (G, σ), then we show that the image itself can be mapped to UC2g. In this image
first of all we apply the resigning of φ1 and then any pair of vertices that are identified
in the mapping φ2 are also identified, no further resigning or identification is done. Let
(G∗, σ∗) be the image. Since G is connected and φ2 preserves bipartition, the image, G∗

is also bipartite. Furthermore, any cycle using v must use two of the threads incident to
it, and thus is of length at least 2g. The only cycle not using v is an unbalanced cycle of
length exactly 2g. Depending on if {φ2(x), φ2(y), φ2(z)} is of size 3 or 2, the signed graph
(G∗, σ∗) satisfies the conditions of the Lemma 19 or Lemma 20 (respectively). Thus in
both case (G∗, σ∗) and therefore, (G, σ) maps to UC2g.

Finally to complete our proof we show that the four conditions of (1) G is 2-connected,
(2) G is not cycle (3) it has no thread of length 2g − 1 or longer, (4) it has no 3-vertex
whose total length of incident threads is larger than 4g−1, would imply an average degree
of at least 2 + 1

2g−1 which contradicts our assumption on maximum average degree.
We use discharging technique for this step. Assign the degree of each vertex of G as

a charge to this vertex. The average charge then is the average degree of G. For each
vertex v of degree 2 consider the two ends xv and yv of the thread to which v belongs.
Note that xv and yv do exist because G is not a cycle, and that xv and yv are distinct and
that each have degree at least 3 because G is 2-connected (but not a cycle). We then do
a discharging by the following rule:

discharging rule: Each vertex of degree 2 receives a charge of 1
2(2g−1) from each end of

the thread it belongs to.

We claim that after applying this rule, all vertices have a charge of at least 2 + 1
2g−1

proving that G has average degree at least as much. We consider three possibilities for a
given vertex based on its degree.

A vertex v of degree 2. The original charge of v is 2. Then, as mentioned above, there
are two distinct vertices as the ends of the thread containing v. Each of them gives
a charge of 1

2(2g−1) by the discharging rule. As vertex of degree 2 does not lose any

charge, its final charge is increased to 2 + 1
2g−1 .

A vertex x of degree 3. The original charge of x is 3. It may give a charge of 1
2(2g−1) to

each vertex v which is on a thread with x as an end point. As the total length of
the three threads with x as an end point is at most 4g − 1, there are a maximum
of 4g − 4 number of such degree 2 vertices. Thus x loses a maximum charge of
(4g − 4)× 1

2(2g−1) = 2g−2
2g−1 , leaving it with a charge of at least 3− 2g−2

2g−1 = 2 + 1
2g−1 .

A vertex y of degree k, k ≥ 4. The original charge of y is k. The vertex y is an end
point of k threads, each of length at most 2g− 1. Thus in total y may give a charge
of 1

2(2g−1) to a maximum of k(2g − 2) vertices. Hence y loses at most a charge of

k(2g − 2) × 1
2(2g−1) = k(g−1)

2g−1 , leaving it with a charge of at least k − k(g−1)
2g−1 = kg

2g−1
which is larger than 2 + 1

2g−1 = 4g−1
2g−1 for k ≥ 4.
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Thus at the end each vertex has a charge of 2 + 1
2g−1 or higher, implying the aver-

age charge, or, equivalently, the average degree is at least as much, contradicting our
assumption that the maximum average degree of G is strictly less that 2 + 1

2g−1 .

The result of this theorem is not tight. For the case of g = 1, allowing multi-edge, the
unbalanced cycle of length 2 is the digon. It is then straight forward to check that any
signed bipartite multi-graph maps to UC2.

For g = 2 while Theorem 29 implies that any signed bipartite graph (G, σ) of with no
digon maps to UC4 as long as G has maximum average degree less than 7

3
an improved

and tight bound of 8
3

is proved below. Note that unlike the exceptional case of g = 1, in
general case of the theorem we do not consider multi-graphs as any such of edges must
be of same sign to satisfy the unbalanced-girth condition and the existence of such a
homomorphism depends on only the underlying simple signed graph.

Theorem 30. Let G be bipartite graph of maximum average degree less than 8
3

and let σ
be a signature of G. Then (G, σ) maps to UC4. Furthermore, the bound of 8

3
cannot be

improved.

Proof. As G is a graph of maximum average degree less than 8
3
, and by Theorem 12,

(G, σ) maps to (K4, {e}. Then, as G is bipartite, by Theorem 16 it also maps to (C4, {e}).
An example of a bipartite graph of maximum average degree 8

3
which does not map to

(C4, {e}) is given in Section 9.

For larger values of g, i.e., g ≥ 3, we do not know the optimal bound on maximum
average degree by which Theorem 13 would be valid and leave this as an open question.

One may also consider subclasses of signed bipartite graphs. One of special interest
is the class of signed bipartite planar graphs. In Conjecture 14 we have introduced a
condition on unbalanced-girth of signed bipartite planar graphs which may imply existence
of a mapping to UC2g. Using the folding lemma, Lemma 17 or it corollary, Corollary 18,
and the Euler formula this can translate a condition on average degree. We will show on
Section 9 that the proposed bound of this conjecture, if true, is tight.

8 Application on planar graphs

For the class planar signed graphs, a class of graphs of maximum average degree strictly
smaller than 6, the first question is whether there exists a signed graph to which every
planar signed graph admits a homomorphism? Using techniques developed in [RS94,
AM98] such a signed graph of order 48 is built in [13] where a lower bound of 10 on the
number of vertices of such a bound is presented as well. The upper bound of 48 is improve
to 40 in [15] where they have, furthermore, eliminated all but one graph on 10 vertices as
a candidate for a bound on 10 vertices (up to equivalence of signatures). This unique (up
to equivalence of signatures) signed graph is a signed graph on K10 where the signature
(i.e., the set of negative edges) induces a graph on 9 vertices which is isomorphic to the
Cartesian product K3�K3. This signed graph on 10 vertices then seems to be a natural
candidate and it is tempting to believe that 10 is the right number.

Here we address the problem for planar graphs of large girth, which, combined with
Euler formula, is a translation of maximum average degree condition for planar graphs.
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Recall that by the Euler formula for any connected planar graph G we have n− e+ f = 2
where n is the number of vertices of G, e is the number of edges and f is the number
of faces in a planar embedding of G. For the sake of our study we make assume G is
2-connected which implies each edge is exactly on 2 distinct faces (counting the outer
face). If in planar embedding of G each face is of length at least g, then there are at least
f×g
2

edges in G, or, equivalently, f ≤ 2e
g

, thus n− e+ 2e
g
≥ 2, using the fact that 2e

n
is the

average degree of G we conclude that the average degree of G is strictly less than 2g
g−2 .

This is the proof of the following folklore fact:

Property 31. If G is a 2-connected planar graph whose faces are all of length at least g,
then G has average degree strictly less than 2g

g−2 .

Thus we have the following corollary:

Corollary 32. Let G be a planar graph where each face is of length at least 8 and let σ
be any signature of G, then (G, σ)→ (K4, e).

Furthermore, combined with Corollary 18, we have the followings.

Corollary 33. Let G be a planar bipartite graph, let σ be a signature of G such that
unbalanced-girth of (G, σ) is at least 8. Then (G, σ)→ UC4.

Corollary 34. Let G be a planar bipartite graph, let σ be a signature of G such that
unbalanced-girth of (G, σ) is at least 8k − 2, then we have (G, σ)→ UC2k.

This Corollary is in support of Conjecture 14 where we conjecture that unbalance-
girth at least 4k − 2 is enough to map a signed bipartite planar graph to UC2k. If true,
then the condition of unblanaced-girth at least 4k − 2 is the best possible as shown by
the examples in Section 9.

For the special case of k = 3 Conjecture 14 claims that any planar signed bipartite
graph of unbalanced-girth at least 10 admits a homomorphism to UC6. Further support
for this case together with connection to well know Grötzsch theorem is as follows: Let G
be a triangle-free planar graph and let

−−−
G be graph obtained from subdividing each edge

exactly one. Observe that the result is indeed a planar bipartite graph. Let σ be a set
of edges of

−−−
G such that for each original edge of G exactly one of the two corresponding

edges in
−−−
G is in σ. Then the signed (

−−−
G, σ) is a signed planar bipartite graph which is

of unbalanced-girth 10 because each unbalanced cycle of (
−−−
G, σ) is a subdivision of and

odd-cycle of G and G is assumed to be triangle-free. A mapping of G to K3, provided by
the Grötzsch theorem, can then be extended to a mapping of (

−−−
G, σ) to UC6. However, it

is not clear if the case k = 3 of our conjecture would imply the Grötzsch theorem. We
leave this as an open problem.

9 Tightness

Consider a K4 and let M1, M2 and M3 be partition of its edges into three perfect match-
ings. Subdivide edges in M1 each one, noting that the resulting graph is bipartite, and
then build a signed graph assigning two edges of M2 the negative sign. Let Ω4 be the
resulted signed graph which is depicted in Figure 6, we will use labeling of vertices as
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Figure 6: Graph Ω4 (Lemma ??)

given in this figure. We prove here that this signed graph is of maximum average degree 8
3

which admits no homomorphism to neighter (K4, e) nor (C4, e), proving both Theorem 38
and Theorem ?? are tight.

Proofs of claims are based on following simple lemma:

Lemma 35 ([?]). Given unbalanced cycles UCl and UCk we have UCl → UCk if and
only if we have

• l = k (mod 2)

• l ≥ k

Lemma 36. The signed graph Ω4 has no homomorphism to UC4.

Proof. We consider UC4 as a 4-cycles with exactly one negative edge. The graph Ω4 is
planar and has four faces each isomorphic to UC4. By Lemma 35, any mapping of each
of these faces to UC4 must be onto and thus must have exactly one negative and three
positive edges. Toward a contradiction assume there is a homomorphism of Ω4 to UC4

under an equivalent signature σ. Then σ must contain exactly one edges of each facial
cycle. The only choices for that are either two edges of M2, or two edges of M3 or two
non adjacent edges obtained from subdivision of M1. But in any of these cases two end
vertices of negative edges are adjacent by a positive edges and form an obstacle given in
Theorem 15 for mapping to UC4.

Lemma 37. Graph Ω4 is of maximum average degree 8
3
.
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Proof. Our graph has six vertices and eight edges, thus the average degree of the whole
graph is 8

3
. Using the labeling of vertices as in Figure 6 if one of vertices x or y is deleted,

the remaining graph has average degree 12
5

. We claim that any other proper subgraph has
average degree at most 2. To this end note that a vertex of degree 1 cannot contribute
for exceeding the maximum average degree past 2. One can then easily check that if by
the process of removing vertices of degree one from a proper subgraph which is not one
of the two mentioned subgraphs one either gets a cycle or single vertex.

Corollary 38. There exists a signed bipartite graph of maximum average degree 8
3

which
does not map (C4, {e}).

Since Ω4 is a signed bipartite graph, and by Theorem 16 we have:

Corollary 39. There exists a signed graph of maximum average degree 8
3

which does not
map (K4, {e}).

Next we show that the claim of Conjecture 14, if true, is also tight.

Theorem 40. There exits signed planar bipartite graph of unbalanced-girth 4k− 4 which
does not map to UC2k.

Proof. Label the vertices of the unbalanced cycle UC4k−4 by v1, v2, v3, · · · , v4k−4 and con-
sider a circular drawing on the plane. Add a vertex u in the center, then for each vertex
v2j, j = 1, 2, · · · , 2k − 2, (vertices of even index) join it to u by two internally disjoint
paths of length 2k − 2 and assign to one of the 4k − 4 resulting edges a negative sign.
Call the resulting signed graph Wk, see Figure 7 for depiction of W2. It is easily observed
that Wk is a signed bipartite planar graph of unbalanced-girth 4k − 4, in fact the girth
of the underlying graph is 4k − 4. We claim that it does not admits a homomorphism
to UC2k. By contradiction suppose φ is a mapping of Wk to UC2k. First observe that φ
must preserve bipartite as the image is bipartite. Thus among vertices v1, v2, v3, · · · , v4k−4
those of even index map to a same part of UC2k and those of odd index map to the other
part. Furthermore, as u is of even distance vertices of even index it must map to the same
part as vertices of even index. Second observation is that since UC4k−4 is an unbalanced
cycle, the restriction of of φ onto this cycle must be surjective. Thus the image of u, φ(u)
must be also the image of a vertex v2j for some j, 1 ≤ j ≤ 2k − 2. Then in the image of
unbalanced (4k− 4)-cycle build on u and vj there must be an unbalanced cycle of length
at most 2k − 2. But this contradicts Lemma 35.

10 Concluding remarks

This is a first work in the study of homomorphisms of sparse signed graphs. A main result
here was to show that given any signed graph (H, π) there exist a positive ε such that
any signed graph satisfying gij(G, σ) ≥ gij(H, π) and MAD(G) ≤ 2 + ε maps to (H, π).
We determined a best value of epsilon for (H, π) being (K4, e) and for (C4, e). We believe
geometric condition such as planarity can help proving parallel results.

The study generalize various questions from graphs coloring. For example one can
define (H, π)-critical graph to be a graph satisfying gij(G, σ) ≥ gij(H, π) such that (G, σ)
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Figure 7: Graph W2 of Theorem 40.

does not admit a homomorphism to (H,Π) but any subgraph of it maps to (H, π). Ex-
tending the notion of excess of k-critical graphs, a natural question then is to give a
lower bound on the number of edges of an (H, π)-critical graph. In particular, considering
Theorem 6.2 of [13], the case when (H, π) is a complete bipartite graph where a perfect
matching is negative is of special interest.

On the other hand, when (H, π) is a signed projective cube, as discussed in [12], the
condition of planarity in place of maximum average degree conjectured to be a suffi-
cient.This conjecture directly generalizes the four-color theorem and is in connection with
the study of various notions of coloring of planar graphs as discussed in [11].
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11 Appendix

Proof of Lemma 19 First of all, we may assume that Lxy ≤ 2g − 1 for every x, y ∈
{a, b, c, d}, as otherwise, we may delete internal vertices of Pxy in order to get a signed
graph (G, σ) which is of unbalanced-girth 2g. Applying Corollary 18, we get that the
unbalanced cycle of length 2g is a homomorphic image of (G, σ). A G is a connected
graph, is any such a homomorphism x and y are mapped to matching parts of the bipartite
graph C2g. Subject to this condition, and regardless of which vertices of UC2g these two
end vertices of Pxy are mapped to, assuming Lxy ≥ 2g, we can extend this mapping to
the internal vertices of Pxy and we are done.

Considering a planar embedding of
−−−−−
K4, since (

−−−−−
K4, σ) is not balanced, we have two

cases to consider.

1. Exactly two faces are unbalanced.
Using a repeated application of our folding lemma (Lemma 17) on the two balanced
faces, we can map the whole graph to Cabc which is isomorphic to UC2g.

2. All four faces are unbalanced.
Thanks to Lemma 3, we may assume, up to resigning, that σ consists of exactly one
edge on each path Pxy, x, y ∈ {a, b, c, d}.
We first claim that for at least one face incident to d, say Cabd, we have Lad +
Lbd ≥ Lab + 2g. To see that, assume to the contrary that Lad + Lbd < Lab + 2g,
Lad + Lcd < Lac + 2g, and Lbd + Lcd < Lcb + 2g. This implies

2(Lad + Lbd + Lcd) < Lab + Lbc + Lac + 6g = 8g,

contradicting the assumption of the Lemma.

As Lad + Lbd ≥ Lab + 2g, and since Lad ≤ 2g − 1, we have Lbd > Lab. Let xa be
a vertex of Cabc such that the path Pabxa (a subgraph of Cabc, connecting a to xa
through b) is of length Lda. Similarly, it follows that Lbd > Lab, and thus we can
choose a vertex xb on Cabc such that Pbaxb

is of length Ldb.

Observe that I = Pbaxb
∩ Pabxa − Pab 6= ∅ and, furthermore, that there is a vertex

y ∈ I which is in a same part of the bipartition as d. We claim that it is possible to
choose this vertex y, in such a way that dPacb

(y, c) ≤ Lcd. If c ∈ I, then we choose
y to be either c or a neighbour of c (depending on whether d belongs to the same
part as c or not). If c 6∈ I, then either I is a subset of Pac or a subset of Pbc. By
symmetry, suppose I is a subset of Pac. In this case, we choose y to be the vertex
of I that belongs to the same part as d and is the closest to c such vertex in Pac.
This means in particular that |Pbay| is of length exactly Ldb. Then, since

|Pcy|+ |Pbay| = |Pbac| ≤ |Pcd ∪ Pdb| = Lcd + Ldb,

we get |Pcy| ≤ Lcd.

Finally, observing that the negative edges of Pad and Pbd can be chosen to be any-
where in these paths, by resigning at their internal vertices, we conclude that the
mapping of d to y can be extended to a mapping of

−−−−−
K4 to Cabc, which is isomorphic

to UC2g.

This completes the proof.
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